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EREFACE

This thesis comprises the work done by the author during
the years 1950-1962 on the stronz and weask intersetions of ele=
mentary particles under the guldanece of Professor Alladi Ramge
krishnan, formerly Professor of Physies at the University of Madras
and now the Director of the Institute of Mathematieal Sciences,
Madras.

It consists of three parts, the first dealing with strong
interactions, the second with weak interactions and the third
with the concept of eausality in deterministic, stochastic and
quantum mechanieal proeesses, Ten papers relating to the subject-
matter of this thesis have been published by the author and five
more are in the course of publication. The available reprints
are enclosed in the Corm of a booklet, Collaboration in these papers
either with my cuide Professor Alladi Ramakrishnan or with ay collea-
gues was necessixtated by the nature and range of problems dealt
with in this thesls and due acknowledgment of this collaboration
has been made in each chapter,

I am deerly indebted to ProTessor Allndi Ramakrishnan
for his guldance throughout the course of this work, I am very
grateful to the University of Madras and the Instltute of Mathe-
matieal Selences, Madras, for providing me with excellent fael-
lities for research work and to the University of Msdras and the
Atomic Energy Commission, Government of India, for the award of
Research Tellowships during the neriod of study.
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ANTRODICTION

1. Oblectives

This thesis is devoted to the study of some topies
in the strong and weak interactions of elementary particles
with speeial emphasis on the application of techniques re-
cently developed in two new flelds of quantum field theory,
namely,

1) Dispersion relations, and

2) Syanetry princinles,.
These techniptes were necessitated by the diffiecult situation
ereated by the gross inadequacy of the conventional perturba=-
tion theoretiecal methods in the study of strong interactions
and by the disecovery of new particles whose mutual inter-
actions are not clearly understood,

It is a carious fact that while in the early stages
of the evolution of noneperturbative methods, the orincinle
of ceusality was assumed to play a fundamental role, recently
the point of view has been stressed that the analytie proper-
ties of a scattering amplitude are zoverned by the “princinle
of maximum :-iuthnnun'? It is not hewever clear whether
this attitude renlly asounts to an eliminstion I'roa onr

thinking of all conventional soncents of elementarity of

1) G.FP.Chew and S.C.Prautschi, Phys. Rev., Letters,
8 , 41 (1962),



particles and the evolutionary nature of a scattering
process, Therefore it seems worthwhile to examine the
meaning of causality ab initio drawving an:lugé-l from
stochastie processes which are inherently evolutionary
in echaraeter. Tor this, we are constrained to appeal
to the perturbative nature of a seatering process,

To appreciate the need Tor a departure “rom per-
turbative eoncepts and realize the depth and extent of
the new methods, it seems apnronriate to outline briefly
the concept of a gquantum mechanieal eollision in a pertur-
bative theory emnhasizing features which are actually dise
cussed in the thesis,

2. Ihe Perturbative ioprogch

The study of any scattering process in quantum theory
is nltimately concerned with determining the state of the
gystem in the infinite Tuture given its state in the infinite
past, The most natural method that sugrests itself to study
this evolution is to postulate, in analogy with classical
mechanies, the possible changes in the system in an infinite-
simal time intervsl [t and obtain the change in a finite
or infinite ‘aterval of time by a process of integration. In
both classieal snd gquantum mechanies, the specification of
the state of the system invelves a knowledge of its dynamical
attributes like the number of particles ol different types



in the state, their energies, momenta or angular aomenta
and intrinsle sttributes like spins and isotople spins.
In 2 clagsical »nieture, by 2 stationary state, we imply
that these observables which characterize 1t remain cons-
tant In time., On the other hand, in quantum thanrr,nlatatu
is said to be stntiugarr if 1ts time dependence is of the
exponential type G - where | denotes time and [
1s a real paraneter to be identified with the energy of
the systeam, Thus the time variation of a stationary state
econsists only in a change of 1its phase, consequently the
expectation valunes of the dynaamical variables in thls state
ars indepandent ol time, Thus if ;n analogy with eclassical
mechanies, we postulate that the time evolution of the systea
is determined by a Hamiltonian, we require that the state in
the in"inlte past which consists of non-interseting particles
be an eigzenstate of the free "ield Hamiltonian |/; so that
its time dependence is of the type ;fﬁt where =
is the total energy of the system ol partiecles. /e can then
postulate that the changes in the state o” the systea are
brought abont by changes in it in infinitesimal intervals
of time /T by the operation of an interaction Haeiltonlan
HY where || represents the interactions between the
ecomponents narticles, The total Hamiltonien is thus the sua
of two parts !, and }' « It “ollows that the state




| of the system at time { prior to which ||/ has operated ™M
timey namely at times | {, , . , 1, the system having
evolved under H, in between these intervals, that is, between

b el By oy by el by oo gty el T
is given by :
' . S ) 3 IL_n tl‘-l = et i =J
AHEL LHF_'.-(_t»‘r\, tf‘ri-. ‘:l '."F L o g . o Ny
2 ") i ¢ Hith, ) Ay Higejahe |

where ];? denotes the state of the system of non-interacting
particles at time [, . Clearly to obtain the state: ! » given
its state at o - — 0 , we have to sua over all L
integrate over t, , t, 4 - .- , [, over the permissidle
range consistent with the time ordering ., » L., 7 Lt
and take the limits { , and |, > 00 in the above expres=
sion (the liamlts being defined ss ausual by the adiabaslc hypothesis).
This gives us imnediately the state of the system at [ - O

ags the perturbation expansion of the seatterinz metrix operating
on the state at {, - — e« 3uch a way of looking at a
process 1s inherently perturbative in character. The perturbative
bawem mm method has been universally employed in electrodynamics
and the wesk interaetions of leptona, We shall have occasion to
rafer to this method in detall In a later chapter when we discuss
the conecent o causality.




Perturbation theory signally fails in the doaain of
strongly interscting particles, Here it is no longer ade-
quate for instance to try to bulld up a "dressed" proton by
attaching geson by meson to 3 “bare" nroton as we do to
build up a dressed eleetron in quantum elesctrodynamics, The
reason for this is that the concept of geattering which we
have sketched involves a series development of the scattering
matrix in powers of the coupling constant oceurring in H’
which has therefors to be smsll in maznitude. Mor strong
interactions, however, the effact of H 1s no longer &
small perturbation and the serles therefore does not converze.
Thus an adequate solutlon of even the simplest of seattering
probleas. namely, “he elastic scattering of two strongly
interacting particles, will require not only the complete
solution of the equations in terms of the interactions
between the oarticles inveolved in the acatfering, but alse
in teras of the intersctions between all the other strongly
interacting particles as well since quantum field theory
allows for the transautation of the 1nitial systea into any
other system of strongly interacting particles provided
only that it is consistent with seleetion rules. Intultively
one antlcipates that the existence of new channels which
are acecessible to the imitial stste will alter the scattering
properties of the initial state. A quantitative formulation
of this statement is the well-known unitarity condition



which has thus to be adequately taken into account in the
solutlion of the secattering asmplitude. It is clear from

this brief deseription that any treatment o strongly
interactinz systeas which has to have any chance of success
at 211 is bound to be very complicated, Consegunent upon the
complete fallure o7 the Hamiltonlan fornalisam in this domain,
two other aporoaches of a non-perturbative eharacter have
been triad, One is the use of symuetry principles which

ezn 7ive selsctlon rules and relations between observable
amplitudes which ean he experimentally checked, The scope

of this method is however severely limlted since it ecan make
no detailed quantitative predictions regarding the charae-
teristies of any process. The more aambitious aprroach has
bean to study in detall the analytic nronerties of seattering
amplitudes implied by such very general assumptions underlying
local Tield theory like mleroscanie ecausslity (local commuta-
tivity), unitarity and other well-established orineiples of
invarisnea., This has now grown into an important branch of
eleaontary particle physies known as dispersion relations.
Hopelully, one expects that s complete specification of the
analytic proverties of the scattering amplitude as a function
of both energy snd momentum transfer varisbles coupled with
the unitarity condition can be used to develop a dynamieal
theory of elementary particles sinece the two assumptions
which the theory o’ dispersion relestions makes regarding the
form of the Haalltonlsn, namely, its locality and Lorentz



invariance, are in faet sufficient to specifly the Hamiltonian
in the mere mususl fleld theorfes to within a small nuamber of
coupling conatants provided one demands in addition that the
Hamiltonisn theory be renoraslizable, Ths cunjaetfﬁi regarding
the analyticity o7 the twoeparticle scattering asmplitudes

with respect to both enerzy and moaentum transfer varlables

is due to Hundul:tn!iLnd counled with s unitarity aspproxima-
tion (which is to be econtrasted with the perturbation theorstle
aporoximation which is of a very different nature) seems to
provide s plausible low energy approximation for scattering

processes,

4. Outline of the Problems Digcussed

The thesls is divided into three parts. Part I 1is
devoted to the stuly of strong interactions (mostly by non-
perturbative netheds) while in Part 11 ; some toples in the
theory of weak 1lnteractions are discussed using syametry »rin-
eiples as well as non-perturbative methods, Filnally, Part III
contains s semieexpository article on the role ol causality
in guantua theory.

In Chapter II, which is the first chapter in Part I ,
we derive partial wave dispersion »-lations lor the seattering
processes associated with the lambda-nucleon system. Most of

the eomplieations in using dispersion relations for such processes

2) ©, Mandelstam, Phys. Rev., 118 , 1344 (1962).




are of kinematieal originm, like those arising “rom the spins

of the scattering particles. In this chapter, we discuss in

detall the choice of the linear momentum and angular momentum

smplitodes for these processes, derive the snalytie properties
of the nartial wave ampliftudes and finally write down the dise
persion relations for these amplitudes,

Chapter III 1s devoted to developing efrfective ranze
formanlae for the recently observed /-1 and -7 resonances
asins disversion theory. These formulas are the anslogues of
the Chew-Low affactive ranze formula for ! |/ seattering.

We also develop aporoximate exnressions for the seattering
amplitudes of the process |+ A > A+l whose knowledge
is of importance in the study of processes llke 7T+ N > A+ K+l

In Chapter IV , we carry out an analysis of the low
energy K- nucleon seattering data sfter approximating the
scattering amplitude by the contributions to it arising “rom
the /- and 7- ©poles and the /.| g 2= and -1
resonanees., Lhe analysis predicts a dalinite behaviour of the
5 -wgv;:{;iatturing aaplitude in the isotopie spin zero state
and a an:.r'vn showing the behaviour is presented.

Tn Chanter ¥ , we disecuss the reeently observed K /I
resonance within the Tramework of the Mandelstam representation
assuning that 1t is In a state of angular momentum unity.
in approximation scheme is used which onables one fto coapute
the ¥ 1T seattering phase shifts in a simple Tashlon. The




results for these phase shifts in the resonant chsnnel are
presented in the ora of curves for various values of the
paraneters of the theory,

Chapter VI 1s concerned with the derivation of an
integral equatlon for the production amplitude in any anlti-
channel reactlion in terms of the seatterinsz amplitudes of the
initial and final syatems, The equatlions presented in this
chapter are non-perturbative,

In Chanter VII, we make some comaments on a theory
of stronz interactions whieh Sakural has recently proposed,

It is shown in particular that in such a theory only two of
the Cflelds among the haryons and spinless assonscan he ele-
mentary and the rest have to be composite systemsil the theory
is not to contradlet exveriments,

In Chaoter VIII , we derive sonme régérous conseguences
of the &dgn of the relative parity of the K -meson with res-
pect to the - or /- hyperon insome reactlions which involves
these particles nsing the density matrix formalism, These results
gsuzrest some @iethods which esn help deeide the K <hyperon rela=-
tive parities.

In Chapter IX , we discuss some exaet consequences of the
syanetries of the unrenormalized Lagrangien on the mass renorua-
lization term "or fermlons and bosons, A perturbation theoretie
ealeulation of the mass difference of the charged and neutral
eascsde particles arising Trom the mass dif”erence of the charged
and neutral K ~particles is presented. This mass dirference
ealeulation involves no cnt-off since the resultant integrals

are finite,

3) J.J.Sakurai, Ann. Phys., 11 , 1 (1960).



10

Part JYI of the thesis 1s devoted to the study of
weak interactions. 1In Chapter X which is the first chapter
of this Part , we explicitly construet a model in uﬁi?% Eha
renoraslization of the axial vector couplinz constant can be
ealculated noneperturhatively even though the eorresponding
curraent 1s not conserved. An equivalenes theorem 1s proved
which shows how the feralon mnass term can be parametrized by
an nnobservable Tleld so as to ensure its T%
4 model 1s suggested to explain the low rates of most of the

=invariance.

leptonie deeay modes of the strange perticles,

In Chapter XI , we develop an isotopic spin scheae
for leptons by introducing 2 new transformation ealled the
T, =transforaation. The schane exdlains the absence of
stronz interactions for leptons. On the basis of %this scheae,
a set of phenomenologlecal rules is suzgested tn explain the
low leptonic decsy rates of most ol the atrange psrticles,
The idea involved in the [, =transformation is then extended
to the hypercharge guantum nuaber to develop a Tour-dimensional
isotonic spin formalism for the Gell-Mann-Fishl jima scheme in
which leptons are alss ineluded in a natural way. "ithin the
framework o” this formalism, a theory of weak interactions
is sugcested and the structure of the weak Iinteraction currents
jmplied by the theory is discussed. An isotopic spin classifi-

cation is also provided for vector sesons with charged coaponents
{

o

only postulated in connection uith.ﬁ-theory of wealk interactions.

The schemn forbids the strong interactions of these mesons,
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Chapter XTI deals with the applieation of dispersion
theory to the non-leptonic deeays o” some of the stranze par-
ticles . A pole approximation is presented for the daeayﬁ¥ha
=}. particle into a A and a T . It is shown how one
can attempt to explain the » -dacay asyanetries as asising
from a parity clash between diagrams involving ,\ and those
involving = y the erucisl point that is exnloited here
belng that the asyanetry parameters of /| and of =', are
opposite in sign. "inally 1t is pointed out that dispersion
theory yields a Tinite answer Cor the mass differences of
elementary particles in some ecases, This is illustrated by
ealeulating the Ri= ,«L mass difference in tha pole
approximation,

Chapter XIII which 1s the concluding chapter of this
Part deais with some compound msdels lor alesentary particles.
In the Mirst section of this chapter, we apmalyze the 7 - deecay
asymnetries an;:ing that =} 1is the bound state of a /|
and a « In the second sectlon, we sug est a few methods
which can give sone indication of whether or not a particle is
compound,

Part T1I consists of Chapter XIV which deals with

the concept of ecaus~lity in deteramlnlistic, stochastiec and quantum
mechanical processes, It Is found worthwhile to discuss ab

initin the meaning of ecansal connection between events whieh
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in turn necessltates the clarification of=an event in the
quantum mechanicsl deseription. A point of view 18 stressed
that the integrand of the 5 ematrix represents the amplitude

for a pattern of events though these events are not realisable
or observable in a scattering process. Me Zind it useful to
divide such events into two classes : (1) Cousntive and (2)

Besultant , and the procedure of deterailning amplitudes con-

glats in conneeting a cansative avent te its corresponding
resultant or vice-versa. This we feel is the essence of the
Feynman R Tormalism which therefore bringas out the role of
eausallity in a seattering process in » mspiqmns Mmannar,
In the course of the diseussion, a eunhinst!dﬁal problea

relating to Feynman diagrams 13 nosad and solved,

Finplly in the Appendix is includ-d discussion on
a possidble = -7 rescnance.
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This chapter is devoted to the derivation of partial wave

dispersion relations for lambda-nucleon scattering and the asso-
ciated processes no lambda-antinucleon secattering and lambda-
nntihén annihilation into a nuecleon-antinucleon palr. Analo=-
gous considerations for nucleon-nucleon scattering have already

been presented by Amatl, Leader and ‘th-n and by Goldberger,

Grisaru, MacDowell and 'H'HIE) « Compared to the nucleon-nucleon
problem, the unequal masses of the particles involved and the
ahsence of Pauli prineiple causes many addltional coamplications
in the case of the /- system, On the other hand, the faet
that there is no bound state of a lambda snd a nucleon lmplies
that there is no analogue of the deunteron pole in this case.
Briefly, the contents of this chapter are as follows:
In Seetion II, we sunmarige the various kinematleal relations
which will be frequently used im the rest of the chapter.
In Section I1I, we discmss the resolution of the Feynaman
amplitudes in each of the three channels into a coavenlent
gset of invariant funetions, The kinematicsl singularities

# 11ladi Ramakrishnan and A.P.Balachandran, Nuove Cimento (in press)

1) D, Amati, E. Leader and B.Witale, Nuovo Cimento, 17,
68 (1960); 18 , 409 , 458 (1960).

2) M,L.Goldberger, M.T.Grisaru, 5.W.MacDowell and D.¥.%ong,

Phys. Rev., 120 , 2250 (1960).
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of these Tunetions are then 1nvestigated in Tourth order perturbae-
tion theory and a set of funetions [ which are free of such
singilarities 14 defined, In doing this, we demonstrate the cone
nection hetween twn Aifferent sets of aaplitudes | and T,
dalined through sultablyg chosen basle matricas. It is showm

that while both thesa sets ara {ree of kinemaiieal sinznlarie-

ties in the !\ -1l problem, it is only the | 's that are sult-
able for writinz dispersion relations for the A-N systea, The
erpasing relations heftween the amplituodes f:-ust:hlinhed. Tha scattering
annlitudes are then resolved ints partisl waves using the Tormalisa
recently develoned by Jacob and ﬂiataj and theirs relation to the
nrevisusly chosen invariant aaplitudes is derived.

In Seetion IV, we discuss the analytic sroperties of the
various smplitudes. The occurrence of anomalous thresholds in our

4h
nroblem and *he modifiecation in the landelstam representatlon

implied by 1t ars briefly discussed. The analytie properties of the
nartisl wave amolitndes are then investggated and their discontinui-
ties acrosz the branch cuts are exsressed in teras of the appro-
nriate sabsorptive narts, The raglon of convergence of the Legondre
polynonial expension of the absorptive parts 1s then identified.
™nally the partiwal wave disperszion relations iaplied by these
eongiderations are written down,

Thie analysis brings us to s stage where numerical caleulations
on the scatterinz nrocesses associated with the /I-/V system can be
done with suitable technigues.

3) M, Jacob and G,0,Wick, Ann. Phys., 7 , 404 (1959).

4) S,Mandelstas, Phys. Rev., 112 , 1344 (19583);
also 115 , 1752 (1959),




IT. Kipematies

In the Mandelstam representation, it 1s assumed that
the seattering amplitudes for the following three processes

are boundary values of the same analytie function :

A+ N = A+N LH.)J
A+A > N+N (IC) (2-4)

Here the bars designate antiparticles. Por process I, let us
denote by 7, and P, the four-veetor momenta of the ineident
and outgoing lambda and by 7, and 7. , the four-vector mo-

menta of the ineident snd outeoing nueleon, Define the variables

Hiz =08 Y (az),
£ = - EPy s P Jl (2:%),
£ = = {B=0) (3-4) -

Thepdughout this thesis, the sealar product A,B, of two four-
vectors A and B is defined as A b | Ay by where Ay- Ao
so that the metrie tensor ‘;}Py is equal to E-F'"” « 4 denotes
the square of the centre-of-mass energy while { and { denote
the squnares of the four-momentum transfers for this process.

Let Kk denote the corresponding centre-of-mass momentum and

8 the angle of scattering. We have then the following kinee

matical relatinuam' :

5) 8See for example W.R."rager and J.R.Fulco, Phys.Rev,
119 , 1420 (1969),
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E . - ak (1- wse) o (as),
~ 1 - i 1 . a
R - L2- UMt mmp) ] | &~ [y—~mp) 1 (26);
40
% - -tmb (Mp My ) 1+ 6 {,J-'lf'mj; -2y ) (2,
B 1 S5 2
* 4 R 2 |
AYTHR = Ay +amiy = T duy (48)

{ 1is the square of energy in the centre-of-mass system
of reaction IT while [ 1is the corresponding variable in the
eentre-of-mass systea of resetion III, If £ denotes the centre-
of-mass momentum and §  the scattering angle for process II,
we have the following analogues of equations (15 « 1#7) 3

- R WRUSEDT. Jf STy q ) (29)y
Foi __:-F_' :_ R i} 1] * “_E— [ Y= -
£= - l‘ ATVN) _.] I‘ P ) '.J iQ'ID);
i %
y o - g [1i'rii E ”"':r\ilJ"'_, [ el L.E-l-'mi—l-m;) (2:11)
2 I -

For process IIT, let {. and {) denote the ecentre-of-mass
momenta of A\ and N respectively and "] the seattering angle.
Then we have

ol Ji..r:—_Jr_ I'-.:) R 4‘[4}1—{‘%1'.]) {&“2‘)1
5o o ok
= o apy e =k £ (b ) (T =gy )50

A=

Fonp +00N (2 13);
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- q " -L : A
-t i — 1'\ =LA r«,i " aya] = — -]': v+ E—_ .\t" —I ia';l]j',.") Ll: .I.H']rI:J)unn:i‘

+m: -{--rﬂ; (2 - 14)

IIT. The cholce of smplitudes

We now turn to the gqnestion of the choice of the basie
amplitudes with whieh we can characterize each of the three
resctions, Isotopic spin eauses no complications since the
reaction proceeds througzh only one isotopie spin channel in
each of the three processes, It is then easy to show that
for reactions I and II, six amplitudes are necessary to spe-
eify the seattering while Tor reaction III, only five inde-
pendent amplitudes exist,

Consider Tor instance resection I . For 2 given total
angular momentam J o, the system can either be in a singlet
(5-0) eor a triplet L5=;LJ gtate (Here 5 denotes total spin).
For the singlet state, the orbital angular momentum { 1is egnal
toe J while for the triplet state, (- J 1 | or J . Transi-
tions between states of even and odd L  are forbidden by
parity conservation while timee-reversal invariance implies
that the amplitude for tramsition from L-(' , 5 s' te
Lok ¢ Bia 8 is equal to the amplitude for the inverse

1l |

transition, (- U' , 5-38" %o [- (' , S-5'. We are thus

left with six amplitndes corresponding to the transitions




1y

£ - J, S§=0 > L e 3 &= Uy ( - T+IJ5:1—PL:I+55:1;

f
0.7, Sshy =T, 86=45 de Ty, 5. 49 LoTe), 8- 4]

is F| Sz =¥ E'—T"",b:l (3 i)

Exactly the same considerations apply alse to resction II.
For reaction III, we notice that initial and final states )

involve a fermion and its own anti-fermion. Such states are e

AR L
eigenstates of charge conjugation with elgen-value (- .) T .

Clearly then, transitions between states with the same A
with 5 «values differing by an odd number are forbidden m if
charge conjuzation is a good uparstinq, Therefore the sinzlet-
triplet amplitude of the previous parazraph becomes zero in J
this case., We are Minally left with five amplitndes with which
to characterize the reaction.

Our next step 1s to resolve the covariant matrix
(whieh, when its indices are saturated by the initial and
final spinors, gives the Feynman amplitude for the process)
as 8 sum of a complete set of suitably chosen basic matrices.

One such set of basic matrices is provided by

w1 o tpeiybig &
T =N ] f
A i

These are the nnaluguas of the perturbative invariants of

Amati, Leader and ?1t=1-1}. Here the matrices with the index
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A are to be taken between the initisl and final
%ambda spinors and those with the index I \l"l'! to be
taken bhetween nellm spinors. The F'qrm uplitudq

for prnnm I ean therefore be written .i_'

4 L
L

ﬂler‘j;_{_} L} = 3 [: (4, J ) 1.} _"-p., 'I\PrJ l'-i,.-'. L_P) U-r,_r 'LT‘E] '!I'w-.; ( Ps .}

L& ﬁc H AT\ T -y (1) Wy (L) Up (By)

¢ ~ | |
E A r ( . I '-‘II IJ\I " T [' ['%\

¥ F..f Lb_,’r-'l:)‘ J‘j‘-] k(B Wy By ) LTH ‘ L
\ f"u B

- 1‘ Lﬁ{"ﬂ lig () ! Il:! b'-;u,l'[\?l .ﬂ' ?., 'Lr i (F)

+ _I':g

T T (87 T Uy (7)) Wy (B T W (Pa)
1'_5 (.,bjf']-{,] A '._f|] l}L U‘h» l) N oL m) r“

=, 4, g Lu e 101 Y 9 T (3-3).
4 F:Lth;,t) Uy (7)) 15 ta () Un (%) bU‘NL) )

Our notation is such that in amy funetion G (%, %)
the first variable denotes the square of the centre-ol-mass
energy of resction I , the second that of II and the third
that of ITI ., The spinors have the conventional normalization
Uu=1 o

The cholee ( = 5 ) is motivated by perturbation theory
considerations since fourth order perturbation theory shows
that 'F;T" 3 are free of kinematiesl ainguhritzun. e

shall 1llustrate this for the particular fourth order zraph
shown below.




Fig. 1,

We shall see later that this diagraa 1s of importance
in another contedxt also in our problemy, namely, in Cixing

the threshold of integration of the b wvariable (ef,
Section IV),

Ignoring a coms tant faetor, the contribution
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of Fig, 1 to the Feynman amplitude for the process can be

written as ’
by -y O - m
r-{dp PN, LAY g}) N (%0
p+"m§'- (B - |w)+*‘rr,.k (b- ,w) +'m* (ptPy) 4:#*;?
where we have omitted possible ’Lj A at the vertices which
are of no em:iquneu in the following considerations. Further,
‘..;u B0 by
we h-",'\llmt:d the external moaenta by small | 's to avold
eoufuuhn‘cuh the |, 's of eguation (i 2 ). Hsing standard
methods - g-oquation ( 51 ) ean be reduced to tﬁh fora
‘ 5 {.} —— - ¥ _‘_'"r -~
I -6 L-"L'ﬁ' ixn 5&!’*3511; EJ[__-) 4 { Mg+ (HF G+ X3-2 t’h}ju:? }ler:,LJ

< '.! ) A7 + 1 N L] ik '.'{-r_:' i r|15 i ¢

’ r e r Ty )
+(0-1) (my %4 My ) Py (% -1) (atXy- 22

g |
I

=

=
A

where

9

0 = I*.-ﬂi Iiltr‘r Uyt 15)+ffl_‘1'|'.-; rn, ) ki + =0y —“{q) 3 i[fl'::p;u'n‘{;l,) 5:?(1— T(g,:- K~

-

with
K= B (-0) by (05-20) +p) (B-%) (25)

6) These sre discussed in detail in J,M.Jauch and F, Rohrlich
The Theory of Fhotons and Eleetrons (Addison-Wesley
Appendix A 5 . See also Chapter iz  of this faete.’
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e A
Rquation ( -5 ) revesls that the part of |  coming from
Fig. 1 1is free of kinemsatiesl singularities. We have checked

that this is indeed true for any arbitrary fourth order graph,
However, in our considerationa, it is “ound more convenient

to deal with the followinz set of invarisnts instead of (3 § )y
since many of the matrix elements involved hava been evaluated

in ref, 1

'-]‘1 ]‘h _._r ] :ar‘“ ’} i ]
I A o o

da %;rF” Sy, \PRERNE qV Ll ﬁ"

5 AN L 36 )

J:S = ﬁn‘ﬁ 3’5 ¥ ‘IE B g":! T': {
This gives
I y X = Ay T Tr- o

FUAEA). Tt W (1) Un () U (B Wy (1)

% F"l (bt ) M (7 R ue () e ) U (1)
¢ EEISTE) L U ) G M (1) U () Sy U (B

T Y T () 05 Wy (F) W) O % L (B)
' g 3 g

G Ly Se e S P Ul ) B W (T2)
b et T (1) 9 b (1) LB )Ts
Ve Y (7)) Un (F) Up (72)
(3-7)
1
We have now to verify that the I J.f.} of equation (37 )

L

are free of kinemntical singulsrities, For this, following
1)

l— ) B = ’
A FG [ .f'-_, ’C}'L) I'Lﬁ.LP' ) L IF{}L

ref. " 4 let us define the following set of four mutually ortho-

zonal four-vectors @

Me PP s T4 K=Te-P = P2y

]

¥

A=TER T Ly Gaprp ke (38)
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with
Machy Bu =By Auak; [F<LbEE 240
Here mxwrmxz Sapn P is the Levi-Civita syambol. We ean
now write each of the TI‘J 5 4in equation ( 3L ) as
Ty = — ‘ (7. M) My - :Ll— (oK) Ky~ tLL'?-é-‘-} Ap
éﬁ?{ (F-L) L (3:45)

7
Notieing that )_

(L) = # ifﬂﬂ:IW*L[TMJL_}E*

(k) (7- M) (78) Vs (3-1t)

where the minus denotes the commutator and plus the anti-
comnutator, we can express

5 :’.3 and :}-_1_ in terams of
a set of basie matrices nnllnékl to those used by Goldberges,
)
Nambun and ﬂ-hn;’ « Deflning

- b
93 Py ! b4 L&
A N - {312
&y = ]’b TNTE e i 3 g = ‘Pﬁ ‘}
where
¥ d- (Fg‘i‘?i),
b (Fad Pa ) Bty
N = ol G U
we Tind

'I') mhnﬂubﬂgﬂr, Y. Wambu and R, n‘h‘.’ llln.PhJ’l.,
2, 226 (1957).




N E‘i—,rﬁ ” .E:
kA B o =% _ i
Ty = E? Wip WN &4 s M g hf ""“AGB 29
£ T e et MO i (.w’r”wi) hg,
je Tt g @ T
v A S EL e P
: iy - 2 er - }
= m )*3 N
Ty, o A iit’-") [ +ma
"5 - —
sk

- 9 . % LAk ) - % :_L’_) 0o
M A LL"'“& rana ) (A4 )

P9 "L. T CwAE ) 63
2N I.Lw"l;\_iml“)(hi
L AT (E=Adg T o
I,hE:t ) ¥ KO (j),;
T et 8
v T 8 / t-4m, ) 6y
_ W My (5-F) 6g T B A
Iq_ = ::‘_\—%t st -
- e T q.[,mﬁ ’“N) =
+ A ‘Lﬁth(t it J 8y ,H.: I'
At t ~ AEED)E "l 64
5 J_LT’E Ge + +m:m” 6 e (314 0)

A check on the correectness of these equations is prnvi-e.'.ad
by the faet that 1T we set ™M =M,y o the coefficlents
of (6,-®3) 1in these equations vanish as required by
echarge amtrr”q Further in this limit, these reduce

to the equations sproropriate to the nucleon-nucleon problem
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Equation (% i4&) together with the
definitions (32 ), (3¢ ) and (%12 ) now gives ¢ 5
in terms of the TL’ G

and given in ref,

g = D5 4

p its +f”’ Ty + T + ¥ T,
where
f 0y a2
2 L—l _Jh__}
&5_ e %& _,k+ ;
Loy RS
. by o NE
o ) trq
o G
g = Ty ke
y
4 dg - —,—{ ,
L{# = —-E.-I U_:.'
_u & ba 4]
FJ ) vy kry

n - 2 N
(&~ b}t(ﬂ'r‘nﬁ*fﬂﬁ ) Y ]
L“"’“‘ (- )~ mﬂji PILIEE

}'L [ e t] )[L’I‘lh&-mn] (Jh+'Ejﬁl’5L}41
— % i VN

: L"'ﬂ'* (ki) riL'*E' \_er 1—m,4)~&t} Um,,, my )t
= M

A M LE-M{U‘“IW'@ ) GeE) =248 ] k.

AW | kY E) —AsE L,
AL L
ma  (A-F) (E-4mu s
STE

J



Rg = — —= My, i
Ak
hgm == \_*’mﬁ iiﬂ? (g iy Ji} (A-E) (t-4my)
(At)" F
J.—ﬁ"mﬁmj,f; A% ("’“,-?Jr ‘"‘%‘ ) (A+E) -2 AT -.‘]—J;
Ay = — 2 l_g'T“A iy (my -y ) {(qﬂh*"mﬂ]ﬁ(ﬁft)

&
N 9
Ly = — 2 (mE-m> ) (A F)|lmy +my) (AFF)
LA%) t —‘LJE]J
o &
Lqs —— &Umf:.mmi)(HHY_L%;f-mN)(a bt )
21 5T ]J
= . 9
by = o "+fmi“me (=%) (FMn }
(»EY) N .= w3 )~ (aF) ]
imﬁ)uff)-mrj{ﬂm N

= - a2 s pad LS
by, = 21— \_&ﬁﬂ”(“ﬂ:““ﬂﬁ) (£-4) T+ 4_'1“”‘”: Lb-.é)J )

Lo Y [T g AE J
R e (g - ) (A%FE) +4My 9




_'f_ T[E’wni‘rm” (- oy ) — 4ty AF

tg = :
(5E)
+oalsrE) Mylomg-ma) ] (3o ud)
We also have
G
Jy = 2 M T
L=4
where | = (E-p) L‘Lw?}m:] y- At )t "’“;“““F;_Jt

fﬁt — 4m, ““ud?* i

t

4 Mmymy ?‘—J )

=T L P | e
abt - (myrmy )2 ) +i,;f ‘Em‘ﬂ )

} - aqlni"h
o = = n 18
EJ’J{' — 4ty iy %3‘ j
Aty T (k3 ) (brE) — 24 1,
L a3 4r*“‘n‘m~ 2 ]
-]*WHPMNIJ%""&} F
Ag - = ey
£ T A% — 4, I.»f ]
rIT] T
}55 B {m‘ﬂ' : U{(;J
'[ AT ~ 4, my X3 _j
{- e frm Y N ]

U A% - 4-mymy, 237

Using equations (3 !4
in terms of the FT A

.—.,

) 3 we ean now express the ‘:L )
it

e T T My my t (o %) \E
A FI + A F3 - ;-t (A- l:)-f'-—_-%- S T8 }4“’
=5 T t 5. %8 T
Fro= gl + L M (a-t) (1 "4'““.-.) ij [ B EJ 1

M:t

2

}



| = T 99
. S 25 A% U,
i - 1"1 & I A Ir.a% !.)L'E- L"]"T'I'ﬂ'-!i- ) - — —% "‘.3] E!.. )

"_‘- : i L B I- -L— }?' !- i
Fi . .l |: :._ : 3 rL 8 ) N
+ = ""1" 5 - L j-l_.'l—{ 31; ; =y )
T . ’ - L "'-_ 'L‘ f Y= ':.r'" & ) s
—X : r ola ' = A Dl og oL 3
g = F.; | —j; i My \ ?{‘ . ~—:— ! 5) 2 Ve _'—E \ ) _?ﬁ I 3
hE - | .
A L I ' pice 3 o & . 4 i ; 4 ‘-;:' - ':'fl'-'- P FIJ h
1_ = = L 2N LA o T ) —= | ! "-—_:I . e Fiey ]
™ ey wcl 1 r o - 1"1. _ I‘ J.
4| s T S 2 \ T = ) | F, (5 150)
L t ;':‘-_"E L._.l :

These equations may be coapactly written in the form
=X - s n oA T I . _
_ t)= RlonbE)E hkt) 5h)

I_ [ .?'th

where | . (A,t,) 1s the appropriate matrix indicated by
equation (2 150) , WNotlee also that using the ahove equa-

tions, 1t asy be shown that the *s have kinematical sine

'!L
gularities at the zeres »f the polynomial ) 2 .
Tnytyt) = (g -y ) AF (A4 )+ & (0= ,H. Yot + {0 g (At )1
= AT (206

Sueh sineulsrities are absent for the correaponding set of

skiatodes 85 e N <H"  wasa,t? o B

Turning now to reaction II, let us d enote the
momenta of the incident A\ and N by ) and T‘;._,

r

and those of the outgoing \  and N by | and T‘i

resnectively, The Teynaan amplitude Tor reaction II ean
then be written as




30

< _ s - g
FoE,548) = F(E 5 4) Uall) Wp (R) Ty (P ) Uy (Pa)
L Tj - _ ! | T ! e |
T l_EI. kti-)} ‘E} Ivtn L } Y}L uﬂ, LFIJ u:\l U‘_ } T}L Lt-":':.l':.-)
o1 = LT e PEy AT i 5
+ F_:'L (£,9%) & un LB ) Spow Up (R Wy (P2 ) Ty U (P)

W e = o e
T F+ Lk'J ﬁ;,‘t)_ W, LH ) Lﬂi’rj Y}J. Uy (1) "",-J[.i;j'v"l‘é; 'I_f_q,_ ;J-IU'U’:,)
1 =P —
B (K, k) Wy (B g Uy (R Uy (PL) U5 Uy(Py)
| g 1 5k P :
+ Fg L%, 5%) LF::V-. Ua LFy ) M Ug (7)) Uy (B )un(®B) (311)
For reaction III, let T, and P, denote the ineident
A and A momenta and [, and P,  those of the oute
going |/ and N respeetively. Then if d‘m denotes the
amplitnde b r transition in the state with isotopic spin zero,
we write

e Y ) P (6K, 8) W, (R Un () Ty (1) V(B
L

= —— , vl .
2 (K%, 2 Va (0 T Ua (P:) Uy (R) Tpe Vnll2)

4

3 el —= =i i
z [ 1! _L:,};_J :‘) Uh '~PF)GIL'P blﬁ P) ULN (P ) EFL'V UN ( P.l )
N [:+” AT ) V(P Y5 T g LB2) ByCPE) Y5 o Vol B )
AL %) Wy (P{) % Vw ()
1 F-- k_t:, J‘:}b) vh '..13|) TS l""ﬂ L P_) N LT j 5 v e X
o £,0) ARG W 2y Wy (P Uiy (3:1%)
+F . LEE,H) AP UﬁLP:)TV. Wy (P) Uy (F0) Yy ()

2

Here | denotes the negative energy spinor with the normalie

gation V' /- - .. We ean as before show that the amplitudes
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-t T

T y i %
(£, 5, t) = Ry (B804, & (£81), (3192)

=

F

L
i SRt = i |
FooGE,8) = Rylhh 94, RGE5) (3190)

I L

are free of kinematical sinzularities. Here / and A

are the crossing aatrices for the | 's which will he

derived below, The definitions ( - |4, ) immedictely

give us the resanlts

] | S

— = A i S
FoLEA,t) = '&La F;} (fj,ﬂ,t),
i ) — N _T B
W) = &"J by (44,8) (8-200)
vhere
o =2
ﬂi.ﬂ 2 ‘ﬂta ‘%ié (3-204)

I
Thede esuations show in an alternative fashion that [

and F s are free of spurious singularities at least

in fntutth orier perturbation theory since we have already

| showm that EIJ,-S are free of such singuiarities. Later

on vhen we write down dispersion relations, we shall a2lways
malrtsin a distinction between _FLT yasd FLE and EE .
This 1s donec in order that t‘he equations which we derive

way be valid =lso for sny other cholee of amplitudes.
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We shall now proceed to derive the m!us:ing
relations between FLI 5 i = and Ffr . FMirst
consider ' and . Let \
PE s . 5 0.
F0y%,E) = Woth) T (6,8,8) W () (5-218)

2
Applieation of the asymptotie condition then shows vs that
(2w BT -r"t-;--h ) Ty Hht)

r In'- {I ; L-i X T _,_?
L | 1‘1;: 19 J Ed-*id ﬁj | L '||" "JIIU, T MMy J__,,,}.J 3
; (¢
PR ‘II i IE’ r I
hganHTk{nJﬁem)}le ﬂm]il& (3-20b)

Bp'

Here the symbol ' denotes the time-ordered product while
the symbol N 4n [5(v))  and h,_li”)> denotes that it
ia a nueleon state, Farther the field variahles of A and

N will hereafter be denoted by |, and Y, vhilu the
corresponding aasses will be denoted by q'”,q and M, T# is the
tmnapnud"rr_ vhile the zerosth components of the four-vector
monenta as ust{:_ul correspond to energy.

‘or H'JL adso, we have the similar aipressions

B f‘n{ ) >
¥ {-t]'BJL]I = Uy (1) ‘L‘ﬁ L't;th) L{i“i) 'IIL"":*;"')

with




Rt /o, i
(% ) (P =Pi=R) Ty (K

e, \': Pio _Fnlu l = )Jﬁi 1‘1‘%\1‘[ TI‘* “?%}u* rmf.jml

.'Iﬁll..- ‘;.

: " — |
L7, W) 'T('{fm &{?’ m)

is the unitary operator which effeets the charge conjugation
of state veectors, It induces the followinz transformation on
the field operators :
%.J If{.-‘n. ‘.J o = r: Hy\ 'LT-} ;
| _'] 3 e [ :—I I
lo l‘i'),l (2) b = C Ur’"__.~ (%),
—-] ' o T [}
'& I\If)ru":-l} b = -LL}_EL}/’NI,_I)J

——

o) b = AT W0 (3 24)

where ( 1is the unitary and antisymmetrie matrix with the
property

e Y & " ﬁ?;,_ (325)
while T, 1is the usual two-by-two Panli matrix, Using ( 3-24)

and (325 ) 4 we find from (3 2|) and ( 3-23) that

I.-‘_‘ FUIr“ F o~ -
T, 5¢)= & T (F 1) ¢! (3:26)

where the transposition is in the spinor space of the ;’IJJ .
( 3 16 ) when worked out gives the followingz relation between
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= - |
imﬁ' and | =~ or equivalently between ‘F;I[ =%
5.7 T - El i 2
T Li} L’at) = ‘ﬁ*r:r Yy "“twﬁjt) (%27 a)
with _
1 0 0 o 0 {ﬂ
: 1 0 -1 0 0 0 0
& G i/ ’
0 0 = 0 0 0 (2 1“’)
0 0 0 1 0 0
0 0 0 0 1 0
-0 0 0 0 ) =1!

The derivation of the ernssing relations between the I
T
and [, proceeds slong similar lines. Ve azainwrite

u = . ! i I 2 - e .
g B U‘J?'&s-:’) - uy () Tntjam LX) t;_.'::]' U (t.) (3-28)
with
= Tl S
(1_';)4_ 5P+ P Bi-B) 'Ja:?:‘ (£,%-5)

AT L_? 4'T“Nil

o Y

A Ta;:- Yo 73
s MMy g J ) L d'
i 'Lh'é
“\?‘ LN]ll v k 'N an} Ihﬂ)l'n'—"‘)>[ Tm —"Tﬂ.‘FL | [3'2"1)
3‘5

i )
The dash for ‘}”‘Land 'l*'fm denotes that the nucleon-antinucleon

state fed in 1s of the firm }JF or n7. and not of the form
dﬂ;-—__'j;';ﬁ' . We have also suppressed the isotople spih index of
the nucleon in 1"'" for siaplicity.
(>4 ) can be reduced to the relation
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i e s E . -
'Lll_ﬂ} B-k'ﬁ t e |'1_ F:_) '11:_? Ltj by J)
’ —F Ly
TR b ik BB o (D ] 4T
LmﬁPﬂBLLL'&E’ E}—%r‘#w L 2,
| l I x
g \?'_'LH‘..\ \‘Vm ) Yg L})) |? U\Dl ey -F‘—r nﬂt‘ “
1
y X [ 50
x 2T by (3-50a)
ll -'I_IL t Lj. ‘ IJ & -r'H'._l
T W E,8) =4y Uiy Ty (65%,8) e . (230b)

where . dend es the nucleon and |

T
spin index and 7., 1s defined through the relation

T, = : - 0 B 5 = B
Lo (hk, )= Y CR) N, (k,%,0) Uy CGR) (331)

the antinuecleon isotople

|
.

The matrix element of ( J 3ob) between states with isotopie spin

[ -0 (with the mnvention that AP

= denotes the L O
state) gives
=y E F _'I ,—I—lI = ¥ — {
_\_I}'_: l-xﬁ \iyh 3) = g aly! (L,4,8) &y (3-32)
i

vwhere q;_,} UC,.';-_,:?) denotes the I-0 amplitude. Using the
B ~1
relations U ¢34 -~V and E’h‘? Ug

= T’EB and carrying out
the indicated onerations in ( 3 52) , we obtain
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L TUhE ) - - 1"|IU)3t} ») Wy () U () Uy (PF) Vi (R')
EXCt, %, 8) Va (B T Wy (Pe) Un Py W ()
- F (&%, B 4 V(1) Sy Y (B) W (7)) S Vi (%)
SRR %, 8 VR L Ty U LR U (1) L1 W Vi ()
RSt 8 M) v Uy () Wy (71 ) 15V (B)
- ol k) 0) VBl Gy () W U (B U (B DU (72 ) (322)

Therefore

e v x -
FL_m_ BE - i (6 €, 9) (% 24%)
where ’ o
g st € o 8} o
u
X 0 pe =% & G 0 S
A (3 544)
o 0 o -4 ¢ ©
o o o -4 O
o0 v} o (4] o R

Later we -shall have oeccasion to actually evaluate the matrix
elements occurring in (7 ) 4 (3217 ) and (%3-33 ) . For con-
venience of this evaluation, we shall bring the first five teras

o® (3 33) into a form onalogous to those in (3 7 ) and (3 /7 ) .
Let & L,V 4 T v B AP denote the sealar, vector,tensor,
axlal vestor and nseudosealar Termi matrix elemenfts in the ordering
Y

let S ,V ,T 4 A ’

invariants in the ordering \/, 7= '“VH'*L. I, Yy <« We then have

£k T '~1|J-h \P& I, ¥y (where L 1is not summed!. Farther
] i :\.-‘
I denote the corresnonding




37

8)
the familar result
g- e 4 1 1 1] S
v &4 =2 0 r =4 |v
= +
A T A O -2 -4 A
o f =1 4 <A gl ]®
Tf we make this transformation on the first 7ive teras of

(323 ) , we Tind that it brings the matrix elements in question
into the form “if_ﬁ T{. Un Em Je L"n « Using the ralatlon between
the W2 and V'A which we guoted a moment before, we find

2 f— = E —_ — [ —— * "
= 04, % 8) - £ 6,E,8) Uy (P2} Uy LBy ) Uy LP) ) Uep (P
7

= = : e et [
+ F 7 d U?; t_,. :3) WUy P ) Tl'JL g [I) Uy ( ':Jl ) ri!r"1 A LJ
Y B

p il T (4 Ey0) 4 e (B ) oy W, (P) Yy (P) ey Up(P)

&

T (5 5) Wy (B g Y Un (R U (P )15 Wy ()

LER I (%)% ,4) Ty P ) e W (B) Uy (PY) Ts Wy (B)

N T Ak f ! i7 / e ! "1 .1
+F{; = (s % . H) L?l;‘_ uti],)?'}kuht_ljl)uﬂ(ﬁjLN:_P:._) (331)

where T =
iy £ - T
T e = At B8d) (3 3¥a)
awrch

E]‘ M. H!‘.I"E, Zelt fl.l;‘.l'-Phyl., M . 553 (1937)-
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with 1
T3 | 3 | A ¢
g L 1
i | 0 L -
i & o .A..- |
TN 1 5 L 'p
4 ¥ :..- IJ -1' L:f'. b)
& . - I —
2 . ~  F
i " 1 3' ar 1 L?_, J
l| i o a (9] & -4

The Peynman saplitude '  1s related to the differential

eross=section Tor rnctinp I through the relation
dst . MMy 1] ] y % 1)
T - et el T 3.329
e L.qlij U:]d— E,\_) | (

where . and E,; denote the energy of A and IV  pespectively.

The above considerations refer to s linear mouentum representa-
tion of the initisl and final states and we have now to go over to
an angular momentum renresentation to make a partial wave analysis
of the scattering process. 7or this, it is convenient to use the
helieity smplitudes of Jacob and ‘iﬂu'ta} rather than the conven-
tional amplitudes involving the speeification of the spin directions
along the - -axis. These amplitudes uin: related to the differential

eross-section through
1L
.|‘ .'|.

fatl

l\ _.A; s ] + I ] “H“uh > l""' ( 3.4 {Z-)
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It follows that

E - N7
Y= R ey Al 1T X)) (34
H ‘:illr\l

Here )\, and ’hf denote the helicities of the
incoming and outgoing A  respectively while X_
and }\i denote these of N . The expansion of
x"-‘: :"lf ‘L-FII Ay Ay / in terms o” amplitudes
for transition between states with definite total
angular momentum J  and definite helicities reads

_ T
(M A II M Aa) =+ ELQTH)'\)H lrl‘ (WHT".,S;:,) X

L
vhere W :- L, Ey and in;l, {0) is the reduced
rotation matrix with A - '1 - A and ",\‘f— '}t" ! »
¢ The definition (> 42) nf 33\; :’ifl qIILW)| 0o ¥ >

with
is in conformity/that of rar. ) i Lﬂ) has the following




2)
useful symmetry properties

T | -
D)= o @)= 1-4)"  dy, (©)  (3743)

Now time-reversal invariance implies that the matrix
¥ Foacf -1.I I
L 3-1‘ Trow) [ Az) is symmetric in the space of

the 7 % while parity conservation implies that
¥ W I F. I o F F
{2 ne | 'T‘J_IrwJ |0y = M- | T f”)]‘r"l‘?‘; (3-4+4)

Consistent with these symmetry properties we can then

i |
choose the Tollowing six lina-rly independent ¢ O 3
T

B tEtE Y= L 5 AT A5 T |+ ;.i (8,
le-i = o ]-[' I + > R Zl A ] P"’[
of = itk | FHa-1) = 2 R Tol4-Dde (o),
1 g &
: | ] b-g| J+*~1Hin 6),
F - Gi4\ @I - T e T
e LL 5',’
X _ feb-a @t -4ty <l (an) k- ll? (W) |- l+i> b1 &
,4_‘*' Jrl ilq) | 2 L? TL‘"% T

. b _}%-L}(,twtﬂjj
£ g at I 1 2 L‘l] J!l\"l':'l'%l[}-.‘u)l W |
q\!;[ = '\‘l—t .-1-'[;qu l+-.. A.> 1’-\.‘_ J

- e ) 0

e Mo |5‘]'5)

The first five amplitudes in ( o' 45 ) ecorrespond !:n the choice

of ref, 2) for the nucleon-nucleon problem, 4 and f?,a however

become degenerate for nucleon-nucleon uatt-ring.

40

9) 8ee for example, M.E.Rose, EXementary Theory of ingdar
Mosentum, John'Viley (1857), page 54.
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To establish the relation between the q?f and -

we proceed as in ref.,2 . The | e~matrices used are given

in terms of two sets of 2 x 2 Baull matrices [, and G
through the relations

Yo = GX6G7 (=ty2y3)y Yy =Py Xl y W= -fX1 (3-46)
(This is actually the Dirac representation of the < 's ).
The Dirac :piuuru in thils representation ““2)

Eh Tmp | [ En 1'*“:1 o
Wo -t VI .
gz TJ— ak 2 ] TR P L a4kl %,

J " En T

- E?é— Fh _]_ q_nhr k Lﬁ_ﬁﬂzf'—r EI
L P T e 2 y ¢
ULIH{ oMy 1_ 2k ‘LE‘ /15 T O Ng L ak 9% Ay

1 e I
where N, - ]:1wnﬁgfh Jr*’mn}] ~ and  Ny= flmH( Epf -+ omy, ‘JJ ©  and
",E.:ﬂ is an eigenstate of Jid“qﬂ; with eigenvalue ' . The matrix
b
elements we require are listed below : <t ol 1
> T e T e 4

5

= T Lar €/ = P
U\?\I hIR :}. 24 %kamr} l_ 'L.t’}.‘ i 7 'Hﬁi: r-{;_l—fl J Il..h= IJLJ 3) 1
uig &,
- iR
T G i LR B A (e-mil[ gt Ead,
vl -
mGIHLI— . 1
WUnt Ty Yo, = L[EJF,H_.”MLE m] Agppi€  og - a i
? J | RM1 4 ly Ay e ad Q%Um J_&muinimuﬁ LJ-WEM#*S-J;
Togndol = 3y
| Sl 5 B | _1_ ajgﬁjl . ‘T j‘] |LJ._:1_}:L_-| If:—‘-'j.
f.i._)t: g Wy, 2 _‘E_ =X 1"L Xi) 4 e

el O rJ {R: 1,: "]'?}')?

r - 0 B R B P
s e i T sk {_E-'rrn‘u'}-:f'fr'."‘ﬁlr:-'“"mjl;‘}:'i?.‘ R
Wat Tg TR YWY = "am =

Ay O]
oy i 6 Yq. k (243 )
—_ - 3 ' . 1. , L

U‘?\‘ 5 Ty U'}r‘- - 'E:ﬁ LTF}'} L I’i A e ZA




=%, orkty depending on the spiner involved and similarly
M=, erF ", « The positive sign in L?ﬁ or i, refers

to particle 1 and the negative sign to particle 2 . The matrix

2
elements involving %X'» read !
‘-"5-; J:M'J L Ry = o] wﬁi 3+ (2= 2) .:m_g_,

?L:l_r -(:,,d i""-:Tj{,?l L:}al:‘l}]_":r epd & [—ﬂ(ﬁ.l?‘t]r_é,’)l _@_ E':I‘EL"”&I]

o
=
g
_|'_'|.
=S
—

G = = ; E 0 E-_'
~|A-al | &, swad +a(a-2) &y TR R T

where the ¢ © are the anit vectors along the three axes. Using
the above results, we find the following relations between the

A T
*—?,,\ and T :

Hn.

X 7 N - e B I 3 EEF
MW @, = dnpmy B+ (3R Ey ;PJ) g, =R HAN £ 3G Fy
= Ty (En E=|'t.| i ‘R ) Ff:. ¥ i TT:'"\ ffIN Jl
9 HE

o X T
L I_T.il "-h ) F.lI+:]ﬂl|nq]'h Fﬁ-
o ! - 0 1.- E
T BREv ff —n LEMM"FL) R § 49

S SRR .

4TI r:?.,I = = EyER F]I- Wy, gy Fp_I'I"?’{ Ex Ex + R )qu + DMy MNPy
2 T s K Lo (e Byt R B
-k Fg +my By B+ § Eafu B b0 M Bl BN 3

4y my By R B -y & juﬁa )

I-"'n‘l.n**m;q Fi +EEp F{
L

. e, SR F.
-iH"i‘J'».&?} = Iﬂl,\"?l"fﬂl.w I'i = =1 ﬂ""EﬁEN)
6 En)F Tapm

i F
iy 3y BAVRE g i &

I g 374,
_15- Eﬁ E—[, E:_} - '\..nﬁ‘ll'-_ h ! {'ﬁ'IN EN ":4"4) ' . 455'}




4w "F';t.:_ = Ep 8y Fy 4 g My f‘"-_-t T (Bgy - "3) J_F-.I

A, g Ff s F: -ty By R 4 i~ € En F"
Ay g BE — LBy B~ ) B~y My F4I ¥ f F—“?:
+ iy, EN F{f g 03 0

5 . o X 1
FUW @ = (- ™y Ey FT -y By Fy ~ 3By F

_ i Y n i T T
ATW . = i My E.ﬂ il + Iy =5 F + 3 r*f.I,JE,-‘ﬂ“‘?j

+ 3y Ey F o, iy Bl

. } A0 (339

To obtain the customary smplitodes involving
sinzlet and triple states we notice that these states

ean be written down as linear combinations of helicity
3)

states, We have

/

¢ ) »
Sinelet state : \.I'F:*E {IJ+15_+{;J> l7-4 :-L>_f

43
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g o
Triplet state s T- [ L |Tet-4)-1T-4417 ]

Thz Mepja A 2 L4l ,rJ.qu
Hl L S TFs iyt Wk

O e D L &=
(3814)

We thus obtain the following six amplitudes corraspond-
ing to transitions for a2 given £ and total £ S : s

a) B8inglet - sinplet 3
bo = {T+k ¥ T |74 1 h Y= THd k[T [og- £

b) Triplet = triplet :

Ay . a ot |

SR RS S A LN b VA e L e
L

TR ARG I TR T E ReR SRS L P

v T e .

p s e 3%l ’i},.l T - YT R T Tk 4 g

L L
y 2l T T T T 4 )

e) 8Singlet - triplet 3

2 g
J_- L GDI = ‘\'II_

. o %
e LAl LR

g §3)
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Here we have ngsed the gymmetry properties of the scattering
amplitoudes implied by timee-reversal invarlance and parity

econsédvation (ef. equation ( 244 ) ). TUsing the orthogonality
of the ';'LIL«?" ‘s 3

1r /

J
S .o (8) &
<5

L |

! ) f:][.:."ﬁ'ti.ﬂ = S"" L"}Eh)
poik 1 L) A 3T T

J x)
we can express the &L 'S in t erms of the , 23

T
H i T 1 Ii il T [ o i
%:;I[-’} -1k ) L"I’j (1, €) - G (5, 0 /1 R (0) dune do,
L G
"ﬂ > 1 A T f] _‘] A iﬂ
RN - Pk AT N~ @ (A 6)a T (B) [P B AY,
51].“5} . iﬁ Sb L $s (3y8) Q7Y (0)~ Gy L2 =0

il 2 & ¥ AL &
”ia) LR j | 9 159)1 Qo (2,9) ) digo (0] H1110 10,

Dy ==
| K j [ el if_‘,‘ "_.:I:. '.-'1| 3 2
5 J _ g U o py g) Aoy (8) +4g (D8R,
e (b) = ) R Xﬁ L %y L+ )%y i3
] AT ] ]
-I%{;i l ,j} = '.IT k :.)] “_ (}r]I I:I,':}JH } Jf L‘I'E.’I |:_,\.'I-} E}J] 59 o !‘_Ef J L) LB ',{.ﬂ J
-~ D ‘
T
ﬁll?:' L.-:!l) = J:J ﬂ J TL \PL;]I ':_I._']J ﬂJ = L[GL L) 0 JJ A 10 Lﬂ) FRLER ¢ U{E I—‘-IJ“’J-I'J
ﬂ -t

where in ( ' 0+ ) 4 we have used the symmetries of the
d};.‘l given by (343 ) .

The above analysis shows us now to make the transition
from the Peynman smplitude for process I to the corresponding
amplitudes characterized by a given total | . Exactly similar
results also hold for the amplitudes in process II as can be
seen from the similarity of the forms of equations ( 27 )
and ( »11 ) . For process 111, of course, the analysis has

to be re-done., Let ' be the energy of any one of the particles




in the centre- of-mass system of this rnntim.[ Nbtice that
in this case, all the particles carry equal energy in the

2y —,
centre-of=-msss l!ltﬂjlmtl xuwmkimm Tet p 7, and - 0y
denote the momentum nud heliecity of ﬂ and \ respectively.
Correspondingly let f[: ’ %) and % ’ ﬁ'1 d enote the
momentum and helielty of the outgoing N and N . The dif=

ferential crns:-nctinu is then given by

z i
w_m L T ) |4 |
d 0 (am)” 4 6™
: . K i 4 %. 56
it e mad b s
1
where %”') % |G 17‘-1'}-::> denotes the helicity asmplitude for
3
the process ., ( 259 ) gives
: | _—
g vply PAT zolal | o |aaw)y (3758)
j il i Ity ( ] 4 = >

/5 oW 14 7. ecan be expanded in the form

m?'-l--'_iq" l-l'-l- _E cf
] o "'f—"‘. el b el

ol o | @ """‘l'.\ B Yt Z{I'J'J.-:)\-*i Aa | Ty -L'-l-}‘t?‘t} )

e BEUC e T i)
{

ean now be chosen as in ( 745 ) . To establish the connection
il ™

between the [, and (, ¥, we proceed as in the case of reaction

I. Our spinors are

: I
where E:-2Y, A-}-), and 2= A -% « The basic set of ,
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i UL e Y l 295/ l'& 1 Aol )
E:rn*hhl{.EM+mN)] L - 5
e Lo ‘ S % (258 )
O ol o2Pa ) LR
L 271, {Eﬁ't mﬂﬂ}]

{umﬂ-f:“' En= Ep =)
| where the plus sign in %I?\ or /4" again refers to particle

1 and the minus sizn to p-rtiulq 2 . We then have
L e
U.,-H. l".‘?k - _.; L{b"_]" mh} F‘ [H}J‘m J _,_4_2 {h}-l"m.y)h;ﬁ..-'-'mnj ]
»“.“I"'”'"ﬁ
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['x;t;\ v M,

¥
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'l SN Xy 42
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|: + q - “j o A X
| U:"'I‘:"ﬂ.*f} P {:W 'TF'-F,J — 2 i' G{i“'ﬁl_l"r. } ( - "'IJ
}'1 NW R

d 1
Ut 'j**vj Mg, = £ N '

L T (w0-my)E (w04 my)E-) (L"'W) (wmy) % 1

L
Lot Ogq iy = r ™A \L?'-"_i_y E“ﬂ-‘dwl Pﬂﬂl,
g ) | X
Wi T b o = & [wawﬂe oion i G- T (5) |
u;,k: g BN = — — = | o "‘“J"; » :l
R ¥ T g pr 2 Cg 213
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v.?ﬁiq'i‘ “L?*l

In evaluating the matrix elements invelving U’4 , use has
been made of the faet that the matrix ¢ of equation (315 )
is given by C- « [, X S in the Dirac representation, The

[I- ra
esunsctien dbatvesn She {Fh___n and [ o is now simple to
establish, We find i .-1
{ q'nm f F )-.Ii ¥ m F.’ In § ' w-‘-_' i"‘qr"l_;'l'”xN ._Ir[.l_.--—"l'l"LﬁJ .l" m”)
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G = — Pugh y
P N

Prom the analpgues of equations (- - %) for ¥:5:’nft1ul wave

amplitudes for this process (which we shall denote by 7, ),
w T T

we find that the result ©. - T, implies that T, - O  or

ol

the singlet=triplet amplitude vanishes., This as we saw before
is a dimb" equence of charge conjugation uvhhnea and

merely ilpﬁ:n _the fora for | A uhj,ch?pun assnmed

is charge con tidu invariant. )




IV. Partisl Wave Disnersion Relations

Bafore we write down dispersion relations for the appro-
priate amplitudes, it is necessary to examine how the presence
of snomslouns thresholds modifies the integral representations of
the seattering amplitudes. That there are anomslous thresholds
in this problem is slready clear from the faet that /\ does not
satisly the superstability condition since Wﬂ; 7 Wnﬁ-k'n1é 0
In order to locste the threshold of the dispersion integrals
in this case, we use the results of Karplus, Buqmarfklﬂ and
Hieh-lnulu} . Thus we consider a ceneral Tourth order graph

with the variables labelled as in the “igure helow.

Fig.2.

If ve define | i, MG+ g $)
RE 3y, M k
10) Shidd !
the results of ref, show that the thresholds of integration

10) R. Karplus, C.M.Sommerfield and E.M.Wichmann,
Ph”s. 'ﬂﬂ., m s 118? [19533-
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in the diupur:inn rulutinnu are given by

ks ] s e Yy I

BTy g o
b ﬂu_ﬂ%¢ 'LU"ﬁﬁjﬂhuﬁ}}J; JJ
; : rTl';:; t
SR Y { i iy ¥ LU‘%F)&‘%H)]
R S A
o 123 Yog + LU-t3 ) (-4 f”y j 49

An analysis .of the fourth order graphs using the above Tormulae

ghows that the anomalous threshold makes its appearance only for
the graph of Pig, 1 and that the threshold of the J -integration
is changed due to its presenee from J - (it "y )L to

Az (Mpfann) ~ 0-%008 iy Ty (43)
This modifieation of the dispersion relations is easily taken into
agcount, Aowever, we notiece that in order to take into account
the anamalous. contributions to the disversion ingesrols -onsistently,
it is neeessary to inclnde the K K intermediste state in the
unitarity eondition in the { -echannel, This intermediate state
is hesvier than seven nion masses and the present ealecnlational
techniques dn not see1 adequate to tre-t it consistently. Conse=-
auently, unﬂ Illﬂ sinee we wish our formulse to present s neat
appearanee, Hl :hall hereafter isnore the spautrni anomalies,
It may however ﬁ- emphasiged that taking thasn into account in
writinz down partial wave dispersion relations presents no serious

diffieultrll).

11) See in this connection the work of #.Blankenbmdwx = beeler
and Y.Wambu, Nuovo Cimento/J%795 (1961) on anamalons thresholdaxs,

s olhe 5. Mamdelotowm Phys. Rewr delleny 4- | B4-(1960) -
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We have shown in Section III that the amplitudes f{
are free of kinematical singularitiss in the fourth order

perturbation theory. It will now be assumed that this is

generally true and that [ ’ h and E have a Mandelstam
represantation. We have for :
L - . ™ =4 fla £ 4,%")
oLk L) = = J Wb J Lt > wi
= W™ e ! L £ ! -
LI 1: i '} L| i-|| I] | ) ‘b -t)

_ : B =
: [ (o0 D23 (1)
1 ! A T SRR N dt! dt e —

£ X, -tk (4-4)
The last term represents the |I -meson pele contribution
and the | signs correspond to | mesons of odd and even
parity respectively (the odd case being, of course, most
probably the true ane)lg} The presence of subtractions in
( .} ) has been ignored since it does not affect the
considerations which follow, Frem (, | ), one can derive

the followineg ene dimensionsl dispersion relations:

a) Fixeds: o | | tjf =)
=T = L{,’ .
b OCEE s L A - : £l %
' R U My ) i . i .
_d i o] I. tr z .'I_l:} i _1"' ":‘I'\-ih_ Ij)
U AL .]. T e AR X T =m=
i ] t -1 K

P '1';-':;'

12) Bloeck et, al,, Proceedings of the 1960 Annual International
Conference on Hich Fnergy Physics at Rochester, page 419,
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: ) ;
_T - =i J i { 1.5; { L

A -ﬁ-aLt,E—b—t!J: ﬁ 5 "Lh'r_ H'z.r L)t) J“—' 1 L‘tt)
(o) = t =4

fr‘r',h

= E"-L_f \trJ
+L \dz!.
5 H 3 CEtha-z
{rl Tl
o il |i.:I ,ih)

B (LI
ﬂLa \l&ktljz--.‘ 1;. )_ | )'Lh “jL t_J

U o)

b) Pived '

sy o e

EX (oh= L | d :
¥ m . [
Lam, i-nr-';}_ &r = 4 i‘r],l'_} T
- )
where e j £y . H‘ )
_ 13 ¢ J e (2,
I - » h! - _I'_ L‘l‘, — }: - o / &N
Fifty (mtiig)

From ( A'1T ) 4 we have the Tollowing dispersion relation
for F1
G =y K T sentime Al yl
o g ) dLth-L— ) 1 i -
- , ) A Lt At
EX (3 —_— T} C A
L LS }‘t Jt) Ti kj Lnﬁ +"1| N} JI - A I LH Rg 5 3

oo )’
_ ) g ek i :
Tt Tk 41)
e} Pixed { 3 _
) 2 T b,(t'¢)
AT L3 L thr:tJJ' 3R J':H:* — —
(8,%)8) = j il o ST by e =
(M g mp.l,} . : Oy }
v Ay, :Jar.'_y_ (4-10)
{___,ﬂll.'ﬁ;
=
which =lves for |- H

L




AW o
L b/ - = ta ( 4 '_ 3 +‘“’ ﬂ'Lh ﬂ'hﬂ A
Mt )
= 2
= gz =
x oh 48 2B g R By e
3 - ¥ - Mg
Mg+ my)
Here A, , B, and ( are the absorptive parts of
Fijt ’ Fill and Filu for reactions Y, II and T7I rospectively,
a) Reaction T :
A serious diffienlty which we eneountsr in setting up the
WFANL

nu"tiali disversion relations for the three nrocesses with which
we are concerned is that we are unable to define any amplitude
simply related to the partiasl wave amplitudes introduced in

the previons section which have no kinematiesl singularities

e
and the correct asymptotie behaviour., Thus we obliged to work
with the amplitudes

] % o8 -
5 Tun) - J Al d’0) F (A, E, k),
R
0w - 4 Fn'f 3 t)
F (H:|)iWq1(ﬂ (F, 5%),;
—
m T ' ) -
B. . (&) 5‘ A w8 ) A FO(4 8 5) (32)
|

whine Mt wediedeh, 2 howre  Leve Auphnsased -
{Thu chief disadvantaze in dealing with these amplitudes

is that it is the partial wave amplitndes of the last seection
“or which the unitarity condition takes a simple Torm,
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ey

The singularities of L (0) 4n the » =-plane implied

by the Mandelstam representation are easy to investigate and
5
ha}q’hun diseussed at length for example by Frazer and "uleo ).
-1
The cut in |, associnted with the 2 -variable elearly

M |
zives a eut in the ) -plane for [ in the region

s {J’r‘r'rﬂ -i—l'rr:N)- (413)
To obtain the singularities of the partial wsves in the

~ — I
A aplene due to the t and 1- ecuts of Fe y we Tollow the

method o Tragzer asnd .--‘1,1].19-:::5:'r e« Thus the integral relevant for

the ‘nvestigation of the Y- eut reads =
| : e

| =y ™ B (FiEsaet)

[Awse Uiy L Al \ dt' g

m ¥ % =
i bl (L }"rnﬂ.)
:Lw-n,:A.-n-r-N} A 3 s Py by (EE-a-%)
i J H, L LE} ]- j At = = [414)
o T 1 +'—-+ :
\ Lr“ﬁ_ ..I]II:IJ Lq.l.“t".l"lfﬁ- - - P
7 p a )

3 *

re we have performed a change of variahles using equa 'i

q r {""T ) . We now ask oursalves the question : what are th'{
values of A for which the limits of the -intesration :Lu
such that the denominator of the integrand vanishes? These

will then be the walnes of 3 [for which there is a cut Tor
- T_J

(A) 4n the :'—nlann. The proeedure can he reneated for
~ LY
of © () obtained inthis fashion.

The K <mesonpole in the t- variable in I maps inte

the regian

.--I

P 4 :

T S ) :
QUL <5 < inntanl om g
’-.’,-:: <0 {4—-:@)‘\/




1Y

The ent in the - vasrisble gives a cut in the /) =plane
in the rezion

7

= 2 %
D4 ':'_?I‘rl; & ".-'_"rfll;" ~("e 4 ﬁ'n“)- 2 - (gt 'mn') (411

*nally the cut in the L =variable maps into the re-ions
AL o i ER

B Al =
a L o gy K  ONE
T =My < Y& s f g 42 (i~ ) [“IN m o 2, (418b)

i 'L
and s cirele of radius o "T‘nﬁ—:'r‘uﬂ ecentrel at the origin
in the 0 =plane. X3
The nature of the singalarities of ELJ] together with
the comntour of integration to he used 1s indiceted inthe

Fieare belows:

- - — T — - -
L

M am o il — ==

E_‘mﬁ-’«-m“}z

_IT
Contour of integration tor £ (5) in the §- plane

————

Fig
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: —=i =T
'he econtribution of the pole ‘erm te I can be

ealeulated explieitly and will not he disengsed further,
Along the real axis, the diecontinuity seross the cut
(417 ) dne to the vanishing of the denoainators involving

the t- warishle 13 given by

fia (AL T)
(o' 2 ey
Im Tyta) = —L | dwio -
| I —-1 l_ UI " ‘”rx} D=
. ant Pas (EEY)
+I7TI_I.';_- t *

P | s A
-~ Jdwso AN T Ke B(E ) (+1)

fince .\ = 0 « Actually trhe reglons of the eouts
. 5
(417 ) and (418 ) overlsp and L I would have had cone

tributions from the vanishinss of denominators involving hoth

i ana { « e shall howvever treat the cantrihutinna-t!u:ﬁ

s to the l-tter aenaratalr. Hence the occurrenee of Lo L, (d)

"* inatesd of Lo

W
.ﬁl

[.:n) on the left hand side of (419, 4
) The contribution of the aut (417 ) to f_?II,;’ o
is therefpore 3 o
£-(mgtmp) | T g
Ly) = -1 5 Ad' ) Lwso A d(e) he B(E)¢') (420)

_dy A=A 2

Using equation (27 ) , the integration over wiG can he

converted into an integral over + :
= A :
I T s
| A" 3 die) ReBltt)
48 T ,.‘L L
Lu"l‘ih- '-rn”j (4-‘3?-Ij

Al

45
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e shall rewrite this intezral in the form
4 Ly - gy ) =Dy
Ly )i T tdaat 1 [, dt'die’) ReBlt,E )x
W4 A a AR (- ma) .
*—1:\_ E + S } e ? '—I' . B X
. g er"]ﬂ_'ﬂ'lﬂ); AlA lhr&Lﬂ'ﬁ:’ﬂ?,}_J
e
~.---[l- T i oty " y
x A 4 et) Re B (F)E") (4-22)

An examination of the first intezral in ( 4-22) reveals that
1t involves only the physie-l rogion of resetion II. This

follows since the “l:' integration ranges only over the region
£ 7 (ptmp) vhile ' % (my-—m v) . Thersfore
in this reglon, 'EH;*J t*) can be expanded in Iagandrp noly=-
nominlrﬁ.t'h. coefficients involving Lm i-'rl]]'-:r where [ 3 are

the nes of I for process II . A Serions\complication how=-

{(.;’ﬁses in this intezrsl in that the lower limit for +
becones infinite for Ao pernitting enntril‘ ons to
from states of arbitrarily: hizh energy. This point has been empha-
sized by "rager and ?‘uluuﬁj in the I N problem and does not
arige for the seattering of particles with erual mass.

™e last two integrsls in (4°-221 ) involve unnhysical

roziona of reaction II and we need an andlytle econtinuation of

A sorptive part into this region. This e¢an -ﬁ%ﬂnﬁplishﬂd
&, < ,f :
‘m



b2

by "he '.egendre expansion which converzes within an ellipse
with foel &t w30 -= + L s the slize of the ellipse being
deterained by the nearast singulerity of the ahsorntive nart.
J-:ha boundary of the regzion vhers the apectral Tunctions fail
ta vanish and B hecomes compler therefore also gives the
houndary Por the rezion of econvergence of the regendre evnane-
aion, This ragion has »lready been computed by Hmﬂtlnt:mm}
andl we can read of” the resulits we reauirae froa his naver,
The diapgram which eauses thies sinsularity arises from the

soquenea AN Y KAT = A+ N gud 45 shown in the "igure

helow,

Fie.d

)
13) =, Mlﬂaf!:itm, Phys, Rev., 118 , 1741 (1952,
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The Legendra expansion is then seen to converze in the region
| L)

whg £ KXY =) (4-23a)

where - 1 2

=1 . r f‘l [
- Do) ) T ]
ez — R )i [+-R5b)

ot
and J
Gl © f I -Jt. m i
-;quq L:;ﬁ \"_“n_J ) L (Mg — n) {xsgze)
" = i1
L =—

The exnresasisn for 4% and A in terms of 5 and T 1is
given in (210 , &1 ). The resulting formnlae are evidently
complicated.

€
The contribution to the discontinulty arosé the real

axis frgq the vanishing of denomlnators annl.mg + ia
I Ty

L

o 8) = - S B s iR, (T J&L-m-)
T A a
N5 ak i |
siree A - A . The upper limit in the '/)0 integration
extends only upto |+ 'i;:!}- ginee beyond this point, the denomi-
nator involving T does not nnhhg"', Wotiee also that iqif,- o}

—=XF
in g the region ander uunsidaratiun. The enntrihutian to F

+m F 8 rrn 'mw),,w” mn-} da?

A=

X

e(t, ") (4:25)
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Using (2°5 ), we write this in the form
_ 4 n”a"k l"“'.” -+ erﬁ— Mo J'fﬂ L'TI"]H rﬂﬂ')
Ig‘l_ b) = ) l .
"T '" ; rs
'1_~
k ;1:1
X J"h\ J:c‘iLBJa Ro €)=t 4, n,{(:,nu,s)
a-A 4RT ; .
§R
By a ehange in the order nf integrations, I“{i ecan be written as
: i Yy = i, (E) 0 = : l .
‘i.-,--ﬂ § At {Aary 5“ | aat [l An X
yom ™ g L $im f (t)
N : i || ) (4 374
){\- _ L3 "I';'- -LJLE*] A Ke tL‘tl}{’tJ J (4 27 )
) LR

a 3 I i [ty - T
. b By €+ l_ b~ 2 (mat My ) e
b, &) \?ﬁ\ LL .

1 [ ar“ li-—*“N I; Li W_L‘mn.-lrwﬂ
b ol®) = == 0,

in examination of the last integral in (‘i*’i"lj) reveals that
it is inthe nhysie sl region of reaction ITI‘_I- L“tl?,HTfJ A= —{*‘m 11 )J
and congenuently we can expand the absorptive part ¢ in terms
of legendre polynomizls,
The rezion of convergence of the polynomlial expansion
in the fii-:t two integrals in ( 4-277Q ) and in 52_ can be




6o

obtained by considering the following diagram @

Fig. 8.
Before proceeding to writing down the region of convergence
of the polynoaial expansion, we notice that a serious coamplication
arises if we wish to take into account the two plon contribution
to the absorptive part (i, ) «- Phe simplest diazraa which
can give this contribution l% Fig . i and even this necessarily
involves the . || 4intermediatn state in the chamnel /i 11 = |\ N
The elastic unitarity condition on the /\ IV raescattering
eut will not therefore suffice if we wish to investigate
intermediate states in (L, T ) « This ean consti-
tute a serious obstacle to any caleulation which attempts
to take into account the cut in .
We write down helow the region wvhere we e¢an analyti-
eally continue (i £) via the Legendre expansion 1
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(_- 2 Jtr 1:;-‘1 U'.- - )%‘_ ~ L_': T Imﬁ: A mll )( : ”'rr)
t"{ qrl, ) = - {tl'th
" £ qj"'“u ) (E 4 ) (t {‘ij
{_Ih "3-_’

Ch g ) (o ) (£~ gy )/~ -
L,%ﬂi I.h% = N, L iy J 1O, V“h”“”ﬁl]'“m#q%;g)x
X\;f%; (;;*m%r)'%f1} _] (4 28)

We can now nrocead to compute the di:continuity
aeross the cirele, This diseontinuity is given by
e s Y of, --I.I v, - = ok
e F er;:' ) = L'l.,l i l:.} _1 _&_‘ 5 Li- "3) = ] (4 ‘1'5]}
AL
r'.f‘ LQP ! I"':P'
then dwe Ao | is replaced by (7 4 ) o g We f'lhll

oo s e - ¥ i wy
R LL*TE e | - Rilve V) T awm @ (*F 30a)

where
2 4 LaE'l - M _
RUra ) = L [ar 0AQ - | (4 30b)
These formulme are given in ref., , It Tollows that -
IT O, vy Al ety

In T (1 )= - € (dvag) )"“ luted(0) A Re tngt) (+31a)

The eontributinn to L_‘r) froan (4 am‘; therefore reads
e _ oF i
= - Ag e(Adw ) gl
L(5) = T : « = b Ae" 4 3 Ree (B
¥ 3 [r- 5" ) 2K ) 4 dte’) i

4% (4-31b)
lgramt

?huﬁr:ginn of eonvergence of the polynomial expansion

of e € 1s siven by our previons formnla (4-1§&) &
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Mnally vwe write down the partial wave dispersion

= R
relation for I (5] =
— LT el g §
F o (A) - F(") LbJ.th)tltﬂJ’FI (»)
Ln 5 GA")
...}. ﬁ ‘5 L:" : -Lh—l-—'—h . £+ 51’)
e Ly r oy ) = <
where | () is the K -meson pale eontribution,

(4:32) has been written down formslly lesvinz out nnestiors
of subtraetions and so on., In any actial ealenlation, of
course, advantaze should he tzxen of the fact that a partial

wave amplitude of order | corresponding to (T or

> AT

A= T |  to 4= Uil bahaves like kK in the vieinity

of R-0 while the amplitnde for 4=7-1 ana A= T¢|
_%LI-) CALT+H)

behave 1like and K resnectively to con-

gtruct new amplitudes which have hetter behaviour at infinity.

In making subtractions, one can .1:1 usual take sdvantage of
AT
the boundedness ol the amplitudu 'by the unitarity condition,

BT
b) &E_ug_r., The analozues of ﬁ LA4# for this
4 #)

raaction been previounsly dennted by | he singulari-

t& L'EJ in the t - plene are ausil:,* anmnal‘ Yy a pPro=
ced analo~ous to 'hat we used for F Li) . Ve, firﬂt,
the pole term and the c¢ut in % in i; giving Tor jf Lf)
L
L
a pole at L mk (t-'53j

and a ent in the region

N N
e 7
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it 7 Lr"'r‘ﬂn*i- '_I"l"'.ﬁ) [4_34_)
o
The ent in the 0 -rnrisbla in I, mans into the resion
7& =2 :m-’ﬁ ”) _jr {.q_ 35} -
Pinally the cat in © in i"b gives euts in + 1in
tfa ragions L L
- , L = rrk fogrE i D o
U=ty ) % = T g —amy  W(My-miy ) (g M),
B (4-36a)
<0 (4°36b)

and a eircle u* raﬂiu:
= m,ﬁ, - mN [‘H?{G'ﬂ
centred at the oririn, The figure below illustrates these

ginrularities,

__._.'.-_-_l'lL———-p-___.,.‘ ‘II _____ O —

——--——'1|[————+——'I-|:) llnl.r_f\‘ i

4

N Cmgmy’ /) Mgy
W i

\‘h. z//

\N-. i, 'M..#}

-

. < i -
Cantour of integealion fer f?{t‘j wn the - plane

Fle.f. 1
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< F  _ET -
fhe contribntion to i [ arising from the cut
in # reads
I = T
Im Ky (B)= — Eduﬁcf dT(®) A Re Alst) (437
—1
" 1
go that Umr‘mw)

. I :

KilEY= _ 1o g A {otwtg A ‘@) A Re AA,t")

| Tr.-.w %LLE =4
b

)
V) -t it
- 3 ng A S drl dTeqr) A Re AlSLEY)
L T-F Al aomid (+:38)
A i =l -

- i ! P 1
where a o gaf"«‘nf‘ variasbles has heenm a{”‘m‘_l.',ﬁd* ng: (21l ) .

]

Ihe integral ew rewittenins &__’ “%" d i
K . T Lmy=anp) ] 3 Al X
R e [ e ] Tt 2

0 (my~am?y )
& -t |t &
¥ A(P') A Re A(A, b)) (4-39)

vhere the @ipst intesrsl 1s in the physical regign-of

b 3 =5 .
reactiof T while in the second integral, the ’_,a_gandr'a_;l_
expar;-&'fun converges for -
I - farmi]]_,h" am, +m )":l[«bLLm - )11
LZ -A—=t%— loMmy (M, My A TN o
44!

the eondition (4--40 ) emerging from the dlagram shown below.
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" e ;
The first intezral in (439 ) as before ifivolves contributions

from large values of T

— IL

Alonz the real axias, the cut in 1 1n 7 makes a

5
eontribntion tn I~ eiven by
. amE

T Ky (F) = -3 L iw-iq)lg_x.?}_lﬂ. L Rt(6F)  (+4)

Ve ean ther~fore write,



= &y + &, Ay
where e ‘ 2
£ - My~ My,
ks 0 o 2 4 e
‘l-‘g_ = r"l"ln = 'TI"IN = Z.‘."\m[‘l' | Ktm*n‘”“[r) {Pmﬂ -"!'I']“J (4"‘1'3)

Here equation (2°9 ) has heen used tc make 2 change of
variables, Hanation (442 ) is very similar to (4°26)
and wve ecen split off the nhysical region in }, as in
(4-*1a ), ; The rerion of eonvergenee of the nnl:rmrn‘[ al

exnansion can he obtalned from (4,28) by replaeint o in

terms of t anf & uging (2-8 ).  iiges @
7inally for the 41 qeontinui ty meross the cirele l:-’fx, g
we have ' :L"mrr
A 1) P e, ) &+ 44)
= ET
tm B (£)s- e(pwng,) ) elwwtlft“ﬂd Re €L
—
)
so that the contribution of (4 44 ) tn F is
AT 4 ] %) )
Kq E) = = E(dwm% M'i (@) A A x
ko LF) = 3 STFiL[F“ N e
o E -4M7 y Re eV E') (449
Ly
Thus we can write 0 [mF (") T
FET(E). T8 K )R LB T Sdt' ELE—e
(o XY
T " 1‘)

Here I, (t) 1s the contribution fron the pole term.
46
The second integral in (4.32) involves imaginary values

’ o, = e
of L in the region L’"‘[-d"’”ﬂ] 4L EL (-."n—h-i--'!'ﬂﬂ)
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and the validity of the nsual methods of ealenlation of
BLE t) 1n this reszion has heen discussed by llrinrau}.
(4-4C ) hasg again been written down only formally.

e) Renetion I1I.

The amplitudes [_:-IE'T for this process have been
defined previously, '‘e shall now enumerate 1ts singulari=-
ties by usinz a methoi similar to that employe! in the other
Fwo rcases,

The cut in the L -plane for l‘l:rj arising from the

ent in ¥ 1n F o ‘es in the reglon

iz +-‘mﬁr (4417)

In the region +T % t < +m, » P is complex
while in the reglon 4mp =t L{--‘mﬁ sy Y 1is complex,

A= ramarked earlier the ecalenlation of absorntiye parts in
the reg he nsaal formulse needs soae

Q#

14) @T‘\!ﬂrsnrn, Phys, Rev,, 111 , 1718 f1qasi.‘. 9
€ ] \7
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S TR D T (S S e R

in the | «plene in the region
: Z. 0 M"‘I*E)
The pole term maps into the region i
0 2 n I
I i B L i R
e My

Mnally the branch cut in [ starting at - (MK 'f"mF)l
gives a branch eat for -TEHT in the region
gy My — Lomp 4+ amgy = (g + ang)™
(my +mm)*
The singularities of F 0  and the contour of inte-
gration to be used in the {- plane are shown in the figure

below.

A

X2 450)

Contour of integration for P?I {4 1dn the t-plane
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The discontinuity across the eut t<o gue to the
vanishing of the demominators imvolving 4  is elearly
!

I L) =- j d cosy a’¢p) 3T Re A6, E) (451
1
Therefore ,
Lit) = ._1_;_ ’H: fce‘mﬂw;d U’}J,ﬂ Re Ala't)
3 m,;f' e -
= T;‘LJ '1.;': 5 'E}:‘r";‘ur f .2l d mf’“ﬁ Ro ;}(,3 ,!_-j - 5a4)
9 ¢,
m-gmtimtirzjm““““m ,
| L R R § e S b
él{j—-x" =S A [ T i_-
&{\{_!} = _J‘:I__E'r . Tj': ({1 1'_{_*?"-""!:" ]}’?_({'1 L;_‘iﬂm;l)}f?_ i Q'ju‘\:'_-l-f"r"\ﬂlr;rL f_i.x-i;qc_]
By changing the order of integratiom, L,l) ean be rewkitien as
[w"f-.l 11“1"‘4"} 4] f‘j{'ﬁ) . ‘.
Lr{i—} . ”—[ -:‘*5 ju {- g j’_ﬁi f d{_f - _1’ : )
(Mptmny? - 2 4 o J %
it mﬁﬂ = Qrip o) ()
|
¥ e T EpY S ") BT R 4(8,4) & s3)
where ; s b ™n _vﬂ,u__.- (/5 = mn. "MN) (Q'Sﬁu)
£ e ,-5'

Here .. 4s in the physical region of resction I. (, and
'L.i. invelve umphysical regions of resction I so *_nnt we have again
to @etermine the region where the polynomisl expansion converges.
This region has alreedy been computed in equation ( &-io ) which may
be wewritten as

[ towi J[ 3= Cnemf) (3=En= 2] o

.

(#:%5]
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In this way, we find that the polynomial expasnsion 1s

eonvergent for d, o while 42 should be rewritten as

7 o t(a) 03 0 (g} t{H0) 21
Mosge 1 )8s ) At + Jdp fat' ) da | dt" |
L {“":;‘1"[ T“u"l'._ - A <R "‘I'I'... - —=
¥ :
f ! ! J I Yo i 1 C 41! i-
L e e O 1) ReAUE Y { §do o
L‘;"ﬂr.‘ m '_'I"i I 0 Vg -"""'p.‘,l_ I{"hlj
ThiplJ = ]
' ‘ | T . ) ! F g
o fan [ b ha CldReatalE) (5
. _t{;_ﬁ) -
where
el gy < A Al ) (o)
| .

For the integrals in the second bracket in (4'571), the
polynomial expansion converges while 1t does not converge

for those in the first bracket.
P (i

FPor the contribation te [ from the cut
to & tn B S riae
| =
. - - . Lt - g B
T La(X) = — Sdiﬁhld 1) A A Re® (%,1) h+“3j
~1

We nay therefore write
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tolL b vy | |
ol [ )| | )
L)~ ST (e ATODE K Re B(E,E') \
% & % =
te -'i_['m}{_'i' ity f [ %l“zl -
| 5 At ! 5 dE 7 1')5 .ﬁ Re B(E,1]) (459)
= 5= : 1{{@'
] — 0 . "JJ[_TUJ
where %gtﬁ and &yl} are defined in equstions ( 452 bitj )
and i g _]z
&, My — (ay Foang —N (4¢r
ig'L'-fJ' sl e : L: A = (47ée)
Aq

L;{t) may equivalently be written as

7 Ly - W‘N] 1p (i.—]l' [0y + Oy j 'ﬂﬂjL.t’
‘ ! ( A [ \ o
R R Ll L L B
& il (W - 0R)
L L\"' Mt T iy LR o e D ,
i | II- H R 1 - "I I
L} d¢! | E dt + ) At ) _jk Lt J.tt i P{
o s (£') LTI, )
- —p = , . .
&7 A R B(ELE) (461

The last integral in (4 ¢! ) is in the physical region

nf resction II . Tor the other three integrals the region

where the Legendre expansion is valid can be computed from

(4250,b, ¢ ) written as a function of { ana L' .
Finally the dispersion relations for | r‘“ ) may be

foraslly written as a = 1

£l
G J'r :l‘ ) ,}
T L) Tf:::“l k) F L) L, utﬂ- ' j dt' Z ST Loy

400y
where E- UL) 13 the contribution from the |\ -meson pole.




i
& Conclugion

We have thus given the complete partial wave analysis
of the /- problem and brought it to a stagze where numerical
easlculations can be performed., This task will become worth-
while espeeially when there 1s now the prospect of obtaining
data on /- scattering.
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Recently evidence has come to light showinz the existence
of a /|| resonance (called the }lﬁ ) with a mass of about
1385 anlj and a . !| resonance (called the ;ﬁi ) with a
mass o” about 1405m!) Ir this chanter, we shall investigate
these resonances using dispersion theory and develop effeoctive
range formulae for the scattering amplitudes in the resonance

chnﬁual: in the statie approximation which are the analogues

of the Chew=low ef sctive range formula for Il I seattlriug.aj
The chenter is -divided into three sectloms. In sectlon IT,

o E
we study the and . - Tesonances assuming that they

|

are in the 5 =state. The derivation of the effective range
foraulae in this c ase follows closely the method suggested

by Frazer and Fuleo Tor 1= suattarinl-" In the next section,
we devalon anproximate formulae for the gsecatterin: amplitudes

of the nprocess |/ i -» /' assuming a dominant 5 =wWave

* Allsd4 Remakrishnan, T.X,Radha, 3. Thunza and A+?,Balachandran,
Muovo Cleento ( in press ).
1) Alston et, als, “hve. Rev. Letters, 5, 520 (1280) 3
Ner-e et. 8l., "hys. Rev. Letters, § , 557 (1951)3
Plock et, al,, Nuova Cimento, 20, 724 Elgﬁlgé
Pahl et. 8le, Chys. fev., Letters, 6, 142 (1961);
M. 4. Alaton and M,Perre-Luzzi, Rev."od. hys., iﬂ_ 416 (1961)
2) Alsten eb. 8l., 'hys. Rev, Letters, & , €08 (1961)
3) G.F.Chew nnd FuB. LoWs Physe HeVe, IQ%LIE?G (1656).
a) ¥ R, “rager and T.R.7ulco, 'hys. Rev., 113, 1420 (1960).
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N-T1  1interaetion. Though this proeess e=znnot be observed
directly, it is of importance in the study of resctions like

Ak = N K and the electrmoradnction of vions dn
\ -hynerons. Pinally ia “eetion IV, we study the possie
bility of resonances in the -1 aystem in the [ - 3/2

and - 5/2 states within the scope of our model where J

denotss the total angular cmomentum,

11, Bffeetive Range Formulae for 5 -wave /T sqstrering

In this section, we shall assume that the )1
resonances (where Y- A or ¥ ) are S ewave
vrasonanees. he initial motivation for this study was
1)

that at one stape, Block et. al. nresented some ten-

tat!ve evidence showing that ‘.ﬁk has J - 1/2 and
odd parity. “a shall 1illustrate the derivation o7 “he
affoetive ranre Toraula for -1 sesttering for odd -\
narity, Tha derivstion in the other cases is similar.
Let

and

5)
morenta respectively, following raf, s We e¢an wrlte

, and | denste the *ncident and |i

. the ontzoing |\ smd I four=veetor

o
3§
§
y

the T -matrix as

5) &8.F.Chew, K.L.Goldberger, F.E.Low and Y, Nambu,
Phys. Rev., 106 , 1337 (1957).



T'i LR _Rffﬁz B (1)
where the mpirseriptl’ denote the isotopie spin of the
ehannel, a notation which we shall use throughout the
section, These superseripts are not really necessary
for /i seattering since only one isotople spin channel
1s available in this case. These are however introdnced

in order to distinsnish these guantities from those of

|l geattering in the | ( state which will occur
later). Further let |/  denote the total energy and

E the energy of the A in the centre-of-mass
system, DNefine also

|
ol . = 15
= jiitﬂiﬁl 1{'.} (ef3®) A

i
LR V0 (o [
']L ‘jt_uﬁ TLL\.SQ}'} (2)
|

vhere 0 i1s the sceatterinz sngle. Then Tollowing
4
Frager and Fuleco ) y we foram the amplitude

| L?T'.L.'i' Rigte s E '1 : B
hy (W LA MG od dlind PR Bl - =2 %
d E+am, S e | gl T T gl
a ( I A 1y |
t' |\_E r'ﬂ'-'l )d— i — _A "'; :_I 1 |Il‘ Iﬁ'-‘-ﬂr‘}" T1I_'.-"I ,'l E: J""__l I -|l [3)
' paLte gale2



| ;

where 3r.+ % the phase shift in a state o total
angular momentun | - [ - - and isotopic spin 1 .
"or S - waves, (3 ) becoses

,|:'1 f|.|\| = L = | J 1
Trp v —[E-_ﬁ' Ag + rW--r‘mﬂ) - Pl

|
A ' P, -
. < 5 TS | .‘ i ]
il B I 'ﬁ"i L e """ﬁ}'ﬁy_‘ )j LT
where '?1:':- (w) 18 related to the s+ O =wave phase shift
I
b, through o "
w
R (Wi Ve 2] TR T OWETE (5)
o T &

In developing the effective range formula, we shall
completely negzleet the cuts assoclated with the energy variae
bles of the crossed rrocesses. Similarly the Z =pole asso-
elated with the erossed /-1l sesttering will also be neglected.
This is consistent with the spirit of the effeective range
approximation which retalns only the nearest singularities,
In the Chew-Low formuls, the "erossed" nucleon pole gives
rise to branch cuts in the W- plana for the partial wave
gmplitndes of which the part lying in the region

-

My = e Lowee (mgra) 2 @)

+ 4
is retained and becomes the static pole of the theory }.

The analogous region in our case is

mi =k D, 4 i
! > . 1’\"‘[\ o, 'nl,,"_ } et
4 5 = W = ( A i A = L_TJ
Estimates show that the contrlibution o thisg eut ig indeed

L Hhe
small coapared to the cuntrihutimi "direct” ) =-pole and

T Note further that we work in units in which the pion
mass 1s unity and denote thew,n and z masses bym,
-~ m, and me Tespectively. ;
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hence is neglected., With these approximations, the theory
requires only single variable dispersion relations., For

0dd I-A parity, the part of A, (w) srising froa the r -pole
eceurring in the W «variable reads

T, (W) = 31‘:\.“' | (%)
& My - W

vhere 3}:&“ is the renormalized > A\-T eoupling constant.
Thus we asy write for . (W) , with the plon mass set equal
to unity o0 ,

Son Ao ) (1)
wl _ w

folw) = T'ww) + L ) dw!

(p + ! )
vhere ve have as yet made no subtractions, The V|, ﬂl“lﬂn')

of equation ( ¢ ) with two subtractions for reads

7 :

A B - T
deam £y .y B et LSRR bl
e RN J'L.-I L(.j

SW '.”"E“W W = i
A T
Lw_ ’Tﬂx) G] iW' I"'W'L .i{wl} - J',I'UJ
+ —_— e —— Pl L 7
i (W, 4-1) omg) LS
A

vhere W, 1is a subtraction constant, We have normalized

D such that D (™, )-1 . This implies a definition

of the renormslized 7-\-T coupling constant by an analogue

of the Lepore-¥Watson convention for the 7T- N coupling cnnltmt?).

In a static approximation, ( 10 ) becomes

6) G.7.Chew and “.Mandelstam, Phys. Rev., 110 , 467 (1960).
7) K.M.Watson and J.V.Lepore, Phys. Rev., 78 ,1157 (1949),
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-
W= e ‘ B

zam R ok ‘5{} .. = RS 1t)
AT Msow A
where the * \ relative parity '1_’_—-,a,- ~1 o SGimilarly ene

derives tha corresvonding formula Tor even > '\ paritys
| .
dom R eb® s 0- WM (ppd)

— b Nao

41 b iy R i P
g is fixed by the reguirement that F = 1: at resonance.
T his gives B
| L +% 5 7] [13)
(h The foraula for 2 [ gscattering in the r esonance ‘ nel
caﬁnw be written down. We have

W_’ﬁ_‘ ud @ , : 1= 2 —I‘ (Pzp =~ ) I q

4‘5 Tl =0 We
- -ﬁ:r_ F = t ) IN' s I.-I.r 1 . iy \ Ir | .) ’ a

where the variables now are those of = i sutturing.

We give below curves showing the variation of the 5 -wave
cross-section with the centre-of-msss momentum (in natural units)
for various values of ;”” for both A-Il and 3 1T seattering.

»o

We also give the plots of, 10 by : . and .2 T E'au with
. .l| L) ,1‘]4 iW

Lw rfaz) and U‘" gl ,) rnpﬂrctivﬂy as given by the equat!.unu
s (1) 5 (i4 ) and (5 ).

‘{'}
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rom the experimental results on the widths
y %
of the -;.zl"' amd )y ~ resonances, it is possible
to deduce the valne of ﬁﬁf' . Thus taking the
8)

halfewidth of the resonance to be 25 H&i y we find
i’-‘;‘ "z 0,075 for I5,- -1 and 1‘%-*“"'—_ % for
411 . =L 3T 4
the LE,H - 1 . The former gzives a ), resonance

with 3 half-=width of about 5 Mev and t

he latter with a

half=width of about 10,3 Hev, Clear-ent data on the half-

“d

.-‘_nh;lﬁﬁ be ﬂ,;neh narrower than the }-';*

parity is evan.

evilence suggests a half-width of about 10 Hev for Y,

:i
width of 7, wean thus prove or disprove the theory,

'

o
1ally since the theory predicts that the J, resonarc e

e
resonance, Prﬂhnt;
* 2

which thas fits in with the theory provided the 7 A relative

-

6, 562 (1961)

8) R.H.Dalitz and D. H. Miller, Phys, Rev, Letters,
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In the previous section we have set up two-parameter
affective range formulae for /- and 7-|| seattering
anplitudes for both even and odd 2-/\ relative parities
assuming that n;ﬁ and ,nﬁ_ are ., =wave resonances, These
narameters were then evaluated by fitting the position and
width of the ,]t and $ « We shall now study the process

Y1 A = AT assuming again a dosinant [ -wave |-I|
interaction, Since the unitarity condition then relates this
process to - -wave \-|| scattering amplitude, we can solve
for the photonroduetion asplitudes in terms of nhase shifte
of the corresponding o -wave, \-I amplitude, The main
features of this nrocess which are different froa those of the

9)
photoproduction on nucleons (which has been studied previously)

are i

(i) while the amplitudes generated by magnetiec moment are non-
vanishing, those genersted by the electric charge _ are zZero
gsince the | i1s a2 neutral partiele,

(11) Since the pole is at 11\, , the amplitudes are all
proportional to the 3 A transition maznetic moment,

(1i1) Since the mass difference - iy does not vanish, teras
which are zero in the nucleon case where the pole oceurs at the
nucleon mass itsell give contributions in our process.

(iv) The relative Z- A parity is not yet Tixed and hence we
give the smplitudes for both odd and even Z A\ relative parity.

* Aliadi Ramakrishnan, T.K.Radha, R.Thunga and A.P.Balachandran,
Nuove Cimento (in press)
9) ¢,F.Chew, M.L,Goldberger, F,E.Low and ¥.Nambu,
Phys. Rev., 106 , 1345 (1957).



Let | and n dencte the lour-vector momenta
of the incoming A\ and 7, [, and ¢ those of the

oitegoing | and |l and © the polarization veector
2)

-of the photon. Then with Chew, Goldberger, Low and Nambu

we write the transition matrix for the process in the form

3 L M. A + :.."'Lﬁ B A Myl e Mg D WAT)
where
| i I It )
[ - ] = L I ‘ i )
| . l5 L £ 6 K K @ e | s
!'.;J > d ¥ | Tk PoK-Y K P& -ty 7. K J (18)
Here ! = ({|iT.) and M, denotes the mass of the A .

As in r!f.g) s We may also introduce a matrix related to the
differential cross-section in the centre-of-mass system through

]I__T' V [ ; : A F g
Th = & 152l $14 24 ()

wvhare |/ and R denote the magnitude of the centre-
of-mnass three-vector momenta of the ineident | and outgoing
T  respectively and the matrix element of .© is to be taken

written
between initial and finsl Pauli spinors. '} may be wwmikimx as




*I fiit ‘.;} ; ‘:..- ;l‘ {: 9 .I
Mﬁ' Il [ + —.._( _._h I I.j_:_ 4 s o :}f‘.
R UK
2 00m T e
Ak ittty L

where the O 's are Panli matrices and 7 2nd K are the meson

and photon three-momenta. The relation between the Y/ 's and a ,

2 .
B, Cand D 1s easlily derived ). The 7| 's are related to transi-

tlons involving maltipole radiations through
5.4 ; {

ﬂLT L ] _LPQ+ i 5 H;;w”1+LU*J“_ u{J?-me ;

[
=

I, - LL 2[ L) Mo, 1 M ] T (a0 0) 5 ]
!

L&dﬂ) L 4 L— {Hﬁ'JJJ |

j# S vn o | W= Ly HL--_ EL-J f:.t“ﬂﬂﬁ (21)

Here U is the scattering angle in the centre-of-mass system and

Iﬁtif and [+ refer to transitions initiated by magnetic and

electric radiation respectively leading to TMinal states of orbital

angular momentum L  and total sngular momentum i+ awma. |
Witk these prellminaries which are to be Tound in raf.gl |

and vhich we have raproduced for completeness, let us proceed |

ta the ealeniation »f the matrir elements for our process, We i

shzll illus*rate the prodedare first for odd Z-A parity. In

a statie approximation, for odd 2 A relative parity, we find '

that we ean convenlently ignore the enontributions arizing from the

energy variables of the erossed channels, sinee in this ease,
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these only modify the scattering amplitude by corrections

of the order of ?Wh\ compared to the terms which are retained.

Thus if | denctes the 7- )\ transition magnetic moment,
the pole terams for A 4, B, C and D for odd z-A parity read
W m
| S A Z
w ' | %Ifﬂl — 5 =
'h‘;E -J
b ,
}f: = J
: [dsim
fi - - =5 - )
& ™ ~.
- g E _
'I.r = = I—J".ﬂ_l.l - C {_2';*-)
M’ d

Here - - (P, +K) smd G,

ennstant, A straight="nrward calculation then ®meveals tha con-

is the renormalized 7 / ]I coupling

tributions of ( LA ) to the individusl multipole amplitudes to

B J' -(jz. W0 W - My (A

i = s = -

04 e w My w
1% i o _ W - My

s, =2 T M gza R B W
bt A4 R w W 4 [‘112-
N 4 e W -y

Wy, & == ik I“'"'Liquu' e,

A || A ' W+ My

¥ < 0 (25
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whereas in the rest of the ealeulation, we retain only those
multipols amplitudes leading to Tinal states with £- o er |

In squation (52 ) , we have denoted the total centre-of=nass

enerzy by W . We notice that in a gtatie apnroximation the

leading Born teram is s the others heing of the order

~ot

of ..;I_”_Ji coapared tec 1%, Therefore, keeping only Fﬂf i
may write 0 . :
) B : W i j m Epy (w')
EEH_ LLL:') ! [L*,.JI tUUJ Vi E ji L | r* (i'{'}
| U..] L!_]_ - L’:’)

i

where (U- W ', and we have set the plon amss equal to
unity. .:fcn; E i [u}} cas as usual be ecaleulated using the
unitavrity condition in which only the /-1 intermediate state
1s retained, We find, in a statlc approximation,

fm By, () = £ dmTe By i) (25)
vhere we have explicitly assumed that the \-1I interaction
procerds dominantly through S -wavesand denoted the O -wave, !l
seattering phase shift by 0p . Bquation ( 44 ) now reduces
to the famlliar mapping problem discussed by Uumulo} whose

solution reads

¥ L } g J...-L - f-". - A '_.f_. Al g 1
B A VO TAT W)+ = L ftw) 4 A
04 (W) - L W w-3m I e

I DR T S T L LdLo)
_..'Li*LDLU-]J P-.I o g, {Zé)

ot

0@ S!.lw' Rl

AN LL{:I[ F;-"m.) U—UI- UJ)

10) R. Omnes, luovo Cimento, 8 , 316 (1953).
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where ob .
Plw) - J~ @ jj w! 51% (1)
Here Biﬂ_: T”g -y, and réﬁ has slso been replaced

by its statie lora,
For aven .-A relative parity, it 1s Tound that the
eontributicns from the crossed channel are of the same order of

magnitude as those froam the direct ehannel, Bearing in mind that

ander erossing A » A 3§ £ 7 —C and U D s the Born
terms 5T the anltipolez in the static approximatien turn sut to be
B 9.
1 0 i vL) = ‘4 AR Fh) )
<
B .
(W) O
s
b Mo RY
v Ian = - ===
Ui LW = 6l w tom ?
" ra. . | o
m2 ) bzpm: L. (28)
= LB Lo4+0"m

8ince we are retaining only the o ewave |- || secattering
amplitude in the unitarity condition, it 1s easy to see that

the dlfrerent multipole amplitudes do not get coupled by 1t , so
thst for each of them we have a relation of the form ( 20 ) .
Finally the solutions of the dispersion integrals for these

amplitudes read

X | e h Y ramr w e 6lw) i [, By o L.
E-]] ( ) U L ‘fﬁ (w T P[[’[“JJ ] i o
oy ) - . Lh{w)
¢ § Whem  dwmbdw) LXpLAWIT gpile

£,

L) = D




g9
! J) :__I. Eglj" iéﬁ_ L D) 4+ W 4JJWLT[mJj X
P i. G W+ I
o ' Fgp R 4" dvablwl) Lip [{(w)] :E[WJ
& J‘ 6 w! (w'zm) (Ll w)
w0 Mgw 0 wl ()

(5

- . 1 L) %k fLs ) )
22 Lxp L) ] U’j'w' by Auad) ]ﬂi‘ S
Ll am  w!(WHim(wtw)

(29)

where | (') is again given by (7 ) .

We have ealeulsted above the multipole amplitudes for the process

YEA=2 A+ Tor low values of | in terms of the A Il scat-
tering phase shif'ts on the assumption that the A-1I seattering

1s dominated by D wwave interaction., Since we have alroady

presented effective range Tormulae for . ewave /| [ secattoring,
we can easily ealculate tha actnal values of the approorlate crosse
gectiong from these formulae, The inTluence of the proecess

YHA A4 on nrocesses like || IV y A+ K+

1s the subject of nresent lnvestilgation.
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&
a *
In Seetion II, we have investligated the possibility that
the recently observed /. |] resonance is en 5 e=wave rasonsnce

using the statle model and the effective ranze approximation.

Sinece gt ﬁraaant there sesams to ba sone experimental indication

that the ﬁ has | o ) » we shall here davelop
analogous effective range Toranlae for /7 geattering for
the | - 3/2and J- 6/% channels in the orbital angular
momentum states L- 2 and 3 , Tho possibllity of J- 3/2 ,

-L = 1 for the :ﬂi has been the subject of extensive investizations
by other workers in the contsxt of the glubul syametry model, Tor
orbital sngular momentm states other than L 0 we know that the
direet pole dnes not contribute and hence we have to take the

residue of the e¢rnssed pole only., In the statie limit for

Pop~ 4 1 y we have . for Mo fio t‘ﬁ?,
n 1 E.oY
b ) » g 4w o EMEL 403 ]
iui R Rh L
Af"-”' I__'_ 3 ]_ 94 w4+ 10-fw* (30)
6T ES+iete)
where _
q " ) 1 {.
Ay = =g (VA9 =g 2w

% Alledi Remakrishnan, T.K.Radha, R.Thunga and A.P.Balachsndran,
novo Cimentos (in press).

11)Introductory talk by M.G.K.Menon at the Cosmie Ray Symposium,
Madras (196l1).
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,] i 1 _"«T' 1\.'1 |_)
: AL s
with _
y I 5 i|,._II L + ; Eﬂ*i
g5 + 16 w (52)
>y = 3 "ﬂ: . qlw) (23)
and -
e nd b mebokin b &b . Stebion X

Here we have set the plon nass equal fo uuityi It follows that
o L ) satis?ies the anprntiuta dispersion relation

Nyt "-l"" ) (25)

*IFLI..* L) “. (w) 4 < jl"h‘*’

i+ I

"H (W) peting miven by ( “C ), This may be solved by the My

T

&)
method end the solution in bthe one meson approximation reads

B (34w + 102 ) 5 g ut oy (W)

il pe
47 (5 16 LL} '+
— N * LAlgw' o I-h-.lif"Q R)
| bip L -l'ﬂ- 0 @j {_Lﬂl 14‘".![ ____________.,__ ==
i L AT (Fotiew) w‘}s){u’ w)
(36)

where we have chosen the subtractlon point such that renormalis ed
> A1l coupling constant gets dafimed by an analogue of the

. Lepore-Watson conventlon for the N eoupling canstanf?)

and ﬂIlLk?) is the usnal cut-off funetion. As in the

Chew-T.ow theory, we may now approximately write




where the constant W7  1s pogitive, The right hand side

of equation (-] ) now shows the possibility of a resonance

in the system corrasponding %o the vanishing of el ‘ -+

for an aporooriate valwe of L « A similar ecalculation

_ylelds for even . A parity Tor 5 : 3/9 and A= 2y
d'_ml 001240260 +0°0i Spu’) Ve l) .tb - 1- B :» ’
16T U +l6w)? s

which can also give rise to a Tesonance Tor s suitable 4 .

(3&/

The results for (- 6/2 and nvau S—/\ parity are -
L"i"s“i‘] _i.ﬂa%'_* i I__) 5t T l_i_i'itb“l'ﬁd L__,i))

S -

|
(85 + 1o w)" WS o

" Yy 3
9 , e 6w +8'5  (34b)
fsm [eoovs -002w= U0l 44y wb - I+ S
e I § “3”
where we have used l
; ; _ 4. A
HE = - }}_ﬁﬂn L Tp- Z) =3 ik ]
b N 4 SR

ZAT 35 —i._;
Here equation (294 ) corresponds to L- 2 and (5]b) to L5 B.

Tor odd 7 A parity, the ea:rruuand:lng foraulase are
; e . low +8'5
Oy L1814 165w-Nw 1 8 @.L) ot = W~

i (354 low)® WS (o9, , 4=4)s
] N T S 6w +§5
Tz am _]:_}_,_{E_I-L A J;—li,. (1) wto, = 7 iV
A7 (89 + lew)” e

(3 Y ) L=4) )




Bl e i 35k o N VA PAE = 3] |
%’, L_ BN = A J ) “_’1. (i I) ;'t-'l___* - 4= = =
Al (854 16w s e o
LT= Ofp 5 L= 4
L n 13 _
¥Y=ir (24 01604 00 ) 16 1) b _
T T = R T ) + b ) i -
Vi (85 +lew)" © Al lcot 85 (7.3 {-3) (44)

1

In all these denotes an aporopriate posltive constant,

ady

Wé have also written down the VPV <wave, J -  8/2 effective

range formula for odd 2 - A parity in equation (14 ),

b Tquations ( ~ | ) and ( 44 ) now indicate that within
- -
‘&o scope of our apnroximations, a J- 6/2 rnsonanc#{

’fqiddm for even > A varity. CGimilarly we Tind thwh-

f*ﬂ parity is odd, there can be no I ~wave resmnrﬂtﬁtk
"“l\ - agln - .H- -‘-'
¥ J . 8/2 or . [ wave resonance with |- 5/2, Ewar’M]}
or a .)- wave resonance with J - 3/2 4is possible for even
Y -A varity whils @ U -wave resonance with J: 3/2 or 5/2 is
nossible for odd > A pverity.

We zive helow curvas showing the variation of the

scattering eross-section in the J - a/2 , L - 2 channel
’m:rmwitm L mt-.mﬂj umln)

wlth the cantre-of-mass anayﬂﬁ for various values br the

$-A-1| ecemupling constant and for both even and odéd

parities.
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The curves show that we can reproduce the observed
half-width of 25 Mev for the \-Il  resonance with f’l v A0
for odd -/ patrity. However FTor even .ﬁ parity }i_i-;n
has to be of the order of 100 if we are to ul;:tain the
95 Mev half-width for the ),;‘ . The verrl'\:garge value
of the coupling constant required to obtain a | -wave

J = 3/2, ) J.}: resonance with the ohserved width for
=$An % A parity indicates that such ar esonance 1is pre-
cluded within the scope of our model. It 1s worthwhile
notieing that the one meson approximatlon which we have
made implies that wehave coapletely neglected the presence
of the © I channel and its influence on the /.|
gscattering. If it should subseguontly turn out that the
2 resonance that the parameters J - 3/2 and

L- 2 and that the 7 - A relative

e
%Y ""
,:'b
h."'
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parity is even, it may well be an indication that this

resonance can be understood only if we appronriately take

into account the _‘—“J intermediate ata tas,
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CHAPTER IV.

LOW ENERGY K' HUCLEON SCATTE RING*

1. Introduction

Recently a varliety of resonances have been observed in
gystems involving strongly interacting particles, Thus there is
a /T resonance (called the yf ) with isotopie spin 1 and 2 mass

1) X
of about 1385 Mev' " , g -1 resonance (called the °, ) with zero

isotopie spin and a mass of about 1400 Havzl

s and a 1 [T resonance
(called the [ =-meson) with spin 1 and isotopiec spin 1 3). Ve
devote this chapter to an analysis of low=energy S =wave KEN
scattering data, approximsting the scatteringz amplitude by the
contributions from these resonances and the - and 2- pole terms,
Using the analytical form of the amplitude provided by the approxi-
mation, we attempt to deduce the unknown parameters by fitting the
results of Rodberg and Thalarqj on the low energy S ~wave Kﬂfi
scattering phase shifts, Such sn analysis seems to be of particular
interest in view of the success of the resonance and pele approxi-
mations in explaining the isovector part of the nucleon electromag-

5
netlie form factor ) and the life-time of the charped piunﬁ).

®* Alladi Ramakrishnan, A.P.Balachandran snd K.,Raman, Nuovo Cimento
(in—press). 24,369 (1962)
1) Alston et. al., Phys. Rev, Letters, 5, 520 (1960)j
Berge et. al., "hys. Rev. Letters, % 557 (1961)%
Block et. al., Nuovo Cimento, 20 , 24 (1261)3
Dehl et. al,, Phys. Rev., Letters, 6 , 142 (1961);
M.H.Alston and M, Ferro-Luzzi, Rev,Mod.Phys. g% 416 (1961).
2) Alston et. al., Phys, Rev. Letters, 6 , 698 (1961).
Brwin et. al., Phys. Rev. Letters, 6 , 688 (1961).
8) L.S.Rodberg and R.M,Thaler, Phys. Rev. Letters ;%,3?2 (1960).
5) W.R. Frager and J.R.Fulco, Phys. Rev., 117, 1609 (1960).
6) J.Bernstein, S.Fubini, M.Gell-Mann and W.%hirring,
Wuovo Eilun%u, 17 » 757 (1960). See also J.Bemernstein
M.Gell=Mann and L.Michel, Nuovo Cimento, 16, 560 (19503;
M.Gell-Mann and M. Levy, liuovo Cimento ;g 7056 (1960)3
Y.Nambu, Phys. Rev. Letters, 4 , 380 (1960)j
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7
Em!‘iﬂunﬂn has anpesred recently "or a 3T bound state
Q
and/a 2T resonant Itltl!g-} «» We shall tentatively negleet
the eontributions from these states, essentially to restriet

the number o unknowns.

2. The calenlation

Let f+ and Y4 denote the inecident four-vector momenta
and hi and 7, the outgoing four-vector moments of the nucleon
and K- meson respeetively., Define the variables

EAC LD

Bo o ol =)

b e =l b.“i?;)Lr
8 - %il;l- 2
J 13 the square of the total centre-of-mass energy in the
process K N > K+N (which we shall es1ll process I )
while 0 and { are the mosentunm transfers for this process.
In the centre-of-mass system of the reaction K+ > KN
{the reaetion TT ), ) is the saouare of total energy while
‘n the centre-of-mass system of the resetion Ki K » VN
(the resction ITI ), { 1s the corresvonding variable, Following
Chew, Goldberger, Low and H“‘hﬂm s We write the T -matrix for

resction I as
T

T2 2 TR S (2)
7) A, ibashian, N.E,.Booth and K.H.crou- Phrs. Rev, Lettars,
, 258 tm&o Rev. Mod. Phys., 393 (1961),
g) Huglie et. al, s. Rev, Lnttiﬂs.ni 178 (1961). .
9) OuF.Chew, ML Doldperger, P E.low i ¥. Nambu,
Phys. Rev., 108 , 1337 (1057). '
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A and D ean be decomposed in terms of the amplitudes
for definite isotople spin using triplet and singlet projec-

tion operators 3

iR s s
A ca® Wt g4 T T b

1 1

(3)

where A denotes the aaplitude for 1sotoplc apin

and ‘_ﬁ and _l:‘;{ are Pauli matrices operating hetween

the nucleon and K -meson isotopie spin wave functions. A
gimiler decomposition helds for b . An analogous decome
position alse gives us tha 1-0 and L-1 aaplitndes A’ '
B’ wea 3T, * of process II . A  and A% are
related to A’  and At through the equation AL, E_jtjzif; }1];41,:};}

L
( 4,4-0,1 ) whero the crossing matrix [ 1s glven by

i -3
p L . 2
| . l . % ] (4)

Our notation 1s such that in a functlon F(%,4,%) the rirst

variable denotes the eamergy of pesction I , the socond that of

I1 and the third that of 111 . The srosging matrix for The
B is +I‘H while *he erosslag natrix from reaection ITI

to reactlon I reads

. L -
g \ ; z | (5)
2 0
A W
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10)
Eguation( 4 ) can be derived as Tollows, Let

Sl denote the T -matrix element for the process

N, + K, > KNz + K,  vhere the indices L 5 4 are the
isotopic spin indices of K while . and © are to be under-
stood =35 a collective symbol denoting both spinor and isotopie
apin indices of the nacleon. ¥We can then write

)T 8 (ot -y -9) B T (BEE)
© e Bao

= Ll_ _”I.._" -J

M

LK )l“k\r'rt"l.) ‘\Px,,w})li‘Lu)?

X [-p ‘af,fhrﬂ ()

vhere the | *s in | K (“-JJ) denote the momentum of the

'J"l"

S a t’ffj gh* (T %rf ﬂ""*),a,g'

in that state. Assuming charge conjugation invariance, we ecan
weite | Ku (U7 = b | KelW) s SRy ledl= <Kyl@a) 167!
where = 4s the unitary operator which eff-ets the charge
conjugation of the state vectors., Since

£ LP[“'L.__) 6= tm L q}” 2 &) 1

L g;_rd (1) k = LT, g t{JNLI) (%)

10) See for exsmple, M,L.Goldberger, M.T. Gnnrn 8. iacBowell
and D.Y,Wong, s. Rev., 1820 , 2280 (1260).
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vhere C is the nsual unitary sntisymmetriZ matrix
with the property
t_lr‘”r_ g = —-'T!.‘ 'L;I) )
"Hnﬂ ool r__.I'&L : 5[ ¢
T &I- I:I A t) . J| : -L-l, l:.; |t | 1}} f_:'_]'t} -; '_
T%JL o3 ¥ § g : }ﬁrm‘ a-gl.
S | '1-ifl' “}L EN [’L
Al 4] - = e el
= "Ll | .-"'LDL}]_,;-:J;t}.-fl.'lbz p° ] 1t)J ]H“,
ks L _,_) 3 : P)lill__-,?gﬁ T &
, - = ) ‘ a4 ( Y 3.'._‘:' i L _i r‘N K A
+ 3 A" (BydyE) ALYRD (By 1) g & -

BO 2 T op A :
E—IDL?\%JMJ +LYR B (B, 4,t) ] 2P by ~ T Lk

AT (3,00 feve B (32 ;tJJ Bpa Byl T W .

(] ) now follows, (5 ) is also derived aleng similar

lines
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We shall now evaluate the pole and resonance contributions
to A and © +« Thore 1s a strong experimental indication

11) :
for an odd K-A relative parity « Assualng this to bde true ‘

and denoting by %:-Zﬂh the - N-A eonpling eonstant, we see

that this nole contributes to A and ©? exnressions of the

frerm
.0 i - 1{“’& - M N ‘
H.-“-. = q '&KH A R )
I 2ol
A »
b L€ 5 |
Tl'.l'k = _ ':A} N A .',-sr=_:'. ._-_;}— 4
[ e = m
- focn- L 'N
e = = 3 JKNA —_—,
s Sodfreay
o} o + i
o M B

|
Here the subseript N on A and b denotes that the I‘
contribution 1s from the A- pole while the superscript J|
denotes the isotopie spin state, The mazses of the partiecles
have been denoted hy ™. with the narticle symbol as the
subserint, e shall follow a similar motation in what follows

|
also, 4 ||
|
|

There is sone taq:n':tvu indication for an odd Z- AN
e 12) ,
n.;—:[trla: 12) with %“”’- ¥ 8.6 where ';}KHE is the |

K- N-Z eoupling econstant. Il we accept this, we can write

for the - pole contribution,

11) Block et. al., Praceedinzs of the 1980 Annual Inter-
national Conference on High Enerzy Physics at Rochester,
page 419,

12) J.J.Sakurai and Y, Famba, Phys. Rev. Letters ¢ ,37171(19¢1). .
13) J.J.sskursi, Nuovo Cimento, 20 , 1212 (1961)
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. v O My e
:LE sl j KMz T T
M 5 - QD
B 3 Yeng e !
E = — -“ KN'z' Ty ,.__ + '_-I
P>
| - 'T'llﬂ + mz
‘“'E = l__ {“QHL )
My -2
| = | 9
= Jl!,z_. =)

For the A1 resonance, we assume 2 contribution to proeess II

o the form
L A

. (13)
| ;.* =~

while for the I il resonance, the contribution is assamed to be

of the Torm
" ﬂ ._'jl._ {l{']
Ayy - 2

5] H:y* —- 3

#inally, for the 1l 1l resonance contridution to process III,
ve assume the Torm -
| -

&y =

R S (15)
i ”'F : -t

where C is the seattering asuplitude for process III,
Here we have systeastically neglected the widths of the
resonances. The total resonance and pole contributions / -
and D_ to A and b ean now be written down. Ve have
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s 0 i y & '-I'-Fl'lr,"—l'l'tlu a ':ﬂ'lh I.”-' ” g 'ﬁ:i = )‘ i
.l:.i w = _.— d K noA —== — +‘ ":_. hH:‘.—. ..__1 = N _;;._ I_________
My —A ¥ 5 — A = ik -.:_I.y, -9
L —j—- t —ﬁ——‘ » (1e) ,
A Y -)’,* - i r'.n:|I o
5 2 = | r J
s = S B ¢ Gy R = d = * LI,
O = 4 KN A ,-I.I',F; A ~ JF'NE m S
| & m My 2. "J'I',N + -mk_ =
Ay = — 2 o .h-a + A Frns s )
r”.l"l‘. - s 5 e
\1 \ s A_‘ o A _F::Iih:: {.Lg} !
R - = e - _:_, ol = =i A ']T-'- - 't
g m ‘-}? — 0 ”?.a.* A J
!‘ : = i ) I § .&_-'— ] Ll'li_]
Ot = = L s — L y ST - —=e= = -
A
Defining I
ﬁLI (8) - ) Less 0 G’L{m 0) A(», toie) (2.0)

and similarly for BLI » We can fora the saplitude suggested
14) [

by Frager snd Paleo . & r
?«I o w N ¢ am bt
n k)= B ft R I :
- I . Tj ..I
Coas o B A S e, ij
WG L2L i
g ¥ (1)

where W 1s the total and E the nucleon energy in the cenire-
of-mass systea of resction I and 4 4s the corresponding momentua,
T
5(; 4is the K-N scattering phase shift in a state of total

e
gngular momentum [ - ¥ %, e (ef. ref, : ) and isotopile

14) W.A.Praxer and J.R,PMuleo, Phys. Rev., 119 , 1420 (1960).
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! 2
spin I . The contribution Jp(k) from the pdles and reso=-
nances to ?xa'r (R) is therefore given by

\ =
T rh}‘_ ! t_.[___l_w Tﬂ,._l.'f‘l :'_2'1-}
mTT' Lt f (W= mny) {-1 +(E- m,.J} o s -
where
~ " , : v : i
Fﬂl = - 7 E I. .N 10 %y + B, I'J_nrf "z bos T =t ‘iug-{}.
'_,ﬂr—' . e f} . 2 k>
P4 5 LR L4
| ed | -
I - - —— luhl 4 — ——— i I‘:“-. )
’ TR R T

(]

F1I| * ,ﬁ | l‘ }‘f} ﬁ.-,-"lj = :Il 4 - 'fﬂr.ij] 1 ﬁl \ﬁ_} ”.IE) I-,'_-.LI.['H'INf FF'.EJ}

i 'ﬁil\t.,_:"l ' _}"II* ] L j~) r :Jlt h:i miyﬁx_ . \L’,‘-J i t]'__LRv_j .-]-If.il , ‘.)l-‘_'j)

and
- o “ b jEE o i (23)
ﬁnkﬂj “'*1:‘:"')"' TR M3y -a-)
H 4 2
m _LIIT .am : = :,.- L PI'" i_ ;1]'\ ) =
Xy = ? —= =4
) e = (Yhy :rLKJ
Y ' 3 il
hIRS RJIW“')[L) = 5 d
- X [;- + AL 13 = LITTIN i Tnﬁ) J
Pl ot F‘ . 3




The <’» and 2’ > 1in these equations are related to the
ecoupling constants through

Ly = e, S5 Ay (L= Hh%, 3),

G . aia*

= N 0 0

Py = ~—|? Fens (2s)

approximating the singularities associated with the 2

and L veriables by those arising from the poles and
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resonantces, we can write down the dispersion relation fnr.ﬂbbﬁﬁr

()
n - | . [0
'?1::[_5’(}5 TGI '[%,_)—]—LSrL,%l Irm'%'” {'h ) .-’:;_5,)
m ﬁri {E o
G _ l( &K

18)
where we have as yet made no subtractions. The N[, solutien

of ( 2( ) with the elastic unitarity condition on the right-
hand ecut and one subtraction for D reads

T () R e rmy) ot (k)
.9 % - g | 2l ! et
(R-Rs ) ?Sik* Ll ok
i A WL &) (KX &)
X
where k, 1s the subtraction point and we have normaliged Ve

to unity there. As rruarked in the introduction, in this

s s

LD
ealenlastion we will neglect the rescatterinz eorrecteess
completely and attempt to it the data from the contributlions
ecominz from the resonances and poles alone, In such an

approximation, ( 17 ) becomes
T (%) f%- (E+my) et B (k)= 1 (38)

18) G.P.Chew and S.Mandelstam, Phys. Rev., 119 , 467 (1260)




113
Analogous to ( 22 ),6 we have for the 5 -wave -0 seattering
rhase shift the Tormula
TR B Erm) ot 80K = 1 (a4)
vherae =
AT R W 0 p ' 'J-F_ £ (wmp) o} (3¢)
Jo 'h}'- ]—ﬁ[ﬁ} +|:W—‘\T1,J}*§75-}-[E*m”}i TP;E"Tﬁ:
H_ere
FB”‘, M"‘_J_?—N) log % + 32 -m._,:f____fm.z) 0y Tz 4
b Ak 2% o ™
& = T af U || N s -‘:';
o PO Oy .x_iﬁ-”ﬁ_is%'l,__.q 5)9‘}§d‘
3 E%“ e b e 1 1 & " % v
(;,:: _f_'..l ioarih = j.::_;_ EDHTE}
ak" A

B o Tyn ] . J
Fﬁ? %! lfi y LA ;ﬂlfwh_:}’ﬂﬁ;’]'f' ﬁl\‘ﬁ} Mg, 3P My m )

“ r TS ; M
+§ 1‘1;_& y M, M"w] + Uf}"n"-yi B I'fd] + \_ﬁl mp, fﬁ]
' I o

'8:0 = E! L%?:L) mﬁ,f“’l} 3 'E,('ﬁzj My, r3|.53) {ﬁt}

The aporoximation used here makes the cross-sections go to
ny at gero momentua for which reason it s probabdbly not good
" X
at very low energles. We therefore attempt to fit the data ®es #

o+ v

+

aboVe 50 Mev ., The I-1 scattering data obtained Trom K
4)
seattering on hydrogen has been fitted by Fodberg and Thaler

by an S -wave effective range Tormula (the amplitundesfor {70
beine neglirible in this isotople spin satate ) 3

kot & = - _ig & é:’"r; 'y (32)
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with the seattering length 0. - 0,34 fermis and the effective
range T, . 0,50 fermis, 0, and 1, being aceurate to about

10 £ . The results were used by us between 50 and 210 Mev laborstory
energy together with the rough estimates of the [ © , - =wave
phase shifts at three values of the - -meson snergy given by

Rodberg and ‘rhnllr“ to evaluate our unknown parameters,

- k Cot §udy o p i,

& = 024 Formis; == 050 fermis
k= k Contre-of- mats

fig.l,

Of the five constants to be determined, we accept Sakural 's

plftiuttla} for - namely f“ 0,6. 8 the remaining

Hm-, the 7 | phase shifts alone determine two of the |
h’%f and the sum of the other twoj the -0 phase -Mﬂ;:y. .0'-‘ ]:

|
Q‘- used to separate the last two constants. ,
. T
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Our resalts are:
ﬁi:w. - 455,
r."h+ 3 - Y
g2 = — 22 ~
e* .& | ’ e \
\ Y Nl = 1000, ¥ =5
: N = - 410 .

where we have assumed

il
(]
L

41

& L

We emphasise that these are only order »f mapgnitude estimates
-1

as the Aata used are not aecurate enough, The S ~wave cross-

section predicted by these estimates 1z shown In Mg, 2 while

« 3 shows the 5 =wave contribution to the [-0 eross=-

etion,

T (5-Wave ), im mb

: = . . | : - — k (cma)
f o 02 03 b4 05 o6 o7 o
I 10 g s 0o 30 g Zp0 30 Mev ilab)
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Ea o
i [®
¥
=

-0

3 " o2

o e s

"eg. 2.
As far as ve are aware, no detalled analysis of the
data giving thiigrusl-nnetinn is as yet avall- |
able., Therefore it will be desirable to carry out
comparisons of these formulae direetly with the total
eross-sections for K- m elastie and charge exchange
scattering to find out how good such approximations are,
queh a task is at present being attempted with the ~r-~§lvi

eontributions where we explicitly taken into account,
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Recently a plon-plon resonance in the isotopic spin
I- 1 and angalar aomentum 7. | state long suspected froa

the electromagnetic structure dltllj has been experlimentally

2)
con™ramed . A K-T resonance with I-- has also been

3)
observed at Berkeley by Alston et. al. , While no conclusive
evidence is as yet avalilable as to the spin of this resonance,
from the copiousness of its production and its narrovw width,

C.E.chun‘}

has made out a case for assigningz this particle

J-1 o« In this paper we shall assume that this assignment

is correct and attempt to develop an spproximation Tor the

K-T seattering amplitude in the r esonance channel using

the Yandelstam ranrasuntntinnu}. Dur procedura is to replace
tﬁl?enntrihutiun: arising from the singularities in thi'qgﬂ!!nd
{anarxr)z variables by the KT and T - resonance terans at
the aporonriate energy and with zero widths for the resonances.

With these assumntions, it is easy to write down an integral

* A.P.Balachandran, Nuovo Cimento (in press)
1) W.R.Fraser and J.32."alco, Phys. Rev.,117 , 1609 (1960).
2) TPruin et, al., Phys. Rev.laters, § , 628 (1961),
3) Alston et. al., Phys., Rev.letters, § , 600 (1961).
4) C.H.Chan, Phys. Fav. Letters, § , 283 (1961).

§) Previons calenlations on this nrocess using the ¥andelstaa
representation are those of B.W, ef¥, "hys. Hev., égg ’
226 (1960) end B,W.Lee and %,8.Cho, Nuovo Cimento,20,

562 (1961).




equation for the K-11 scattering amplitude in the resonsnce
channel. The equation is solved by the V. uthndﬂ with
two subtractions Tor D one o which is then Tixed by nor-
nalization and the other by the requirement that there be a
resonance in the K-TI system at the aporopriata energy.

This gives a twn-parszater apnroximation for the seattering
amplitnde and the varlation of the phase shift “or various

values of these paraseters is presented. The zain defect of
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the aporoximation employed is that it does mot preserve cross-

ing symaetry. The ecaleculation may very well be inadequate
because of this, However it may be of some interest to see
the sort of resunlts such an approximation leads to. Further,
as will be indicated later, it can be used as the Tirst step
in a sel’-consistency esleulation,

The kinematical results we require 'n this caleulation
have been slready tabulated in our discussion of the N scate
tering. Ve shall use the same notation here also vith

Ki + T, =3 Kq + Ty denoting process I ,

K+ Ty = K, +7, denoting process II and I -1~‘Ir;€:1—a T +T0y,
denoting process III, This notation will be brieflly recalled
onee again at the aporopriste places, We will be writing the
dispersion relations Tor the T:'E ) p- wave amplitude in the

?-z'l. ecomplex plane where the physical branch cut extends froa

- 0 to o . Here R is the centre-o’-mass nomentum

for nrocess I . It is not essential to know the gingnlarities

o? the partial waves due to singularities of the total amplitude

6) G.F.Chew and 2.fandeslstan, Phys.Rev.,118, 487 (1960)
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in the t and &+ variables in the approximation we eaploy
gince we will be ernlieitly evaluatinz these contridutions

using » gero width resonance aporoximation,
E- T = = f"lr t
The 5. matrix for the process is zs usual writfen as

S{ﬁg s 351 5(]",3— T, )

: 77

= i) O(Pe- ) - T, (1)
4—-@3&]“‘ fL

%

is the Tinsl and T; the initlal Tour-momentun
veetor. 4a are working the centre-of-mass system and wy

wvhere

denotes the energy of the K =-meson (incident or ontgoing)
and Wy that of the T7- mesong in this systen, Let «
and £ denote the isotopic snin indices of the pion.
Then we mev write T as a matriz in the isotopic spin
space o” the kaon in the “ollowing m!r?}.

- A
T‘#i i gf—‘m‘- A *iif‘f‘hti] A (2)

where the T 's are the ususl Powmli spin matrices. The
relation batwe-n the eigen amplitudes Aﬂ'x and A 35— for
scattering in the isotopiec spln states 1/2 and 3/2 1in
channel T and the Ai of equation ( 2 ) are given hyTJ

=B

-+ s
A% UK AR

A = A+~—' A“ ['_{-,}

7) G.F.Chew, M.lL.loldberger, ?. ¥ TLow and ¥, Fambu,
vhys, Rev,, 108 , 1337 (1957).
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The analogous relations for Channel II are

A* = aload,
N Ul Fpa™ (4)

For Channel III , m if B” and B' denote the isotopic
spin amplitudes for T-p amd T -1 , We M"B)

= = ﬁ--’q-kj

131 - 2 AT (5).

"er reaction I , the { th partial wave smplitude in the
jsotopnic snin state I ecan be deined ‘n terma of the HI
)

of equation {3 ) as follows ) 1
T | e =
By naha o Sdmﬁg 1es® [ (£20) AT (5, %, t)
2
_.] EI
Jr LY I
“ a R lial 5 L

bR e 2
™~

(6) -

b

The variables have the same significance as In A_N seattering.
Thus O 1is the s-nare of the centre-of-mass energy, £ the
scattering angle and R the centre-of-mass momentum of re=-
action I.t and t are the s-nare of the energles In the
contre-no’=nass systems of reactions II and III ., A relation
analogous to (¢ ) Holds for reaction IT batween 'TE I{ E)
and II(.-E}_, % ,4) + TNote that as asusl O+ 4+ 4 - 2amy 2,
w. amd 4  denoting the K ~-meson and pion masses (where

as in what fpllows, the pion mass is taken %o be unity).

g8) W¥.R. rager and J,%.falce, Phys. Rev., 117 , 1803 (1960).




's remarked earlier, we approrimate the contributions
froa the singularities in the £ and 1 variables by the
ones due to the K-T1 and [/-77T wresonances of zero widths.This
wonld imply for instanece that for the crossed K-TT process

in the p -wave, I - /, state, we can write

T wm E\l_"" ()= Y% 1‘{;3’ e (- 27) (1)

whare f denotos the centre-ol-mass momantum o7 process 11

and \J,::,T denotes the mass of the K- resonance which is

taven to ha B85 Hﬂ.m The contribution to process I Trom
(7 ) 1is clearly ‘ s
g T ¥ I £’
o, " = = Sumam«m ji’f sty —
-1 b 5 {r
(m+1)
ot 3 U
g I_‘E rrBt._t—J.-f] (3)
T = &

where is the scat'ering sngle in channel II and the
factor - 1/2 comes fromthe crossing matrix., The latter is
easily derived by en inspection of equations ( 3 ) and ( 4 ).
We have:

i I = - i e
| E A
S P o P 1 s
% : l_ 2 | =Yg (4
A 3 3 A

The 1nt-1?;:atntim over fnc in ( ¥ ) ean be written as on

integral over { using the relation

o |
i ALk
£. l-twde (-0 _ IH0 gy g an-2) (10) .
8 2 A :
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so that we have
L 2(2)
o« liiﬁf‘ ﬁ dt (if E"'E;;‘:)g{it 3eg! x
i
112 (1)
' 3 s (Foty)
A _I o {H}
L F" %
wvhere 2 - 19 4 2 and
ey )1
n) {_:} 3
.[,.G) - E:I.fr‘r?-i‘l— iy “2}

The integrations in ( )| ) are easy tc perform and "inally

for o, ”, we have the cmaniun

* 3T WG, N0, L [J:og 20+ 2 =0 D X

B
12 R {rm 0 — Oy

el &
X 1”’ E——kq ~ P )} —am-2 404 {m};}’) ] ts)

]

is the centre-o”-mass momentum in channel II

whare ‘[rr
t the resonance energy and fu) ‘:P-hr is defined through
q 2
L=t ¢ o —1) ) 2
A = Fd = '_TE’I (By-2m=-2) (i)
L Aot 2

gimilarly we may assume for the Kk -7 T+ ssplitnde

a resonant form and write for its contribution to 4
0

= it A
Bites ;'—%,l Sd.t' (H‘ ﬂi)ﬁ 3&"37] U.E)

—4 &
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Here we have used the relation

F o= — 2k (- wie) (16)
to convert the t0)g integration inte a L Integration,
& is the scattering angle in the centre-or-mass systeam
of roaetlon III and f{ . 1s the square of.' the mass of the
IT-T resonance which we take to be 22 as suggested by
Boweock, Cottingham and Lnr!l.ug]. As an examination of equa-

tions ( 3 ) aeand ( 5 ) show , the erossing metrix in this

case 13 given by

% s T o
A ' : &

31_
A = = b R
ﬁ i

(i)
"

so that the coefficient in ( |5 ) arising from this is unity,
How, 1T we recard the |[-T resonance as an elemsentary

particle (which we shsll denote by the syambol f ) with unit

spin and 1isotople spin, we e¢sn compute the Eorn aporoximation

amplitude due to the .77 resonant intermediate state,

Let %FTT end §,  denote the remorsalized 7m-y-p and K-K-f

eouplinz constants, Then the Born aaplitude reads

Bea ik, 4 g 3 |
2 %o 9y SGeigones WY T WESin )
£ - a2 frrdf K = B2
qlh? -Tt fml‘} |

9) J. Bowecoeck, “.W.Cottingham and D,Larie, “hys, Rav,
};lttl';'l, § , 986 (1960)3 MNuovo Cimento, 16, 918
1960),




Here ™o is the nass of the [ -weson and  and 9 are

the centre-of-mass mouenta of the K -meson and 1 =maeson

in process III which are related to 1{ through
hoeoglt-4ad)?,
P="""L A= ¢)

Coaparigon of ( |15 ) and ( |¥ ) shows that in ( /5 ) , we have
set Py p, 4 vhere | and

pal=

(19)

 correspond to the point of

resonance. Thus from ( |§) , we may write
Euﬁ-“rlr;g ___.’a_t = =t ; 3
_.i_ F_.-'f a.-'lrf ( I:,‘ar - -1—"I"ri_"} 1 tI'T - 1'-] *
It follows that
I

BE . T — %{:ﬁ—z}&g br

(2.6)

A8 (- ) ® (b, —4)?

+ Rt by

¢ L ] L r 2 "
f'r(l,ba‘i} \ A + = F" G : + \ 4R+ 14, 4o 15 )
2k L ¢k .irirf) \ e 3+iﬁ te

W / F T 2 + \
=} :ﬁl k R I *’ri.-.- R+ ‘t.r ‘{U% ﬁ-_k::_i?r )j (ai) -

I

A A !
If we denotea the cuantity {1‘1 i i"}’:ﬂ- by fL‘. Z , the

p ewave , T - ; seattering amplitude for the K-i system
has the renresentation
00 il S
i SOy + sz TewAs kD
AR ) s B4 2 Sm S )
: o R-k ik

where we have as yet made no subtractions. The "/, solutien

)

of ( 22 )ﬁ with two sabtractions for D is
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ke ia . 5 i
K)o e BT ) - R e )
N > .
- -1."1'._ = 'l i &I
T ¢ A k= k) (RZ4Y)

where we have used the unitsrity condition with neglect of

all inelastic channels, [ 1s the subtraction constant and
Uik ) is normalized to unity at R - ﬁ:“ « We shall con-
veniently choose R, - 1. The integral in ( 23) has been
enomputed numerically by hend. We ean now impose the condition
that 1ts left-hand side vanish at & - ﬁ'i = 4,08 which is

the value at which the K. systea develops a resonance,

This gives
P =020 -0°20F =003 [, (24)
where " 2
. TND, Ry ,
¥
fly = 3 _ 2 (25)

3 A i
L L i (B e
T and ) are related to the usual coupling constants

throuzh the ralatimtﬂ_
¥ - Fg
u .':;,-r

1

. B | : 1. L
A2 Tpn ek b Ve = 5 Fpn dpn (be-40t)* (G40 29)
Rere 3 . 1s the normalized Kk -k_ 7 coupling constant with
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the K-T resonance (denoted by K' ) being regarded as ele-

mentary. The relation for - is obtained by coaparing ( /5 )
and ( |8 ) while a similar comparisono” equation ( 7 ) with
the corresponding Born amplitudes ylelds the relation for 7 .
Equation (26 ) indicates that 7 is positive while 4 depends
on the relative sign of J,; and §ci . It Tollows that [

is also poesitive.

We give below m showing the variation of

-t;,ﬁ ol EI& with xm W= vi_' is the total centre- 55 ‘_

ﬂ‘\mlu energy of reaction I . The valnes of [} apd rg ‘

en to correspond to values af ii% and EL? &_:\Lzu

er of magnitude of 1/3 and efé"f;_; of the order of -
tode of 1/26. The eurves are ML;IIM to the values of
5 and [,  essentially because ﬁji (£") 1s sensitive

to small changes in thelr values,

computation (which is the method which has been adopted in

this paper Tor lack of better facilities).
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Od f—

= =

—0 =

Coneelvably, we ean use such a celeulation as the

first step in a self-consisteney procedurs vhere the vhase

ghifts we have obtained with the assuaption of » pre-

dominsnt gzero width resonance in the channel TI 1s used

as the starting point of a second caleulation where channel

II 1is now assumed to have these phase shifts, It is of

eourse crucial in such a procedure that the zero width

approximation for the |1 || resonance in channel III

be a good one.

We have not discussed here the K-/ secattering

amplitudes in the other channels, These amplitudes are |
presumably wmall coapared to the saplitude in the resonant
channel. A detailed examination of this point is at present
in progress by Mr, K. Raman of our zroup. ]
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We derive below a few exact results in scattering
theory involving the production amplitude for an arbitrary
process with M final channels and the elastie scattering
amplitudes of the initial and final states in such a process.,
This 1s an extension o” some results of Sucher and Dale who
discugsed the problem when only one production channel is open.,

4 1 We consider a process in which a given initial state 117 ean
go over into any one of the Tinal states IELH L 4= b yasegm)

The scattering amplitude from |L) to lhir } can as usfal

be defined by

.”.;‘_.:.1 = \ru!.i \ i3 ‘-'-'»' -"}
where is the 7T «matrir satisfying the integral equation
Py =nenHertils &I (%)

Here iy 18 the interaetion Hamiltonian and

6= (B By ¥e )™ (3)

o being the free field Hamiltonian. Assoclated with Il |

* A.P.Balachandran and N.R,Ranganathan, Nuelear Physics,
18, 81, (1960).

1) J. Sucher and T.B.Daym, Nuovo Cimento, 13 , 1111 (1950).
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we can define a "pure"™ production amplitude Pﬁdti whieh
wonld be the value of rfmﬁji. if there were no initial
or Tinsl state intersections. |: | can be defired through

I_ -
the relation

Bty | = Ll A [ 5

vhere ' is the solntion of the equation
o
T, = Hp ot Hp 6, T (2)
where
A — oy {— "i | {:‘)

Here /\, 1is the projection operator with unit eigen value
for nnrlﬁna of the initisl or final states and zero eigem
valne for any other state.

We can also define a scattering emplitude <, in the
initial sta%e which v involves none of the final particles

in 1ts intarmediate states., We have

B o M Ty (1)
where
E Hy + Hp 65 T ‘)
with
U y Lk = d‘z‘_l a"'.i- ) ] )
and I
Moy T 7 ¥ 7 Ny, 17=0 i S

In the lsst formula, I-f denotes any state other than iﬁl&i? .




130

Elementary manipulations then give us the Ffollowing

foraglse :
T
m 3 1 = ‘P"- | = ..J' ; _-'|,:'I " = \."_f__ [‘..IIU I ] .F.‘
fﬁ':_rf;]' hf_a LT 114) » Wond #'._'—l lj'”} -:-:'I_II:H} "_-.-HJL
T
e T" { E 'i ? : " L { “J ’
. . - [ ! :
k- rLd) Bk k)
ik e
Mo = ®0+ Z Pg oM o4 7 A Fp -Me 3 (2
- C R=r 0 WR) TR : é;a i {tk YRyt )

The “dot" multiplication im (1 ) and ( |2 ) implies for

exanple that

.e E s ol F )
lJ{j} GUR. ﬁﬁngt z

= “.f

. A i !].Il aq '} ﬂ:,_ = f .!'t :-J".‘h
2 14 Ry N ) k) i.l{;..;_}'-_"" _{“'-,_'e_l_) (i)
E - E, +4¢
i~

vhere the sum 1s over the comnlete ranrme of all the quantum
nunbers of the | th final state and {; 1s nsed as a
eollective syabol to denote the coandete set of commuting
observables specifying the < th state., If we now eliminate

&, from equations ( |l ) and ( 12 ) , we have

Y

™ ), b ¥ IRLoT ||IJ e onili,
Vg UCT IR TP o
", F M
= M LT H j | h x Hi_
v L L They S Bgot Tt mgbr)  Be)b S

) ; 3 . . : [ “‘)
i Hl@ﬂﬁl" ") H’ﬁthi"*]

n pesnlt of some interest Por a process like 7| scattering
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is given by (/2 ) . Let us define

WGt Po-ean (s leded = 1Y us)

(12) gives (if we neglect the intersction of the | eray
with the charged "ields other than the eleectron),

y| 5 3 & B, - T L A . i

“Lﬂ ey = & 5 HUL B }lJ jﬂft LJLJ :
where [{  is the complete |- | seatltering amplitoude., Femem-
bering that ., denotes that part of the 7/ seattering

[

amplitude whieh does not involve electron-positron pairs in
the intermndiate states, we have o, -0 sinee even the
lowest order diagram Tor -7 scattering (the square diagram)

involves such a pair in the intermediate state. Thuas
Hgb = hj' ﬁL (1)

z = < 4
To order o g = M @ that to order o, (1)
reduces to the famlliar resnlt
M

- = [ -L.j' £'1d' L

- -

Bquations like (/4 ) esn be of some use in deducing
unknown seattering amplitudes provided a method of continuing
these amplitudes of the energzy-shell is available. An
example will be to try to deduce something resarding the
' seattering amplitude knowing the annihilatlon amplitude
NefR o> el (= [l ) and the seattering amplitude

Nyt > N+ N (= Tu&) (sey Trom experimental data)

and assuming some aporoximate expression for Pﬁi which

ig defined so 28 to involve no T 1T internediate state




(Here [+7 - |W N ) =nd ey = dmuy ) e (ig) wild
be then be an integral egquation Tor the [ 1| seattering
amplitude i"'-.',;[‘Y which can therefore be solved for, Of

erncial importance inw= such a procedure 1s clearly to know
before hand the matrix elements r-".l-,.;- and 1, off the
energzy shell also. As Tar as we are nwﬁra, there 1s no method
of obtaining matrir elements of!” the energy shell rﬁu the
exverimentally known matrix elements which are on the energy

gshell, I such techniqnes can be developed, one anticipates

that equations like ( [{ ) will be of considerable interest.
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Recently a great deal of interest has been evinced in

gauge theorkks of elementary particles following the funds=
mental work of Yang and Hillsl} on the loecalization of isotopie
spin rotations, We mention in partieular the work of f}ell-Hnnng},
Hhamana), sakur314] and Salam and Whrﬂs}. The idea involved in
2ll these specnlations is a well-known one in electrodynamics
which states that the exlistence of an electromagnetic field
coupled to the current of the charged field is a neecessary
consequence of demanding the invariance of the Lagrangilan
ander gauge transformations of the flrst kind:
L2 A L)

vy — 2 W () (1)
where U denotes the charge of the field Y and A is the
gauge variable which is a function of X .With constant A
the invariancee of the Lagrangisn under ( 1 ) will imply that
charge is conserved. However when A 1is taken to be a funetion
of XL 4 the pauge acquires a deep and beautiful signifieance,
It implies that the phase of the Tield can be altered arbitrarily
from one space-time point to ano ther,that is, the local phase

of the Tield is not a quantity of significance. The notion ofl

* A,P.,Balachandran ani N.G.Deshpande, Nuove Cimente, 20,

1022, (1961)

1} G.H.Iﬂﬂg and H.L.Hllls, Ph?ﬂ. Eﬂ'., ,ﬁ 1 191 [1954)' see
also ref, 86)

2) M.Gell-Mann, Phys. Rev, (to be published)

3) Y.NWeeman, Nuelear Physies 2¢ Z22(!961).

4) J.J.Sakurai, Ann, Phys., 11 , 1 (1960)

5) A, Salam and J.C.Ward, fuovo Cimento, 19 , 165 (1961)
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lncality thus aequiTes a Very much picher meaning m if we
take our gauge to ha loers) and insist that our Lagrengian
be invariant ander it. Let us now examine the nature of
the eongesuences thet such an assumption mld.iuply. ¥e
will consider Tor simpliecity the case where | 1s a spin
1/2 rield. Analogzous considerations apply to the other tyves

of fields also. The !"ree lLagranglan
e = =V outm) vy (2)

of y 1is not invariant under ( 1 ) so thet we are constrained

to renlace cifﬂ by
& = —'Fq’ 'L“I’}CTJP+ ) W -}-.&y-‘fy—'wp,q},ﬂ,}k (3)

vhere ,&P_ is = new vector "leld which may be identified with
the electromagnetiec “leld and which undergoes thes gauge trans-
foraation o the second kind

Ar*“} > -\P (%) + Y AL) (4)

whan trans®oras as in (4 ) ., ( 4 ) farther iaplies

that AP is massless. In this sense then, the existence

of a2 massless electromsgnetic field is a direet conseqguence

of the eonservation »” charge. It may be noted that whst we
hava done in generatirg the electroamsgnetie field is o replace
the ordinary derivative BPL secarring ( L ) by the covariant
derivative P = 1w AP) ¢ corresponding to the space-
time dependant transformaticn (1 ) , a procedure well=known

in gerersl ralativity,

8) . Ttiyama , “hys. Rev., 101 , 1887 (1966).
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Yanz and Mills whose paper we aentioned -urliur;}
atteanted a loealization of isotonic spin rotations in
2 way analogous to the localizaticn of the phase translor-
mation assocliated with charze ecorservation while Slkur-14}
with whose work wa are primarily concerned applied these
idans to the three econservation laws characteristic of
strong ioteractions, namely, those sssociated with baryon
nuaber, hypercharge and isotople spin. His interasction
Lagrsnglan which results "roa these considerations reads

e o &:3)

vhere
_:H' () —= (1) = (1) oy
b = o E =By - BuXB, (4)

?he "ifelds are here dencted by the corresponding particle

gyabols, B;;E} denotes the I -0 vwector rield associated
L)
with haryon conservation and BP‘ the r-0 vector Ileld
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assoclated with hypercharge congservation while E’FcLJ
which 1s the Yang-Mills muun}'] s 18 an 1sotopie spin triplet
and is assoeisted with isotopic spin conservation.

‘e wish to show that in sach a theory, it 1s essential
that osnly twe of the fields involved (avart from those of the
vector mesonsg) esn bYe elementary. Hera we regard isotople spin
multiplets as constituting a single field. In the Lagrangian
(5 ), all the Tields make their appearance since they are
a1l regarded as elementary, ( 5 ) shows that any baryon or spin-
less meson "ield alweys occurs bilinearly so that ir we denote
any one of these “ields by ¢ , the Lagranglan is invariant
under the transTormation

P - —@ (1)
Thas any reaction whieh involves a final state which xis dif-
rerent from the initial state is forbldden. “or exsmple, consi-
der the resetion A+ 5 5 C+D « We have

[eD|AaB)y =— LeP|ABY =0 (8)

Here we assume of course that this 1s not a reaction of some
sieh fora, as “or exanple [t p > TFem- or

A+® — A+ B +3u « Thus 1 all the *ields are elemsentary,
K< p ecannot go into $F 4 TT  or the vector rields

&)
'ij or By deeay into an odd number of pions. Thes=e
i

],L
resnlts have an obvinnsg analogy to the well=known fact *hat
in the prasence of electromagnetic intersctions elone, the

decay }Ai—} _tt 4+ 1is forbidden since there too the |
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the electromagnetie interaction is generated by locel zauge
transformations and consequently have the Tora l:e,

Ly [i. T & +}1“er] Au o farther, just as electromagnetie
interactions do not define the [«-¢ relative parity, the
Lagrangisn ( 9 ) alsc does not de’ine any of the relevant
relative parities batween tha stronpgly interscting rields.
Thua the reaction TP :n.+;n7] whoge study ylelded
the plon perity experimentally, is forbldden in such a theory.
Also this Lagranzian eannot give an effective interaction of
the form 19TW75 T N 1T  OF any other interaction which
is linear in the individusl baryon or spinless meson flelds,
as such interactions do not possess the symmetries of the
primitive Lagranrlian and zive rise to resctions forbidden by
it.

The ahove discussion assumes that all the Tialds are
elementary. One veri”™es that the di’riculties pointed out
in such a case ara removed i! we assume that the baryon and
spinless meson Tields sre bullt out of two basic Tields
(which is the minimam number necessary to give us all the
guantnm numbers), One may for instance sssumne the Sakata
5553133 or the Zoldhaber-Uyoreyi lﬂd!lg} for thase [ields.
e emphasize that what we state her2 is at varlanee with
Sakursi's point of viai‘] that it does not matter wvhether

nelementary’ particles are really elementary or not in his

?) W.K.9.Panofsky, R.L.2amedt end J.Hadley, Phys. Rev.,
. E65 (19561),
8) 9. Sakata, Progr. Theoret. Phrs. Krutb EEE (1966).
o) H.unldhnhur, Phys. Rev., 92 , 55); igé
(1956)3 G. Oyorgyl, 2Zh., eksper, tuur. rizZ., 152:1387).



theory. Even with this compound model, however, the theory
does not explain why there is no bound state of an 7. and

a Z' 1in a simple way. This could o eourse be due to the
detalled dynanics of the interactlon of which one can as

usnal say very little with confidenca. The most unsatisfactory
feature o these theories (which we mention for completensss)
is a well-known one, namely, that the vector mesons assoclated
with these gauge transforaations (erxcept possibly the Yang=-
¥ills meson) tarn out %o be massless while experimentally
there is very stronz evidence sgainst the existence of such
massless vector Ffields, It would seem that here once again,

we have an indication o" a breakdown of the basic concepts

fhe
anderlying local field theories. It is true that/definition

o a loeal field dons not necessarily require that its local
phase should he a matter of irrelevance, However the latter
prineiple, which gives such a besutisl and deep signiTicance
to the notion of a loeal T"ield, works very well indeed Tor
electromagnetisam and g?avitationﬁi. There®ore its failure
for the other classes of interactlions should be regarded as

en extremely unhaspay “eaturs of the present Taeld thaories,
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GHAPTIR VIll.

Aliote on the K -Hyperon Relative Parities *

We present below two possible methods of determining
the K-z relative narity |, »nd the k-A relative parity
Puy o Im the Tirst method, we stwdy the reactlions

Mip 5%k’ £°> A°+7 and show how the polarization of
the A’ ean bde used to declde the sign of Py, . This is
an adaptation o" the method of ﬂnppll} who studies the re-
action W+p 5 A" 4i° « In the second wethod, which can
egually well be used to obiain the K- A relative parity,
we study the resetions K+ p> 2"+ 7, 7> A4T
vhich are useful to determine p,, and the reaction
K™+ p 2A%27 vhieh is of interest in deteraining F., .

1) Gurrll) has shown that if in the reaction

T+ by T90A%) + k? 4 the target protons are polariged perpendi-
cular to the incident plon beam, then the :"(1")'s emitted
in the directions ¢- 0 or T (the angle © being mea-
sured from the direction of the incident pilon beam ) are
polarized tranversely, the polarization belng given by

Pr(F)ym) = T 2 (M) (1)

* A.,P.Balachandran amd i#,R.Ranganathan, Waovo Cimento, ',-
16 , 1142 (19€0). |

1) H.E.Glppl, ?h?.- HIT., m 9 726 tlm}
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where  (v) denotes the polarization of the target in
the direction Ml (i.e. 1n the direction trangverse to
12“: moaentum .] The minus and plus signs in 1, (3, m )
dorrespend to the cases when Py = —1 snd + 1 respectively,
7or completeness, we shall sketeh the derivation o these re-
sults of f:lppsn. Thus the T. matrix has the following

general form in the centre-of-mess systeas

T*:Lc?.&‘[fr.’av?.?% (2)
uﬁ PK‘E R Y and
AL 4B T, (3)
=3 :
£ Py =-1 « Here 2 and ?: are unit vectors in the

v

directions of the initial and finsl meson moments and o~ and |
are the Panli spin operator and the unit operator operating
between the nucleon =znd hyperon spin states, A , B, C gnd D
are complex functions of “?JT, '51 - i@  and the centre-of-mass
energy w .
Let ns denote by O, and {, the density matrices
of the nucleon and X , If we normalize (,, such that
Sp-Unl-1 where Sp | « ] denotes the spur of the s»in
matrix | , the initisl polarization in a direction E is
glven by |

Pw LE ) = Si’ [?1_'.{3," [H—.I (4)

f; 1s related te [,  throngh the relation f, - T, T' .
*he final polarization in a direction " 1is ziven by -




141

i ) Sp | o
'E Ly Wy o = -
} Sp [ ¢

T_? PE i 'J.'JEEJ__l

! (5)
s (1w, 8) ]

iotice that {Ji and 'PE sre in genersl functions of the

energy W and the scattering angle © ., We have also the
*

following expression for {,  in terams, Py from (4 ) 3

FN = Ji, [l—t P ?E] (8)
With these formulae, the "inal polari gzation fy ecan be imange
diately expressed in terms of the initial polarigzation P o
The procedure is straight-"orward and the detalls are given
in Qapps’ plmn. One obtains finally the result ( { ) when
the protons are transversely polariged and ¢- 0 or Ir .

Now consider the decay of 1 ° in its own rest system
intoa A° anda | . Let | denote the unit vector in
the dircction of the A’ momentum and ¢  the polarigation
0 the T -ray. We have then the relation -.4, - 0 . The
T ematrix for even Y A\ parity 1s

T= AT [E€xy ] (1)
while for odd 5 _— A parity, it reads
T = 8 .7 (%)

It is early seen that T  must be homogeneons in ¢ . Here
A" and 3' are funetions analogous to the 4 , B, C , D
of equations ( L ) and ( 3 ) while the Pauli amatrix
operates between the = and \ spin states, Thus the polarigation

of \ 1in s divection 7 1is given hyg,

2) @. Peldman and T.Fulton, Nuclesr Physies, 8 ,106 (1958)
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Pl )z 0 Fe 8 WL (€ x4 ) Poe (€x7 ) ()

for even -\ parity and

Pa (W) = "ﬁ-f’; + &Lfﬁr-?) [%’E-E*] (1o

for vdd £-2° pandsy
The methed of derivation is similar o thet used in obtsining
equation ( 1 ) , Here the notation is that . I: = B (w')
equation ( 1 ) where we drop the * 1in P temporarily .
We have thus the cascade of w T3 p—3% k5%

T A4 7 and we wish to study T, din terms of P, and

Peg « Now consider the ,\° 's emitted in the direction M
s0 that /- M . I? wo further observe the polarization of

A’ '8 in the direction m s We have slso = i « Since
€. W -0 , equation(7 ) shows us that f,- -, independent
of the relative % -\ parity. Thus finally under these cir-
cumstances and with the nucleons polarized transversely to the
incident plon beanm |

Fﬁrﬁ,};'f?ﬁ kﬁ} 'JI:"I" '}"LH.E:'I'H

= —BnIM) for byp=—1 ()

where *ﬁ:-', it may be emphasized once again denotes the direction
transverse to the direction of the incident T - beaz in the
reaction T+ p 5 30 4. k9 « Thus one notiees that the sign
of the polarigzation is the same as the sign of P, . One
possible method of detecting the /\° -polarization would consist
in observing the asymmetry in the A° decayling into a nucleon

and a pion as suggested by Uﬂ']mll). For this, it 1s necessary
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that one knows beforehand the correlation between the /.°. spin
and the direction of the decay pion., Unlortunately this point

3)
gseens to be a natter o sone exverimental controveray

If we do not select A"'s in any partieculsr directlon,
(1l ) becomes

i-'r._i () E.cq- PKE =+4,

g amealen X ||-‘;? 4 i
= L Py (m) gor s =14 (12.)

80 that as before the sign of 'F’,‘ will pive ns the sign of
Pysy o However in this case the polarization is very much
reduced. :

2) Lat ns now eonsider the resction K1 p- yo4 7
vhere v°- £° eor ,° . Clearly the resction will be rather
rare since {t involves an electwnagnetic interaction., A qua-
litative estimote would he that its eross-section would be
aboutl/ 137 times the competins strong interaction cross-sections.
Therafore vhat we ara “isenssing here may not bhe comnletely
impossible axnerinentally.

Let », and Tﬁt;r denote the incident K~ end oute
going v eray directions in the centre-ol-mass systea. "urther
let T denote the spin overator operating between the nucleon

and Y’ states and Cf denote the polarization of the 7 -Pay

3) &, Foldt r.Bridge, ",0.Caldwell and ¥, Pal, Phys.
Rev. Telters l, 266 (1968) and 7.Birge and W,Fowler,
Phys. Rev, Tetters, 5 , 254 (1760) obtain cotradictory

results. S dwwiver fpbnes ot ol @by Rev Lallany 1, 264 (19615 |
'-i’.‘a'u.u ,r...t.&i-; ';Fi'u‘-:&-i N xiliii.‘i.ﬂ i, Jgﬁfqul}'




with E’.E:}T "0 « The transition matrix is homogeneous in

=27y,

€ « Thus for even K-> parity, it has the general fora
T: 4E T-(U Xx€) +4F (P xT) (13)

Let U, i) denote the polarization of the nucleon in the direc-
tion m . Thas the density matrix for y 4is ealeulated to be

by = T o2+ Wy T AT

La®




—
Here © 1s the scattering angle and 2/, 1is the unit vector
norsal to the scattering plane, i.e. 5*:_ Sin@ = ZJT X :TJ‘}T

This gives us via equation ( 5 ) the Tollowing expression
for ?}'L"f_"r'r.] s
Na [
Py (M) = };?;_\'*"J
y Ui
nwr heone _* .
_ 5 - :
H?Lﬂ.ﬂ,q a,IﬂmL_LP*} (o -€ ) .uﬁ [“:JLI_J
[ S 5 . e A -3 —y "P‘}R-If
—I'Tﬂ'umllv".tlh%ﬂt“{ (TR Ex] " = X AS j
3 2 ) Fo e e
T Hlll 313['1'?1 kﬁ?{gl‘\ —Ii I‘EF*IEUH"‘“JW'{"%XL}/{
: - — = N
+ m E:J" X (Fxe)l ™ > [:xhﬁ“‘r{'}—]mjd'g
£ L X € E
- v = T ) lmE) }-:‘-': T ox k€]

. gL L (-? ,‘_é’J f:.?}{ {_'_‘r}
Dy ) = le*aun § +1F] -+ 2Re(EFT) (Y XEI Loy

For the odd parity case the corresponding expressions are

Mo WG (&),




- L : o .
Py () = Twiad) [a (af. 2)%0] (18) -

polanaed
Thas even if the initial nueleon ig mot paralvsed, Tor the

even par‘ty case, Y° is in general polarized with
Tan (EEX) (R E) Dy (BLXE)
Py () = I (EF™) [ &) g ML AT (1)

_— — B T

1E1* pvn6 + lFlj‘q'— 2 Re (EF®) (¥ XE L*{_ X&)

while Tor cdd Peyo Fy= © if V. =0 « 7or the decay
I A°4 7 o one sees froa esnmations ( 9 ) and (10 ) that
the A\’ polarization vanishes if Iyo =0 1independent of the
7-A parity. Thus there will not be any msymretry in the
decay of A° in sueh a case. “onsequently if one can observe
the soguence of reactions K p > 2"+ 7 4 =" AT,
A" N4+ T and no asymuetry 1s observed in the wesk deeay
of the \° , one has a clear-cut evidence for odd Py while

sz tloe
Similarly 47 the reaetions are X +p > A7, A% N+T,

AT there is an asyasetry, one can conclude that |

the absence and presonce of asymueiries in the fn""-deur will
unambiguously indicate odd and even p, , respeatively,.

One of econrse has already very good evidence for odd P,

from hyperragaent l'xmrimtl‘} « Fupesrisental inloraastion
on the sign of PKE is however proctically nil, The nethod
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4) BElock et, sl., "roceedings of the 1980 janual
International ConCarence on Wigh Energy Physics
at Rochester, page 418,
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suggested here , while unambiguous s unfortunately involves

8 reaction with a small cross.section, as reaarked earller.
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Among the most urrent probleams 1n elemgntary particle
physica today 1s the understanding of the nuass spectrum of
the elementary particles or at least of the mass differences
among charge aultiplets, It would geem that conventional
local field theories are totally inadequate to tackle this
problenm since one slways encounters dlvergences in any
attempt st the caleulation of dynamical effects on the assses
of the varticles, It appears very iaprobable that the theory
does in faet contaln finite results due to eapricious cancel-
lation of the varions divergent integrals, There™re we have
here a very strong indication of the failure of the specew
time corcepts underlying the pregent local field theories,
There are a2t srogent o variety of attempts ®» to obtsin Tinite
results froam an inherently in"inite theory by patting in |
suitable structure faetors or cut-of”s on the sol? anergy
integrals to render theam inite, All these go beyond the
Framework of local Tleld theory and are inconsistent Cor
instance with relativistie cansslity., @among the earliest ﬁ
of guch gttempts was that ‘eynman and spoiaunnlj who caleculated i

* A.7.Balachandran, Proceedings of the Cosmic Ray Sympeshum ;
at Ahnedabad (March 1960),page 243 (The paner was read
by Mr. V. Devanathan) .

1) R.P,.7eynman and G, Spelsman, Phys. Rev., 24 , 509 (1954)
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the 7'~ y° mass difference from the Illll.!'-'»ﬂmllrl:'ﬁli1 o
arising from the second order electromsgnetic self-energy
graph. To obtaln a Minite result, they renlaced the photon
propagator _f:iz"‘ by ;;?1 Lﬁ'i_:lv? )1 and found that they conld
get the ohserved mass difference of about 4.6 Mev with the
eut=0f? A of about one nucleon mass, Here the charged
member nf the multiplet is heavier than the vistusl member
whieh is consistent with the fact that the eleetromagnetie
gsell-anergy by itsel” is positive, In the ease of the nucleons,
the sltuation is more ecoaplicated sinee proton and neutron
carry angaolous aagnetie moments, Feynman and Spoimu
ealcalated the nroton-nsutron ness difference by assuming
that they obey Dirac equations with edditional Panli terms
to take inte account the anomalous magnetic soments., By
nsing seperate cut-o’fs for the anomalous magnetie moment
coupling tera and the photon propagator, they were able to
get a neutron heavier than the nroton, TFollewinz Teynman
and 3Spelsamnan, quite s Tew papars have appeared on the mass
differasnces oT the other particles as well, In particular,
Heitler and co-workers have attempted to develop a consistent
field theory out of thig cuteoff mﬂm « They rind thet in
all cases, the qualitative trend in the mass differences u';'t

ordin of the
in the correct direction with a cut-off of the|nucleon mass.

2) B. Arnows, snd ¥, Heitler, Huovo Cimento, 11, 44% (1953);
R.Arnous, W. Heitler and I, Tekahashi, Nuovo Cimento,
%g, 671 hm} B, Arnous, ¥, “eitler and I.0'Raifeare

augh, MNuovo Cimento, 18 , 785 (1360),
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They then notice that chlinj has proposed an extended model
to explain the loweenergy pion-meleon scattering with a cute-
a”f of the same order of magnitude. In view of these Caets,
a conversent, non=loeal theory has heen suggested by Airnous
and Hqithf'} with a umitarsli cat-off of the apder of mag=-
nitude of the nuecleon mass. The rest nflﬁ;rian of papers is
an atteant %o develop this idea consistently. Its eorrectness
or othervise will perhaps be decided hy future developments.
In this connection, we would alsoc like to mention the very
smbitisus non-linear sninor theory o’ Helgenberg ani co=
Hnrklrg}vhieh shonld in principle be able to prediet the
entire masgs spectrom, Its internal eonsistency however

6)

seens wery controverslal,

2. 0On the Maszes o Riewentary Particles.

Let us now disenss wvhether 1%t is possible to generate
the entire =ass of an eleaentary particle as a self-energy
af"ect, Withont concerning ourselves with the mesns whereby
the theory is going to yleld Tinite resnlts, it is possible
to single ont the types of intersetion which can possibly

give rise tc 2ass teras, Congider faor instance s ernion

150

3) G.T.Chew, Shys.Rev., 04 , 1748, 1755 (1254)
‘) B. Arnous !W. 3011:15!’, 1“- Eitt

5) H.P.Diirr , W.Helsenberg, H.Fitler, 3.Schbeder
and X, Yatezakl, Z.f. |atarforsch, 14 s, 441 (1969),

8) W, Pauli, Procesdings of the High “nergy "hysics
Conference at CERN (19858),




151

of bare mass gero. Iis {ree Lagrangian ean be written as
i. = = E JTF\ dEﬁ'FL 'q-f I:JJ

This 1s invariant under the 7,  transforaation’  of the
fermion Tield :
W > X 5 ¥ (z)

Therelore if the Y =field has iateractions which are also

Ts- invariant, the unreneraaliged Lagrangiar will be

T; w=invarisnt and therefore the wm renoranlization MTT
eannot generate mass teras since these are mot 7;-invariant .
Thas 1f the iateractlon of the elsetron or muon with the elesetro-

megnetic field is UV Tp ¥V Ap y it is invariant under
L# = 1'75 \?’, HM"}HH ()

On the other hand, 17 the interaction is purely through
magnetie moment and reads A Y 6y ¥ Fuo where ,
of course, [, < 7 oAy =T Ap s the interaction is agein
Ty =invariant with

V= 7% V¥, Ap-—Au ()

Thus a pure ecurrent or aggnetic moment type o elec¢tiromagnetie
interaction can never generate the eleetren or auon masscs

Af their bare mas<es are gero. If both these types of terams
are present, however, the lagranglan is no lonzer 7, - inveriamt
snd there is a possibility of an -1ﬁtrmmﬂe origzin of the
magses o” these partieles. Slailar srguments esn he applied

7) A, Salan, Nuovo Cimento, § , 299 (1957).
8) FR,P.Feynansn, Proceedings of the 1958 innual Inter-
national Conference on High Energy “hysics at CERN,

Tak feast an poodiobakin Zhoory
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to the interactions of other rfields, Thus for direct Yukswa
eouplings like <3 N 75 TN-T y We have invariance under

N 3TN, F*—a T (5

vhere the 7- =transformation is sade on sll the fl elds simul-
taneously., The latter is necessary sinee we can have couplings
like ' § Wi, AK and has the following physical significance.

The /. -~transformation takes over any fermion field to a fleld
of opposite intrinsic puritrm +« However the relative parities
of the different fermion fields 1s a meaningful coneapt in strong
interactions, To leawe the relative parities unsltered, we have
therefore to change the Intrinsic parities of gll the feraion
"{elds ones of opposite sign, This implies thtt the 7, trans-

r u; has to be applied on all the Mlelds -ﬁglt_pnamulr. Now

for derivative couplings, the transforaation(5) is to be replaced
by

o -

< :5-;_—_-? £, T () 57")'
so th:t\ﬁ" both these types of terams are present, 7. ~invariance
is again loat and we have the possibllity of obtelning a non-zero
mass (rom a gero bare =mass,

Consider now a pion-nucleon interaction of the fora
E%;THNN T where 3 1is the nsual plon-nucleon coupling constant,
‘" the nueleon mass and N and 7 are the nucleon and pion
field s respectively. This term has heen considered previously |

in an atteapt to bring the usaal psendoscalar theory into agreement

9) R.C.G.Sudarshan and R,.E.Marshak, P"roc, of the Padus-VYenice
Conference (Septemberam 1957)j s, Rev, 109 , 1860 (1958).
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10
with the § -wave data in low-energy plon-nueleon scattering ’

Altend e er
Thus in the pseundoscalar theory, thn};s ~wave scattering length

2
for seattering without charge exchange is — 2% vhile experi-
mentally this 1s a very small quantity. The tera ;%:FFN'Fi
A =

exactly csneels out the second order effect of the Tirst order

eoupling. It seems that this csneellation of terms like 3f

T

; 4
;gé s @te. occurs to all orders. The point with which we are

L

concerned about this term however is that it cannot be made
1nfnrinni1£nd can therefore give rise to nucleon mass. Let us
therefore try to calenlate the yhole of the nuecleon mass tera
assuming that it arises froam the lowest order graph due to this
interaciion which 1s the following "tadpole” dll_;_zaﬂl

A :

P
N

h L]

g . :
Assume further that f&ﬂ: 2m = G'if Mev . HNotice that there

are three such disgrams corresponding to 1 s A% and T~
emissions. We have then the following expression for the nucleon

~-5ﬁl - 155 (A" 6 )

10) A.Klea, Phys. Rev. 938 (19556)3 5.D.Drell, M.H,
Fitetuts oot r.mﬁaﬁuim, Phys, Rev.,104, 235 (1956) |

11) The following refers to some mnpublished work of |
Allad1 RTamskrishnan, A.P.Balachandran and N,.R.Ranganathan |




Here we mﬂum that the bare pion mass too is zero,

( £§?%1 )  1is a convergenee factor introduced to make

the integrals finite, ‘e evaluate ( ¢ ) by the usnal Feynaan
tauhn!.qull.lm We write

! I‘j'llr
'1| e AT S R o 3 i = (1)
‘f'\’a L{é%{i,}- Sg i|:': [hﬁ A’ (1- T"*J:l E
so that i o .
a1 e % (g 4, |
m= 6 L T,;.Sdi,)li‘i.gdﬂ_.'n—" 3 (8)
A (21) . o L";‘l._-j— _]q' e 'Jg_ﬂ
Bat " .,
Sl g (4)
- - "
T A % 5 247 (1-%
Ve )
{ g ) thus becomes
oy i 9 2 (10)
wmoo= £
L (zm)¥  am 4

Tor ‘mc 038 Hev ., we find from ( 10 ) that A= 702,565 Mev,

1t seens rather remarkable that one has again a cut-0f of the

order of the nucleon mass.

The general dependence of the fermion mass ranorializa-
tion term 5+ on the hare mass m Cor an interaction which is

Ts; =inveriant can be deduced by siaple argunents, Let ns for
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instance conglder s theory in which a Teralon o” mass ™M inter=-

aets with a boson of mass |+ . The Lagranglan is then invariant

13)
under the mass reversal transforaation .

B e mp=m ()

12) These sre dis-ussed at great length in J.H.¥ Jauch and
¥. Rohrlieh, 'Theory of Photons and Eleectrons',
(rddison-"esley, 1955 )

13) J.J.3akural, Nuovo Cimento, 7 , 649 (1958).
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along with an aporopriste transformation for the boson field.

( 11 ) should also % leave the ronormalization term &m invariant

so that ©m should be an odd funetion of m , Mirther the Lagrangian
is invariant under the revlacement >-pn so that {m ean only be

s function of | , Sinee the theory is 7. invariant if m-0 ,

wve nust slso have i‘»’fﬂ' Bim-0 o Thug §m should be of the form

m->»u

3

o .1 . Ty
dan = O+ & JT (12)

p
vhere 0 4, b, --. are dimensionless . We can now assume that Sm
gains no new singularity as >0 whieh is the case for instance
in electrodynamies. Tt “ollows that /v should be independent of
j+  and be oroportional to 1 , a resalt well~known in eleetro-
dynamics, Also, the constant 1 , which is poasibly divergent
maust be such that _r'ﬁ'- ‘;"-D L% =0 1.e. 4 should diverge less
strongly than linearly. It could for instance go to infinity
like a logarithm does. ‘nalogous ceselusions csn he drawn
rezasding the degree o divergence of > ’ alsa.
411 ¥hese results are a consequence of the fact that dvm Jm-o ,

TH—»0

Now thut 1f we use a cut-of’ mass A y We would have in general

A = rm'z PL'J. ,‘
s g 1 T,
_ A 1.,!

vhere Fl‘nr: no singularith as |+ tends to zero and
% m ,L"“_ _Pf Y=o % f may for instance be composed
h tend to a logarithamic inTinity or to a stant

'*"'ai . +-
o -
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We ean now consider the ¢ase of boson mass teras. The

transforaation invarianee under which ensures zero boson un“’
is

Q=59+ A (14)
where ¢ 1s the boson field sad 7 a constant o« C14)

is the analogue of the gauge transforastion of the second kind

on the electromagnetic ield which guarantees the mas-lessness

of the photon. Derivative Yukaws counlings are invariant under

( 14 ) and therefore cannot generste boson masses i the bare boson
nass is zero, However electromagnetie interactions of charged
bosons, direct Yukaws couplings ete, are not left invariant under

( 14 ) sand henee ean give rise to non-gero renorzalization teras
even 1T we start with sassless bosons.

3. Onghe = - =C Mags Difference.

In this seetion; we shall discuss a suggestion of

5
Bransder and Hunrhnuul ) that a large part of for example

the I - ©" mass dif’erence (which is o about 7 Mev, ) may

be due to the large x’- k= and K°- K' mass dif’erence (which

6
is of uhn_* Mev ]1 ]. They conszider the follaj

agraast

ra
¥ iy, I P

= g M T L
1 r X
s’J i 5 B i
ET P = = n =
wt Ly
I .JH-_\'- o
' ¢ l-"l ;. 1 >
& b ¢ i
4 i -t = — B

)

14) Such aformations were first considered M nuhiu.

15) B.H.hmnﬂm an

16) V. H.Barkas snd H.H osenfeld, Proceedings of the 1960 Annual
International Conference on High "nergy Physiecs at Rochester,
page B78,

.ﬂt.Hnurhnuu, Phys. Rev. Iatt-rl, 2, 431 (1859),
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Ll ﬁ
ooz = W afd Y K i - - VT 3! i
Mo = T W —=X 5 My =am o= i ~ - L R 5)

i’htl'(ﬂ?; is the mean mass of the K -uunm,' ln&

i, 5
M=

; .
h? - 2 G 1 3 L" o _I
) 'r’"i’ﬂ?::_T R+ mz B2+ a2 J
1 ; .. 0 ' 7 =
BT o S i3 ) eECe J HeD) [ 155)
—+ ¥r Moy e i | =
R ¥ M~ 2 ol 127 L. R+ i

ete,, we find, for the mass-difference of ¥ and Ei arising
£ K- k' amsss difrerences, the finite

Here 7' - 1 or tl; depending upon the relative parities
of the perticles involved. The geroeth order terms in 0O,
clearly eancl out. The nentron-proton mass differenece which
is rather small is slso neglected. They Tind that the most
fnﬁmblu ease when m(y-)- M(z*) turns out to be largest
is vhem the K- nueleon relative parity 1s odd snd k- cascade

relative parity is even. In suech a case,

M(E ) - m(L)= D-iﬁ"}ﬁzﬁ + 2 14 ‘?E. K (18} [ 15d ]

A

which gives the reguired 7 Mev for ?-;‘3"‘ 4, g;.f‘“x 3 -

Let us now apply the above method to the = - =° aass
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ﬂlffurnnalc.l?} The relevant diasgrams are below:

‘ : :
(5 ke

P R P b Pk o
= o il o ] =D
K =
e K
- Pk B, P Pk .
= - = =" £t e
k k
ko ke
) Pk P . "ok »
- AD E Eg _Ib‘ﬁ- En

The disgrams involving « 's give eontributions which
tend to ecaneel out so that practically all the eontribution

comes from the lsst two disgrams. The latter ean be written

as 2 = '
1':.;1’ =oAL - ~LTR: M =M al
I""""I[_E‘,_ J— ) |I = U} B Lo AR '-i'-rtl.-_\_; C'I.nli,\:j (r, "r- L __'_-n ‘?‘I ﬂd = :
ms (P-R)"+ m] (R+m3% )"
(15¢)

) Loreyg
vhere we have :ut'LT?:xﬂﬂa @r1ﬂ |- The evaluation of the

integral in ( /5¢) will be illustrated Tor even K-Z. parity,
(leee 7'- 1 ) 5 the odd parity case being quite similar.

Using the furuulnlﬂ)

] _:I(,
|1 _LJ'd'lrfdii St e % lic )
0y oy 7 0 [fﬁ | Ra+ Qg (=7 )]

17) A.P.Balachandran, Proeeedings of the Cosmic Ray
Syaposium at Ahuedabad (March, 1960), vage 249,
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we have )
1 st }-— milEe) = — 1 %_E-r:-"'lk "l":'t_h,. E "-!'}":.K X
' ma
[ L
irrtasy —~LTR - 'I'T'IF' —~ 1Mp
ild. k jdrxlidl‘l ___J ~ = 3
0 0 [(R-pxa)t P e (- %)+ (-3) 10
(1)
o pie 12)
Shirting the origin by replseing ® by R+tpA )
we find A
g M T
MR-} -miEe)s — dzak My 0Mpg *
' . 3
i A
) e Mg | Xg=1) — THA
ﬁgﬂfrﬂgiirlih l—‘—' 2 : — _ (g)
b e Uf'e, - 'pu:tr_. (1-R2) -+, (1-%) ’?"'f',,’"""’zJ
12)
Since by a symmetrical integration | the integrals
12)
involving ;% becomes zero. Now
1%Rr AT? (iq)
e L e = TR 1
(R+07) LA
so that Py
e s mlme) = - (SAK angSmg X
(I -1!
4 2 ‘
'_ﬂ‘. = L E- { I“‘
jm RN = T S U (26)
AT 2 s = | .
o J”*EF_'. £+ (T ~N e 'rn_;)'ﬁf. +n 'n_

vhere ve have set 'pr_.' = M m and perforaed one of the
1 =integrations. For the pseudoscalar ease, we find,

similarly

| . =3 %':',
MUE) —mi29) = = ﬁ““ My Bmg X
i

=41 e '_‘l'_q'fl- rm,ﬁ. A
x| i

- —_— (21)

d

; % n - 7 7l
M Ay 2 .0
o = X = (ms 4m, )t Mg +m;
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where Tonk denotes the pseudosealar coupling constant.

How, )
| x4 x = ik i 1 b |ng .j_—_b_;:
S @bt e & e a
? ]
-+ bll_ e F tr-_-«.w"" .?_-’H'_L\: - o = b’ _‘) Ij :I
& \roe- b ( V4ac- b* Vg-ac-b*
a e A : y hag 8 bt
a+base A s ¢
[
! M bt 20 P | )
g NPy L o e Virzac-b*

where the intesrals are evaluated noting that jac? b2
in our case. Using these foranlae and taking 71 = 1315 Mev.,
T, = 1118 Hev and M, = 406 Mev., we finally get

1

M=) = paatee) = PaARE Gaye MV fov Y-,

L

- e - { ol .
0-236% MeV. Hér T'= 005 (23)
T

In either ease, ©, comes out to he the heavier narticle,
There seecas to he some experimental “iﬁ!ﬂﬂllgthlt = ip
heavier than [=.° by abont 7 Mev though the quoted error
for the mass of the =.° is so large that no definife con-
elusions ean be drawn. In any case, (22) indicates that the
nechanism considered here can make a contribution to the mass
d1rfarence which 1s not negligible espeecially 17T the Sh-A-K

eonpling is seslar,
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The decay of the |- -meson is the only process which

has been studied in weak interactions which does not involve
any strongly interacting particle and the resultant compli=-
eations arising from strong interactions. All evidence for

1
thls process supports the Lagrangian

_ > = B +
dp= X% G [Pwurms)o]l ¥ 1) Kl + hees (0

2)
where ' and ' can in_general be different .

For processes arising from the weask interactlons involving
the nﬁug;nn (like the nuclear p -decay, | capture and inverse
b =decay, |- =capture by nuclel and the decay of the charged
pion) experiments suggest that the interaction is essentially

of the form}’

t N L Ll R
{i . TR 'l- % I:-)r ]:p T-:\ Lif".fﬁ :I '*nJL ) ri-___j-_{.'-j-"fﬁ}L'_l_nl_;l T._ [+ -'fﬁ}lu-l

e

e el 7 I -\h)

* A.P.Balachandran, HNuovo Cimento. (in press)

1) This Lagrangian was first suggested by R.P.Feynman and
M,.Gell-Mann, Phys. Rev., 109 , 193 (1958); E.C.G.Sudar=-
shan and R.ﬁ.lhrnhak, Pﬂys. Rev., 109 , 1860 (1958).

2) B. Pontecorvo, Soviet Phys, JETP, 6 429 (1958) 3

I- Nisn’iﬂ.' Phy!- Rev. 3 % ] (195?);
G. Peinberg, Phys. Rev., .

, 1482 (1958
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(Lo eapd bor podnble 3 Ltvma)
\¥hen thy penorualization effeets dué to strong interasctions
are neglected, With the inclusion of strong interactions,

{42 ) would become

;‘_1_“_;_ s B L By "!':"!,- - 6 -.i;a,:fh_: : J[— f (T )0

T W ) T o £ ”"Jir fiw (3)

where (,, and -5, are the renormalized vector and axisl

vector coupling econstants,

There is strong experimentsl evidence Cor the eguality
of the vector coupling constant &y, in nuelear 3 -decay and
the eoupling constmt @ in |» =deeay. The best support so
far Tor the "universality;, of this coupling comes froam the

deecay of QLI j_J N ) to N*H' L_i;l ._L;"._'j-) 3)
which involves only the Farml coupling constant since it
isa 7-0 A A E=FeiD r transition, The nuclear matrir ele-

ment can be exactly evaluated if we neglect charge-denendent
corrections since GHP and N4 are nembers of the same
isotopic spin multiplet, The messured (1 wvalue is |

3071 + 16 whiech slves for the Fermi coupling eonstant
hy @ value of 1,415+ 0,004 x 10'“ erg na which
in turn predicts the life~time of the [+ -meson to be

1
= 2,251 0,012 seecs, if we assume the V-A theory )

e 1)
o g

and set 5. - Gy value of the |+ -meson mass used here is

T,

L
i

3) R.P,7eynman, Proceedings of the 1960 Annual Inter-
national Conference on High Energzy Physics st Rochester,

page §501.
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206,76 m, . The measured value of T is 2,210+ 0,003
.-'..81 which 1s very close to the theoretically predicted
value. Sinece strongly interseting particles sre invelved
in nuclear 2 ~decay it would sees rather surprising that
even if the bare coupling eonstants for j+ =deeay and

fp =decay are equal, strong intersctions do not strongly
distort this equality. It has been sug:u:tn#‘) that this
lack of renormalization of (y arises from the fset that
the veetor part of the curremt in 2 odecay 1s the charged
component of the isotopie veetor ecurrent which is exactly
eongerved in the oresencs of strong interactions alone.
This would imply that the renormslization of &, 4s nil as
will be shown below. The discrepancy between the (. -decay
coupling constant &y and the 5 -decay veetor coupling
constant (,y should therafore arise from charge-~-dependent
electromagnetie oorrections in both these decays. B-rllna)
has caleulated the electromagnetic corrections to [+ -deecsy
and this unfortunately actually enhances the 2 % discrepancy
in the caleculated and observed value of the [ 1life-time
into a 4 £ diserepancy. Coulomb corrections for the deeay
of 0L+ based on the shell-model are not enough to secount
for this discrepancy, However there are other sonrces of
error, in particnlar the mass difTerence between charged

% 4) §.5.0ershtes and J,5.Zeldovich, Soviet Physies JETP
2, 576 (1957)3 1.P,7eynman and ¥,Gell-Mann, loec.eit.

§) 8.4.Berman, Phys. Rev, 112 , 267 (1958).




165

and neutral pions which cen give an appreciable correction
6)

to the charge inderendence of the short range nuclesr forces i\
Fur ther there are corrections arising from the change in the
noelear radius in going froa {f+ to Nil+ « In view of this
it seems plausible to assume that Gy - % 1in the absence
of electromagnetiec effects, |

¥ith regard to the axial vector part of the current
in 7 -decay, the Tollowing remarks can be made. Experimentally
i EE =< AalBB -k 0.0573 so that if the bare axlal vector and
vector coupling constants are equal, the renormalization of
-5 1is not large. Further the axial vector current gannot
be a conserved current since if it is conserved, the rate
o deeay of the charged pion will 1ln1:hp}. It 1is therefore
rather remariable that the axial veetor renormaligstion is so
small and suggests that perhaps in some approximation, it should
be exactly ealeulable, VWe develop below a =model in which this
is indead possible provided only that the strong part of the
interascetion Lagrangian is invariant under the Pouschek transg-

2
formation )

a5 s
Yoy=> 2 W) (4)

on any one of the strongly interacting fields, The result

emepges that if ; A1s the unrenorsslized axial vector coupling
eonatant, - Eﬁ - -1 « This would imply that the unrenoraglized

i3

6) L.L.Poldy, Proceedings of the 1960 Annual International
Conference on High Enerzy Physics, Page 506,

7) H.’E’.Bﬂ!‘ﬂ et. 2l,, Phys. Rev, 1214 iM}! see also
C.E.Hu, ““- Hoﬂ.!m’l‘ n | % !19591-

8) J.C.Taylor, Phys. Rev., s 1216 (1958)
M.L.0oldberger and S.7.Treiman, Phys. Rev., 110 , 1478 (1958),.

®) B,P.Touschek, Nuovo Cimento, 5§ , 1281 (1957).
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5 =deeay interaction is /1A ., However the model involves
thae introduetion of new and unobserved fields and it is guite
diffieult to say whether 1t has any correspondence with

ﬂﬁlttr or nnt.

2. The Jenorslized Ward Identities

We wish to derive for our currents the analogues of the
ard ldentity in electrodynanie Ilu) whieh iaplies that the
charge renoraalization constants arising from the vertex and
electron self-energy graphs cancel each other exactly. This
shows that if the bare electric charges of all the elementary
particles are equal, the renormalized charges are also egual
since the only charge ronornaligation factor now coaes froam
the photon self-energy which is however comson to all the
partieles, This explains why, for instance, the charge of
the eleetron and proton are exaetly ecual, Physiecally this
neans that since the electromagnetie current is conserved, when
the proton goes into a neutron and a ﬂ“* for example, the
total charge is azain equal to the charge of the proton so
that the mesn value of charge 1s unaltered by these transitions.
The method we employ in deriving the generalized ward
identity is that of Bernsteln, Cell-Mann amd ﬂichul;l). de
shall sketch their derivation briefly for the conserved vector

10) J.C.¥ard, Phys, Rev., 78 , 182 (1950)

11) J. Bernstein, M.0ell-Mann and L,Michel, Euovo Cimento,
16 , 560 (1980).
12) M. Gell-Mann and M, Levy, Nuovo Cimento, 16 , 705 (1960},
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current and then pass on to the derivation of the analogous
12
result in our case. It may be shown . that 1 we make an

infinitesimal gauge transformation

N = [+ 4T W] New) ()

on the unrenormalized nucleon field N(r) with the gauge
variable L. a function of + , the Lagranglan undergoes
the change
L » d= LV Y e)

where V, - NI Ty o« Notice that ( 5 ) is an infinite-

abace - Tuwe, deprndumt
uiu!.ﬁisutupiu spin rotation, Also for convenience , we
neglect the existence o” nther strongly interacting parti-
eles. To take the latter into sccomnt, (5 ) must be supple-
mented by the eorresponding transformations on these fields
also., These mod’"iestions however will not alter any of
our ennclusions,

TUnder the transformation ( 5 ) , the unrenormalized

nucleon propagator
Sp (1-1y) = 4 \rp [mmﬁw}) > (1)

undergoes the change
ASE (X-%) = (T .U ()8 (1-4)~L g (x-4) T () &)

bhe Lhw.ﬂ.gﬂ. e
ASg WX- '-,j) ean also be evaluated by computing)the right

hand side of ( 7 ) by adding a first order perturbation to
the Ragrangisn as given by (G ) . This gives us, in the

12) ™. Jell-#ann snd M. Levy, Nuove Cimento, 16, 705 (1980)
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momentum space ,

—p

LT SF (D) —LSEU)T ==Sel) &, [ U ) SE(p) @)

& .11

-

wvhere ﬁﬂ . f«, h and [ “m‘, ) is the unrenor-
@alized vertex function associated with the eurrent |, .
Let Z; be the charge renormalization factor arising froa

nucleon self-energy gr=phs and —;:— the charre renornaligation
|

factor arising from the vertex graphs. On passing over to

rencrmalized quantities, ( 1 ) gives

i I — >

Se, (HIT = TSR )= Ry BWF, R i)

where 5; - L & 4is the renormalized nucleon propagator

and L by, ) = % IT:LI”'; ) . = I"l (5 k)

]

is the effective vertex function, ff,;o being the renormalized
vertex funetion which between free spinors aets like _{?}: .

F -

Clearly '_Z_. is the charge renormalization we wish to com-

pute, IT we denote the renormalized and unrenormalized couplihg

constants hy Gy and ( 4 we have
Ly = Ry ..”J'

e = -

Z; &
Teking «_, . (P '), to be an infinitesimal quantity, ( 10 )

zives -—;,

Lty 1) (12)

g’
C.rl
o

r-“' |

-

-

—
!

which ig the ward identity, Near the mass shell,
Sk (p) - (bt 0 (Uptan)®  so that € /4 ) taken between

free spinors pives




— e . ;
Uu-tj_ T -‘[:?{ = & Fjﬂ L,

AL L %; = . (13 )
whizh ts thes X=
This shows us that 1f the current is £m conserved, the
eharge 1s not renormaligzed. If the current vere not eon-
served, the gauge transformation (5 ) would have added
terms proportional to ik 1in (6 ) so that the reault would

no longer be true, In faet by an application of the Eulere

Lagrange principle to the gange varisble Iﬂ)' we Tind
g Al o 3 L
ERIUTS A
or
e 2T
'D__l u;' = ﬂ
where 54 (14)
% =) .
s .
v, elearly would have non-vanishing divergence if % +0

Thus the Ward identity is a consequence of the fact that
the enrrent in question is conserved.

Ve will now pass on to the case of the pseudovector
eurrent. In the course of the nroof, we will make nse of sn
egnaivslence theorem due to Bll.ﬂm, which may be briaefly
suanariged as I"unmln : Consider the Lagrangian

d=--V 'L-ﬁt'*..l.’lrf* ‘r*‘m) Y —g v T T Y I b

3
fa

- LBy — L B (15 )

13) H. “1-' l'!lﬂil!!' m.iefl m ¥ “1 {19'50).

14) The folloving version of the nroof is due to
3. Kamweht Kamefuchi, Nuclesr Physies, 18, 601 (1960),
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fuiudo
where V 1s a spinor fleld, [ a scalar nrlﬂ and . and
?’LBLL'.,-' n
L denote the masses of the =apinor and;se:lar fields res-

pectively. The eurrent

/‘h’“ = by s b ¥ 15)
is not conserved since

_r o ¢

ﬂ'fl_ d’[“*_ = &,L.I'!- V 15 "F l?)
Passing now to the inter=ction rerresentation and denoting
the variables in this representation with a subseript 1T ,
we have, for the intersction familtonisn,

H (1) = W -q;]: llfl S I'—PI '-f[-_‘. f,“' l{)t -'UP- BI
o 4
=507 L% O e ] (8)

where np_ is the unit vector normsl to the space-like sur-
face o~ through X and where we have included the Tsraion
mass ters in H ' . The current a']:l_,L in this interaction
renrasentation is clesrly conserved, It has been shown by

15) 16)
Glauber and Unezavwa that i? there are no terms in

I the Wiy Wi L
H  whieh violate the gauge trang®ormation indiced by the

eurrent Er‘EP_ which is given by

99 A
ULﬁ}h) 'qJIL‘i]U_'[fi}}.,): —Qa ) Yy (0 (119)
vhere
Uiy 2 )= L 1-1%5&@’ brp ) 2 | (a0)
o

15) 7.J.0lauber, Prog. Theor. Phys., 2 , 295 (1953)

18) H. mezawa, Prog. Theor, Phys., 7 , 581 (1952)
Qnantum Field Theory, Hm'th-mila Publishing Co.,
Amsterdam (1956), page 204,
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then under the unitary transformation
W) o) - Ule, B0 ) I (o) (1)

on the interaetion representation state-vector, the
transformed |' becoses zero. Notice that when (1] )
leaves H, and H' invariant, the eurrent du in the Hei-
senberg representation is exactly conserved. The physical
contant of the theoream is simply that the coupling of a
spinless Tield to a consarved current 1s equivalent to @
nall cunplin;.&w A et ing MG AVID (440 20

~. L The interaction renreasentation state vectors in the

infinite past and the infinite Tuture are unaltered since by

the adiabatle hypothssis, U[n'. E-._:-u) becones equal to unity
at these times. There®ore the 5 -aatrices ealeunlated with
the two Hamlltonians should be Mmtiual.]

~~~ In our case, H' acontains a tera -'m:@ ¥Yr which 1s
not 1nu;r.‘[gn1: undar ( /] ) so that the transforme Hamiltonian
instead of beinz zero, becomes

) = ':'.'_!:i r.]-q JEI (x) " i
HY (1) = M Y ) d Ye ) (g

The new Lagrangisn ¢an thas be written as
£ = =P YW et (22 4)
0 Y

With these preliminaries, we nroceed to the construetion
of our model. In the rirst instance, we shall prove our result
for an [-0 vertex for simplicity. Subsesuently the oroof for
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the T= 1 vertex, which is the case of physieal interest, will
be ontlined, Consider the Lagrangian

a o= ﬁ 'er!.L.?u:' ’_._ =+ Ty '- N —+ ‘L% _ﬁ r’._,, TE hJ ""fJ- E:" 8 : ﬁ T’_&?‘rj” -'.ii'-"'-
L7 * ) s
=g Op® - 2 T ase 'y Ap] LopAn-24u] + £, 23)

The Melds = and ﬁ!, are massless and the coupling constants
4 and fg’ may “e taken to be ss su2ll as is necessary to avoid
sny contradiction with evperisents, 4,4 denotes any strong
interaction Lagranglan which is invariant under the Touschek
transforamation ( equation ( 4 ) or (1) ) which we shsll

also call the 7. -gauge transforaation, One such ;. 1s
provided by the Sakurai I‘.a;rmg&an“) in the absence nf strong
isotopic spin couplings . Since 4 ; 1s 7; -invariant, we still
have, after the unitary transformation ( 21 ) ,

= &Lg155)

&= =N + me N+ 4N g An.

L g3 ['.;.}Lgf-ﬂ i (-ﬂlu Ay = Duhy) (O Ay -'ﬂﬂﬂﬁ)ﬂ‘ffm (a¢)

To caleunlate :"Ii for the 1-0 vertex, we consider the
|

inTinitesimal zauze transformations
N - [ o £ Tex)] N,

BY) = Bl - *1:1::3‘

17) J.J.Sakurai, Ann. Phys., 11 4 1 (1960),
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under which the unremormalized nueleon propagator

S )= 4 (T v T S (2¢)
undergoes the change
ASE (X-Y) = W5 S (2-y ) ¥ () + tSE(X-¢) T5 V1Y) (1)
vhile
4 ] ; ! / B 0T r. ]
3 = K =g ‘3‘ ( fjp b) U]uu ) (28)
It may be noted how the use of the unitary equivalence has
anabled us to zet rid of the nucleon mass teram which wonld
othervise have appeared in [ under the transforamatien (25)

As before, we esn once again caleculate /5y (V-4 ) by sdding a

first order verturbationto X' as given by ( /7 ). This gives

ASe (2-M) 7, L P : =
i-f————L = q 'u}*Lz}\TiNm)NL“ﬂ}'hL—}'))> .'_;-1)

AWL%)
where .(z) acts on the  -varisble. To evaluate this, ve
use the S -matrix in the ranresentation( <3 ) and retain terns
only to order g{}' (which 1s rermigsible since 3 may be taken 193
to be a very small quantity). By an applicatlon of Wiek's theorem
we Tind that the contraction symbol between the b -Tield in
(29 ) and the one arlging from the 5 -matrix gives ias the
vertex function for the eurrent H'TF Ts N « Pinally, in

mosentun representation, we have,

—

18) Such s persmetrigation of the fermion mass term to ensure
itg T; =-geuge invariance is due to K,Nishijima, Nuovo |
Cimento, 11 , 910 (1059),

19} ﬂ.ﬂ.ﬂﬂt, Fm- H“-' m ] m fzgm}i




'-'T = | L5 ] z - ! f 5 [ =
EJF \p) 'I'LbF[FJTE ﬁ'rksi{.f“ljrf‘g {.i.,_jl):,l:{.f\.) L_ﬁﬂ')

which leads to the result

) = ] {q'l‘,]

S5 :
by arguments analogous to the ones employed in pgetting ( i2) .
Note that we have here treated the couplinz due to %I exaetly
and the one due to }  only to order = .

The above result 1s true for an I-0 vertex., To Jrove

it for an -1 vertex, we consider the Lagrangian
— i o : . ; —p _-.-'?
.= — N L_TPL Op + 'ﬁ'i.} N+ ‘6[ N Tpr75t N -'?P. b
| — —'-r:"" - B el - R T oy o
T Y N T TN A - L 0p ) =+ oudy -ﬁpﬂpjﬁﬁﬂw%"p]
+ St (32 )
—= —
where [ and ’D‘P‘ are nov isotopiec spin triplets, The
anitary transformation ( 31 ) is now replaced by

—
1

[ -
I\%_}T’!_ '_5'] —% i J'P LL J LLG-‘P,I &IP X l} BI {IIJ;J I@;‘ -{_{T) f_.a..'i)
o

4 T - L-a v, T s = i (34)

We shall herea’ter neglect terms of the order of gi ' gé}"
etc. and ne - leet t:r‘:e eouplings of B and .JI; in calenlating
= ]
the divergence of .&J“" « 1t Tfollows that p ;;P"D if m=-=0 .

Under the transforaation (33 )J i gets transformed intn

f g A Te ?E ial— =y -y
£ = =N L'TM?’P P L ) Nt g N YT T NAL

e ._!L L '::}‘L ﬁ }L_ _;r_ [ E‘}J. F‘:; _"E#,LJ i:._ J [L}P__.fg —-"ﬂ',ﬁ ?F ] + dftrh.t LE'E)

(25) is now replaced by
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Nt) — D+ Lre =i P ] NCY)

— - =

By 5 B — ﬂiél)r

a A =

Ap () = Ap ) + 7 T (W) (26)
The rest of the derivation I3 simiiar and we again obtain
L Gy

= = « This rather curions result, if it bears x

any ralntiuﬁ to reality, would imply that the unrenormal’ zed
carrent in 3 . deeay is V+4 .« It may be remarked that in
Sakurai's theory, the § . we have consldered involves the
neglect of the weakest of the “smily or couplings viz., the
isotopiec counlings so that in such a theory of stronz intere
action, this mndel is not inconsistent with the faet that

| £a |

= departs only by s small smount froam unity,

It 1s tnteresting in this connection to note that a
paranetrization of the Terafon was term similar te that in
equation ( 54 ) to ensure 1ts T; =-gaure invariance can be
made even if the y «field hasg no interaction with the p -field.
We msy in fact choose the auxiliary field suchthat all 1ts
quantum nuabers are identieal with the vacuum, Consider the
Leagranglan

= (W) Y - G 0

where we have set the mass of the | =field equal to zero,

The unitary transforaation ( 3| ) now gives

Lt aldTe B -0
L= =9 (O tmde 007 ) ¥ g0 b

] L t-f

— 4 (2pn B) (38)

which proves the assertion made e Tlier since ( 3¢ ) is invariant
v Ty > P

under the transformations /3 2 ¥y, B> B-—- —?—

with \ @ eonstant, It is in faet the asnalogue of the second
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( & L TR
= ."l'
term in (2% ) whieh cancelled out the last two terms in )

(i5) 8o give us (22) , The E field of eourse com=
pletely unobservable since we have assumed that it has ne

interaetion with any other field,

3. Conclusion

o, p eonelude the discussion with a brief l"h‘tian
on thn‘rul@ﬁg&lnr mesons aay dley In weak iqﬁntﬂns.
Exmlmouy the strangenesg-changing hpthul
of hyperons seem very ¥ rare while the rates for the
leptonic deeays o” xypurmme the K -mesons are not neg=
1igible, This can Tind a simple exnlanation ir strangeness-
changing leptonic decays are mediated by scalar aesens since
thea the hyperonic decays wonld get suppressed due to the
snallness of the momentum transfers involved, (Decays other
than the |A5|- 1 leptonic decays may be assumed to proceed
for instance throuzh a contact interacti-n between the currents).
e
e

of mass m %o the cnrramand;-gt currents 18 equal to (7,
B- |

Assuming that the coupling constant of this boson

vhere -] 1s thl"kdaur .~ coupling constant, we may write
o I a M e 14 = 1 :
G g PG o e o gt P USRS 1)
—_— r.n,xl_g r_.,a.vE — r i_i "}F?';-i-m}; f[‘ll.,'l'

Ty pt¥
for the eorresponding deesy life-times, Here [ denotes the
relative strength of the strong K- and I- vertices., [ 1is
the density of Tinal states. (5] ) is coapauted from the
following Aiacranms,
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( 39 ) gives for My B71e6 Mev, h—i,}\-; 1/10 which 1is reasonable
in view of the usual estimates regarding the relative strength
of the - and J. stronz couplings., Tor the /|- and > -
leptonic decay modes, the largest momentum transfer at the
A-rl =vertex is . 175 Mev , at the 7-/ wvertex, ~ 250 Mev ,
both oecurring when the nuecleon is produced at rest. In the
latter case, the factor by which the rate is depressed rela-

,  95p2 .
tive to the universal rate is |I- ﬁtz )
if it is coaputed for a coupling of the Tora

= 0-06

2y 1 Ts | W B+ f.C. «» A1l this seems consistent
F]"l-l { 4

with' the present scanty experimental data, Finally, we notice
that the introduection of such a meson would imply that the
|AS|-1 eurrents to which it is coupled can have no j_; doeid

components since otherwise there would be a centradietion with

the observed small n.f 2 Mags dirrmmm.

2Y) L.B.Okun' and B.M,Pontecorvo, Soviety Phys, JETP 34, !
;m %gﬁ?}}' Iilullcr et, al., Phys. Rev. Letters,
L . L]
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3

I. This chapter is devoted to a discussion of an
isuf&iic spin scheme for leptons and a fnur-dimanui&nal
isotopie s?in formalism and is divided into two sections,

In Sectioh IT , the isotopie spin scheme for 1e$tuns is
developed and used in deriving some prhenomenological rales
for the leptonic decays of strange particles. In Section I,
an extension of the ideas of Section I is considered which
gives rise to a four-dimensional isotopic spin scheme. The
structure of weak interactions is then discussed within the

framework of this scheme.

II. On an Isotopic Spin Scheme for Leptons*
1. Introduction

From time to time, there have been attempts to develop
an isotoplc spin scheme for lentons, At first sight, there seems

to be some diffieulty in classifying these particles in such a

* Alladi Ramakrishnan, A.P.Balachandran and N.R.Ranganathan,
Proe, Ind. Acad. E‘E., ﬁa 3 1 (1961)]
Alladi Ramakrishnan, A.P.Balachandran, H.H.Han§anathan and
N.G.Deshpande, Huciear Physies, 26 , 52 (1961),
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scheme since, for instance, the muon and clectron have no
neutral eounterparts. Most of the schemes which have hitherto
been nroposed have assumed the existence of the neutral counter=-
part of the muon ( the /° ) and joined the electron and neutrino
into a duuhlutn or in some analogous way tried to build up
multiplets out of particles which are or a widely dirferent
natm.!] We propose below an isotopie spin scheme which seeas
to be a natural extension o” the idea involved in the two-
component theory of the :'.nm1:.'1*|:1'-:I.m:|2n to this internal syametry
space, A congeguence of the schene is that interaections
involving |- or v eannot conserve isotople spin so that

if an interaction gugt conserve it Aif it is to be strong, these
particles can have no strong interactions, Similarly if strong
interactions should also conserve parity, the neutrino can have
no strong 1nt-rnutiuni.m This therefore seens to account raher

naturally for the absence of strong interactions for leptons.

2. The Igotoplc Spip Scheme

It may be first remarked that the absence of the neutral
counterparts of | and ¢ *w ¥® has an analogue in the space-
time structure of the neutrino field where it is found that
only the left-heliecity state of the neutrino is resligzed in

1) R.E.Marshak and §.C,G.Sudarshan, preprint, University
of Rochester (1957).

2) S.A.Bludmsn, Huovo Cimento, 1 , 433 (1988),

3) A. Salam, Naovo Cimento, § , 299 (1957) Ly
L. Landau, Wuelear Physiecs, 3 , 127 (10 %
T.D.Lee and C.N.Yang, Phys. Rev., 10§ , 1671 (1957).
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nature, This has been interpreted to be a consequence of
the 7,- invariance of this f:lild;')
Y Yo ¥ (1)

Since the formslism of isotopic spin has many formal similarities
to that of ordinary spin, it seems plausible to assume in analogy
with the neutrino field that »~ and & are components of two
distinet isodoublets |+ and @ whose neutral counterparts do
not exist, This can be achieved if |+ and ¢ are invariant
under the - T:- transformation: |

- T (a)

where, as usual

¥ - e —1

(2 ) implies that * and  ecan be written as

bk-3_\ '] W= l -K (£)
'IU." ] o

The exclusion of the T; -+ couponents of the |~ and *
doublets implies that the allowed wave functions do not com=
pletely spam the isotopic spin rotation space. Consequently
no interaction can be formed which i1s a scalar in the isotopie
spin space involving these Tields, i.e. interactions involving
 or U eannot conserve isotopic spin. The situation is
similar to the case of the neutrino where equation ( L )
implies that all the interactions of the neutrino are parity

non=conserving.
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The neutrino and the photon are included in the schene
as 1lsosinglets. If one assunes s relation between the charge
. 4 the % -component of the isotoplec spin Iqp and the lepton
number ! of these particles analogous to the eorresponding
relation which is known to exist for strongly interacting

particles, we have

) _ b+5
Qe VI peatagis L5

}-J

vhere S plays the role of strangeness for leptons. Assigning
b+l pop v ¢ amd ¥ , we have S- -1 for |~ and o~

and -1 for Y . For photon, of eourse, - IE: L=5< 0

8

3. Stronz and Flectrouagpetic Intersctions

A consequence of the scheme which has been proposed
shove is that we esn forbid the strong interactions of leptons
with the following additional assumptions 3

a) Strong interaections must conserve isotopie spin.
This implies that the muon and electron can have no strong
interactions.

b) They must conserve parity. The neutrino can then
have no strong interactions since it always occurs in the
combination —%Elf'lb} W ety

The electromagnetic interactions of strongly interacting
particles are known to transform as a scalar plus the third
component of a veetor when the particles sre isospinors, an

example being the nucleon whose electromagnetic interaction

reads i.e. ;ﬁﬁ'nklfF?;uAP . This is exactly the transforamation

P E
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property for the electromagnetic interactions of the
muon and electron in this scheme which read T Y
and AL ¢ Tpe" Ap or equivalently, (<} . ’_’f';:'";.‘:' - A
amd LLi?ﬁ*igghg,ﬁp + The classification therefore is
consistent as far S#hese intaractions sre concernad, The
electromagnetic interactions of the neutrino ean then be
forbidden by assuming that these intersetions must trans-
form as a scalar plus the third component of s veetor or
as the third component of a vector (The latter situation
oeccurs among strongly interacting particles for isovectors
1ike the Z- hyperon).

It is interesting to note that only leptons seem
to possess invariance under transforaations which eliminate
one of their componaents (the 7; - invariance of the neutrino
or the - L. invarianee of the muon and electron) while for
baryons, such invarisnces seem to be a property of some

of their interasctions and not of the “ields themselves.,

4. Weagk Interactions

Present evidence in weak interactions seems to
rule out the existence of neutral lepten eurrantn‘). We
shall accept this as a given fact and assume that the
only lepton currents (which we shall denote by ];E )

relevant for weak intersetions are Y and T .

4) T.D.Lee and C.N.Yang, Phys., Rev., 119 , 1410 (1960)
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( Here we have omitted the 7 -matrices for convenience

of notation). These transform as one of the components of

an isospinor. The [A4s|-1 strangeness-changing currents
involving strongly interacting particles (which we shall

SHE

eall T ) nec-uar;f carry an isotopie spin 1/2 or 3/2

since these are built up of an isospinor and an risnt;anuur
(scalar or veetor). Thus the intersetion ;‘_'fm‘ Y {f
which induces the [(A5|-1 strangeness-chanzing lentonie
decays of strongly interscting particles will give the
rale (AT|- 0 , m1 or 2.,

Let us now try to deduce some phenomenologie al
rules for strangeness-changing leptonie decays using our
isospin classification of leptons. Fxperimentally, such
decays of the hyperons and the three-body decays of the

K w-meson (K-> T+ 24 Y omd K= T+ p+v)

is 5)
seem rare while the K- p+ ¥ deeay/not negligible .
All these decays can be forbldden if we impose on them
the selection rule jaf]: 1/2 or 3/2 since we have
seen that these neceszsarily have ld-'_f | = an integer.
Sueh 2 rale will however be hard to reconcile with the
comparitively largze decay rate of the k-7 |« 7 amode.
Alternatively we may assune that all the isotopic spin
amplitudes are allowed in the final state. These ampli-

tudas may further bhe assumed to be such that

5) D.A.Glaser, Intern. Conf, on High Energy "hysies,

Kiev (1960 |
L.B.Okun’®, innnal Review of Nuclear Seience, 2,82 (1959). |
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v L TRy R Ay, (5)

®p
La.*\;-.ﬂ . -3'..34'. .
Am , Xy 9 X 9 4y, denote the emplitudes for

the I- 0, 1 and 3/2 final states that, Assume further

that these amplitudes always interfere destructively, One
then rinds that the decays

N b+t 7,

tTs midTiy (6)

are forbldden (where { demotes j« or ¢ ) while the deeays

. B = L7
S . il e ALK TS, )

are reduced to about 1/18 of the universal rate if the o

are taken to be of the same order of magnitude as the expected
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universal deeay ambplitudes. The derivation of these results
is straight forward., “or instance for the I - decay, the decay
amplitude can be analyzed in terams of two amplitudes corres-
ponding to the I- 1/2 and I- 3/2 states of the finsl systea.
It can thereTore be written as E-_-ﬁz-j,_ - \/IJ-"“ which
coupled with ( 5 ) gives us the factor 1/18 quoted above.
The assuaption made does not however suppress the following
decays:

Kkt LM,

K=o 45

s m+ L+,

=y Ay (8)

since the final system in each of these esses is in a definite

isotopic spin state. This 10 consistent with the rate for

e LH,—; snd K 3> '+  which are known to be appreciable,
Alternatively, instead of (> ) , we may assume

L of 1
i B i = Oy T . S
0 : i R il 7 g hE A

P

g = o lj]

with destruetive interference between the « 's . This will
allow for the deeays listed in equation ( ¢ ) which were for-
bidden ahove, although with a rate 1/12th of that expected
with a universal "ermi coupling. The rates for the modes
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Kt M7 4,

K-= e+ L4,

B (i0)
are now about 1/100 times the universsl rates. Experimentally
the three-body decay modes of K=  geem to be suppressed by s
factor of 170 relative to the universal rate., Minally the
decays of the K, , K. and =" 1isted in equation ( 7 ) are
now suporessed by a faetor of 1/4 ., Rxperimentally,the
leptonic deeays of hyperons seem to be an order of magnitude
ganller than the universsl ntem.

In this digeussion, we have not assumed the ilﬁ_gt: 1

6)
5:1: for strangeness-changing carrents _, Also if [A5|- 2
TR e
|decays are allowed, = —» "lti > ghould be fast while

=5 p+ L +? shonld be sboat 1/12 of the universal rate,

: 6)
In the jcurrent|x jcurrent|pleture of weak interactions , we

’ should have “% .1 pule rigorously for the strangeness-

as
changing eurrents and no |AS5|= L currents since the

non-laptonie decsys do not seem to exist, The mest eonvineing
evidence Por this comes from the Ki - K. mass difference,
It has bean ohserved by Okun' and thcurzu.} that 1" there
are such currents, there will be a transition from K° o K’
in the first order in wesk interactions which wonld imply a
oglis h‘f mass differenca of the order of 10 eV ., If there
are no |AS|- & transitions to the first order in the
weak coupling, the K% k! aass aifference is proportional

=

ﬁ) !..“.’.‘*lmall and M, Elll-ﬂall!, m.. H."" m ’ 123 (1988)

7)’ g B, 7;“?;.“5;? B.M.Pontecorvo, Soviety “hysies, JEI?P,
’ . .
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to the square wmof the weak coupling constant and of the order
-5

of 10 ~ Mev . GEvidence that the mass difference is o this

order has been raported raeantlra) thereby ruling out |4 5|-7

non=lentonie transitions through a first-order weak coupling.

IIT. A_ZOUR DIMENSIONAL IS0TOPIC SPIN FORMALISM AND
NTERACTIONS*

1. The four-dimensional Isotopic Spin Formalisy

An axtension of the 1deas sugzested in our discassion
on ths igotopie snin scheme for leptons will now he described
which anables us to develop a four-dimensional isotople spin
foraalism for elementary particles, This 1s a modifieation of
the Salam=Polkinghorne elassification of elementary nnrtlelesg)
but 1s distinet from 1t in that it implies effeetively no
nore assoantion than those contained in the Gell-Mann - Wishi jime
schene and also includes leptons in a natural vay.

We start by consid ering the usual relation between the
charge () of an eleaentary particle and the 3%’ <component
of its isotopliec spins

= _Ii--___. 8 U"l' Lr"_:'

-

8) Muller et, al., Phys. Rev., Letters 4 , 413 (1969),

* This work wag done in collaboration with Alladl Famae
krishnan and ¥,G.Deshpande,

) A. Sslam and J,C,Polkinghorne, Nuovo Cimento ‘§ s 685 (1958)%
JuCoPoliinghorne, fuovo Ciment 5? .

o, 6 , 864 (19
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vhere U, - M—f for strongly htlrﬂti:z particles
and - Li° ror the lepton fasily. Here N is the baryon
number, L the lepton number, 5 in the case of heavy mesons

and baryons is the usual strangeness while S for the leptons
has been deflined previously. For the nhoton Uy=0 o« How on
the right-hand side of the relation (1) , the first term is of
the 7/ -coamponent of an angular momentum., It seems therelore
most suggestive to think of U’-;: too as the % =component of an
angalar momentum since then T.

il
symametrieal Pooking in (/2 ) would have syametrical signifi-

and Ug’ which appear on a

eance as quantum nuambers, These considerations lead one to
introduce a three-dimensional hyperchargze space associated

with the gquantam number U%.- + (The definition o hypercharge
here diT"ers by a factor of 1/2 from the usual definitions).
This was done by Salam and Polkinghorne for strongly interacting
Hrtlnhu”. In this space, = 4 A , 2 , T and A, form
sealars. -The nucleon has Uy -+) and =, Uy._y . We shall
inelude these particles also im this scheme by extending the
idea wa used previously “or lentons, HNamely, we shall sssume
that v and = are the couponents of hypercharge doublets

N/ and ' where n' and ' are such that

(1

= =yl

f f f
THREE A T = e 3

- 0
- : ()
- =
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now operates in the hypercharge space, Thus ' and = '
are of the Tora

e, \) 2.

the » and ¢ w!lll be hypercharge doublets like ' while
K and K may be considered together to form a doublet as
shown below:

e b
These quantum number assignments for baryons and mesons are
identieal with those in the Salam-Polkinghorne scheme except
that they consider ™ and ° as components of the same
doublet which implies assumptions not involved in the Gell=-
¥enn - Wishijima classiricstion., With Salam and Polkinghorne,
we may now take the direct product of the isospin and hyper-
eharge rotation groups to obtain a four-dimensional real
rotation group in whiech = , N 4 [+ 4, ¢ and K fora
four-veetors, Z and T form sell-dual antisymmetric
tensors and A , ¥ and A > form scalars. This then coa-
pletes the classifieation in the four-dimensional space in

question,
1%%: has been suggested by d'lispagnant, Prentkl and
Salam that the space generated by the infinitesimal opera-

tors formed by adding the infinitesimal overators in the T-
and | -spaces 2ay have some significance in weak intersctions.

They have eslled this space the M =gpace, Congider for

10) B, d'Bspagnata , J.Prentki and A. Salam, Nuclear
Physies, 5§ , 447

(1958).
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instance, the |i5|-1 noneleptonic decays of strange
particles and assume that weal interactl ons form scalars
in the | -space. The conserved r~uantum number associated
with this space is T .U . But then sines U changes im
wuEh ¥ by half s unit in sach an interaction, % too
will change by half a unit, 1,e. the Lagrangian will trans-
form like an isospinor. This therefore gives ua the well-
known AT |-+  w»ale in non-leptoniec ﬂnlﬂln_ Thus the
M -space explains the |AT |- 1/2 rule as an invariance
principle. It may therefore be of some interest to investi-
gate the gtrueture of other types of weak intersctions too
on the assumption that they are also scalars in M -space.
It 1s however to be noted that it 1s not possible to Tora
such sealars in a model such as ours since some of the
fields have missing components, MNevertheless we may still
talk of M =space scalars in the sense that we may lntroduce
some Metitions flelds in plsce of the missing coamponents,
form scalars in M -space and finally take into account
equations (/2 ) . As we shall see helow (this will once
azain give us the |AT |- 1/2 rule “or non-leptonic
decays. The sitnation is not satisfactory. The primary
motivation Tor such a nﬂuggr)u is that we shall foraulate

a conjecture duoe to Bludman made in connection with

11) M. Gell-Mann and A, Pals, Proe. Conr, Nuelear and
Meson Physiy, Tlasgow, 1934, pege 242 (London, 1966)

12) S. A. Bludman, Phys, Rev,, 11§ , 468 (1959).
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non-leptonie decays in sn eyuivalent way in the [ -space
and then proceed to see the sort of consenuences th&s implies
in s2ll the other weak interactions as well, We shall see thatl
thies zives the correct structure of the weak interactions Tor
3 edecay and |- «decay and Torbids - 3¢ 4 We shall in
faet start not with Bludman's conjectura, but with the known
form o the wesk intersetion for [© ~dacay and see that this
naturally leads to Hludaan's result, The latter considers his
Lagrangian to be phenomenolopical since no account is taken
of the influence of strong intersetions on the weak inter=
setion symmetries. 7or this reason, our Lagrangians ton
ghonld be revarded as nhenomenolozieal, Ve may however note
the following, We are nrimarily interested in the parity
structure of the currents. Thus we wish to ¥now how if the
primary intewaction for 5 — NiIF is such that
Tt 5 m4 ¥ is parity conserving snd = > p T ¢
is a V-A interaction, strong internetions do not nake the
neutron decay aode of £ also narity non-congerving through
processes like = 5p ti%y il or T ACHTE "y Pl Wy Mt T
One sees immediately that such effeets can be minimiged to a
large extent if strong intersctlons are largely independent
of isotnnic spin snd strangeness i.e. 1if processes in which
particle charseter changes have comparitively low probability.
There is some aqualitative evidence from strong interaction
procasses that this may lndeed be so0 to snae extent, Thus

AK and TK produetion in TN and N-N eollisions, O K

production in K-p collisions and K p charge exchange
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scattering seem to be suppressed while X© and K- scat-
tering eross-sections are large. If these Iindications

are eventually seen to imnly the isotople spin and strange-
ness indepandante of strong interactions %o a good aprroxi-
mstlion, the interactions we discuss below may be recsrded
as primitive,

2. 4eak Ioteractions

The group of rotations in M -space we are considering
is one which leaves the fourth axis inveriant, Thus for this
sub-gronp of the fouredimensionsl grouvn, the four-veector
becomes a scalar and the sel”~dual antisymcetrie tensor
becomes a three-vector, We shall denote by N and N,
the threc-vector and sealar parts of the nucleon four-vector
in M- space with a similar notation Tor the other four-veectors,
Explieit expressions for these mualtiplets in terms of the come
ponent tields in &2 suitable representation is given in

10)
d*'Tspagnat, Prentki and Salam's paper ., For the nucleon,
we have

|t ]
.Ilri_ | ::.-I'TJ?
Nns b,
Wz
—m-aol®
N2
i ,
it — Mol (18)

iz




vhere A~ and «° are the dummy fields of which we spoke

of hefore. for = , ) and =.. read

TS i}++ o, -
= v
1=y
x4 = =
| ¥ g (41)
1 Lu'“'i;
— .-:IL-_ s, B
L vz |
n @ —y 1
o = (20)
= = -
{ \..'_2'_'

vhere the > 'g are the dummy fields, Similar expressions

T

ean be written down for . and & , Por K and Kp
the exnressions are obtained from (1) and (I8 ) by the
replocements p-> K' 4 m-> K¢ o, a5 K° and & >k~

for = , the exnression is

A 'E'*-—-_'z:: ‘—l

N7 \
o .
Epd = > 2 > arn)
AV o5 |
I.
50|
An analorous erxpression obtalns for |1 .

In eonsiderinz weak interactions, we shall often find

that more than one 1 -space scalar can be rormed out of the

143

given fields, In such cases, we shall assume that these are to

be added together with equal eoefficients, but with 2 sign
whieh we shasll leave unspecifled lor the aoment,
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Consider now the > -deesy Lagrangian. It reads
&; =3} (WxW) % Ff__dﬁ }L_ﬁ?)rh-t (22)

where the space-time structure of the currents is loft un-
speciried, Now it is well-known that )S-Janr end |~ -decay
intersetions are V-A .13}' ) This is immediately incor-
porated into our scheme if we assume that the vector components
in M ~space of the Tour vectors of the ronr-space always oceur
with the projection operator 4 O ¥5:) and the corresponding
scalar eoaponents occur with - (- 1y), the eurrent involved
being nlways of the vector type., Because of the woll-known
property of }'ru that it cannot connect fields of opposing

14) — >
ehirality , we Cind that N, T, N -0 d; thus reads

£ = — b (T p) (Bope)ppies A2)
T2
where 0 - 7 (it 7:) + This is the nsnal > -decesy Lagran-
glan. MYotice that, here, as in what follows, |+ can squivalently
be revlasced by U and viee-versa, or [+ -decay, the Lagrangian

widw roads

g7 ¢ 9 FotB o]eagy Hla b
= _%T "«.g D&U){“L_JDGE%;") -r*#-,.-'i'. {24-]

12) R.P.”eynman and M. Gell-Mann, loec. e¢it,
14) ®,C.0,8udarshan and R.E.Msrshak, Phys. Rev,. 109 , 1880 (1957).
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which 1s again consistent with experimental facts,
Congider now the non-leptonie decays of A ., We have,
with our assumptions
L = YA W) 2

=¥
1

+ bt

= FLAGPUT R L Agn, |+ A (25)

( In these econsiderations, we are assuaing that any particular
decay occurs through an intersction made up of the constituent
fields., This may be regarded as nhenomenological. %ce however
the discussion ;;:ﬁb;na )o 4, eclearly transforas as an iso-
spinor so that we have the ususl |3 T |= L rule. (15) also
predicts that the nucleon from A -decay aust have left=helieity,
The evnerimental situation on this point 1s still tmuattlnd.m)
The decay mode =) > A+ 1T wonld also have a eurrent structure
identical to that of the mede A-> N+T _ Consider now the

decay of 2 into a nucleon and a | ., We have,

£ = 9] (FaxW)t (Foom)]

=2 MY ;_:*'[_' 'I'U“_)ﬂ. J_'\]lri'_--v: LD"[}]}ILJKIT_-
vz L
— { -'_"__,- 0 | | Erop_‘”——.}ihb t:h}
T D U T j - 'LH. | 20 P =
_."‘ ’
where 0, - T, (i Ts ) « We have again the |AT (- ! rpuale,

%% ;
(¥+ ) gives V- A interaction for the I ° -~decay mode of = !

15) The results of Boldt et, al., Phys. Rev, ietters, 1 ,
266 (1958) indicate a left-helieity for the proton
vhile R, Birge and ¥W. ‘owler, Phys., Rev. Letters, 5,
254 (1960) obtain preeisely the opposite result. Sy fowiver

Rabner ok -al .’uttfi- R Leflow j_} 26+{|Q‘{},|) ; Bealf et oL s
Thys Qo detlon 1,285 (1961)
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(as for /\ -decay) and pure V[(A) for the I | decay mode
of L' and pure ALV) for the I -decay mode of Z depend-
1nng relative sign chosen in adding the two scalars,
Bxnerimental resnlts indicate that the decay >+, pill?
indeed hns 2 large up-down asymmnetry while the deecays
Ty T r are vary nearly parity-msnzisteniwg cmsnwing}sj
The Lagrangisns ( 15 )y ( 36 ) and the one for -1- decay
colnecide with thoge of E‘:lndman.lm A eloser examination in fact
shows that the two formulations sre completely equivsalent for
non-leptonie decays.
We will now show that the process 1> >L ecan be forbidden
in this scheme provided we assume that the two sealars which esn

be forme® are to he added with a nlne sien, We have

N . — ; >

; Yo f = e By o im g f
i? B ji k|}5.j)\u::¢:)T i“\%#‘*)V?x%*)j%h'

) (27)

since with this cholce of sign, the two toras in (27 ) cancel

each other, Howaver for the (> [/t © ar K> et ,
N M SR oo AN S0, TP S
L et Bk CREOLC)E b Ky (T ) (1 fee
18)
+ 0 (

There is a good experimental evidence that this decay is in faet

17)

forbidden go that in ( 2§ ) we have to arbitrarily set -0 .

This iz very unsstisCactory.

16) The = ' experiments are those of Cool et. al., Phys.
Rev., 1%5 s 912 (1953) while the = -experiments are .
those of “rangini et, .1." Ball, Aa,. ?h". Joe. E,, 224

(1969) Sy oo Beall it ol., dot wh -
17) Bardob et. al., Ann, Phys., S , 156 (1988),
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T aandl Al
Let us mow discuss the leptonic decays of strange

particles, For the decay modes 1 ; ‘12 and K- ii2 ,
one has

dny = 4 L Lov]emihe==FL0¥)eTrwe,

13)
Here we have chosen the appropriate sign to give the A& |

and AT | I 18) rules (Hotiee that the plus sign ha-".hm
chosen in ( 27 ) as well as (3¢ ). The same sign in (3¢ )
will then prediet V for = 5 1 4ii' and A for == nim -).
The eonsequences of these runles are discussed in detail in
ref.2®)  We shall see presently that it is in fact impossible
to maintain these rules for baryon deeasys within the present
scheme so thet confirmation this rale for K[, may not mean
much, However this is agaln linked with the guestion of
strong intersetion effects in weak decays., If these are

seriong, one would then expeet a large admixture of |4 Il:-%

18) 8. Okubo, A.E.Marshak, B.C.G.Sodarshan, W.B,Teusch
and S, Vedberg, Phys. Rev., 112 , 665 (

1958).




eurrents in |, in spite of the fset that K,
written down in (30 ) has lgff | =L (whieh implies
—",_T“ -t1 ) « The present experimental litu-tiunlu)

B

is not
sufficiently precise to decide vhether or not the rule is
correct,

Let us now discuss the baryonic ecurrents for the
corregponding leptoniec deesys. Since 3{,{_1—1? and (> ~_£:»)
are similar to each other, one deduces that the barponic
currents in leptonic and non=leptoniec decays are identiecal,
There 1s one slight dif"erence however since L ana AT
belong to different multiplets in contra distinetion to
- anmd 1" go that we have to write down two Lagran-

giang for instance for . leptonic deeays, one for

oo

=% Nk 41 and the other for = > 4t
" A glance at (15 ) shows that the A-NV eurrent in the lep-
toniec decay of A will be V-A o, (46 ) similarly shows
that Z-1v and T°7m ecurrents will be V or A . ( As
remarked a moment before, there are two Lagrangians, one
each for = and - deeays instead of the one in (¢)
so that there is no necessary correlation hetween = tm
and 7 /. ecurrents here unlike in (4c ) ) . ( +©) also
shows that the i_t_fl--fz and :}’5 -1 rules for strangeness
non-congserving currents sre no longer valid, Thus for
instance 5 can decay into n+EtY o Sinee =\ 48
in many ways similar to N 4in our scheme, we deduce also
that the © -5° eurrent (like the Z° p eurrent, ef.

19) Crawford et. al., "hys. Rev. Letters 2, 361 (1959).
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equation (26 ) ) 4s V-4 while ©°-*" and =%z currents
( 1ike the Z-n and I-" ecurrents ) may be V or A .
The }-\ ecurrent is of course sgaln /-A . Notlee that in
the parity-conserving decays involved here, We can arrange
things so that only Tm:_ appears in the baryonie currents,
Por egual values of the coupling constants, this would suppress
these decays by a Tactor of 1/4 coapared to the V-4 ““_m}
*his secms consistent with the observed fact that the hyperon
decays ssea surprisingly small coanared to what the universal
V- A theory nredintn.gl)' ™ In particular we see that
this factor can be got for the : -deecays of ¥ . However
it eannot be got for the 2 -decay of A and hence offers no
explanation Tor its low "“.a‘ﬂ}

The presence of é_i'. .-1 compoments implies that
thu scheme sugrested is inconsistent with tha i eurrmti x

)lourunt 3 pieture of weak interactions widely discussed

in the literature, This is because the current certainly

contains %: {1 ecomponents (as shown for instance by the

kvl iv decay) so that the interference term between thl.jg |

and % = =1 eurrents will give rise to /5| # transitions

in the first order in weak interaction coupling sinee the

20) A. Pals, Nuovo Cimento, 18 , 1009 (1960)

21) Por the status of hyperon f - decays, see L.B.0Okun',
““. R“. Hu‘li 531.‘ ! ¥ 82 {19&9}'

22) For an alternative mechanism which can depress these
deeays, see A.”,Balachandran, Fuovo Cimento, [un fnidd) ;

also ¢
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total interaetion has of course JU-0 ., Therefore
there can be a K%y K’ transition in the first order in
the weak eoupling which, as discussed in Zection I , will
contradtet the observed K- K. mess difference. There-
fore a schese like the one considered here eannot be genera=
liged inte a {qurr-nt f x { aurrnntj pieturs, Thus it
specifically pvrecludes the case where weak interasctions are
aediated by a quartet of vector mesons with the properties
digcussed by Lee and Emz.n}

We now proceed to determine the strueture of the
E~8 o =% and 7-\ eurrents., As in the nucleon
ease, one sees that the - current is v-4 . Wow equa-
tion (2 ) implies that > ecannot be sssociated with
T0#7:)  er L (-75) since one or the other of the brackets
in (296 ) will then vanish, It should therefore be associated
with 1 or D5 o Therefore the 5.5 ecurrent shonld be a pure

13)
vector. By the conserved vector eurrent hypothesis , the

coupling éunattnt which oecurs here ean be related to the
vector coupling constant in the P «decay of the neutron,
The decay which is observable is of course 3 5 2%+ %
sinee 7° 18 heavier than = while =~ is heavier than
5% « The low momentum transfer involved in this decay also
implies that the weak form factor can be taken at its zero
moaentum transfer limit where its value is unity. Thus the

decay charaeteristics can be exactly predicted and could in

23) T.D.lee and C.W.Yang, “hys. Rev, 119 , 1410 (1980),
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prineiple eonstitute a very good test of our scheme and

of the eonserved vector current theory. However, unfortu=-
nately, hecsuse of the very small & e-value involved, 7 -

is very longz-lived with respect ‘o this mode and the coapeting
doninant non-lepntonic decay mode will completely swamp it,

We ean also deteraine the =-\ ecurrent by sueh arguments,
Thus ( 25 ) shows that A oceurs with 1,1, or Z(1i7:),

A however is a particle very similar to 2 1in our classie
fieation (sinece both are sealars), By the two-component
twﬂl) s # ¥ always oceurs with - (i Ts) « I8 48
therefore plansible to sssume that |\ oceurs with L (it 7.) .
Thus the 7- \ ecurrent should be V-A , This nuznstad
experimentslly, bdut there are szain unpredictable strong
interaction effects to be taken into account. Xm

va conclude by noting that the isotople spin Tornalisa
developed in the ?irst part of this chapter provides a natural
class! fﬁatinn “or the vector bosons with charged coaponaents
only eonjectured by 4° !snaguatuj in eonnection with a
theory of weak intersctions. It would also automatically forbld
the strong interactions o sach bosons which combined vith
their massiveness, could explain why they have not hitherto

been observed.

24) A. Salam, Wuovo Cimento
e I.nmt'l, Huelear Pwa‘lu, 1 13? (19.’)'?1 {011
T. D, Lee and C,WN,Yang, Phys. “t’ m L]

25) B, d4' Espagnat, Nuovo Cimento, 18 , 287 (1960).
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Recently a great deal of interest has heen showyn in the

apnlieation of the "osole™ apnroximation of dispersion theory to
nroblems in wenk Interactions Tollowing the work of Bernetein
et, al, y 6n the Goldberrer~Treiman Tormula for the rate of :
decay of the charsed p!mﬂin teras of the strong pion-nucleon I
coupling constant and the weak axial veetor constant. The
derivation of the formula (which is in excellent agreement with
experiment ) given by Goldberger and Treiman themselves were
based on a number of dublons sssumptions which made its success
very surprising, bat it was shown subgsequently that the foraula
results if one assumes the dominance of the one=plon pole in the
matrix -laﬁﬁt Lp@ | e |O > where 1T, 1s the axial vector
carrent and |7 and [0 denote the vroton - anti-neutron
and vacuun states. Shortly a”ter, the pole apyroximation was

applied by 7eldman, Matthews and Salam to - and /- non-leptonie

Al G, TAA L1961
* A.P.Balachandran and K. Venkatesan, Prog.Theor.Physiecs Iin—m-m

1) J. Bernstein B. Mubini, ¥M.Gell-Msnn and ¥,Thirring, Noovo Cisento,
%I 757 (1980). See also J.Bernstein, M,Gell-#ann snd L.¥ichel, .1
uovo Cimaente, 16 , 567 (1960); M.Ge Gell-iann and M.Levy, Ruovo
riuﬂtﬂ' E ] m’ lqﬂﬂ)'\ Fﬂh“' ﬂhr’. Hﬂ‘-mtt‘.r’, 1 ‘m {lgﬁu’}n

2) ,L.0oldberger and S.B.Treiman, Phys. Rev, 1478 (1958)%
See also M,L,Goldberger, Rev. Jod. Phys., 21, (1950) .,
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d-earn?} The non-leptonic decay modes of the ; <hyperon possess

a nunber of remarkable Teatures. Thus the modes + 5 niut

amd T - N+TT show no ap=-down asymmetry wvhile the mode

TV p+nf seeas to have an asymmetry parameter very close

to uuitr.%a The relative 1i“e<times of = and =~ indicate

equality amonz all three rates to within 10 % i} These results

are consistent with the |/ T S rule and shows that the Gell=

“Mann-Roseneld tr!anglaﬁjis an almost per’ect 45° - GEF - ﬂﬂn

one with one arm along the S5 =-axis and the nther along the p- axis.

(One of course still does not know which of the modes ="> nim 't
oL & T anl W & I has an S ewave amplitude

and which a | =wave smplitude)., Unless this is a most unusual

sccident arising from cavricious renoraslization eflects, 1t is

very sugrestive o” a deeper syanetry underlying strong and weak

interactions. There are at present several leh:ﬂaujnttampting

to explain this. The work of Teldman, Matthews and S:lanaiu also

concerned with these matters and they show that one can arrive

at the 7 <dececay asymmetries with the assumption of global

%
gyanetry Tor plon couplings, ) By choosing essentially one more

2) 6. Peldman, P,T.Matthews and A. Salam, Phys. Rev., 121, 202 (1961)

4) The I =experiments are dus to Cool et. al., Phys. Rev, s 912
(1952) while the 7~ -experiments are those of ranzini et. al.,
Bull, Am. Phys. 3o0c., § , 224 (1960),

5) Alvarez et. al., Proceedings of the International Conference
on High Energy “hysics, KXiev (1959),

6) i,Gell-Mann snd A,H.Rosenfeld, Annual Review of Nuelear Seience,
7 , 454 (1957),

7) ®, Gursey, Nuove Cimento, 16, 220 (1960); preorint, Institute
Por advanced 3tudy (1960)5 A, Pais, Nuovo Cimento, 18 , 1003 (1960);
ICRL - 9460 flﬂ'ﬁﬂ{-

8} H- n‘.ll““ﬂﬂn’ nhr'. ﬁﬂ".‘ m ’ 1298 Elq‘ﬁ?]a
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parameter, they are able to correlate the ,. and y - dacay

L ) « While

times and asymnetries. ( BSee also A, Pals, ref,
this is most suggnti“, very tentative and preliminary
evidence seems to indicate an odd z -/ parity. i f this is
confl y M will invalidate their dimuuiﬂ those of

nﬂ a plangible explanation of these ﬂatn ’ll" sean
'h more di7Tienlt,

very

Becanse 8" the success nof the nole approximation in

explaining the 117e-times of the 17

decays, 1t seems worth

wvhile to estimate the vertex parameters in other decays as

well in such an approximation. Recently data has been pre-
10)

gsented by "owler et, al. on the magnitnde of the asyanetry

raneter as well as the life-time of the decgy = > /I ar-

seht below a eslealation Cor this deecay wﬁn; the
rimation ollowing 7eldaman, Matt ~apd Salam 3‘.J

Pur ther swbther experimental result of Fowler I]..IT;J namely
that tha decay asymmatries in 7 A amd A% pAITT

or mM+nY have opposing signs, is used to sugzest a mecha-
nism which ean be responsible for the = -decay asymmetries.
?inslly we note that dlspersion theory can glve Finite answers
for the mass di”erences of elementary particles in certain
csses. We illustrate this for the K,/ - k; mass difference

by assuming that 1t comes sainly froam the one-pion pole diagraa,.

o) ¥, Wambu and J,J7.%akeurasl, Phys. Eﬂv. Letters,
J.J.8akural, MNuovo Cimento %1 ( 1%1}1
R. Adsir, nﬂ.ﬂnd Phys., 2y 1

10) Fowler et. al., Phys. Rev, Letters, § , 134 (1261)
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2. ZIhe Decay Modes

We shall first discuss the case of = — decaying

intoa A" and o 7~ . The pole dlagrams are ghown in

agran

athTg &

_—— F=T] L AD

[1
i

AD

“‘_

Figl Here and in figuresz and3, O devokes the strong
dnd O the weak vertew,

v
with tho K -meson pole makes a coaparatively small contri-
bution “or comparable values of the coupling constants and
is neglected in order to reduce the number of unimwn:. (o
denotes the renoramsligzed — =) _ T ecoupling constant
and 0+ L 7. denotes the =, (weak) vertex. The asya-
metry parameter i"cl and the 1liTe-time T are calenlated
by usual methods. We have ,

2P Re ( BA )

of (1)

=1 = —
Lt

B* (E\+am ) +A" (E,-m,)

2 =
SY—— T ' &
! RO, Mo lfm £ [E (Eyrm, ) + A f%"’“& (@) -

Here Pﬁ 1s the momentum of the outgoing n , E, and [

m

R
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are the energies of the /i snd T  and
A = =(my+my) a,
B = =My —m,) & (3).
The masses of the particles sre denoted by the symbol M
vith the particle symbol as the subs-ript. From the kine-
asties, one deduces thet - . 124.5 ricv, F, - 1131} Mev.
o2

and EAIM MeV . The value of Powler aheml. = for

o

ag ig,tt 0.692 (The sign sabiguity of '“i'r__,hg not
be %

ssolved). Using this wvalue from -quntiu“-,s él we

S

deduce 8 quadratic equation Tor % with the solutions
Y
= ML 0,58 or ; 4,42, Tsing equation ( 2 ) and

=10 io)
the value T - 1.28 x 10 secs. given hy Fowler et. al, .}

wa arrive &t the "ollowing values for the dimensionless

e t G}Il ¥ o
nraramater ey L ™ “) 1

| = — ':]':.._-‘K

=== );- = ﬂ'l{—?&lc'_-n f‘j'ﬁ— '.1}-] i
iy
1 y . -

ﬁ-i‘:ixm"‘ il lEr 1° 42 (4)

40 ™o )
As equation ( 2 ) shows, T is independent of the sign
of —%- . Experimental results also indicate that the
asyanetry parameters dE‘.. and o, 1in = and A- decays,
have opposing sixnﬂf"’ However the sign of c:fﬁ is uncertain, :
difrerent groups of workers obtalning contradictory results.

The sign of o/~ 1is therefore uncertain, lote that the

11) Boldt et. al., *hys. Rev. Letters, 1 , 256 (1958);
RV .Birge and U.R.Powler, Phys. Rev. Letters,§ , 254 (1960).

| Su however fedmor aboob, fhus Qo Sl 1, 26401960,
| Booll 2t .ol ?'h-.ia Qo Sellow 1, 285 (19¢1)
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values of these paraseters for the mode = "5 /) ey ©
follow from above 17 we use the |4 L |- ' rule.

It is possible that the observed pattern of the - decay
asyametries arises doe £o » narity clash between diagrans

involving A and those invelving = . Mig. (2) indicates

the relavant dlagrans.

Vi A

Fig.2,

7or the N -intermediate state, the pole diagram has been
drawn and is assumed to be doainant, For T - intermedinte
states, no pole diasgram exists and those next in order of
simplicity are thken to be the important ones. It ‘s clear
that Tor suitable values o the parameters involved these

three diagrams can yield parity-conserving = =,y it
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decays and parity-violating =, Pil~ deeay, the proton
from the %. decay and the A froa = ;?A;ihﬂin:
hﬂicif‘;u- £ the same sign. In Fig. 8 , eotild have

ld*ihg diagrams with the nucleon and rf -in poles

Qh"un:a there will be an aven nm larger numbér of
unknowns than in Mg, 2 to 74t the few data and the re-
quired results can certainly de obtained. The validity of
such aporoxiamations 1s very lm:in'rtlin and would lamply for
instance that relations 1ike XK(z 5 pi1° = 2R A%y pir )
for the corresponding deeay rutuu’}nﬂ in the nature o dyna-
aien :‘uidmt:. ‘

Ui eonclude by caleulating the K, .k;f &su‘if‘*m“
in tha S,l.,lpnmxim.tiun. This nass dif"l‘qﬁhﬁ. 1% related
to twlce the transition matrix element fron to .k.: o
This is shown as 7ollows., In the K- h:,, renresentation,

the mass matrix is diagonal and is shown below:

Ky Ky
2 : ] —
e e 1 "_rr},_;_r'ng (5) .
- L o < o
K o My,

Here ™, and vy, are the masses of K’ and K, « In the

K°- k° representation, this matrix becomes

K° &S K K*
(o [ 5 k® | o ™m,- M,

—— , 2 (&) .
o= my | Bhlet = =5 'ml-—"}hl o
Ko o 2 K’ et

12) g.B,Treiman, Wuovo Cimento, 15, 916 (1960);
A. Pals, loec. cit,
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which proves the assertion made earliser. The one-pion pole

diagram giving rise to this mass difference is shown in fMg.3.

1

FlG.3

= — - R
D I
"f_' -"l.ﬂ '::—_ITI

Pl 4 Hare [ denctes a veptes which arises from o
Combination of strong and electromagretic interactions. |

If ¢ denotes the K- vertex, the mass difference oM 1is given |
5 :

. ] 13

by 25 (l—ql 2+ ] e« ®r 0m of the order of [0 eV, :
Mg Wy -My i =11
the dimensionless quantity a1 has the value 0,3 x 10

L
A preeise value of Oyv woald allow us to determine ¢ more accurately.

Similar caleulations with finite results can be performed for the
selfemass of 7° arising from the combined action of electromagnetic
and strong interactions. The pole Ciagram inveolves A’ and is shown

in Fig.4. However since we have no idea as to how Such of the 34
mass 1s due to electromagnetism, there seems to be no way of estimating
the strength of the -/’ vertex.

13] Maller et. .1., Ph”i R“-_ mtil"i, 1 3 418 {1950).
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It is slwsys seemed attractive to attempt at a reduction
in the number of basic fields in elementary particle theory. The

great namber of heavy particles which are similar to each other
in many respects appears very unwieldy so that one is tempted

to assume that only a few of thea are elementary and the rest
compound, Among the e srliest attempts in this direectlion was
that of Ferml and Ytn:l) vho set up & model for the plon-nucleen
system 1;1‘!:!: the pion as the bound state of a nucleon and anti-
nueleon, i@tﬁ the advent of atrange particlnﬁiiikﬂ.tél} Pro-
posed an extension of the Termi-Yang model with the lambds hyperon
and the nucleon as the two basle flelds. The Sakata model has
enjoyed considershle popularity espeelally in theories of wesk
interactions, since it explainsg in a natural way the conserved
vector current hypothesis for strangeness-conserving decays
like nuclear 5 -dlnnrsaj and the iaiflz-a rule of the none-

leptonic decays. It is also very suitable for the construction :f

1) E. Peraml and C,¥W,Yang, Phys. Rev., 76 , 1739 (1549)

2) 8, Sakata, "rog. Theor. Phys. (Kyoto), 16 , 686 (1956)

3) 8.S.0ershtein and J.B,Zeldovieh, Sov. Phys. JETP, @ ,
576 (Igm}' H.Pgﬂﬂ"n and H, G!].'l-thn, Phrﬂ. Eﬂv-’
109 , 193 (1958).
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theories where vector and axial vector currents apvear in a
4 am prediets the proposed %% = 4 md

syamnetrieal way
e I
ALl et rules for the strangeness non-conserving cure

5), 6)
rents in the leptonic decays of strange particles, Bvidence

for these latter two rules i1s however very scanty and any obser-
vation of events like the 2~ decayinguwto n+ < % 4 K°
decaying into a 7' plus leptons or K° 4inte a 17~ plus leptons
will invalidate these rules and make the Sakata model very
wnplausible.

Another, but auch less popular model is that of Goldhaber
and ﬂrnrlrl7]. Here the fundamental fields are the nucleon and
i -meson, Compared to the Sakata model this is rather less
attractive since it involves two very diflerent types of objeects
like a baryon and 2 boson as 1ts hasic constituents,

There are a variety ol other papers on coampound models
among which the work of ﬂurncraj and Thirr1n¢9’ gre of particular
interest, These works are purely group-theoretical in chargeter
and investigate the number of basiec flelds necessary to gilve
all the conserved guantitiés that we know of, Some of the ele-
mentary flelds themselves can be unobservable. The baslc un-
snsvered problem in these models 1s to show that the number
of asyaptotic flelds exceeds the number of locel fields,

4) M. Gell-Mann, Prodeedings o the 1960 Annfual International
Conference I; Rochester, vage 740.
§) R.P.Feynman and H.ﬂall-nnun loc. eit.
!) S.ﬂtnu R.E. lelhlk, E.G.G-Bﬂﬂlrlhln .B.Tﬁutlﬁh and
3. Wedberg, “hys. Rev., 3z . e, 865 (1958),
7) B.Galﬁhlhtr, 7 l. Rev,, {195531
G.Gyorgyl, Zh. eksper. teor. fiz. g? 52 (1957)
8) F, uur:-r, Nuclear Physies, 8 , 15533 .
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and these smaller number of local fields alresdy foras a

9
complete set ). On these matters however, very little work

hss as yet been done,

With the discovery of many new resonsnees in the strong
interactions of mesons and hrp.ruu:ip], it has become sn urcent
task to deeide which of these new particles are new dynaaical
degrees of freedoa (which in a Lagranglsn spproach will show
themselves ss nev (lelds in the Lagranglian whose assses and
quantua nuabers are such that they are unstable) and which are
the resonances xkxim arising from the nature of the forces
between the resonating particles, In a disnpersion theoretie
approach, this distinetion shows 1tself not in the writing
down of the equations (as in the Lagrangisn theory), but in
their solution, through the Castillejo, Dalitz, Dyson ambigui-
t1'|11) « Thus the geroes of the scattering smplitnde which
these anbiguities imply seem to be assoclated with the existence
of new digr-c- of freadoa in the Lagrangian, i.e. new elementary
particles which are however unnt:hl.ll}. The urgency o Minding
out which is an elenentary particla and which a compound one
is already evident in connection with the observed T -wave
plon-plon resonance in the T:1{ ntltulnu. Chew, “Yandelstam

and Hnrttlﬂ} have provosed that 1t arises out o a "bootstrap”
e e ——

9) W, Thirrtm,lﬂméa.r anit;. t‘E’r 87 ! mug)mim{m_ )
10) Alst « 8l. . Hov,
o o al.s 1bid 5 , "5 (1930); Erwin fa. al., ibid thh
:::Tﬂim“j- .tigzltph'-MI-i;-?I{;’;‘i}su.' ! ?
a ™ - 8. -
11) Castillyo, Dalitz and hII!! Phys., Rev. 1968)3
’ n.E.vm Kampen, Physies, 23', 157 RO Ry ﬂusa.

Mandelstam, Phys. Rev s 1344 (1958), _
130 OuFChon ;li-n“ﬁt::{;nd H,?,Noyes, Phys. Rev.
sl - . . ]
478" (106b) a5 R

gﬂfa- also ¥, Zacharigsan, Phys.

1 s 112 (1961),
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mechanism with the attractive force between the resonating
plons being produced by the exchange of a resonating plon
pair, On t he other hand, such a particle appears as an ele-

mentary partiele in the vector meson theories of Yang and

Mills and ﬂ:kurlil‘) with a universal coupling to the 1sotopie

spin vector current. The problem involved is = fundamental ona
for which as yet no solution has been suggested.

With this introduction, we present in Section II,
a compound model for {)- decays and in Section III, soae pos-
sible experimental tests to detect whether a particle is compound

or not .

II. On a wmodel for .- decqva®

Recently in an attempt to explain the observed pattera ‘

18) 16) |
of the ¥ «-decay asymaetries  jngrghay and Schwarts considered |

a model for the . -partiecle where it 1s trested as the bound
state of @ ;\ and @ T , the nechanism which induces > ¢te
decay being the deecay of || « In view of the apparent success
of this model, 1t becomes of interest to investigste an analogous
model for the decay of the - hyperon with the - treated as
the bound state of a A and a K .1?} We shall discuss below

the consequences of such an assumption en the decay characteristics

14) C,N,.Yang end R.L.Mills, Phys., Rev,, ’ 191 (1954)%
JeJ.Bakural, Ann. Phys., 11, 1 (1260
*}.P.Balachandren and N.R,.Renganathan, Huntn Clamento,
18, 1269 (1960),

c t. ol., Phys. Rev. ) 912 (1969); Transini et.el
15) SOl Ia. Payes Doty B (:wsa) o) Beall b ol Rew delfons 1,185 (196
16) S, Barshay snd M. u:&-.riu Letters, ghaia1s (1960).

17) ¥N. Dallaporta, Nuove Cimen n Iﬂﬂ (1989)
¥. Dallaporta and L. Fonda, iunru-ciminta, 3i6 (108%).

R R -




S ———————————————— .

214
o = leaving aside the guestion of the strong inter-
action properties of = implied by this model.

We first consider the case vhere the intrinsic parity
of the (/\K) system relative to the - hyperon is even. In

such s ecase, the bound state will bhe an S5 =-state, We may
forther assume that the K-A relative »arity is edd. Then
the deeay of the T - particle will proceed by the A’ within
the - decaying into s plon and a nucleon and the nucleon
sahsequently absorbing the K in a T -state relative to it.
Let us denote by A and = A the amplitodes for -’iﬂ decaying
into anS- and @ P -wave plon-nucleon system respectively,
The S- and P =wave amplitudes are chosen to be equal in magni-
tade since it is known that the decay asymaetry o, of A

is near -zuinmm) while the relative sign of these amplitudes
1s left unspeei’ied since evidence is conllicting as to the
sign of o, 18)- "urther let © bhe the aaplitade for the
mlm'ihsurbin: a K =-meson ﬂ; a T =-wave interactien,

The decay of =, can then be written ss follows assuaing
that the N ~deeay satisfies the (AT |- ¥ rule for which

19)
there i1s rood experimental evidence 3

S (K ) e AKE - {E (TR)(F T
£k 1 -{F (rp+ {3 ()],
5~ % AR (°F-), £ EAB (KT )s (1)

“) Boldt et. .1-' Phys, Rev, I‘tt“ﬂ' 1 %.;HE {1958)!
R. 3irge and W.¥owler, Phys. Rev. Letters, 5,254 1960),
These two pspers contradict esch other in thelr ;-nult: e
on the sign of x5 hewivir Sedmer ik ol Tha Qv deflvw 1, 2640960, Beall 4t ok,
19) These are summarized by ¥, Schwartz, Proceedings of the  Lc ot
1960 Annual International Conference on iigh Znergy
Physics at Rochester, page 726,
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Here the subseript 5 or P on two-particle states denotes
the relative sngular momentum of the two particles while the
subseripts 5 for K denotes that it is in an S -state rela-
tive to the centre-o”=mass of the other two particles. The deecsy
elearly satisfies the I,.ﬂ_f == rule since the bhasiec
weak intersction vis,, the decay of the A, 6 satigfles it while
the strong interaction as usual has | AT -0 . (1) indicates
that the asymmetry paracneter olea AR o) - deeay 1s equal
to A, . (Hotice that by the Iﬂffh L:-‘i rule, the asyasetry
parsseters for 7  and ° decays are equal). Hepeating the
calcalation for the other possible combinations of the relative
parities of the particles involved, one finds that this result 1s
independent of these relative parities, Tentative experimeri.
mental evidence are at present svallable indicating that A
and ¢, have opposing lilnl-m, If this is confirmed, the model
will be of neo further practical interest.

It is to be noted that the decay mechanisam of =)
eannot be via the decay o the K into two plons since the A
esnnot subsequently absorb a pion and remain a A because of

isotople spin conservetion. Also the process T+ > 1T

20) Tovler et. al., Phys, Rev, Letters, 8§ , 134 (196l1).
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21)
is ferbidden because of & =conjugation invariance.

flovever the orocess K > I+ T+l with 1+T+T=>T
is possible, This will modify the 5 ewave amplitude in

=1

S -d“.r‘

Tt may also be verified thst the proposed %ﬁé b 4!

rule for strangeness~changing ﬂurl'qntsa} i implied by this

aodel for - decays i” all the weak interactions are %o
aroeesd only through four-feraion couplings, Thus the decay
Al e AR which violates this rule has to
happen through the process A 3y m T1+ '} with a subse-
auent strong iatersction uniting all the strongly interacting
particles (ineluding the K ) intoa 2~ . The A however
cannot decay inte 4 1T 2 ¥ if only four-fermion
eouplings exist. Thus the -1° gannot decay into a and
lentons.

Hitoe metheds Ao amod ols 7
Application of such as that of soldhaber and Oyorgyl

where the fundsuental elemenhry constituents are the nucleon
and the K emeson shows that at any rate with these simple
argunents it will not yield any asymuetry Tor the decny of,

for instance, the A- hyperon since the basie decay mechanism
is that of the K-. -nason into spinless pilons, This can there-
rore be rezarded as a very tentative indication that such a

aodel may not be correct,

21) T.D.Lee and C,W.Yang, Wuovo Cimento, 3 , 749 (1256). |
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III.

a) As we have shown in Section II, in a composite
particle model for & hyperon it is possible to prediet the
asymnetry parameter for its decay products 1f the decay charae=
teristies of its constituent partieles are known, For instance,
as was pointed out, theloldhaber-Gyorgi undulT) is not ecapable
of explaining the decay features of the composite particle in
a simple fasfiion since the basiec weak interaction is the decay
of K into pions.

b) In the effective rangex theory, there is 2 relation
between the binding energy of the compound particle and the
scattering length, effective range as well as the S5 -wave
scattering phase shift of its constituent partiecles. This
fact may De ungsed to test the validity of a compound particle
model, Thus for instance if A = 2 {PK=m EE) and
the X =-meson parity PKH is even so that the bound state
is an C_m=state, the S5- wave K-p seattering parameters

may be related to the binding energy E@ of the A

where £ -  =318.7 MeV. The KZp elastie scattering is
almost entirely through S5 -waves at laboratory energles upto
100 Ma?za)' 82) and takes place throuzh the two isotopic spin

channels I -0 and T -1 sl EI denotes the
$ -wave phase-shift in the isotoplec spin channel I and
Ar and Xy are the corresponding scattering length and

effective range respectively, we have the usual formula

* G, Bhamathi, S.Indumathl, A.P.Balachandran and N.G.
Deshpande, Fuovo Cimento, 19 , 190 (1961),
29) R,H.Dalitz and S.F,Tuan, Ann, Phys. 8 , 100 (1959).
23) J.D.Jackson, D,G,Ravenhall and H.W.Wyld, Jr.,
Huovo Ginan%n, 9 , 834 (1968).
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where O A and R, are coaplex becsuse of the
prasence of absorption channels with g;?duntiuuaf hynerons,
Following Jackson, Ravenhall and Wyld s We may neglect all

but the firgt tera in the expansion (1) below laboratory enercies
of about 100 MeV so that we may write

T 5_1 = W vrsie. = s ()

A +4 by

where A - O; +abg « The binding energy Ej- a8y be

related to the real vart of the [ -0 y © =-wave scattoring
phase shift O, through the Tormmla
Ret [ R3] - ﬁ"d‘ (o)
whare
By —LRE 1 13 - .
R’E = III‘.L% c 2,',.Jr\."‘1.";‘<iﬂ A | C-{-b)

and |~ 1s the reduced mass of the K p  system. Thus we have,
to a gond asporoximation

ELE’ = -;Iﬁ—" — D - + 3 'ﬁ L."L(ﬁ".;;.# [5)
i
Dalitz ond Tuan ) obtain the value (1, = 0,20 fermis for
their (0 { ) solutions and 1.88 fermis for their (bi)

solutions, The agreement between ( 5 ) and the Dalitz-Tusn
solutions is not good.

——

A l%?ill!‘ analvsis for 7 considered as a8 K
and an N bound in an S5 -state (i.e., we assume that the

Z-K Telative varity is even ) gives ;= 0,50 fernis
b A

i
Ig Afk

which is compared with tha DalitzeTuan ( i+ ) and ( b+ )
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solutions of 1,62 ferais snd 0,40 fermis respectively .
Por the model of =~ as the bound 5 -state of 2 A eand 1"
(1.e. the T-\ relative parity is raiﬂ)ifj we obtain
A~ 1,56 fermis vhile for the model of = as the hound
S =state of a A anda K (i.e, the T5-1-K coupling 1is
:ﬁ.ltr)l?, &¢ic3 0.44 fermia, In the lowm snergy region,
thera is no absorption ehamnel 1n the last two cases and the
scattering phase shifts are real, Thus the elastic scsttering
eross-gsections are glven by
4w )
R+ Ry

Eyperimental results on |- and \-K scattering crosse-

=
(%)

b=

gections with which these numbers are to be eompared are not
at present available.

e) By requring that charge conjugation ¢ and parity?
be zood operations, it s possible to derive selmection rules

v

por K Ki}-.nd K- K" annihilation into plhﬂi‘g}. Hmilarly
the application of P , (¢ and the charge syamestry oparations
will give selection rules for kK" ¥° and K K° annihilation
into pions, We sketch the method below,

Let | denoter the space-parity and w the charge
parity of the systems under conslderatlon. The e K7

K" K’ and Tfiﬁ‘ states are coaposed of a boson and its

own snti=boson which is distinet froa it snd are consequently

eigenstates nf charge conjugation with w=(-1) where {
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denotes the relative orbital sngular momentuam of the Lwo

particles™t), Por the 21° and 3T° systeas, since T7°

even under ‘f; w= 4 4 e« A gsimilar argnaent ghows that

. b >

W=(-1)" eor (T t7 T°) gystem where ¥ 1s the relative

orbital angular aomentum of T 1 and 11" ., The space narities
T ; .

of the KK snd 4T  systems are elearly (1) « Tor the

3T° gystem, let us denote by Y the relative orbital anguiar

momentum of two of the nions and by 4 the orbital anguler amomen-
tum of the third plon with respect %o the centre-ol-mass of the

Pupther for the (TiN-T°)

other two, gysten , let '}y denote

the angolar momentum of M° with respect to the eentre=-of-
nass ~f the T' ama T . Y
st 4s ()Y TEFL

fact that the pion 1= pseudosealar. The Tollowing teble shows

for the 2l system now Collowss

where we have taken inte asccount the

for the KK ( K'K™ or Ko K’

W and 4 ) &nd plon systeas
where now the ralative orbital angular aomentua is dannted
by X Tor the KK and by Y for the 21 systeas.

KK neTwe T A LI I S

, . Yyl }’1-3%1
1) -1)7 Ayt Pl 1)
7
(-1) L eyl | (- 1)
Table T

H) cl‘-!ﬂﬂ‘, m'. ““'f ﬂ » 242 [1050]{ L Hﬂlfﬁﬁtﬂﬂ and
D.G.Ravenhall, Phys, Rev., 83 , 279 (1962)§ L. Wiehel,
Waovo Gil.tltﬂ, ’ 319 (i“ ). 8ce algo P, Roaan
Theory of Rleaentery Particles, fWorth~Holland Pu’bh

shing
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Consider now (KK) decaying into 27° , From W conservation,
we Xk see that X must be even, 1.e. the initial state is Soybyy
(our notation for angular momentum states of two particles

is Ly where L 1s the relative snd J the total sngular
monentum, "¢ slso use the 5 e ¥ 4D oF 45 e setution fup
L= 0y 1 342453, saes .+ ¥or three particles we write

Y4, where the significance of ) and’ has been explained
before, J 1is the totsl snzular momentum and an S ,F 0 ,F -~
notation is agsin used), From p conservation, we "ind that )
too must ba oven i.e. the finsl state ig 5S¢ '1)1 M 2 h s w
These states are allowed hy the Panll principle 2lso aceording

to which the 2T° state must be even under the exchange of

the two nartieles. "inslly, by angular momentua consérvation,

the allowad transitions are 5 > So s Pq 2 Yy ete, Proceed-
ing in this fashion, we have the Tollowing table o selection

rales Tor the XA  annthilation iato plons

Kk~ ot K° K i T W o T
50 '\SD Sn n
K L [ = “}Fﬁ.l -
D D b)) Py Vs {;F*J Phay b
X 2 * s
Table IT

-
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The K" {° or K'K~ systems are not eigen-states of C
the ase of vhich will not therefore provide selection rules
in this case. Instead, let us first define the charge symmetry
operator V sueh that, ander it, we have

el N el e
T—
L6 S L M | SRS (1)
Under LV , we therefore hnvlﬂ}
W T o o Ty Tl
Kkt — 0 K= 77> e
£ K ) % K {KJ

Thus the states T =T’ o T T T- and T1'7" aere eigen-
states of (V as also the states K K’ and K'K o For the
21T =gtate in guestion, the sigemwalue | 1is e¢learly egual to
=1 while for the J7l -gtate, it is + 1 « To find the eigen
value for th- &R Y gtate, let us write the state vector im the

form

2 = |y
¥E : . ;
_th_ 8 - 3 y
$ 2 i S ()
= f; h - R
_,+ r .KG -]-v
Here ), is the vacuun state, “"ﬁ' and [  ave creation

2 — —
operators fTor KJF and K° of momenta & and —R respactively

and 7 is the relative coordinate of K and K° . § 1s vritten
in the a&utrn-nf-u“ nrltu. Oparating by ¢y , we have

< LR il @ . K+ -t- J
(V') k_‘L = :} 2 l.rré- i‘}"_ '1!'-‘_: \1 i
.-:'R : '
TS
ol - _.&_h L'L QLK+ + JI- K.ﬂ ; f‘ J
= L % i i L10
y ¢ S

28) P, Roman, loe, ecit,
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since G'Ef and {r_%‘ comante, (;) shows that the effect of
CV  on this system is equivalent to emchanging the co-

ordinates of the particlesa., Thus a state of angular momentua
« of K K°or K°K has an eigen value [ - (- in « The

following table snmnarizes sll these results where the notation

for asngulsr momenta is as in Tables I and IT., § 1= again the

spatial parity.

t zo g i e
0T =T or :
KY K- n*m“1ri
L y Yoi4d
\5 (-1 (-1) tit)
F LR
(- 1) -4 4
Table 1II,

In the table, the states with the plus signs on 7T correspond
to an initial state of K — K° and those with the mlnus
slgns to an initial state of K - K~ . The table shows
that the 271 mode occurs only when X 1s odd and the 3T
aode when X 1s even. The selection rules implied by Table
TIT are given in the following table.

P RN e T (SR



r -
K. ®°
=
or j 8- 3T
K- KC
So = -
T-_L 't.!lr = |
- " .
Dl- s ?F.'lr | F[-' t_,k =¥ . )
| Fs | F | =
Table IV.

Notice that 5, ecamnot deeay into 51 feor the following

reason, X- O implies that Y+yil is even By ( conserva-

tion or y+y 1s odd, This implies however that the total

angnlsr monentum of the M ean naver be zero so that
J «=congervation *arhids S, decaying into O77 .

Thaese selection rnlas aay "rove ugefnl in testing

snae of the soapound modlels, Thus, 1f for instancs, inforsa-

tiom can be obtainad on the X or K’ ecapture by A’}
and 1% i1s Found that in the low energy reglion, uncharged
gtates or states with ona charged pion are ahgent in the
final state, the resnlt =ay be taken as an indiestion of
the validity of the GColdhabar-Jvorgyl nodel. Je assuds

224




' t
here thest the mechanism of regetion is the enpd§¥| of
K by the K 4n /A and negleet the distortion in

the K ewave function due te its binding as a first anvroxi-

mation, Analogons results for = will indicate that -
may be considered ss the bound state of a \ and a K .
The ansular distribation of the pions in the final state
in such reactions may also serve as a useful means to dise
eriminaté between such models. Similar arguments can be
advanced for the annihiletion of antibaryons with baryons
with plons er K -mesons in the finsl stste. Such consi-
derations, while not conclusive, ean be very sugrestive

in finding out the compound nature of a particle. nfortu-
nately, however the type of data required for such snalyses

geem very difTicnlt to obtain,
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It is almost axiometie that quantum mechanies ig based

upon the twin principles of complementarity and superposition
though by a suitable interpretation, one can be understood to
imply the other. It is in the inelusion of these prineiples
that quantum mechanics marks a departure from the classical
pieture of dynamieal systems. The principle of relativity
however is commonly applicable to both classiesl and quantum
mechanical systems and 1s characterised by two important con-
sequencess

1) The symmetry between space and time, and

2) . The quadratic nature of the relation between energy
and momentum, resulting in the introduetion of negative energy
states,

It is worthwhile distinguishing between these two since
the latter is of no signific ance in classical theory but plays
a fundamental role in guantum mechanlecs, The inclusion of

negative energy states in the gquantum mechanical description

with suitable reinterpretation leads to a multiparticle formalism

* Alladi Ramakrishnan and A.P.Balachandran (to be publishedj
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necessitating a field-theoretic deseription, But there is
something more implied than multiplieity since the postulate
is made that the negative enerzy states "travel back in time".
Thus if the concept of causality is closely tied with
time, its role is more complicated in quantum meehanical pro-
casses than in classical theory due to the inclusion both of
negative enerzy statés and of the prineiple of complementarity.
The prineiple of caunszlity in any physiecal phenomenon
is usnally stated thus:
Two events A and B oceunrring at space-time points
Xy and [, cannot be eausally connected unless the interval X, V.
1s time-like. Actually this definition 1s only residuary since
what it defines 1s 'acausality'. The statement implies the
trivial conecept that in a frame of reference wvhere the spatisl
coordinates of the two events are identical eause and effect
should be separated by time, But the logieal question remsins -
whether all events separated in time are causally connected
and wvhether senuence implies consequence, To study these
logical implications, the meaning of an "event™ itself has
to be compared in the classical and quantum mechanical des-
eriptions, Even elassical processes admlt ol a classification
into deterministie and stochsstic systems and it 1s only
throuch the examination of stochastic systems that we may be
able to understand the causal connection between various
events in quantum mechaniesl processes. The point of view
has often been emphasised that the evolutionary nature of

the guantum mechanieal and stochastie proecesses differ in
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that we deal with positive definite amplitudes in the latter
case and complex amplitudes in the ?urmarl}. As long as this
distinetion 1s remembered, the analogy is found nseful and
the concepts of events in stochastic and guantum mechanieal
processes can he put into close cnrrcspnndanuegj.

We shall take ap 2 systematlec and comparative study
of causality in deterministie, stochastic and quantum mechanical
processes in this chapter., Such a study 1is considered important
by us in view of the rather paradoxical situastion that has arisen
in collision theory in modern physics today. The early papers
on the dispersion theoretlic apornach emphasised the ecausality
prineiple as the cornerstone of scattering phennmanaa). But
very recently the extreme view has been taken that the matrix
element of a scatterinz process 1s just & function with definite
analytic properties postulated throuzh the vrineciple of "lact-4)
of suf”icient reason" or "the prineciple of maximum smoothness"
rather than through the evolutionary nature of the process
from the inTinite past to the infinite Tuture,

The Tundamental question therefore is :

Are these two views so distinet as they are asserted

to be or do they just emphasise different facets of the same

gstructure of a collisglion phenomenon ?

1) R.P.feynaan, Proc., Berkeley Symposium on Statistiecs
and Probabiltty (1957)

2) A.Ramakrishnan and E.R.Haniannthan, J.Math, Analysis
and Apolieations, 3 , 261 (1961)

3) See for example Ii,N.Bogoliubov and D.V,Shirkov
Theory of Ouantized Fields (Interscience, 19595 p. 587,
4) G.P.Chew and 8.C.Frautschi, Phys, Rev. lLetters, 7, 394 (1961)
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We shall first introduce the concept of causality
in a stochastic process and consider a deteraministic process
as a partieular limiting case of stochastie evolution, We will
then replace positive definite a:plitudas by complex guantities

and study cellision phenomena in/quantum mechanical process.

II. Frobability Distributions and Conditional
Probabilities

The eoneepts of independence, dependence and correla=
tion are as old as probability theory itself, But it is ecuriouns
*hat the conecept of causality, though of fundamental importance,
has escaped attention of both mathematicians and statisticians.
This 1s perhaps due to the fact that the study of the dynamiecal
charaeteristies of pruhahilﬁ;it systems, that ls, stochastie
pruuessnlt;f comparatively recent origin, iﬁﬂ::tanding the
concept, of events to evolutionary phenomena,  those which unfold
with respect to a one-dimensional parameter (say time), we shall
firat show that while the concept of correlstion is easily
introduced for dynamiecal processes by just attributing to the
events under consideration, different values of the parameter
it 1s inadequate to define the notion of causallty. We are
impelled by the econviction that the principle of ecausality 1s
primitive while dependence and correlstion are only concepts
derivative therefroam,

In probability theory, two events A and B are

considered independent if the joint probability P(A,®)  for

the oceurrence of A4 and B is eaual to T(A) 7(%)
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where ') and 7(b ) are the probabilities for the
occurrence of A and B respectively irrespective of the
occurrence of the other, Bat the important question 1is,
what is the causal relationship between A and B ?
“e shall first show that a simple -minded definition satige
fying our "intultion™ leads not only to diffiemnlties, but
to contradietions,

Let ns try to express mathematicslly the statement

that the event B 1ig eaused by tha event A . Conld we

”u"\.- 'l.."‘l "’1.!"':'\]-\[ |
az=une then that Qi A ﬁ_ ? This of eourse means that

if A occurs , B ;111 occur, but does not imply that
PBjten -0 where Non A 1is the event complementary to
A . In other words, besides A , there ngy be other events
which may ceuse B though it is certain that A causes B .,
In a gimilar manner, there is the other question whether given
B, A-1s the event which has caused it. |/ /|5 ) is not
determined by the inormation that '?"E[ﬁ)- 4 s 8 statemant
which 1is just enuivalent to there being causes other than A
for the oceurrenee of B ., In fact, the gquestion of condie
tional probabilities and their logical structure has worried
probabilists interested in establishing correspordence between
theory and phenomena though from the point of view of set and

measure theory, there 1s no difficulty as regards its definition
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This 1s because the meaning of mutually exclusive events
is just postulated in measure theory while why such exelu-
siveness results is not the concern of the nathematician
Gorrelation exists between two events i? these events can
be interpreted as composed of more elementary events which
are not mutually exelusive. The notion of causality gives
some "1life and substance” to this "non-exclusiveness" or
"eommonness”' of some events which comprise two correlated
events,

?or this purpose, we Tind it convenient to attribute
the value of a one-dimensional parameter [ to any event
vwhich in the languagze o” the probabilists merely implies
that we are considerinz an evolutionary stochastic process
and the events attributed to any point 1 are represented
as the values of a random variable X(t) or more generally
of an aggrezate :L A0E) ,5 « Thas in considering the causal
econnection between 4 and B , we assume that A belongs
to X(t) and B to X[i;). Sinece xk U can be varied,
this brings in its wake two notions which are of great importance
to the physicist, but which may not be significant Trom the
point of miew of measure theory.

1) An event A can be realised at any time [
though ‘or measure theory, A at tj is a different svent
from A at {, . To reslise the significance of this dif=-
ference in altitude, let us eonsider the enerzy of a particle
as a random variable when it is passing through a thickness

of matter, If by A , we imply the existence of a particle
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in the energy state B , this state ean ocenr not only
at any time T  but can continue to do so over an interval.
Thus to ask the question whether B 1s csused By A is
incomplete and perhans even ﬂuntitgtn ;;-naaning. The correct
question would be whether the avunéhat t, 1is caused by the
event A at /[, 3ince this definition shonld be valid for
all values of 1, and {, , 1t should be so even for !,
tending to {; . It 1s well-known in stochastic theory
that the limiting form of T(B|A; 1., ¢, ) s the probability
that B oeceurs at [, given that A oceurred at 1, as
Ly, =7 11 has completely difrerent mathematical nroverties
from the case when |, t; is finite, This is because
PE A don k) > R(BlA)A 1 B A and WAJA; Lyt -2 RE|A)
as Gt A0 « In fagt, to deteraine HB|A; '.d,}F
for fnite 1, t, , we must assume 1 F|A « The solution
for| 1Al is formally obtained as an integral over the
interval i;-tq of a function which is composed only of
R and T vhere the U ) are parametric values between
the interval .-, . A close examination of this gives us
the necessary lead to introduce the notion of causality. Bince
the K- rfunetion is fundsmental so is N(Y|A)A  and instead
of interoreting ‘Hj}ﬁﬁ;;j as the nccureence of B at 1/
given that ¢ has occurred at ©° , we shall assume that
the event representing the transition from A ¢to B has
ocenrred in the interval &,\. Hereafter, we shall use the

following nomenclature, Ocenrrence will always be attributed
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to inTinitesimal intervals /\ . BEvents attributed to =
partienlar time point | , we shall eall either "outcome"
or "input" depending on whether we are considering it with
refarence to another event attributed to a time point earlier
or later regpeetively. From the point of view of measure
theory, this fiwx distinetion i1s not lmportant since even
ontcomes and inputs are events to which probability magnitudes
are assigned. But to faeilitate understanding, we shall stick
to this notation to interpret eausality. The outcoae ;t any
point ©  is thus the cumulative effect of the events occur-
ring in the interval | as |\ varies from - ¥ to 1T .
The events oceurring in A we shall call the O - events.=
amtt Therefore the corrslation between two outcomes is to be
gouzht in the commonness of the  ~events which comprise
the two outconmes.

_41) Tt is well-known that the [ funetion satisfies
a differential equation with respeet to 1 which in turn
implies that the solution of T in terms of K 1is a sum
of iterated integrals over 1’4 where the % have to be =%
ordered, mammwet® The integrand will therefore repraesent the
ordered connection between the « ~-events occurring in the
various infinitesimal intervals A . The connection between
them may not be simple and it may be necessary to decompose
the (- events &n each interval /i into more elementary

" =events such that the |[' =-events in various infinitesimal

intervels ean be simply connected, The simplielty gained however
implies payinz a heavy priee in that the [' -events belonging
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tulthu same ¢ may be connected, albelt simply f, [" =events |
in different intervals, Hence in expressing the outcome as
iterated integrals over the funetions representing the cone
nection between the [ -events, the ordering of the time para-
meter may be lost,

Thus the choice between viewing the nutcome as the
cumulative effeet of o events or of |1 -events is a
matter of taste and most often denends on the nature nf the
problem,When the emphasis is on causality or correlation =nd
when the number of events comprising the outcome 1s small,
the [ or the casusative aporoach is useful, OCtherwise, the

a- or the eonventional apnroach 1s used.

III. The Postulate of Csugal Connection

g
The starting point now is the pnstulateia cansal

connection between - events occurring in the various intere
vals . We shall not attempt to give a generalization to inelude
all types of physieal processes, hut postulate a causal relation
for a certain class which will satisfy onr intuitive notions
of causality, We shall assume that the K. events sceur in .
the interval dt according to the following law :

a) The probability of one - event oecurd ng in (it
is ((dk) . The probability ofn o events occurring in At
is LHH?J « In addition, we now postulate that an - event

itself can be treated to be the simultsnecus occurrence of
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i events which fall into two classes |'° and | 3

the oreseription for éh; division u1.::» be given presently. The

['- events therefore obey a law of oecurrence different from
that of the Y since the simultaneous occurrence of more
than one [° in At will be proportional to At 1f such an
occurrence degeribes an (

b) Ve now make our fundamental postulate that a

event in L’ci causes a [ event in At, with probability
¢ %y9%,) ity  or 1f the process is homogeneous in time

with probshility o (l.-1,) df, . We shall esll r¢ a
causative event and |''  a resultant event. We then state that
alpha events occurring in the intervals dt, , {t., .  dt,, are
causally connected if for any tw_intaﬂals -1'-['_'_1_, r?ifh there
exists a || in "Ll?,d and a [ in Aty  whea 1¢ i‘_J .
This however does not mean that for every [~ 1n {1y , there
should be a [‘R in 'UCH 3 to understand this, we shall
g0 hack to the deseription of the system at a2 particular time,
Any state at | 4is arrived at by assuming that (- events have
oceurred in the intervals 't ri.tg_, =it 4y 'i'tq-, and summing over !
and sll possible ranges of the '“3‘,; « Since L’,h are composed

of ['1, the onteome at © ean now be thought of as ceaposed

I

only of the [') which oceur in the various intervals. In any

stochastie problem, we are concerned with the probabllity

rr'{ff'lf"" tayt) : for the osutcome | at , glven that A4
i

is the input at gzerso, It is clear that | can be composed

of FL and FR events while A aust be deemed to be compoed

only of |1~ .
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We first make the following fyo postulates :

1) & resultant event Pl;1 is produced in an infinitesimal
interval by a causative event [ - which oeeurred in 't
i.e, stfpoint separated by an interval T from I?F with a -
probability (0)A . If the process is evolving in the diree-
tion t , then ¢ 1s defined only for T »( e« If on
the other hand, the process is progressing with respeet to T
(this may he unrealistic if + is time, but we can find pro=-
cesses where ' is a one=dimensional spatial paraseter and
it 1s meaningful to talk of processes in both directions of -t)
#md then ¢ 4s defined for T<U

2) A causative event ['; occurs in an interval A
ziven that i1ts resultant has occurred at a point separated by
an interval T from 1t, with probability — G(UA for T40
1f the process is progressing with respect to -t and for U0
if the process is progressing with respeet to -t . That
this probability is negative does not in any way contradict
the fundamental postulates of nrobability theory since this
mngnituﬂ;iuned only in an auxiliary manner inside the integrands
whereas the probabilitles of the outcomes are obtained as posi=
tive definite guantities after integration is performed over ( .
There is & considerable discussion about this in an earller
paper by one of us on inverse probability. We recsll here

the result since the nezative nature of the amplitude agsigned

to the causative event may seem surprising at first sight,
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If we are concerned with the probability Pt )
that a random variable assunes the value ( at t .

it is well«known that T satigfies the integral equation

POGE) = PO ) Rl e ) s k!
i

This 1s just the Chapman-Kolmogoro?f eguation of consistency,
It was shown by one af usﬁ} that this equation is valid even
for Luﬁt’ ; but In such a case ]ftﬁl‘x';'t tr) will have
no probabillity significance and is only a functional operator
which we shall denote by :f « This ol course leads to the
result that 1T we insist for positive definite solutions of
the domain of T:t-t' lles between ~[, and + ¥ where [ 70 ,

In our problem we notice that the function { plays
the ssme role as iﬁ in the above discussion.,

Now we outline the procedure “or obtaining the proba-
bility smplitude for an outcome A to oceur at - given that
5 has occurred at 0 , as a sum of iterated integrals over
produets of ¢ , We shall assume that the initial event B
is %ghsad only o” causative events FG. « Our task is merely
to zo from causes to resultants and resultants to canses
attachlng the appropriate amplitude ¢ or —-¢ as the case
may be., The Tinal event A whieh is the outcome consis ts of

both resultants and causative events which have no corresponding

5) Alladi Ramakrishnan, Proc. Ind., Acad. Se., KLL, 145 (1955)
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resultants, A method of studying all the causally
connected events stertingz “roa an initial fﬁl belonging
to P would be as follows. We first ind out the

resultant event T'R corresponding to I‘b « This event

A

I’ will be a part of an ¢ - event which will contain
both TR A e pPh M et T Vin
A will 4in turn give rise to another event FR belonging
to an I at a later interval. On the other hand, for
an event AR s We trace back to a Iﬁi associated
with it to an e rlier infterval. In this fﬁﬂhinn, we can
loecate all the causally connected events evolving Trom the
time 1-0 and establish the connection which determines

a typical pattern. Summing over all the possible patterns,
we then wxkitw arrive at an expression for the probability
for the transition of the systoa from the initisl to the
final state.

Thus the essential departure for the eonventional

mode of viewlngz the evolution of a stoechasiie process con-
sists in the dichotomous division ol events occurring in

the infinitesimal intervals into ceusative and resultant,

e shall illustrate this with respect to very simple stochastic

procasses and shall diseuss it in detail in the quantom vecha=

nieal ease.




1) The Poisgon ®rocess:

. We first take the simplest of all stochastic DYDw-
cesses, the Polsson,From the first point of view, we study
the probability || (0 ,4) that 7. events occur in time
e 1 obeys the equation

¥

%U’-‘*Jt].—. | B (@0=ty8) =T (0, 4)] A (%)

where JAdt 1is the probahility that an event sceurs in dt

From the Tirst point af view, this event is an - event and

the a -event 1s the transition (m-1) to m as m takes

all possible values, In this case, the X -gvent ocours and

the |\ event are identicsl, The @L{T) corrasvonding to

the [ -events here is tto be 1dentified with 2 T')I. since

-E}r?\ dt is the probability that an event happens in dt

given that the nrevious event happened at an interval U

be‘i‘are.‘ It is important to emphasize that though events are

sunposed to he indenenﬁantlin the Poisson case, we have |
causnlly connected two sucecossive events by the function @(T) «

That 1s, the fact that they are successive amounts 1n a sense

to eansation, Therefore in this point of view, TI(Wm;t)

is written asj_% 4 =T )

i | dBOmAy B A m)e g,
]

THnyt) = jrﬁ b j
0 0
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where the last factor represents the faetthat the causative
events are counted in the outcome, but do not produce
resaltants,

2) Ihe furry Process :

IT there are M individuals at a time + , the
probability that a new individuel 1is bhorn 12 117 At - Thig
is the probability for the of - event. The equation obeyed by

T t) 1s thererore
O ]l DIEOt) =mTimt) ] 2. (4)

Ut

The probability however of the resultant [’ i event whieh is
the birth in dt  relatine to a particalar parent born at a
time ' before is defined by the fundamental function :,)‘ L},
When a particular parent produces an "offapring, both these
are causative with respect to future resultants and we have to
follow both of them. Thas, 7] (mt) ean be written as an
intesral assuming the (- events to oeccur in the intervals
15 A, S AP < ) .

LRI 3 1l 4 i) a% dig -« dT (5)

2R

with the preseription that d and k must am over all the
indices with ‘Eﬂ 7 Lg » the lntegration is performed over the
range () to t .

Hnuevnrri.n the conventiosnal aporoach, this may be written

Ta At 21\ : —(m+) A (L Tm )
Tmyt)- Sdrm jc“m. ﬁrh:. A e L]:A ¢ ()
1]

the
The difference hetween the two apnroaches lies in/ noneoccurrence

and oceurrence ot JL respectively,




It hecomes even more strikingz if the - avents are
gplit up into Pf and F'ﬁ in which case the integrals in
terms of T will not be ordered with respect to the T -para-
meter, but will bhe so in the @ «approach.

We shall noi however ‘'devise' processes* 4n classlieal
stochastie theory to illustrate ‘t sinece gquantum eleetrodynamics
is by far the best example o” such a mathematical structure.

We shall therefore deal with the electrodynamic problem directly.

Before doing so, we shall just refer to the deterailnistie
processes, They can in orinciple be conslidered as the limiting
ecases of stochastie processes by introducing 9 -fanctions,
This has the corresponding mathematical consequence that the

-  events which are causally connected relate to "adjacent!
infinitesimal intervals. ThiQinraniselr what 1s neant when
we say a funetlon satisTles only a differential equation and
not an integro differentlial egnation as in stochastie theory

- of the
where the intesration 1s over the valueg;randum variables.

* A model process for exampnle can be as Tollows:
We postulate the prolability of spontaneois creation of
a pair of individuals to he 7 dt sand the probability
?or the annihilation of two when there =re n
individuals to be Tfi“;—fj judt ., This is a departure
from the birth and death process conslidered by Kendall
and others sinee as regards "death', the particles do

not behave independently. In the conventional approach

1M t) obeys the equation lios |
BHENE) [ e, b)-TObI A |
TE

A 3 H_‘h"l] Ti ;::'I'-l.j'.! 1'_]] .I-l"
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It has been stressed in a series o7 papers that many

of the concepts of stochastic theory can be carried over to
quantum mechanies provided we remember that we have to work
with complex amplitudes instead of positive deflnite guantities
and the probabilistic interpretation ean be applied to the squares
of a certain class of complex amplitudes. Here we shall accept
this and consider any eleetrodiynamic collision process as one
evolving from the infinite past t- - o to the infinite future
t=42 , the final state beingz the resault of events happening
at " space-time points and none elsevhere, " takinz all possible
values from 0O to o and the amplitude being Integrated over
all space and time. In the scattaring u;?;lactrnnﬁ hy?phntan,
the events that occur at any space time point are :

1) Seattering of an eleetron with emission or absorption
of a photon,

2) Scattering of a %ﬂsitruu with emission or absorption
of a photon,

3) Pair ereation with emission or absorption of a photon,

4) Pair annihilation with emis sion or absorption of a photon,

These xam are o ~events from our polnt o view and the
amplitude for their occurrence is H'(t) dt where i ..y e VAL,
W and ﬁ]u being the field variables of the electron snd photon.
But from the point of view of causality, annihilation should be

treated as the resnltant and ereation ss ecausative., Thus when

1) ¢ A, Ramakrishnan, and N.R.Ranganathan, loe. ecit,,
A. Ramakrighnan, T.K,Radha and R.Thunga, J.Math. Analysis and
Apnlications (in oress).




we pursue an electron which destroys itself with a positron,
the destruction of the positron is a |' -event which must be
traced back to the point where it was born. The minus sign
which we have prescribed i1s just the one which onceurs in the
Feynman propagator “or negative time and negative energles.
The equivalence hetween the Feynman and field theoretic points
of view was considered quite exciting at the time when it was
first demonstrated and 1s now accepted so much as an established
faet that 1t has become almost stale to discuss the details of
this equivalence. However in comparing Peynman diagrams with
their correspondw field theoretic analogues, a combinatorial
(or topological ) problem has arisen the solution of which may
have some bearing on the intrinsie meaning of causality. To
slmplify our discussion, we shsll ignore the emission and ab-
sorption of photons and confine ourselves to the electron events,
The combinatorial problem in question may be formulated
as ?nlluwi; It has been shown by one of u;” that one can split
the Feynman propagator so that one part of it refers to the
electron travelling Torward in time and the other to the electron
travelling backward in time. Thus in this pieture, the relative
time ordering of any two peighbouring vertices becomes important.
We shall eall such a diagram a "pattern", Clearly, for a Feynman
diagram with "  vertices, there are 2" patterns. However in
the Tield theoretic picture, the relative time ordering of gny
two vertices (neighbouring or not) is significant. We shzall eall

these fiaeld theory diagrams T dlagrams., In this case, for an




™ th order Feynman diagram, there are v ! [ diagrams,
Now one may pose the following questlon : Vhat are the nuaber
of T diagrams corresponding to any one nsrticular patern %
To solve this prohlem we notice that any one partieular
pattern econsisting of oy + oy o +ithy =NMm vertices is uni-
quely specified by the relative sequence of its neighbouring
vertices, Let ns label the vertices as 1, 2 , . . « 4

Then the pattern 1s completely characterised by the equations
geds < Kk,

o ol o . 1, N L : - -f
1?11‘|--"*].-.{../ . ;J_?-]-{‘{'ﬂj

:'.i-l‘ Mg oo Fillyy T ot | ~ K .
R < SRR R SR L (7% SRS T M )

where the symbol denotes the faet that the vertex (event)
on the left 1s in the Tuture o® the wertex (event) on the right
while the syambol denotes the faet that it is in the past of

the avent on the rizht, Now the number of ways of arranging the

G it j.j“"‘"'_ vertex such that in each of these arrangenents,

it ig in a different time ordering with respect -to any one of
- |

the previous vertices 1s 7 7 where [ - for sll R .

k=0
Hence the number of [T  dAlagrams for the sequence
| 'f: % ci '_‘ CLF; ;
=Tl g i R - (1 & 0] %)
2 d-l R 'ﬁgq
["‘ILdI; 11) e F ; Z T’R D o
— = Ve - “Tio f
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ii immedistely see that the number of f T  dlagrams for the
pattern given by

B 4 = ey )
P AR 70 4, y
Frdy Yy dyrdiH 7 oy ty g L10)
is
&y
WLt 2oy rota ) = ] - :
e & ;*ii)' Ei‘T'(?Jil):*del'”J s ) ()
2K |
Generally for the pattern characterized by
{24 =~ £y

dl‘?:fg%l R T - T - ¢S

Ttdy L Y Gdyt- oy 1Y 7 Attty
(12)
the nuaber of F7 dingrams are
L5 a2 S ot
DA 8 Lo ) 2 l. . f_"”'(?15)mj1-5’-‘ “"-) |
N i it 8714
o el kil ST a4 X
'.]J(;?J]-[—j?-:'l""+‘-ITI_2:{“.|J'-¢1'IJI
[13)

Ye have thus given a unique preserintion for obtaining the
numher of field theoretic diagrams corresponding to a particular
pattern. We now wish to emphasize that it is the patierns that
bring out the eausal connection between the various events occur-
ring along the time axis. The ;- events are followed from

the causative to the resultant while the i, - events are traced

back from the resultant to the cansative,
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The situation becomes obvionsly more complicated when
we have more than one particle in the initial and final states
and wve also inelude emission and absorption of bosons at each

TE)
vertex. 1In fact, this leads /to the problem of defining sequences

of intermediate states from the eansastive point of view and the
eoncept of Feymman paths has to be gzeneralized when we have more
than one particle in the initial and final states,

With the Tirst flush of success of the theory of dispersion
relations when the details of the interaction were considered
unimportant, the "eynman disgrams were considered as useful but
not essential auxiliaries, However it is well-known now that
great difficulties are encountered in the rigorous derivation
of the analytic prorerties of matrirx elements Prom the genaral
axioms of quantum field theory and attention has been revived in
the corresponding problem in perturbation theory. Also the tono-
logical aspects of the internal and external lines of Feyhman
graphs ar; recelving considerable attention. This in the opinion
of the authors 1s eclosely connected with the ecausal deseription

of events in space and time,
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Recently, snumber of pmrln"") have appesred suggesting
thet strong interactions approximately satisfy the symmetry of the
unitary group in three-dimensions. These suggestions have been
partioularly sucecessful in predicting the number of meson states
and in some instences, slso their masses. For instonce, Gell-iiann?)
has derived the following spproximate relation between the masses

of the members of a unitary octet:
Myt M L 3 M S

< 4

Here ™M: ana M, are the masses of the isodoublets belonging
to the unitary octet while M, amd ™, are those of the iso-
singlet and isotriplet respeetively. If now we were to sssume that
the newly observed mx ¢ amd & rescnences belong to an octet,

we can prediet the mess of the companion doublets via equetion ( 1 )3
M, = NgC Mav —

12

A Kt yesonance with this mass seems to have been recently observed
by Miller at Derkeley’). Similerly, if we group the 880 MeV
resonance and the ( meson into the same ootet, we omm predict

the existenge of en isosi glet meson of sero strengeness with a

mass of about Ik’rfar-huhalaatm:l‘mtobonmm.”

* A P.Balsghandran and H. Pletschmann, Physics Letters (in press).
1) J.E.VWees, Huove Cim, 15, 52 (1960
2) M.Gelleliann, Phys. Rev. 125, 1667 (1962)
5) Y.Ne'emann, Nuel. Phys. 222 (1961)
4) A, Salan and J.C.Var Cim. 20, 419 (1961)
A. Salem, Nugovo Uim, 448 (1962
5) Privete communication Ir.P.G.0.'reund to Prof.¥.Thirring.
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the masses and quentum rumbers of possible resonant states, we wish

$o point out the possibility of a low energy =} -w pesonance in the
g-fo1d way>). This will arise if we claseify Y5 o N met
into the seme oetet, assuming, tentatively, thet Y' s e h’/!
pesonance. (Note that we camnot as yet claseify the (3/2, 3/2)

isobar into s motet since its companion strenge particle isobers

have not to-date been experimentally observed,) We would then

expset & - -7  Tesonance in the ? = 1/2 state with o nass

/ et o
M, = 1460 Mev .- (3

as given by eguation (1) end en odd parity with respeet to the
auoleon.®The .. T threshold energy is ~ 1458 Mev so that this
vpeponance” cen very well turn out to be a bound state. It should

:hwupi.nmh_rmumu
RN —= S b K = = aels

F—. - @)
Since the intermediate step, this is = pure two-perticle inter—

action, the kinematlos is completely determined by the energy and
angle of the emitted K  and hence the mass of .=  osn be
eatallishod even in the case of the radistive desay mode which

might be importent beesuse of the low 0 wyalue and relstively

high orbital momentum of the resonant state. The sngular distribution
of the K -meson with respect to the = _u ypesonance in the centre= !
of-nnss system of these reagtions can be ersily evaluated when only 4
the °S- and P - wavesof the Irﬂumtmmwmt, 4'
mwprumﬂmmummnum-mmmum |
1 BeV/C (which is to be comparved with thxe threshold momentum of

644 MeV/C.) The result is

% A -7 pesomence with T=1/2and XJ >V
mess of 1535 MeV has been reported at
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be o o 4 B® 4 ywi@ - B’
b Lk
x= 2|4 *e i3l r' ;
g badsl ‘&h::?' ¥ ]"‘ri 'ga,t,l g [11,:;3 = guﬂﬁl S
t' i 642 Re (E:un 'E1,1,3) E}
and ¥
‘i = ﬁ = 12 Re {‘f%i,z,ﬂ %1,0,3) e (6)
Here [~ denotes the partial wave amplitude characterized

by o tobhl sngulsr momentym J end orbitel angular momenta L
and | in the entrance and exit chennels respestively. The
equality of the coefficients of coa® and l"e.' in egquation ( © )
is partialarly tco be noted since it may be testoble with compsrative
esse experinentally. Since the conjectured resonance hes Tw=l1/2
the only linal states in which the resonsnee ¢m make its eppearance
are ; (="m*) + K®
ey + K
ok = N == == (@)
mmp#mmmmumm“nmumnmuu
\ e +b = A+ KK &)
which howeyr has a higher threshold.
A low e

in mother

iree

+=-T pesonsnge has been prediected by am‘}
but in the ©i.  state with isobarie spin 3/2.

s Phyns Reve Letters, J o 426 (1961)






