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1. Introduction

Let E Dbe a compact subset in the complex plane. Let

n be a positive integer grea*er than 1 and supvose

21929y 4y2, are distinct points of E. We set

3

n(n-1) F
2 | b oo
<dn(E)) = max ‘ ‘ \Zi-Zj\ iZjE'E,j =1,2,..n
. 1< 1< j<n

(1)

Then d,(E) 1is called the dlameter of order n of  E, Since
every continuous function on a compact set attains 1its maximum,
we are justified in taking maximum in (1) and the eXistence of

dn(E) 1is obvious: Notlce that when n=2, do(E) is the

ordinary diameter of E,.
DEFINITION 1: If d(E) = 1im d(E) exists, then d(E)
n-+0C '
1s called the transfinite diameter of E.

We shall now orove that the transfinite diameter feally

exists.

THEOREM 1: (Fekete 13_\ '« dp(E) decreases with n

énd the transfinite dlameter exists.




PROOF: Let 21929y eese0y 2, be any voints of B

satisfying (1), Now, let

n

T T § = TTT o

k=1 1<i<j< n
1,J2k

Each distance ‘Zi“zj\ occurs in the above nroduct k-2 times,

so that we have

n . ‘ . ' n n(n-l)(n 2)
K = 1 1<1<j<n k=1
1,4k

On the other hand, by definition, we have

| | (n-1)(n-2)
T < (dn_l(m) 2
, n(n-1)(n-2)
so that the L.H.S. of (2)  1s at most (dn-l(E)) R
He nce
n(n-1)(n-2) n(n-1)(n-2)
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SO that

N containing E and

rn(E) is called the radius of order p.
_ —=2Ltu> Ol order n

THEOREM 2: As n =+ o0, () -+ q()

1S the transfinite diameter of E

where d(E)

We first nrove 5 lemma,
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LEMMA 1: For a fixed k, we have

. 1im I'n(E) < I'k(E)

n —+ o

PROOF: Let n = ak+d where a,b are integers such
that 0 < b < k-1 . Sunpose {z ’\Pk(z)‘ S... Ak}be a

lemniscate of order k containing E. Supnose further that

lz| < MonE. Set

Qn(z) = 2° {Pk(z)}a

Then Qn(z) 1s obviously a nolynomial of degree n, and

\Qn(z)\ = .‘Zb { Pr(z) } a‘ < MP. Aak for 2z€E

M \P
= A"(5)
so that
|2 (Z)l-%f < M)®/0 e e
nt2" < A(T) - for z
which imvlies
b/n

T e AT R - O R T = LT TR T R A
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We have not assumed anything about A « We now let

X o rk(E) and obtain

b/n
rn(E) < Tx(E) | = )

ry (E)
The lemma now follows by letting 1 - 0o,

Proof of Theorem 2: ILet 2 -1 (B)

= gos Tp(E and choose k

such thet ry(E) < o« + €. Then, from lemms 1, 1t follows that

ﬂ = 1lim 7TR(E) < &€

n-—oc

€ being arbitrary, we now have « = P and r(E) = lim r,(B)
. - noe
exX1sts..

To comnlete the nroof we have to show r(F) = d(r).
Flrst, we show that r(g) < d(RE).
Let =z

*1329y e s, Zp e noints tn B such that
\

- ﬁ ‘?i“ZJ" = Ila (3)

1<1<J<n

)

and let P(z)

H

(z-23),
11

3

1
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Consider TTEI"P(Z)‘ fQI‘ zEE. This 1s the product of
the distances between 27

' (n+1)n
most(.dn+l(E)) - +  Then we have the'inequality

doyeseeessZn,z. For z€E, this 1s at

(n+1)n n(n+1l)

——

2 .
ronte @) 1) T
| (o) F 2 e * (o ®)

n
(dm- 1 (E )) 2

Th '
nis shows that Tn(E) < dpeq.  Now letting n -+ o0, we get

r(E) < d(E) (4)

This completes the nroof if d(E) = 0. We now assume d(E) > 0

We now prove in this case d(E) g_r(Ej.

Choo se agaln 219293+ +..2, satisfying (3). We write

n-1 n-1 n-1
Z]_ Zz o Zn
N2 n-2 n-2 |

| Vd o
V(Zl,zz,w.. ‘;.’zn) — l 22 ' Zn

1 1 . 1

DRI AR T v oY - 4 =TT % S U



Then
‘V(Zl,Zz, nliZn)l - Trn

- -2
suppose Q(z) = Zn %+a1an +""'*awyéf° be a monic polynomial

of degree n-1.

Now multiplying the ith row by aj-1 for § = 2,3,...n
and adding to the first row, we obtailn

Expand by elements of the first row and obtain

T,
‘i

n - (n-1)(n-2)

T TR e Ty TR amg TS i




Hence
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max  Q(z3)| > lﬁnl
J=1,2,..,n (n-1)(n-2)
n((dn_l(E) g
n(n-1)
(e

4 1
'2‘ .
I'n_:EE) 1__2_ (dn(E)) n"' n-T
<§ (E) n=2 (5)
n-1 > 2
Suppose now that
- dn(E) "e/n
—_—t < e n 2 ny where €>0 . T
@) , 0 hen
d,(E d ' = L L
n(E) ] n(E) '.dn—l (E) dn0+1(E) c _n +”+no+ l]
dng (B)  dp-1(B) " &5 (E) dn By <
n 1 1
olnce Z T 1s unbounded as pn - o sy We deduce
k::no-b-l
that dn + O as n - X . Bul we have assumed that

d > o. This gives a contradiction. Hence we have for

-
ER - - . "'I.- .
: R 7RG W - e vt T
.. bl _aala. ty . e -
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infinitely many n

dn(E) | -€/n
dp-1(E) > ° '

|
o)
~’

We choose such a value of n and annly (5) to get

n/2
, 1
Tn-12 a -8y, ° dn-l(E) - n” o=l

L
>e 2 4, _q(B) n Pt

This inequality holds for infinitely many n. We make n tend

to through'this sequence and obtain

- &2
r(E) > e 4(E)

. £ belng arbitrary, we have

This comnletes the“proof of Theorem 2,

Remark: By virtue of Theorem 2, the transfinite dia-

meter is also calledktransfinite radius.

! ]
P S TP T
L -:"ﬂ"'a ; Hmhﬁﬂw — R
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THEOREM 3: The transfinite diameter of a Lemniscate
1s equal to its radius. In marticular. the t

. ransfi-

nite diameter of a circle is its radius,

First we prove a lemma.

LEMMA 2: If E.,E, are lemniscates of radil

T1sTe
ref's-pe Ctively and ElC Ez, then I'l S_ I'Z With

equallty 1f and only if E]_: Eo.

PROOF: Let the two lemniscates Ej,Eo be given by

By : |P,(2)] S.Pfl

Eo 1 \Qm(z)l~s.r§1

; where E1C:E2" Consider the function

h(z) = (Qu(z))

(7o) "

Slnce the zeros of Pp(z) lie in E,, ¢(z) 1is regular

outside Eo. Near >, ((z) o A
aute

Hence ®(z) - 1 as 2z = o and is regular at o On

the boundary of Eo,

[0 (2)] = r™ and |Py(2)| 2 ry



Tt O a T
- . i

Hence

L p)l ¢ 2 = fr2

r .
This would contradict the maxmum nrincinle if ;E-< L since
-1

D(x) = 1 and D(z) 1is regular outside E2 including o=

o2 T1 .

By the maximum principle again, equallty is vossible

only if ¢ (z)

i1l

1. This means |Q (2)"] = | (P (2)"| or
|Qu(z)1m = |Py(2)IF  so that E; and By are identical.

Proof of Theorem 3: Ilet B be a'lemniscate and r its radiue.

Let r(E) Dbe its transfinite radius and r.(E) 1its radius of

order n. we snall orove that r = r(E). ounpose E 1s given

.by

r':"l' f
&

Then, if n = k, every lemniscate of degree %k containing F
must have radiug at least r by lemma 2. But,:gincé B is
contained in itself, r .is precisely the lower bound of the
radiil of 1emnis¢ates_of‘degree kK containing E. This means
ri(B) = r.? If n 1is a multiple of k, say n = ck, the same

result holds, since (7) can be written as |'Pk(z)c|.§_f0k;

- -




Hence rnQE) =T for any n which i1s 1 multiple'of

L f£ 9

. Making n tend to infinity through the sequence k, 2k, 3

-++y We obtain

r = lim rn(E) = r(E)
n—*+0C

In particular, the transfinite diameter of a circle of

radius r 1is nrecisely r.
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2. Upper Semi Continuit

DEFINITION 3: Let ®, and ® be sets of points. We
say that EpdE 1f

(1) By JBg D veveveraes DEpadevenres. DE

and (11) given €>0, then E, is contained in an €-neigh=
bourhood of ® for n > ny(€). t.e., iszEh, there exists
z'€E, such that |z-z'|<E,

THEOREM 4: If E and E, are compact sets such

M-_

that En \L E, then d(Ep) - d(E).

PROOF: TLet dix(E) denote the dliameter of E of order

It is evident that 1f 'ﬁ'? CEl, then dk(EZ) dk( 1)
ony
forA k and so also d(Eg) < d4(Eq). Hence, we have

d(By) 2 d(Bg) 2 vevvreraaas2 AEL) 2 02 A(E)

Hence

§ = 1lim 4(E,) exists and § 2 4(E)
n -0

3

Now, given €> s, choose k so large that

dy.= 43 (E) < d(E) + €.
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we wish to show that for each fixed k, dy(E

Now we wish to show that for large n, A (Bp) < G (B) +2.1.e.

n)

Let 2

that

\Zi,nﬂzj,n | = {dk (E,) )

<1< §<k

=+ di(E)s

k (

k-1)

l,n?l-iiiitti-ill'7zk,n be k OOintS Of F‘r Suﬂ'h

I

i

S - . Y "

o

We vary n and assume that for a suit able subsequerce

n=np(8ay), Zj,nn - Zj ) j : 192,.11,1{:

{"1' . .
olnce for large n., 2.
8% Py Z3.np

Lies within YI of some ovoint

of B3y so any neighbourhood of Z 5 contains ncints of =,

Therefore Z'j lies in the clcsure of B and so0 in =T cinae

BE is cldsed.

Thus, as p - o0,

The last inequality follows by defin®tion.

Thus lim &, (B ) < & (B) and so
n +00 K D7 T K

1im dk(En) = dk(E)

n -+ oc

’

Rit-1)

kY



arge n, G (B) < 4 (B) +£<A(R) +

i | F

u dk (En ) > d(En).

0 lim d(E,) < d(E) since & 1is arbitrary
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. Green'x function .and the transfinite diameter.

LEMMA 3: Supnnose that [7 1is a finite set of mutually
disjoint analytic curves forming the frontier of an

unbounded domain D,. Suopose further that g(z) is

harmonic in D and remains analytic on [ (as_a function

of x and y, z = x+iy).

g(z) = o onf

g(z) = loglzl|+ 3)4-0(1) as Z —oC

L i

of Mis ¥ . (szego [ 97])

where 2’ 1s a constant, Then the transfinite diameter

'ﬁ; Here g(z) 1s called the (classical) Green's'function

and & 1is Robin's constant.

PROCF:  We annly Green's formula to the part of Do

outside a small circle | z-24 | >¥%¥ and inside a large circle

|z} < R.

Denote |z-z,| = § by C%m and |z|=R by Cr. Set

v(z) = loglz-z4|. Then

}
N
"y
51):;
!
=1
N’
O
N

B ;a —
28 - gV \ as

since v and g are harmonic.




R = e,
and — 0. We first make

t%#
o
1
| -
+
-

i__.l
o —

)
)

.y
Y
LowS

= 4 0(1) ,

V|
S | <
s J

7 - e = (g me L2/, o)




Now the length of [7 15 aTR. Hence

277-# as R —+o0,

On

=
D
S
<
D

and
oV 1

|

Then

o7
<
0Q
foe

and the ¥ ngth of CF is 2T . Then

g5 - 5o ) ds = 2mg(zq4) + O(f’ log =) = 2mg(zq
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We have g = 0, 25 1s aralytic and so is boupnded

In N

,BV

log|z-24], 55

1S bounded,

Thus we obtain the revresentation formuls

e — L
g( :3) + fé‘n— ) lOng—ZO‘ Qﬁ- . ds 8

olnce g 1is harmonie in Do, 0 on and +00 gt o0 g > 01
, n

Dy Dby the maXimum nrincinle.



g(25) = log r+¢» 0(1L)/r and 1og |z-z4| = log P+O(%)

uniformly in z.

substituting in (8), we get

log r + f%— Oi‘l) = M [1og r + O]El)] + 'J

where M 1s the total mass f/‘? d{u_(Q,) ) . Thus we

]

must have M 1 and our assertion is »nroved.

Before we prove Lemma 3 comnletely, we need the

followlneg.

LEMMA 4. | If B 1s the set corsisting of

the comnlement of Dy, i.e., the curves [ together

with their interiors, then E can be approximated
/ :

from above by Lemniscates

Note: By the maximum nrinciple 1f a polynomial P(z)

satis fies |P(z)| 3 )61 on the elosed curve F, then 1t also
} nolds 1n the interior.

Thus any lemniscate containing F contains the interior
of F and so the transfinite diameter of any set is equal to

that of 1its frontier. <o the transfinite diameterof_fﬂ' is

- . - [ -
- Tia T N TR L LT ¥ -} .
P T E T (A e e PO o WU
R G Se .

equal to that of E.
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+ The last arc on each curve of }“1*will

have a measure-bet N L N
L measure -between 0 3 11 T '
anc T and we sha 1gno e this

arc. There will be in gereral p of |

-

these extra arcs fy

of the se Aares /; Wwill be hetween 0 and D On
“each are [ : :
Y

and renlace

$ b L1
) y sloglzg - &

Now choose 20 tTo be distant st least § from F'

| | /
N = o the length of ’:, will tend to

. As

D¢ This is not all
In fact 238 > 0 '

. T every-
where on ,f7 and so bounded Melow in [ oy m (say) and
thus ‘

trivial and needs 5 11ttle proof.

3§
§~ds > msp

>

B




where s, is the arc length of f; . To sez that 28 > n

D
supnose I8 = 0 at z' 1n /—' . We write f = g+ih then
on ’

since the derivative of g vVanishes along [ and nernendi -

cular to /—', £ ( :0) = 0 . Also f is not a constant.

Thus f(z) Ao c(z '~ Ka)k , K2 A y nNear :D » Hence the

regions where g > 0 are k in number bounded by curves making

angle s Z}:‘— with each other. This is 1mpossible since g > 0
along one side of /7. Thus k = 1, g_g_ £ 0.
N
Now, on f; y W& have
Zo~ § . 5, -
log — log 1+EV R S_ ), S — O(l)
Zo_ \gg ZO" g‘p’ Zo-g N& )

since the length of f; ls 0(1) \ Izo.. S

N
Now, adding for all the curve sywe obtain,
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N if Z g is hounded.
% ;
[y
R
Finally,

glog\E'-Zold/u(s)-ﬁl-%_log\zo- 5,0 = 0(1) (9)
-

=
n

In the sum :E: in (9), there may be M terms where

N-p < M < N . If we renlace L by ilf’the

error 1s again ﬂ%l . So finally, we get | *

Jlog\\g -Zold/u,(K ) = l%l 10€\Zo-§y|+ MML)-

Mp=:
m

orovided that 2z 1s bounded and at least at a fixed distance

from /—’ . Monsider now the curves f_é on which g = €.

These will be a finite number of closed analytic curves, unless

f'(fg ) = 0 somewhere in /; where f
be fore.

= g+1h 1as
This will hapnen only for isolated values of €

These curves separate /—' from o<

terd to [

and as € -+ o0 , they

. Consider € small (fixed) so that fé, /EG'
/‘ée, C ey s are all of this kind.




lies between —-§ +€ and - ¢ + 3@ . Thus the lemniscate

M Zlog\ Zo - Ey | < - y +3€ contains [2-'9 and so

o

also ["7 + By the same argument on the other nand, this

lemniscate contains no o2o0int outside [26 . Thus this

lemniscate annroximates [_' in our sense. This nroves

lemma 4.

B |

Completion of »roof of Lemma 3. The apnroxi mating

_ . . . - Y+ 3€
Lemniscate for f—' which we constructed has radius & '

f'we Tet € - 0 through a suitable sequence £ the

o s
corresvonding lemni scate L,,, \L /—' + Also thelr radit

which are equal to their transfinite diameters tepd to e"z) .

dence by Theorem 4, A([7) = e‘B) As required, and the nroof

of Lemma 3 is comnleted.



THEOREM 6: (Hilbert-Fekete). If E is a comnact

set_with connected comnlement, then E can be

annroxinated from above by lemniscates.

PROOF: Consider the collection of all dises of radius €
with centres ir B. These discs will cover E. Then hv'the
Helne-Boral theorem a finite number of these Aiscs will ecover
BE. Let E' be the union of these closed discs and let Dg
be the unbounded component of the comnlement. We notice that
a8 € —+ 0, Dy will tend to the complement of B, Hence if
Eo 1s the complement of Dy, then, as € = 0, By will tend to
E since any n»oint outside E will be in D, and so outside
Eog if € 1is small enough.

Next we notice that E5 is bounded by curves consisting
of arcs of circles. Hence we can solve the problem of Dirichlet
for Dy (Ahlfors: Comnlex Analysis, ».205). This means*ﬁe can
construct a function h(z) harmonic in Fo (includingtx0 and
taking given contlinuous boundary values. We choose the

boundary values =1log|z-2z4| where 25 is in the interior of

Es and set

g(z) = h(z) + log|z-2q]

Then g(z) is the classical Green's funciion of ‘Do:giz) = 0
on the boundary of Dy and g(z) is harmonic in Dq éxéeot &

x where g(z) - loglz| remains harmonic.
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Now let Dg be the set where g > 5.

We can chonse §
as small as we mlease such that the boundary r15 of D

consists of a finite number of anhalytic curves. Then the

comolement Eg of Ds annroximates Dy from above. r; and

g-0 satisfy the hynotheses of Lemma 4 and so ré can be

approximated by lemniscates and hence so can o

be an increasing

LEMMA 5: (Harnack). _,et {u (Z)\f

of harmonic fupctions in a domai h ceither

un(z) =+ at each point of D _or up(z) converses

uniformly on compact subsets of D _to a harmonic 1imit

u(z).

PROOF: Sunnose h(z)
|z|< R. Then

1s harmonic and nositive 1in

2Ati 5
2 2
ie R - |
h(reie) — .....2%___ g h(Re ) . d_(b,() _<_1~< R
0 R ~-2Rr cos(e-®)+r2
o1
¢ B+r 1 { h(Pei(b)d(D
-r Zr J
O
LS NG)
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Now sunpose that D contains the disc |[2-25|< R and that
un(2g) converges. Then 1f m > n > No (€)y h(2) = up(z) -u,(2)20

in {z-25] <R, and h(zy) < € since un(z5)  converges. Hence

for |z-25|< r< R, we have

t hat i1s

0 < up(z) - up(z) < Eil.: c.

Thus {un(z)k converges unlformly in \z—-zo\ <r for r < R.
The argument is completed by a sten by sten vrocess.

It remairs to show that the limit u(z) 1s harmoric. We

assume for simnlicity that |z|<r lies in D. We show now that

u(z) is harmonic in \z\( r. 1[I 2z = eie,Og? < 1 then

'Lln(z,) g -2—1:1'7-:- J[ u (I'e )(I‘ " ) d(b (10)

2 ; %
s r?-~-2r§ cos(e-(b)+ §

Making n - oo, we éan renlace up by u in (10); Being_the
uniform limit of continudusrfunctions, U 1s also continuous.
Hence we can di fferert iate under the integral sign and show
that u  also satisfies Laplace's equation. _Hence u is

narmoni c.
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Sl
TR

ConstPuction Qf Green's funct

on: We say that if D 4g an

unbourd ed domain whose complement B s comnact, then g(z)

LS tre Green's function of D if g(z) satisfies the following

wronerties:

(1) g(z) is vositive and narmonic in D except at o

(11) g(2z) -loglz} remains harmonic at oo or

{iid g(z) - log\zl'-*-)) as

Z —+ X, wherefy 1s called Rohin's
constant.

(111) g(2) 1s minimal subject *o (1) and (11).  That is, if

h(z) satisfies (1) anqg (11), then h(z) > g(z) in D.

.. .. . .- . EE P S
. et o - . . o e 2 ] o,
e - . LA SR e e o ey =3 -
ol R gt e A T R T ey . et e gh i
i :-"-_"_"- A A iy T N T ] '-"',j"-' k
F - - H = - H 2 - A - = - R
O o D Y DY t.‘ﬁ'l: o R T T
: PE AN AN ST Sl E e *95%‘ LA A
: e T L R SRR TR TR L - e e o
R T -\.__-__:.-:E."':.._\E_r.\.k_::_mq 5‘.‘_“_.:..,___:_._- TSy . - . . A
Sor oo VT R e T L . - B S
..'\- - . = -

In some cases g(z) may satisfy instead of (iii)the
stronger'property. ,
 ial | point
4%; (1ii') g(z) - 0 as 2  anproaches any frontiepAof D.

we see that (iii') implies (111) and hence (1iit') is really

stronger for if (1I1') holds (1i1) follows from the maximum

Lo
orincinle applkﬂA g(z)~h(z).

We shall now obtaln criterion for the eXistence of Green's

funection.

TH

-

BOREM 6:  green's function g(z) exists if and only if

d(E) > 0. In this case,ﬂgge log d&(B) or 4(®) = e*é’
(SZ@EO, [*9]. K

o
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PROOF: Let Ln be a sequence of lemniscates,

lpkn(z)\ g_rﬁn such that Ih,¢ E. We now set

gn(z) = 1%; log ‘Pkﬂ(z)

Then gn(z) > O outside L, g,(z) = O on the boundary of Ly,

and gt o

Kn

7
- + 0(1)

gn(z) = -E];'l_ log

= loglz| - logrh+ O(1)

Clearly, g8n satisfies (i) and (11i) for the outside of Ln
with ¢

il

- log r,. Consider €hs+1-8n outs;de L, The
function is harmonic including oo On the boundary, g,=0 and
and gn,1>90 since Lp,q1 lies inside L,. Thus if z 1is outidde
E, the sequence,{gng_ is finally increasing and harmonic near

z. Pear Infinity, g.(z) - loglz| 1is finally increasing and

harmonic. Hence by Harnack's lemma, g, =+ X evervywhere and

go-loglzl = o at e or g,(z) =+ g(z) where g(z) satisfies

(1), (ii), and (iti').

Now since Lnl,E, r, + d(E). 73y consldering the
behaviour of gn—log} z\, which is log (_%rT) at X, we see that

-y

i1f d(E) > 0, we have tte seconl case and if 4(E) = 0, we have

the first cgse.
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Suvdose d(E) = 0. We shall show in this case that

no function in D satisfies (1) and (ii). “unpose, 1in fact,
that g(z) satisfies (1) and (ii). Then on the frontier of 1,

g(z) > 0, gp(z) = 0, and g-g, > 0. Also, g-8, is harmonic

outside Lp 1including oo Hence g-gp > O outside 7T,. Now

making n -+ 90, we obtailn

g 2 lim gn = +

which gives a contradiction. Thus if d = 0, no Green's func-

tion exists,

Supnose next that d(E) > 0. Then we show that g(z)
also satisfies.(iii). This will then prove that g(z) is
Green's function. Sunnose that h(z) satisfies (1) and (it1)
Then by the same argument as above, h(z) > gn(z) outside L.
Thus h(z) > lim g,(z) = g(z) which is (ii1).

It remains to vnrove the 4(E) = e-g. To see this, we

not ice that near infinity,

g(z) - logiz|l = 1lim gn(z) - loglzl = 1im log L
N=* 20 rn
1
= 1 s
°S T®

y
so that ¢ =1log - _ or d(E) =e
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4, Aonlications to Conformal Manning.

THEOREM 7: Supoose that f(i)]is meromorphic in
domaln D whose complement E is comnact and that

f(z) mans D into a domain D whose comolement 1is

E'. Further supnose that f'(o¢) = 1 which means
that
a1
f(z) = 2+ apg+ £ + ..s. for large z.
Z,

Then d(E') < dA(E). Fauality holds if f(z) maps

D in a one to one fashion conformally nnto D°.

This theorem was nroved by Hayman [_4] for the
spactal case when D is |z| > 1 and the general result seemsto

be
/due to Fekete, but the »oroof has rot yet appeared

PROOF: Supnose first that D 1is the comnlement
of a lemniscate E: \Pn(z)\g_dn and that D' 1is the comvle-
ment of a lemniscate E': {Qp(z)|<d'™M. Notice that we are now
nroving a very special case. We need to show that d' < d.

To @xove this, consider



Since Qu(w) 1is regular and non-zero ip D
Qn(£(z)) # 0 in D,

at o  Further at oo

y 1T follows that

Thus ¢i(z) is regular in D except vossihly £T

mn
| B <
D(z) ~u - 1

(£(z)) | 3

Thus §(z) is also regular at infinity. As 2z approaches the f|

boundary of D, an(z)| -+ dn, f(z) lies in D' and so
\Qm(f(z))‘Zﬂ’m. This meagns I

i | - -

Then by the maximum. prineiple, sinee O (00) = 1, we must have
d > d°.

Let us now consider the general case. Sunnose L 1

1s a lemniscate aporoximating ® from above and consider the §

5 %
closure - D]'_, of the image of the walues taken by f£(z) outside y

o This is a compnaet set on the Riemann sphere which l1lies 1n ?
H ',1 '.

D' and so is at a mositive distance from E'. Hence we can

find a lemniscate i," containing D' and not meeting 'ﬁi .
Hence by the first part, d(L') < d(L) and so d(E') < d(L).

osince L 1s any lemniscate containing E in 1its interior, we

can make d(L) = d(E) and thus obtain d(E') < d(F).
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Now 1f £ mavs D 1in a one-to-one manner conformally !

onto D', we can consider the inverse funhction and obtain the ?

opposite inequality

(e d(B) < A(E?) |
Putting the two together, we get

d(E) = d(E')

This completeS~the‘proof‘of the theorem.

Remark: In tle svecial case when D 1is |zl > 1, then

d(E') < 1 with equality if ¢ maps |z| > l, in a one-to-one

manner conformally onto D!,

THEOREM 7:1is the only one that helons to comnute the

Examole 1. Transfinite diameter of an nlilnse. Let E
M

be an ellipse with axes 2a,2b. Consider the transformation

W= 7z +.ﬁ
Z
16

2 =Te”", r > /P where B 1is sositive. The cirele lz| = r

. - o 2
corresponds to the ellinse XN= 4+ ¥ - 1 where g = r + &
il T

b=pr P

: and the outsi de of ¢llipse sorresponds to outside
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of the circle in a ona~to-one manner. So
1
T = = at+b
2( )‘
Given a and b, we can find r and 3. And

d(E) = r (a+b)

= 1
2
hxample 2: Transfinite diameter of a line segment.
Making r = A/p 1in BExample 1, b = 0 and we see that line
segment of length 2a ":*-Q,has transfinite diameter (1/2)a = "/4.
EXample 3. Suppose that C(x) is a osne narameter

family of curves, a < x< Db

— —— ?

such that

(1) C(x) meets the real axis at the point x..
(11) if P,P' 1lie on C(x), C(x') resnectively, then the
distance PP-'is at least |x-x'|.

Tnen if E 1s any set which meets each of the curves C(x), then

d(E) > b=-a
4

For examnles of C(x), we may take for instance

(1) C(x) is the 1lire through x »ernendicular to the

real axis

(11) C(x) is the circle with centre origin and radiucp.

m“

* See [ 47
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PROOT. SuUPIose that

Segment s =

. ATATT)
l l lxi*le

= dp(s)

1{1<j<n
Let  zy be a voint of E  on 0(x4). Ther by hyvothesis
|zi-zj|2in-xj|. Thus

| 2 2

. ' n(n-1) n(n-1)

Adn(E) > ! { ’ Izi“zjl Z’. J l Ixi_xj'  =dp(s)
L +<1<j<n

1<1< < n

Ihis inequality 1s trye.

Tor every n. Thus making n tengd to
Infinity, we obtain

A(E) > d(s) = 9—;-3

"Xample 4, (Fekete),

"‘——_-._

Then d(E) < €'

L r— [ 2

4

Let E be gn arc of length{,

PROOF: e Can varameterize p by z

= 2(s8) 0 < Sf_é

b

(in terms of arc length., Iet 71 be the interval [O, Q] .
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If 25 = Zz;(ss) give the diameter of order n, we have

|zi—zj| < |Si'sjl

so that dn(E) < dp(I).

Thus making n -+ o0, we get 4(E) < 4(I) = _QZ E

THEOREM 8: [_'_4] sSunnose that

F(Z) = Z % eeeennen

s - _meromornhic in |z| > 1 and let C(x) be curves N
| = B —— —_—

satisfying Example 2. Then if b-a > 4, f(z)

assume s
w

. Lol
- T b

- a——r . —
. 4 b - o
= e N LI
- . -
. JE Py -

all values on at least one of the curves C(x).

T L LN T o lty-—fvreel- sy cmw T T em
- — o s o . - —hﬂimh"‘w*hir-_'ﬂ- [ ;
" . = =

> ARMENA T L. e

PROOF: Sunpose the contrary. Iet E' be the set

of values not taken by f(z). Then E' meets every om of the

curves C(x) and then by Txample 3, d(E') > P=2 s 1,

el
This i

4 Jé q*!:.l :.
contradicts Theorem 7.

COROLLARY 1: With the above hymotheses., f(z) assumes i
| ' S
all values on a circle |w! = R with R < 4¢. '

Take C(x) as the circle |w|=x, OKx<4+C.

P T
- - - . A
e ———— - S L . g T s
= —— ) T e - ks
- . _! *_—_ - e R
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»

COROLLARY 2: If f£(2) = z+ag&™+..... 1is regular in

|zl < 1, then f(z) assumes all values on some ecircle

lwl=R with R>1/4 -¢€.

This is a shar» form of a Theorem of Landau. C77]
PROOF: We apnly corollary 1 to

__[__l = P(2) = 2+eeen.n, 2] > 1
£§z) '

P(2) assumes all values on |w| = R with R< 4+£ apA 30 f(—lﬁ-)

and f(z) assume in |z| > 1 and |z| < 1 resnectively all values

on |w] =—%{-—> _éjc%G_ .

Lxample: f(z) = ___?.._2 maps |{z| < 1 into the vlane cut
(1-2)

from -1/4 to o© along the real axis. This aroves that the

above ra2sult is sharn.




Let us consider the integral

u(z) = 5 log|z- %
E

dfuf?g

Then u(z) is narmonic outside E apd

u(z) = loglz|l+o(l), as z -+ o

Since u(z
(2) canhot assume a minimum outside ™, either u(z)

minimum value in E(which may be -X) or tends to ga
minimum value for a sequence {

assumes g

znk*with a limit in E. we call

this minimum mfu). et m be the upper bound of this minimum

m(u), for varying mass distribution M- on E.

- L m - m
—- - - e - - re TTF WL - N - =
. 4 mpag e s - - i TRy e EEe o omomn ' DI eT. L - - =T ' P 2
.;—r-zﬁ:.:#..i:-ﬂﬁﬁ'-‘-.l. e __\_ - EST L T .k L '_h' T wnr _-=" o~ . - - - d ! . - T S T - POt
e i D .“-: = HH_ =) .-.#-‘.J‘- 1-- e I T P o At ® Rl a e e _ A .t LR
= d . a' s T - 1 s g . . N - . - - -

- L = = R - = . - . . = i - T T T e -

k. . - - o J - - — —- -

R LT R TR '.r..."'..._ﬁ- ;;"F’:r???-" _-':\' :

Now, for every df” y we have

u(z) < log (d5(E)) 1in E

T -_. ."." Fl .
. - =, z g _ e e A R
_. - s i~ - ere o Awnm i e . - st
="M s L e e o o - s gei— o L - - i, Nl

R T R R TR QEES B s -~

SO that m < log do(E); but m may be -

DEFINITION: The cavaclity of the set F® 1s defined ;
by ' %

Cap(E) = e ™™ 4¢ md> -00
= 0 1fm = e
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THEOREM 9: TFor any compact set E, Cap(E) = d(E).

PROOF: Supnose first that E 1is a lemniscate given

by \Pn(z)lgﬁn and suppose further that Pp(z) # O for IPn(z)\:dn
Then '

/this set consists of a finite number of disjoint analytic

curves. Further the function
_ 1 | Pr(z)]

satisfies the hyvnotheses of Temma 3, since
g(Z) = loglzl+log %d-+ wi]_) ot oC

Then, outside E we have the revoresentation.

g(z) = log % + g log|z-T|d LN
' B

oince the mass distribution is smoothicg%ds Ythe integral

remains continuous on E and so

u(z) = floglz-‘g’ '\dr... = log & on [ .
{7

The mass lies on the boundary [' of E and so the integral

is harmonic inside [ and is log d = constant on [ﬁ . Thus

the integral is constant,eQual to log d inside, that is, on

the whole of E. Thus for this narticular u(z), m(u) = log 4,

Thus m(E) > log d, which means that Can(E) > 4(E).

i




We now wish to show that Cap(E) < 4(E). Suvnose that

ul(z) is nwotential function

ul(z) = ‘( log |z-% \dr{ ()

B

such that u,; > log dy outside BE.

Then wuq-log d,-> O outside E. Also, uq,~-log d-=

logl z| -1log dq+ 0'1l) as z =+ oo, Thus uq~log dy satisfies hypothe-

ses (1) and (ii) for Green's function. Thus

ul-log dl > g(z) = u(z) - log d

Making z - o0, we deduce that dog d7 >- log @ which is the

*same as m(u) < log 4. Hence can(E ) < 4(E).

in this case.

In ti» general case, we first notice that Can(®)

increases with E. Let {Er& be a sequence of lemnisca’_ces such

that En LE Cap(En) decreases and d(E) = 1lim 4(E

N n-+oC ['l) N

1lim Cap(Ep).

n—+x

Since, on the other hand, Cap(E) < Cap(E,) for every
fixed n, we deduce that Cap(E) < 4(E). If 4(E) = 0, then the

result follows immediately. Thus we assume that d(E) > O.

We now assert that Can(E) < d(E) is imnossible. Tet us

Thus Cap(E) = a(F).

e
R
i
.I'. i
¥
-3

. —_— = -
tT . = wL - ™ -
- . Tarr O T rrE e i

3
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consider the Green's function gn(z) on En and we write

8, 2) = V(loglz-gldyn(g). + log%? = up(z) +
.Fn

log L _ (say)
d n

As n -+ 00, gn(z) 1s finally increasing outside BE so0 that gn(i)

+ g(z) and 4, - 4 = d(E). Thus at least outside =&

un(z) = u(z) = g(z) + log d.

On E, un(z) 1s a constant and is equal to log dg,. So

on E, u,(z) - log 4. Thus u(z) = 1lim un(z) exists 1n the
n - oc

whole plane and u(z) > log d with equality only on E.

It ean be shown that hy taking a subsequence {%} , 1f
necessary, the measure fhl) converges to a limiting measure
fo., of total mass 1, distributed over the frontier of = and
such that by Fatou's Lemma u(z) < f_logl z-‘g \d/u, ( ‘g).

Hence Cap(E) > d4(E). That is, Cap (E)= d(E).

Remark. We also note that from this argument we obtain
an integral repreSentation of the Green's function g(z) of the

comnlement of &

g(z) = jlog\Z-‘S'\d/u(g) + log%-l- (11)
X

outside E.
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Also at interior voints of E, if any,

log d = jlog\z-—‘g ‘df“'( S)

E

THEOREM 10: lf.d(E) > 0 it is possible to extend
Green's function as a potentlal func function.with rpsgect

to_a measure dp on the frontier of E by(ll).

resulting furc tion is O at interlor points of E and
> 0 on the frontier of E. It is subha¥monic in the

\

whole vnlane.

We onlvy remark that the required extension is glven

by (11).
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6. Sets of capacity zero and Meromorphic functions [8,pp260-264]

THEOREM 11: Suppose that f(z) 1is meromorphic in

\z\ﬁﬁ(#x?and that T(r,f) =+ +¢ as r = R. Then f(2)

assumes 1n lz\<R1all'va1ues exgebt possibly a set of

canaclty zero.

Remark. A set of capacity zero in theclosed plane is

a closed set which can be transformed into a set of mnacity
zero under a bilinear map. We shall now introduce the Ahlfors-
Shimuzu characteristic (see e. ¢ |5,0v.12]). This has certain

advantages over the Nevanlinna characteristic.

We set
o
L |

mA(r,a) = log S o -

O 2am k(f(rei®), a)
®

where
k('w,a) — ‘\Q"a‘

: ' ?J
(1+1212)F (14w |” )%

1s the Chordal distance corresnonding to a,w on the Rlemann
snhere.

The first fundamental theorem may now be stated as

follows:-
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FOor every a including 00,

Wr, £) = N(r,a)emg (r, a)-m, (0e:) (12)
where
r
ACt)
"O(I‘)f) :,'r']_]".‘ ! t at
and  A(t) 1is the area of the image |z| < t by f(z) 1nto the

Riemann sphere.

We also write that

To(r,f) = T(r, £)+0(1)
Assume now L 15 bounded. Since the set of values

assumed by f(z) is Ovén, E 1s closed. Thus E is comnact.

Assume d(E) > 0. Then we snall obtain 3 contradiction 1f f(z)

has unbounded characteristicin lz| < 1.

Let drb be the associated measure on K, and consider the
potential function

Sunnose that ¢ is a compact set lying in the disk

\a\(t, t?_-%-, d(E)= canacity of E. Supnose also that |w|5_2t.




Then
log . < log 1, 2 1og+(2t )+log 2.
k(w,a) \w-a|
For,
log = log ! + L { "-03(1*—\&\2)4-108(1*- ‘W‘z }
k(Wa a) \W—a\ 2
< log Ly log (1+4t2)
lw-al
< log L + 2 log+ (2t) + log 2 + log 1
w-a

= 1og-‘-}—-—l-+2 log+(2t >+ log 2
w-a

since 2t > 1.
g

Let d/u, be a mass distribution associated with . Now multi-
plying Dy d/w(a) and integrating with resmect to a, We obtain

1 "
jlogk(w,a)d/u,(a) < - Jlog\w—a\d/.x(a)a—?_. log (2t )+1og 2

1 +
< 10%5@)*2 log (Pt)+ log 2

L 1
= 2 1
1 <<1+\a‘2>2(1*‘ V172 ¢ aelal®)Be a(et)?




and hence

1
log L du(a) < log 4(1+t2)2'< 31log 2+ log™t
kK(w,a) A7 %

i

Thus in al11 cases, we hagve

1 1 ' +
0 < logm) d/u_(a) < log+ m)+8 log  (2t) + 2log 2.

We multinly (12) by df»(a)
Lemma 6 [é, 99.169—1731.
where d(E)>o and

then

and integrate. This glves

Iy (r f)-JﬁN(r a)d pla)l< log"—_ + 2log™(2t) + 310 2
O\l ) M > a(E) g
B

In fact, the left hand cide is by (12)

am i
e 1 ae L 1.,..T_d_e
or /\,,(a) f 1ng(f(re ),a)d T d/u.(a)f T °)r2)
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We can invert'the order of integration. Integrating flrst with

once that

To(r, £) < log” L, constant
d(E)

that is, f(z) has boundedfcharacteristic. This nroves

Theorem 11.

Canacities of more

enaral sets.

If G 1s an owen sety we define

Cap(G) = Sun {Cap(F) lFCG, F is compact}

Then 1f ® 1is an arbitrary hounded set, we define the oyter

capacity by

( | |
Can(E) = 1nf{Can(G)|T§CG, G is Open}

Further, if E 1is unbounded, we define

Can(Z) = 1im Can(E N { Z\\Zl < n} )

N+ o0
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A4

LEMMA 7: Suvnose *
LuUDNose that & V=1,2,... are sets in

»
1 - are sets in
2] < & and that B = LﬁEp . Then

-1

{logc } S_%{log_gm}

PROOF: PFirst we assiume that there gre only a finite

numb '
amber of setsg Ey, (say

Fois also compact. Iet

be lemriscates containing ®.

| |
Ne can assume that the zeros of thesge 1emnlscate° lie

in 4 .

SUNDose th _ / s
- at the 5‘_,5 be Nositive rational numbers INnch 'fha‘t

26, = 1. Then

N | %’— '
_. Y D
l ' IPky(z)I < Sup p,” = r(say) on ¥
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By taking a limit, this result remains true for irrational

) , |
6y8 with sum 1. TFor &, rational, we obtain a lemniscate bv

writing 6, = Plg,)
0

y wnere 0 1s a common denominator of

radius r. So 4(E) < r. We choose Bp (irrational in general) fi
SO as to make r as small as we nlease. That is _ ' ;

6” logr, = constant = log r (say)

which can also be written as (by multinliying by -1)

L =T . o
log T o log T | L
> |

Making T, - d(Eh,)'and remembering that d(E) < r we deduce

our result.

In the general case, suppose that Can(E ,) < T, and o
let G, be onen sets cmntaining E, such that Can(Gy) < r, . -
Let G = U G . ' '

y ¥




Let T be any compact subset of G. Then by the

Heine-Borel theorem we could find a finite N sueh that

Hence we can find compaet subsets F in G, such that

But

< :g::<}og - :)

T
p=1 g

This is true for every compact set F 1in G and hence by

definition we revnlace T by G,
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Since E(C G, we may renlace ¢ by E. TPFinally we

choose rp so that

-1 |

1 1 £
108 e < 1og___..____> + Ty
( T ) ( Cap(E ) 2

Then

-1 .
1
1 _
< (1o + £
_logc”apEE"T ) ~ ZL; : Can(E ))

Here £ may be chosen as small as we nlease and hence the

result is immediate,.

COROLLARY: If Cap(Ey) = o for every p , then

Cap(E) = o. In narticular if B is countable, Capn(E)=0

THEOREM 12: [8 p.263]. Let f(z) be meomorohic of
unbounded characteristic in |zl < R, 0 < R < o=
ounpose £ > 0 1is given. Then if a ié outside a

set ol cavacity zero, we have

1+£
N(r,a) > T(r,f) « T(r,f) 2 , f;(a) < r<R

Hence

N(r,a) _ 1
T(r, )
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PROOFt We take To(r,f) instead of T(r,f). Set
1+€ | |
)\(r) = To(r) and define a sequence {rn} as follows.

Choose 1rp arbitrarily such that 0 < rgo < R; Ty 1s defired

inductively by

To(r, +1) = To(r,) +)r ,+ 1)

Note that

1+€
To(r) = A(r) = Tolr) =To(r) a

increases with r when v 1s sufficiently near 1. Thus

y+1l 18 uniquely defined, we have ry,.7 > T, and

r,,1 * R as p = ., For suopose T -+ Rt < R. Then

P+1
in the 1limit

TO(R')-: To(R') + A(R")

which gives a contradiction.

Let \ao_a\g__lé be a fixed disk ( with lao|5_t..%. :
. Let €, be the set of voints in (C for which '

!

N(z, a) < To(ry) - A(g,D -2 log"(2t) ~ 31log2. Since N(r, ,)

1s a continuous function of a for fixed r, it follows that
e

)} 1s compact.
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Hence by Lemma 6, we obtain

1 .
log+m;~) 2 A5, 9

For, by Lemma 6, we have

which gives

A(T,01) + 2 log*(2t) +3 10g 9 < 2 log"(2t) w 310g ©

+logt__1

d(el)i

We now set
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Hence

Hl ”DC' rj.)‘f"l
) <5 (7 o
LEN CA(r))?
I
X0
1 o dTo (1)
; T @Y
1 *
_ ATo(r)_ To(r) ~
- jﬁ (To (r))HE = e
rU

Hence Cap(By) = 0 as N — oo

T e e T T R e e B TR T tean el SRR e« A AL et 1 e e S D SR s oo 2 oD mieaaz i,

olnce EC Exy for every N, we conelude that ¢

ap(E) = 0,
Dupvose hnow that

a 1s a voint of |a0~al g_l-which Ls out-

2

s8id \ | |
e B Then a 1sg outside Exy for some N. This means

tnat a is ocutside ©y 1for everyy> W,

Hence, for Yz N, we have

N(r |
( p,a) 2 To(I‘P) '/\(T;H- 1) - 2 loght(ot) - 3log?2

= Tolry, 1) - @ ;\(ru-+l) - 21og” (3t)-21oge.




Now N(r,a) and T(r,a) increcase with r and

T(I‘y.!.l) -+ 1 aS Y -+ o0,
T(r, )

Also 7\(I‘g+l) -+ 1 and 71(1')) ) * X as y =+ o0
ALr),) '

Thus for large VYV , we have

| N(I'y,a) 2_ To(I'L)-{-]_) - 37\_(1'),)

o ek T G S T L L S et s,

Hence, we obtaln

il s, -

N(r,a) 2 To(r) - 3 Alr) - (13)

for r, ST <T,,1 » #¥2 N so that this inequality holds

for ry < r < Rrand ia“ao‘ < %—5 , a outside =®.

Thus we take the union F of all the sets ™ éorres-

nonding to a sequence of ecircles \ap-al < %- which cover

the whole »nlane, can(F) = 0, and (13) holds finally outside

F. This nroves the result with 3 A(r) instead of A(r) and

e/2 -
the 3 can be absorbed into T5(r) . Valiron ElOI has

cdnstruc’_ced examples of integral functions ¥for which

1im  N(r,a)

n-+ o T(r) <l

holds on a nerfect set By of values a. Such values are called

Valiron-deficient. We are for knowing the general patuyre of

possible setsof this tyne.
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THEOREM 13: \:8, 'fj).198:[ . Sunpose that f‘(z) 1ls meromor-l

ohic of bcjunded characterlstic in \zl <1 and let F

be ‘a comnact set in the plane such that d(E) = 0. Then

the set of 6 for which 1im f(reie) exists ard lies 1.n
- T ]
5 has Lebesgue measure zero.

PROOF: We set r, = 1- L and sunnose that
f

f(rpel®) = £(r19)CE for a set of © of nositive
Lebesgue measure. By a theorem of Egorov, the convergence 1is

uniform in a subset F of ©, which has positive Tebesgue

measure and may be taken as cl osed.

ounpose that f(0) is outside ® and is at a distance
27 from mw.

.

Let /Y = {wllpk(p}‘)\ < ek} ‘ - (14)

be a lemnscate of radius € containing E 1in its interior and
itself contained in the v’l-neighbourhood N of m®W; ECACN

Note that the centres Wy of /A 1ie in /\ and so 1in N.
set

b(z) = By { ()}

Aoplyling Jensen's formula to é(z), we get

T(r@) L log @(o) (15)




.o
: no Caapm e Rl
el Al e rn i e s war s

| =56 -
Choose n so large that for 0oL T, 'f(rnele)e N. we also
? suopose that |w| < M in ¥ ywhere M 1s some nositive
constant.,
Then for any , We have
K
L loghlPe(w)| < 1 X logt| LR
y=1
< f—;— Z{log"’! w |+ log"l 'W'y |+10g 2S
< log*t|w| + log* M+ log 2.
Thus
-}% m(r,@) < m(r, f)+log*M + log 2.
] Note that the noles of (% arc orecisely those of f with K

times the multiplicity.

'f]; N(r,(ﬁ) :. N(r, )

e T

Thus

% T(r,i)) < T(r,f) + log¥M+1o g 2.

L




")

c g L

On the other hand,

”~

, |
- ipa— ‘
T(rpy &) 2 m(rp, 3) 2 Jlog* - (16)

‘% (rpel®)] “e

F
Since by hypothesis f(rneie) SVAN , we have on F

Thus

/the right hand side of (18) is at least k6 -1o8g %where 5 1s

*

|
!Z ‘Pk {f(rneie)}" < &
|

 the measure of F.

Now (15) yields,

L log {?co) = L T(r,éf> - L T(r, 1)

$

< T(r,f)+log*M+r1log2-5log i

P S oo
T R ek

Also

. =4 N b o e o igmley — - T e

k |
\ é(o)‘ 2 )-‘)T)l \f(o) - wy\ z_‘qk where rI 1s fixed.

We now make € -+ 0 and obtain a contradictions

This »roves the result if f(o) is outside E (and

f(o) #00 ). If f(o) is in E or oo, we consider f (ZO‘*'_Z >
1+242

where 2z, is suitable. This leaves radial limits unchanged

excent on a set of measure zero and the result follows as

before. (See e.g. \:5, Theorem 6.12, p.'178:[)
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THEOREM 14: EB,o.QO]:] et D be a domain whose

complement is a set of canacitx zero. Let f Dbe

b T CEE .

the function mapping |z| < 1 into the infinite covering

surface over D (we assume ® has at least two voints).

" Then f has an unbourded characteristic. (For the

existence of f sece e.g. [2, Ehapter I\ﬂ)

PROOF: Assume contrary to this that f *as “wounded
characteristic so that radlal limits f(eie) exists a.e. These

radial limits must lie on E. TFor, if f(eie) £ D, then the

closed radius [O,l] corresnonds to a curve r/ lying entirely
1n D. Then the inverse function can be analyticallv continued
along [—' with. valies in {2| <1 so that é,) corresvonds to a
compact subset of |z|<1 giving a contradiction since 3) corres-
ponds to a radius. This contradicts Theorem 13 1if f has .
bounded characteristic since 4(E) = o.

Combining theorems 11 and 14, we see that if % 1s a
compact set, then every function meromorphic in |z| < 1 and

assuming no value on I has hounded characteristic if and

only 1f a(®) > 0.
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