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Abstract

Let f : Gn,k−→Gm,l be any continuous map between two distinct complex

(resp. quaternionic) Grassmann manifolds of the same dimension. We show

that the degree of f is zero provided n, m are sufficiently large and l ≥ 2.

If the degree of f is ±1, we show that (m, l) = (n, k) and f is a homotopy

equivalence. Also, we prove that the image under f ∗ of elements of a set of

algebra generators of H∗(Gm,l; Q) is determined up to a sign, ±, if the degree

of f is non-zero.
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Chapter 1

Introduction

A brief overview of the results presented in this thesis is given below.

Let M, N be compact, connected, oriented n-dimensional manifolds with ori-
entation classes in top homology denoted by µM and µN respectively. Let f :
M → N be a continuous map between them. Then the induced map in the
top homology, f∗ : Hn(M ; Z) → Hn(N ; Z), is given by f∗(µM) = (deg f).µN ,
where deg f ∈ Z. This integer, deg f , is called the (Brouwer) degree of the
map f .

Let F denote the field of complex numbers, C, or the skew field of quater-
nions, H. Let FGn,k denote the Grassmann manifold of all k-dimensional left
F -vector subspaces of Fn. Then dimF FGn,k = k(n − k) =: N . Now, given
integers n, k, m, l such that 1 ≤ k < n , 1 ≤ l < m and (n, k) 6= (m, l), such
that dimF FGn,k = dimF FGm,l, what can be the possible degrees of maps from
FGn,k to FGm,l? The existence of maps of arbitrarily large degrees when the
target space is the projective space, FPN , is well known.

Let RG̃n,k be the oriented Grassmann manifold of oriented k-dimensional vec-
tor subspaces of Rn. Then, in [19], V. Ramani and P. Sankaran prove that, for
any continuous map h : RG̃n,k → RG̃m,l, where (n, k) 6= (m, l), 2 ≤ l ≤ m/2,
1 ≤ k ≤ n/2 and dim RG̃n,k = dim RG̃m,l, deg h = 0.

In the same paper, they also prove that if, f : CGn,k → CGm,l (resp. g :
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2 Introduction

HGn,k → HGm,l), 1 ≤ k < l ≤ [m/2], is any continuous map between two
complex (resp. quaternionic) Grassmannians of the same dimension, then
deg f = 0 = deg g.

In this thesis, we obtain the following results:

Let F denote C or H and let d = dimR F. Then we have:

Theorem 1.0.1 Let f : FGn,k → FGm,l be any continuous map between two
F-Grassmann manifolds of the same dimension. Then, there exist algebra
generators ui ∈ Hdi(FGm,l; Q), 1 ≤ i ≤ l, such that the image f ∗(ui) ∈
Hdi(FGn,k; Q), 1 ≤ i ≤ l, is determined upto a sign ± by the degree of f ,
provided the degree of f is non-zero.

Theorem 1.0.2 Fix integers 2 ≤ l < k. Let m, n ≥ 2k be positive integers
such that k(n−k) = l(m− l) = N and f : FGn,k → FGm,l any continuous map.
Then, degree of f is zero if (l2 − 1)(k2 − 1)((m− l)2 − 1)((n− k)2 − 1) is not
a perfect square. In particular, degree of f is zero for n sufficiently large.

Theorem 1.0.3 Suppose that k(n − k) = l(m − l), and 1 ≤ l ≤ [m/2], 1 ≤
k ≤ [n/2]. If f : FGn,k → FGm,l is a map of degree ±1, then (m, l) = (n, k)
and f is a homotopy equivalence.

Since the proofs of the above theorems only involve studying algebra homo-
morphisms between the cohomology algebras of the concerned Grassmanni-
ans and the (integral) cohomology ring of the quaternionic Grassmannian is
isomorphic to the cohomology ring of the corresponding complex Grassman-
nian, via a degree doubling isomorphism, we need only consider the case of
the complex Grassmann manifold, CGn,k.

The complex Grassmann manifold, CGn,k, admits of a natural orientation,
since it has a complex structure. Though HGn,k does not admit even an al-
most complex structure [14], it is oriented since it is simply connected. The
orientation of HGn,k is chosen such that the image of the positive generator
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of the top integral cohomology of CGn,k, under the degree doubling isomor-
phism induced in the cohomology rings, is positive.

The Schubert cells give a cell decomposition of CGn,k, with cells only in the
even (real) dimensions. The closure of a Schubert cell is the corresponding
Schubert cycle. The classes of the Schubert cycles form a Z-basis for the
integral homology of CGn,k. The dual cohomology classes corresponding to
the special Schubert cycles form a set of algebra generators of the cohomology
algebra, H∗(CGn,k; Z).

The proofs of the above theorems use the concept of the degree of a Schu-
bert class. Since the dual Schubert classes generate the cohomology of CGn,k

in each dimension, it makes sense to talk of the degree of any cohomology
class in H∗(CGn,k; Z). The degree of the whole space CGn,k is defined to be
the degree of the dual cohomology class corresponding to the fundamental
homology class µn,k ∈ H2N(CGn,k; Z).

The fact that f ∗ : H∗(CGm,l; Q) → H∗(CGn,k; Q) is an algebra homomor-
phism leads to a system of diophantine constraints. In particular, using
a well-known, closed form, numerical formula for the degree of a Schubert
class, applied to a specific class in H4(CGn,k; Q), we get: deg (f) = 0 unless
Q(l, k, m− l, n−k) := (l2 −1)(k2 −1)((m− l)2 −1)((n−k)2 −1) is a perfect
square. Now Siegel’s Theorem on integer solutions of polynomial equations
of the form y2 = F (x) allows us to complete the proof for Theorem 1.0.2.

Theorem 1.0.2 provides strong evidence in support of the following conjec-
ture stated in [19]:
Conjecture: Let F = C or H and let 2 ≤ l < k ≤ n/2 < m/2, where
k, l, m, n ∈ N. Assume that k(n−k) = l(m− l). Let f : FGn,k → FGm,l be any
continuous map. Then, the degree of f is zero.

In their paper [18], K. Paranjape and V. Srinivas prove that, for l ≥ 2
and dim CGn,k = dim CGm,l , if there exists a non-constant morphism, f :
CGn,k → CGm,l, of projective varieties, then (n, k) = (m, l) and f is an iso-
morphism. Theorem 1.0.3 is a topological analogue of Paranjape and Srini-
vas’s result mentioned above. The proof of Theorem 1.0.3 uses Whitehead’s
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Theorem.

The proof of Theorem 1.0.1 uses various results from Hodge theory. The com-
plex Grassmann manifold, CGn,k, is a compact Kähler manifold. One can take
the first Chern class of the universal quotient bundle as the Kähler class, ω.
Using the Kähler class, it is possible to define a symmetric, non-degenerate
bilinear form (., .)ω on Hr(CGn,k; R), 1 ≤ r ≤ N . In case of the complex
Grassmann manifold, CGn,k, this bilinear form is rational and we have a
orthogonal decomposition of the rational cohomology groups Hr(CGn,k; Q),
known as the rational Lefschetz decomposition.

Let f : CGn,k → CGm,l be a continuous map of non-zero degree. The induced
map in cohomology, f ∗, preserves the rational Lefschetz decomposition. Let
c̄1 denote the first Chern class of the universal quotient bundle over CGm,l.
Then, using the rational Lefschetz decomposition, we can find algebra gen-
erators, {c̄1 =: u1, u2, ..., ul}, of the cohomology algebra, H∗(CGm,l; Q), such
that the image f ∗(ui) can be determined upto a sign ±.

The quaternionic Grassmann manifolds are not Kähler, nor cohomologically
Kähler. However, since the degree doubling isomorphism from H∗(CGn,k; Z)
to H∗(HGn,k; Z) maps the i-th Chern class of the tautological complex k-plane
bundle over CGn,k to the i-th symplectic Pontrjagin class of the tautological
left H-bundle over HGn,k, the proof of Theorem 1.0.1 still carries through.

Theorem 1.0.1 generalises the results of M.Hoffman in [11], which classify the
endomorphisms of non-zero degree of the cohomology algebra of CGn,k.

The rest of the thesis is organised as follows:

Chapter 2 contains certain definitions and basic results needed for the proofs
of the main results. None of the material in this chapter is original. The first
section of this chapter recalls the concept of Brouwer degree of a map be-
tween two smooth manifolds, while the second section describes the main
problem of this thesis and the previous work on related subjects. The third
section gives two descriptions of the cohomology of the complex Grassmann
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manifold and introduces the concept of degree of a Schubert variety.

Chapter 3 discusses maps between c-Hodge manifolds with second Betti
number equal to one. The first section of this chapter discusses some well-
known facts about the cohomology of compact Kähler manifolds, following
§15 of [8]. The second section contains certain preliminary results required
for the proofs of the main theorems.

Chapter 4 contains the proofs of the main theorems and some examples.
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Chapter 2

Preliminaries

In this chapter we will recall certain well-known definitions and results which
will be used in the thesis. In the first section, we recall the definition of
Brouwer degree of a map and give some of its properties. In the second
section, we describe the main problem of the thesis and discuss related work
done previously by others. The third section gives two descriptions of the
cohomology of the complex Grassmann manifold - one in terms of the Chern
classes of the “tautological” bundle and the other in terms of Schubert classes.
It also states a well-known formula for the degree of a Schubert variety. In
the fourth section we recall the proof given in [19] of a result related to one
of the main theorems in this thesis.

2.1 Brouwer Degree

In this section, M, N will denote closed, connected, oriented n-dimensional
smooth manifolds. The symbol ‘≃’ denotes the relation ‘is homotopic to’.

Let the orientation classes in the top homology of M and N be denoted by
µM and µN respectively. Recall that, given a continuous map, f : M → N ,
the induced map in the top homology, f∗ : Z ∼= Hn(M ; Z) → Hn(N ; Z) ∼= Z,
is given by f∗(µM) = (deg f).µN , where deg f ∈ Z. This integer, deg f , is
called the (Brouwer) degree of the map f . Given two continuous maps f, g :
M → N such that f ≃ g are homotopic, deg f = deg g. Intuitively, deg f is

7



8 Preliminaries

the number of times f wraps M around N .

Let g : M → N be a smooth map. Then deg g can be computed as follows:
Let x ∈ M be a regular point. The induced map of the tangent spaces
dgx : TMx → TNg(x) is a linear isomorphism of oriented vector spaces.
Define the sign of dgx to be +1 or −1 according as dgx preserves or reverses
orientation. Then, for any regular value y ∈ M , the degree of g at y is defined
to be:

deg (g; y) :=
∑

x∈g−1(y)

sign(dgx)

This integer, deg (g; y), does not depend upon the choice of the regular value
y. In fact, deg (g; y) = deg g. In particular, if f : M → N is any continuous
map and g : M → N a smooth map such that g ≃ f then deg f equals deg g.
Since the degree of a map is invariant under homotopy, the above formula is
independent of the choice of g, as long as f ≃ g. (Refer to [7], [15].)

The degree is ‘multiplicative’, that is, if P is a closed, connected, oriented,
n-dimensional manifold and f : M → N and g : N → P are continuous
maps, then deg (g ◦ f) = deg g � deg f . Suppose p : Ñ → N is a covering

projection, with Ñ connected. Then there exists a unique orientation on Ñ
such that p is orientation preserving, and, deg p equals [π1(N): p#π1(Ñ)] if

Ñ is compact. If Ñ is non-compact (equivalently, [π1(N): p#π1(Ñ)] = ∞),

then Hn(Ñ ; Z) = 0 and it is convenient to set deg p = 0.

Let Sn denote the n-sphere, n ≥ 1. Let f, g : M → Sn denote continuous
maps. Then f ≃ g if and only if deg f = deg g and there exist such maps of
every degree m ∈ Z.

We end this section by giving the proof of the following well-known lemma:

Lemma 2.1.1 Let f : M → N be a continuous map.
(i) If deg f 6= 0, the induced map in cohomology, f ∗ : H∗(N ; Q) → H∗(M ; Q),
is a monomorphism.
(ii) If deg f = 1, the induced map of fundamental groups, f# : π1(M) →
π1(N), is surjective.
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Proof:
(i) Let µN denote the orientation class in Hn(N ; Z) →֒ Hn(N ; Q) ∼= Q.
One has the non-degenerate pairing :

Hp(N ; Q) × Hn−p(N ; Q) → Q

(α, β) 7→ 〈α ∪ β, µN〉
= 〈α, β ∩ µN〉

Let deg f = λ 6= 0, λ ∈ Z. Thus f∗(µM) = λµN . If 0 6= α ∈ Hp(N ; Q),
choose β ∈ Hn−p(N ; Q) such that (α, β) = 1. Then, 〈f ∗(α) ∪ f ∗(β), µM〉 =
〈α ∪ β, f∗(µM)〉 = 〈α ∪ β, λµN〉 = λ 6= 0. Therefore f ∗ is a monomorphism.

(ii) Suppose f# : π1(M) → π1(N) is not surjective. Then, H := Im(f#)

is a proper subgroup of π1(N) and 1 < [π1(N): H ] ≤ ∞. Let p : Ñ → N be
the covering of N corresponding to this subgroup H , with suitable orienta-
tion on Ñ such that p is orientation preserving. Then, since f#(π1(M)) =

H = p∗(π1(Ñ)), f lifts to a map f̃ : M → Ñ such that f = p ◦ f̃ .

Hence, deg f = deg f̃ . deg p. If [π1(N): H ] = ∞ then Ñ is non-compact

and Hn(Ñ ; Z) = 0, and it follows that deg f = 0. If [π1(N): H ] < ∞, then

Ñ is compact and deg p = [π1(N): H ] > 1. It follows that deg f > 1 since
degree is multiplicative. �

2.2 The Problem

Let F denote the field of real numbers, R, complex numbers, C, or the skew
field of quaternions, H. Let FGn,k denote the Grassmann manifold of all
k-dimensional left F -vector subspaces of Fn. Then FGn,k is a compact, con-
nected manifold of dimension dimF FGn,k = k(n − k).

The complex Grassmann manifold, CGn,k, admits a complex structure, and
hence, has a natural orientation. Though HGn,k does not admit even an al-
most complex structure [14], it is oriented since it is simply connected. The
real Grassmann manifold, RGn,k, is orientable if and only if n is even. As-
suming that n > 2, its universal (double) cover, the space of all oriented
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k-planes in Rn, denoted by RG̃n,k, is orientable, and is referred to as the
oriented Grassmann manifold. Now, let f be a continuous map between
two oriented Grassmann manifolds, or between two complex (quaternionic)
Grassmann manifolds, of the same dimension. Then, what can be the pos-
sible values for deg f? Note that, any map f : RG2n,k → RG2m,l, (where

k(2n − k) = l(2m − l),) lifts to a map f̃ : RG̃2n,k → RG̃2m,l, such that

deg f̃ = deg f . Hence it is enough to address the question for the oriented
Grassmann manifold.

In the case when l = 1 and k(n− k) = m− 1, it is known (by Hopf-Whitney
Theorem [16]) that there are maps fλ : RG̃n,k → RG̃m,1 = Sm−1 such that
deg fλ = λ , for every integer λ ∈ Z.

Let f : CGn,k → CGm,l be a continuous map, k(n − k) = l(m − l) =: N .
When l = 1, N = m − 1 and CGm,l = CPN . Let c1, C1 denote the first
Chern classes of the tautological bundles over CGn,k and CPN respectively.
If f ∗ is the induced map in cohomology, f ∗(C1) = λfc1 , for some integer
λf . Then, as observed in [19], since CPN is the (2N + 1)-skeleton of CP∞

and H2(CGn,k; Z) ∼= [CGn,k; CP∞] ∼= Z, any two maps f, g: CGn,k → CPN

are homotopic if and only if λf = λg. Also, given λ ∈ Z, there exists an
f : CGn,k → CPN such that λ = λf . The degree of f can be determined in
terms of λf and is non-zero if and only if λf is non-zero.

Similarly, the set of homotopy classes of maps f : HGn,k → HPN is in bijec-
tion with the set of homomorphisms of abelian groups Z ∼= H4(HPN ; Z) →
H4(HGn,k; Z) ∼= Z. In this case, f ∗ is the induced map in cohomology, f ∗(c̄2)
= λfc2 , for some integer λf , where c2, c̄2 denote the second Chern classes
of the tautological bundles over HGn,k and HPN respectively. The degree of
f is again determined by λf and is non-zero if and only if λf is non-zero.

It is known that there exist continuous self-maps of complex and quaternionic
Grassmann manifolds, which have arbitrarily large positive degrees, cf. [1],
[21].

In their paper [18], K. Paranjape and V. Srinivas prove the following theorem:
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Theorem 2.2.1 Let k < n and let 2 ≤ l < m be two integers. If there exists
a finite surjective morphism, f : CGn,k → CGm,l, of projective varieties, then
(n, k) = (m, l) and f is an isomorphism.

The results of M.Hoffman in [11] classify the endomorphisms of non-zero de-
gree of the cohomology algebra of CGn,k. He proves the following theorem:

Theorem 2.2.2 Let h be an endomorphism of H∗(CGn,k; Q) such that h(c1) =
mc1, m 6= 0, where c = 1+c1+...+ck denotes the total Chern class of γn,k, the
canonical k-plane bundle over CGn,k. Then, if k < n/2, h(ci) = mici, 1 ≤ i ≤
k. If k = n/2, there is the additional possibility that h(ci) = (−m)i(c−1)i,
1 ≤ i ≤ k, where (c−1)i is the 2i-dimensional part of the inverse of c in
H∗(CGn,k; Q).

He also conjectures that the only endomorphism of the cohomology algebra
H∗(CGn,k; Q) such that h(c1) = 0 is the zero endomorphism.

In their paper [19], V. Ramani and P. Sankaran prove the following two the-
orems:

Theorem 2.2.3 If h : RG̃n,k → RG̃m,l is any continuous map, where (n, k) 6=
(m, l), 2 ≤ l ≤ m/2, 1 ≤ k ≤ n/2 and dim RG̃n,k = dim RG̃m,l, then, deg h =
0.

Theorem 2.2.4 If f : CGn,k → CGm,l (resp. g : HGn,k → HGm,l), 1 ≤ k <
l ≤ [m/2], is any continuous map between two complex (resp. quaternionic)
Grassmannians of the same dimension, then deg f = 0 = deg g.

They also state the following conjecture in [19]:
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Conjecture: Let F = C or H and let 2 ≤ l < k ≤ n/2 < m/2 where
k, l, m, n ∈ N. Assume that k(n− k) = l(m− l). Let f : FGn,k → FGm,l be any
continuous map. The degree of f is zero.

We recall the proof of Theorem 2.2.4 in §4 of this chapter.

Note that, since it is not true in general that any given continuous map,
f : CGn,k → CGm,l, can be homotoped to a complex analytic map, it does not
follow from the work of Paranjape and Srinivas in [18] that the degree of such
a map f is zero.

In this thesis, we consider maps f : FGn,k → FGm,l, where F denotes C or
H, d = dimR F, 2 ≤ l < k ≤ [n/2] and FGn,k and FGm,l are F-Grassmann
manifolds of the same dimension. We prove the following:

(i) If f is such a map of degree ±1 then (m, l) = (n, k) and f is a homotopy
equivalence.

(ii) If we fix integers 2 ≤ l < k, there can exist at most finitely many
positive integers m, n ≥ 2k with k(n − k) = l(m − l) =: N , such that
there exists a continuous map f : FGn,k → FGm,l of non-zero degree.

(iii) Given a continuous map f : FGn,k → FGm,l of non-zero degree, where
l, k, n, m satisfy the above conditions, there exist algebra generators
ui ∈ Hdi(FGm,l; Q), 1 ≤ i ≤ l, such that the image f ∗(ui) ∈ Hdi(FGn,k; Q),
1 ≤ i ≤ l, is determined upto a sign ± by the degree of f .

The proofs of the results discussed in this thesis only involve studying al-
gebra homomorphisms between the cohomology algebras of the concerned
Grassmannians. The (integral) cohomology ring of the quaternionic Grass-
mannian is isomorphic to the cohomology ring of the corresponding complex
Grassmannian, via a degree doubling isomorphism. The orientation of HGn,k

is chosen such that the image of the positive generator of the top integral
cohomology of CGn,k, under the degree doubling isomorphism induced in the
cohomology rings, is positive. (In the course of our proof of Theorem 1.0.3,
simply- connectedness of the complex Grassmann manifold will be used; the
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same property also holds for the quaternionic Grassmann manifolds.) For
this reason, we need only consider the case of the complex Grassmann man-
ifold, CGn,k. Further, since CGn,k is diffeomorphic to CGn,n−k, we need to
consider only the cases 1 ≤ k ≤ [n/2] and 1 ≤ l ≤ [m/2].

2.3 The Complex Grassmann Manifolds

In this section we discuss the complex Grassmann manifold and give two
descriptions of its cohomology algebra.

Let CGn,k denote the Grassmann manifold of all k-dimensional linear sub-
spaces in the n-dimensional complex space, Cn. Recall that it is a closed,
connected, oriented complex manifold of complex dimension k(n − k). We
will refer to CGn,k as Gn,k for the rest of the section.

The space of all unitary linear transformations U(n) of Cn acts transitively
on Gn,k. Under the action of U(n), the stabiliser of Ck, the subspace spanned
by the first k standard basis vectors {e1, ..., ek}, is U(k) × U(n − k). Hence,
Gn,k is homeomorphic to the homogeneous space U(n)/U(k) × U(n − k).

The Plücker imbedding, p : Gn,k →֒ P(Λk(Cn)) = CP(n

k)−1, is given by U 7→
Λk(U), where Λk(U) denotes the k-th exterior power of the vector space U .
This gives Gn,k a projective variety structure.

2.3.1 Cohomology of the Grassmannian

The ‘tautological’ bundle over Gn,k, γn,k, is constructed as follows: The total
space of γn,k is E = E(γn,k) := {(V, x)|x ∈ V ∈ Gn,k} ⊂ Gn,k × Cn with the
subspace topology. The projection map π: E → Gn,k is given by (V, x) 7→ V
and the fibre over a point V ∈ Gn,k is the k-dimensional complex vector space
V . Evidently, γn,k is rank k-subbundle of the rank n trivial bundle En with
projection pr1: Gn,k×Cn −→ Gn,k. The quotient bundle En/γn,k is isomorphic
to the orthogonal complement γ⊥

n,k in En (with respect to a hermitian metric
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on Cn) of the bundle γn,k. Let ci(γn,k) ∈ H2i(Gn,k; Z), be the i-th Chern class
of γn,k, 1 ≤ i ≤ k. Denoting the total Chern class of a vector bundle η by
c(η) we see that c(γn,k).c(γ

⊥
n,k) = 1.

Let c1, · · · , ck denote the elementary symmetric polynomials in k indetermi-
nates x1, · · · , xk. Define hj = hj(c1, · · · , ck) by the identity:

∏

1≤i≤k

(1 + xit)
−1 =

∑

j≥0

hjt
j (2.3.1.1)

Thus cj(γ
⊥
n,k) = hj(c1(γn,k), c2(γn,k), · · · , ck(γn,k)), 1 ≤ j ≤ n − k. (See [17].)

In particular,

(1 + c1 + ... + ck)(1 + h1 + ... + hn−k) = 1 (2.3.1.2)

Consider the ring Z[c1, · · · , ck]/In,k where degree of ci = 2i, and In,k is the
ideal 〈hj | j > n−k〉. Equating the coefficient of tn+1 in equation(2.3.1.1) to
zero, we can express hn+1 in terms of a polynomial expression in hn−k+1, ..., hn.
Now, if we assume that hn+1, ..., hn+m−1; 1 < m can be expressed in terms of
hn−k+1, ..., hn, then, by equating the coefficient of tn+m to zero, we see that
hn+m can be expressed in terms of hn−k+1, ..., hn. Hence, by induction, we
see that the elements hj, n − k + 1 ≤ j ≤ n, generate In,k.

The homomorphism of graded rings Z[c1, · · · , ck] −→ H∗(Gn,k; Z) defined by
ci 7→ ci(γn,k) is surjective and has kernel In,k and hence we have an isomor-
phism H∗(Gn,k; Z) ∼= Z[c1, · · · , ck]/In,k. Henceforth we shall write ci to mean
ci(γn,k) ∈ H∗(Gn,k; Z). We shall denote by c̄j the element cj(γ

⊥
n,k) = hj ∈

H2j(Gn,k; Z).

As an abelian group, H∗(Gn,k; Z) is free of rank
(

n
k

)
. A Q-basis for H2r(Gn,k; Q)

is the set Cr of all monomials cj1
1 · · · cjk

k where ji ≤ n − k for 1 ≤ i ≤ k and∑
1≤i≤k iji = r. In particular, cn−k

k generates H2N(Gn,k; Q) ∼= Q. If j denotes

the sequence j1, · · · , jk, we shall denote by cj the monomial cj1
i · · · cjk

k . If
k ≤ n/2, the set C̄r := {c̄j | cj ∈ Cr} is also a basis for H2r(Gn,k; Q), where
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c̄j := c̄j1
1 · · · c̄jk

k . (See [17] for details.)

2.3.2 Schubert Calculus

Another, more classical description of the cohomology ring of the Grassmann
manifold Gn,k is via the Schubert calculus. Recall that Gn,k = SL(n, C)/Pk,
for the parabolic subgroup Pk ⊂ SL(n, C) which stabilizes Ck ⊂ Cn spanned
by e1, · · · , ek; here ei, 1 ≤ i ≤ n, are the standard basis elements of Cn. De-
note by B ⊂ SL(n, C) the Borel subgroup of SL(n, C) which preserves the
flag C1 ⊂ · · · ⊂ Cn and by T ⊂ B the maximal torus which preserves the
coordinate axes Cej , 1 ≤ j ≤ n.

Let I(n, k) denote the set of all k element subsets of {1, 2, · · · , n}; we regard
elements of I(n, k) as increasing sequences of positive integers i := i1 < · · · <
ik where ik ≤ n. One has a partial order on I(n, k) where, by definition, i ≤ j
if ip ≤ jp for all p, 1 ≤ p ≤ k. Let i ∈ I(n, k) and let Ei ∈ Gn,k denote the
vector subspace of Cn spanned by {ej | j ∈ i}. The fixed points for the action
of T ⊂ SL(n) on Gn,k are precisely the Ei, i ∈ I(n, k).

Schubert varieties in Gn,k are in bijection with the set I(n, k). The B-orbit
of the T -fixed point Ei is the Schubert cell corresponding to i and is isomor-
phic to the affine space of (complex) dimension

∑
j(ij − j) =: |i|; its closure,

denoted Ωi, is the Schubert variety corresponding to i ∈ I(n, k). It is the
union of all Schubert cells corresponding to those j ∈ I(n, k) such that j ≤ i.

Schubert cells yield a cell decomposition of Gn,k. Since the cells have even
(real) dimension, the class of Schubert varieties form a Z-basis for the inte-
gral homology of Gn,k. Denote by [Ωi] ∈ H2(N−|i|)(Gn,k; Z) the fundamental
dual cohomology class determined by Ωi. (Thus [Gn,k] ∈ H0(Gn,k; Z) is the
identity element of the cohomology ring.) We shall denote the fundamental
homology class of Gn,k by µn,k ∈ H2N(Gn,k; Z).

Schubert varieties corresponding to (n−k+1−i, n−k+2, · · · , n) ∈ I(n, k), 0 ≤
i ≤ n − k, are called special and will be denoted Ωi. More generally, if ν =
ν1 ≥ · · · ≥ νk ≥ 0 is a partition of an integer r, 0 ≤ r ≤ N , with ν1 ≤ n − k,
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we obtain an element (n − k + 1 − ν1, n − k + 2 − ν2, · · · , n − νk) ∈ I(n, k)
with |i| = N − r. This association establishes a bijection between such par-
titions and I(n, k), or, equivalently, the Schubert varieties Ωi in Gn,k. It is
sometimes to convenient to denote the Schubert variety Ωi by Ων where ν
corresponds to i. This is consistent with our notation for a special Schubert
variety.

The special Schubert classes form a set of algebra generators of H∗(Gn,k; Z).
Indeed, [Ωi] = ci(γ

⊥
n,k) = c̄i, 1 ≤ i ≤ n − k.

Taking the special Schubert classes [Ωi], 1 ≤ i ≤ n− k, as algebra generators
of H∗(Gn,k; Z), the structure constants are determined by (i) the Pieri for-
mula, which expresses the cup-product of an arbitrary Schubert class with
a special Schubert class as a linear combination of with non-negative inte-
gral linear combination of Schubert classes, and, (ii) the Giambelli formula,
which expresses an arbitrary Schubert class as a determinant in the special
Schubert classes. These two formulae can be stated as follows [2]:
Let Ωa denote a special Schubert class and Ων denote any Schubert class.
(i) The Pieri formula: [Ωa].[Ων ] =

∑
[Ωλ] , where the sum is taken over

all λ such that
∑k

i=1 λi =
∑k

i=1 νi + n − k + 1 − a and n − k ≥ λ1 ≥ ν1 ≥
λ2 ≥ ... ≥ λk ≥ νk ≥ 0.
(ii)The Giambelli formula: [Ων ] = |[Ωνi+j−i]|, where |xi,j| denotes the
determinant of the matrix (xi,j).

The basis {[Ωi] | i ∈ I(n, k)} is ‘self-dual’ under the Poincaré duality.
That is, assume that i, j ∈ I(n, k) are such that |i| + |j| = N . Then
〈[Ωi][Ωj], µn,k〉 = δλ,j, where λ = (n + 1 − ik, · · · , n + 1 − i1) ∈ I(n, k).

2.3.3 Degree of a Schubert Variety

The degree of a Schubert variety Ωi of (complex) dimension r is defined as
the integer 〈[Ωi]c̄

r
1, µn,k〉 ∈ Z. We recall the following well-known numerical

formula for the degree of a Schubert Variety, [10],[2]:
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Lemma 2.3.1 Let Ωi be a Schubert variety of (complex) dimension r. Then
the degree of Ωi is given by:

deg(Ωi) =
r!

∏
1≤t<s≤k(is − it)

(i1 − 1)! · · · (ik − 1)!
(2.3.3.1)

In particular,

deg(Gn,k) = 〈c̄N
1 , µn,k〉 =

N !1! · · · (k − 1)!

(n − k)! · · · (n − 1)!
. (2.3.3.2)

.

For the proof of the above formula we refer to [10, Chapter XIV, §7].

More generally, deg([Ωi][Ωj]) := 〈[Ωi][Ωj]c̄
q
1, µn,k〉 = q!|1/(ir +jk+1−j −n−1)!|

where q = dim(Ωi) + dim(Ωj) − dim Gn,k (See [2, p.274]. We caution the
reader that our notations for Grassmann manifolds and Schubert varieties
are different from those used in Fulton’s book [2].)

One has the following geometric interpretation for the degree of a Schubert
variety. More generally, given any algebraic imbedding X →֒ CPm of a pro-
jective variety X of dimension d in the complex projective space CPm, the
degree of X is the number of points in the intersection of X with d hyper-
planes in general position. The degree of a Schubert variety defined above
is the degree of the Plücker imbedding Ωj ⊂ Gn,k →֒ P(Λk(Cn)), defined as
U 7→ Λk(U), where Λk(U) denotes the k-th exterior power of the vector space
U .

2.4 Proof of Theorem 2.2.4

In this section we reproduce the proof of Theorem 2.2.4 as given in [19, §2],
with a slight change of notation.

Let 1 ≤ k ≤ [n/2], n, k ∈ Z. Let c1, · · · , ck denote the elementary symmetric
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polynomials in k indeterminates and define hj = hj(c1, · · · , ck) by the iden-
tity (2.3.1.1). Let Hn,k denote the graded Q-algebra Q[c1, · · · , ck]/In,k where
degree of ci = 2i, and In,k is the ideal 〈hj | j > n − k〉. Recall from §3.1
of this chapter that Q[c1, · · · , ck]/In,k is isomorphic to H∗(CGn,k; Q). There
are no algebraic relations among c1, · · · , ck upto degree n − k. We have the
following lemma:

Lemma 2.4.1 If 1 ≤ l < k ≤ n/2, and m ∈ Z is such that k(n − k) ≤
l(m − l), then for any homomorphism ϕ: Hn,k → Hm,l of graded Q-algebras,
ker ϕ 6= 0.

Proof: Let z1, · · · , zl denote the defining algebra generators of Hm,l, with
degree of zj = 2j, 1 ≤ j ≤ l. Let, if possible, ϕ: Hn,k → Hm,l be a monomor-
phism of Q-algebras. Since k > l, there exists an i ≤ l + 1 such that ϕ(ci)
is in the subalgebra generated by z1, · · · , zi−1. We may assume 1 ≤ i is the
smallest such integer. If i = 1, then ϕ = 0. Therefore, i ≥ 2 and

ϕ(ci) = λ1z1, λ1 6= 0, (2.4.1)

ϕ(cj) = λjzj + Pj(z1, z2, · · · , zj−1)λj 6= 0, (2.4.2)

and
ϕ(ci) = Pi(z1, z2, · · · , zi−1).

for suitable polynomials Pj, 1 ≤ j ≤ i. In view of (2.4.1) and (2.4.2), one can
express the zj as a polynomial in ϕ(c1), ϕ(c2), · · · , ϕ(cj) for 1 ≤ j ≤ i − 1.
Thus

Q[z1, z2, · · · , zi−1] = Q[ϕ(c1), ϕ(c2), · · · , ϕ(ci−1)].

In particular, for a suitable polynomial Q, one has

Pi(z1, z2, · · · , zi−1) = Q(ϕ(c1), ϕ(c2), · · · , ϕ(ci−1)),

and hence

ϕ(ci) = Q(ϕ(c1), ϕ(c2), · · · , ϕ(ci−1)) = ϕ(Q(c1, c2, · · · , ci−1)).

Therefore, ci − Q(c1, c2, · · · , ci−1) ∈ ker ϕ = 0. But this contradicts the
fact that there are no algebraic relations among c1, · · · , ck upto degree n− k.
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Therefore, we must have ker ϕ 6= 0. �

Theorem 2.2.4 If f : CGn,k → CGm,l (resp. g : HGn,k → HGm,l), 1 ≤ k <
l ≤ [m/2], is any continuous map between two complex (resp. quaternionic)
Grassmannians of the same dimension, then deg f = 0 = deg g.

Proof: Let 1 ≤ l < k ≤ [n/2], k(n − k) = l(m − l). Let f : CGn,k →
CGm,l be any continuous map. Then, f induces an algebra homomorphism
f ∗: H∗(CGn,k; Q) → H∗(CGm,l; Q). As H∗(CGn,k; Q) ∼= Hn,k, it is immedi-
ate from Lemma 2.4.1 that ker (f ∗) 6= 0. Hence, deg f = 0. Proof for
g: HGn,k → HGm,l is similar. �
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Chapter 3

Maps between c-Hodge
Manifolds with b2 = 1

3.1 Cohomology of Compact Kähler Manifolds

In this section we discuss the cohomology of compact Kähler manifolds. We
will follow §15 of [8].

Let X denote a compact, complex manifold of complex dimension N . Let Ap,q

denote the complex vector space of global forms of type (p, q). The operator
d on the differential forms can be written as d = ∂ + ∂, where ∂ denotes
differentiation with respect to z-variables and ∂ denotes differentiation with
respect to z-variables. Let Ωp denote the sheaf of holomorphic p-forms on
X. Then, Hp,q(X) denotes Hq(X; Ωp), the q-th cohomology group of X
with coefficients in Ωp. By Dolbeault - Serre Theorem we have: Hp,q(X) ∼=
Zp,q/∂(Ap,q−1), where Zp,q is the module of all those global forms of type
(p, q) which vanish under ∂.

Let #: Ap,q → An−p,n−q denote the duality operator given by # =− ◦∗, where
∗ denotes the Hodge ∗-operation with orientation obtained from the complex
structure, and − is the complex conjugation. Then we can define a natural
hermitian scalar product on Ap,q given by: (·, ·)∗: Ap,q × Ap,q → C, (α, β)∗

We use the symbol (·, ·)∗ as (·, ·) will be reserved for another inner product, to be
introduced later.

21
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:=
∫

X
α ∧ #β. Let ϑ: Ap,q → Ap,q−1 be the adjoint of ∂ with respect to

this scalar product, that is, for α ∈ Ap,q, β ∈ Ap,q+1, (α, ϑβ)∗ = (∂α, β)∗.
Then, we define the complex Laplace-Beltrami operator �: Ap,q → Ap,q by
� = ϑ∂ + ∂ϑ. An element α ∈ Ap,q such that �α = 0 is called “complex
harmonic”. The subspace of all complex harmonic forms of type (p, q) will
be denoted by Bp,q(X) or, simply, Bp,q.

It is known, due to the work of Dolbeault, that Hp,q(X) can be identified
with Bp,q. Kodaira proved that Bp,q is finite-dimensional (cf. [12]).

Let (X, Ω) be a Kähler manifold. Then, with respect to local coordinates zα

(α = 1, ..., N), Ω has the following local description:

Ω = 2i
N∑

α,β=1

gα,βdzα ∧ dzβ

where Ω is the Kähler form associated to the Hermitian metric:
ds2 = 2

∑
gα,β(z, z)dzαdzβ with gα,β = gβ,α. The form Ω represents an ele-

ment ω of the cohomology group H2(X, R), and is called the Kähler class.
Note that ωn 6= 0.

For a Kähler manifold the Laplace-Beltrami operator � equals △
2
, where △ is

the real Laplace operator, that is, △ = dδ + δd, δ being the adjoint operator
to d. Therefore, � commutes with conjugation. In this case, α 7→ α defines
a conjugate-isomorphism between Bp,q and Bq,p. By the theory of de Rham
and Hodge, we have:

Hr(X, C) ∼=
⊕

p+q=r

Bp,q (3.1.1)

where Hr(X, C) denotes the usual singular cohomology. Therefore, elements
of the image of Bp,q in Hp+q(X, C), under this isomorphism, can be repre-
sented by forms α of type (p, q) such that dα = 0.

For any compact Kähler manifold (X, Ω) with dimC X = N , even Betti num-
bers upto dimension 2N are positive and odd Betti numbers are even.
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Any complex analytic submanifold of a Kähler manifold is Kähler. The com-
plex projective spaces, CPn, n ≥ 1, are well-known to be Kähler, and hence,
any smooth projective variety over C is Kähler. In particular, the complex
Grassmann manifolds are Kähler. In fact, Hp,q(CGn,k) = 0 if p 6= q, and,
H2p(CGn,k; C) = Bp,p, since CGn,k has an algebraic cell decomposition. See
[2, p. 23].

Suppose dimC X = N = 2s is even, where (X, Ω) is a compact Kähler mani-
fold. Let zj = x2j−1 +

√
−1x2j be local complex coordinates. Then, we will

use the orientation on X given by dx1 ∧ dx2 ∧ ... ∧ dx2N .

There exist C-linear operators L and Λ on H∗(X; C), which are given by
L: Hp,q(X) → Hp+1,q+1(X), α 7→ ω ∧ α and
Λ: Hp,q(X) → Hp−1,q−1(X), α 7→ (−1)p+q#L#α
for α ∈ Bp,q. Since ω is real, Lα = Lα.

The operator Λ is dual to L with respect to the hermitian scalar product,
(·, ·)∗, on Hr(X; C) =

⊕
p+q=r Bp,q. The kernel of Λ is denoted by Bp,q

0 and
is called the subspace of effective harmonic forms of type (p, q). Then, for
p + q ≤ N and k ≥ 1 we have the following:

(a) ΛLk: Bp−k,q−k
0 → Bp−1,q−1 is a non-zero scalar multiple of Lk−1 .

(b) Lk: Bp−k,q−k
0 → Bp,q is a monomorphism.

(c) There is a direct sum decomposition

Bp,q =
⊕

0≤k≤min{p,q}

LkBp−k,q−k
0 (3.1.2)

where, for k = 0, Lk equals the identity operator.
For 1 ≤ k ≤ min{p, q}, define the subspace Bp,q

k of elements of har-

monic forms of type (p, q) and class k to be equal to LkBp−k,q−k
0 . Then

we have:
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(d) #ϕ = (−1)q+kϕ, where ϕ ∈ Bp,q
k , ϕ ∈ Bq,p

k and p + q ≤ N .

Therefore, the Hodge decomposition (3.1.1) of the cohomology group HN(X, C)
can be rewritten as:

HN(X, C) =
⊕

p+q=N,k≤min{p,q}

Bp,q
k (3.1.3)

Since the scalar product of two forms (α, β)∗ is non-zero only if α∧#β is of

type (N, N), Bp,q
k and Bp′,q′

k′ are mutually orthgonal if (p, q) 6= (p′, q′). Also, if

α ∈ Bp,q
k and β ∈ Bp,q

k′ , where p+q = N and k > k′, there exist α0 ∈ Bp−k,q−k
0

and β0 ∈ Bp−k′,q−k′

0 , such that (α, β)∗ = (Lkα0, L
k′

β0)∗ = (α0, Λ
kLk′

β0)∗ =
0. Therefore, the distinct summands in the Hodge decomposition (3.1.3) are
pairwise orthogonal with respect to the scalar product (·, ·)∗.

In case of the real cohomology group HN(X; R), we can define a quadratic
form Q(·, ·) by: Q(α, β) =

∫
X

α ∧ β, where α, β ∈ HN(X; R). Now, let Ep,q
k

be the real vector space of real harmonic forms α, which can be written in
the form α = ϕ + ϕ, where ϕ ∈ Bp,q

k , ϕ ∈ Bq,p
k and p + q = N . Then we have

direct sum decomposition of the real cohomology group, HN(X; R), given
by:

HN(X, R) =
⊕

p+q=N,k≤min{p,q}

Ep,q
k (3.1.4)

where, p + q ≤ N and the summands in the above decomposition are mutu-
ally orthogonal with respect to the quadratic form Q(·, ·).

Since our proofs require only the cohomological properties of compact Kähler
manifolds, in the subsequent discussions we will mainly work with c-Kähler
manifolds.

A compact connected orientable smooth manifold X is called c-symplectic
(or cohomologically symplectic) if there exists an element ω ∈ H2(X; R),
called a c-symplectic class, such that ωN ∈ H2N(X; R) ∼= R is non-zero
where N = (1/2) dimR X. If ω is a c-symplectic class in X, then (X, ω) is
said to satisfy the weak Lefschetz (respectively hard Lefschetz) condition if
∪ωN−1: H1(X; R)−→H2N−1(X; R)
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(respectively ∪ωi: HN−i(X; R)−→HN+i(X; R), 1 ≤ i ≤ N,)
is an isomorphism. If (X, ω) satisfies the hard Lefschetz condition, then X
is called c-Kähler or cohomologically Kähler. If (X, ω) is c-Kähler, and if
ω is in the image of the natural map in H2(X; Z)−→H2(X; R), we call X
c-Hodge. Note that if (X, ω) is c-Kähler and if H2(X; R) ∼= R, then (X, tω)
is c-Hodge for some t ∈ R.

Clearly Kähler manifolds are c-Kähler and smooth projective varieties over
C are c-Hodge. It is known that CP2#CP2 is c-symplectic but not symplectic
(hence not Kähler) since it is known that it does not admit even an almost
complex structure. It is also c-Kähler. Examples of c-symplectic manifolds
which satisfy the weak Lefschetz condition but not c-Kähler are also known
(cf. [13]).

Any c-symplectic manifold (X, ω) is naturally oriented; the fundamental class
of X will be denoted by µX ∈ H2N (X; Z) ∼= Z.

Let (X, ω) be a c-Kähler manifold of real dimension 2N . Let 1 ≤ r ≤ N .
One has a bilinear form (·, ·)ω (or simply (·, ·) when there is no danger of con-
fusion) on Hr(X; R) defined as (α, β)ω = 〈αβωN−r, µX〉, α, β ∈ Hr(X; R).
When (X, ω) is c-Hodge, the above form is rational, that is, it restricts to
a bilinear form Hr(X; Q) × Hr(X; Q)−→Q. It will be important for us to
consider the bilinear form on the rational vector space Hr(X; Q) rather than
on the real vector space Hr(X; R).

The bilinear form (·, ·) is symmetric (resp. skew symmetric) if r is even (resp.
odd). Note that the above form is non-degenerate for all r. This follows from
Poincaré duality and the hard Lefschetz condition that β 7→ β ∪ ωN−r is an
isomorphism Hr(X; Q)−→H2N−r(X; Q). Further, if r ≤ N , the monomor-
phism ∪ω: Hr−2(X; Q)−→Hr(X; Q) is an isometric imbedding, i.e., (α, β) =
(αω, βω) for all α, β ∈ Hr−2(X; R).

As in the case of Kähler manifolds (cf. [9],[22],[8]), one obtains an orthogonal
decomposition of the real cohomology groups of a c-Kähler manifold (X, ω).
The decomposition, which preserves the rational structure when (X, ω) is
c-Hodge, is obtained as follows: Let 1 ≤ r ≤ N . Let Vr

ω, or more briefly
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Vr when ω is clear from the context, be the kernel of the homomorphism
∪ωN−r+1: Hr(X; R)−→H2N−r+2(X; R). An element of Vr will be called a
primitive class. One has the Lefschetz decomposition

Hr(X; R) =
⊕

0≤q≤[r/2]

ωqVr−2q. (3.1.5)

3.2 Maps between c-Hodge manifolds with b2 = 1

It is important for the proofs of our main results that we work with rational
cohomology. Recall that a c-Kähler manifold (X, ω) is said to c-Hodge if ω is
in the image of the natural map in H2(X; Z)−→H2(X; R). We had defined,
in the previous section, the bilinear form (·, ·)ω (or simply (·, ·)) on Hr(X; R)
as (α, β)ω = 〈αβωN−r, µX〉, α, β ∈ Hr(X; R). We prove the following lemma
for c-Hodge manifolds with second Betti number, b2 = 1.

Lemma 3.2.1 Suppose that (X, ω) is a c-Hodge manifold of dimension 2N
with second Betti number equal to 1. Let f : X−→Y be any continuous map
of non-zero degree where Y is a compact manifold with non-vanishing second
Betti number. Then:
(i) (·, ·)tω = tN−r(·, ·)ω on Hr(X; Q) for t ∈ Q, t 6= 0.
(ii) (Y, ϕ) is c-Hodge where ϕ ∈ H2(Y ; Q) is the unique class such that
f ∗(ϕ) = ω. Furthermore, f ∗ preserves the Lefschetz decomposition (3.1.5),
that is, f ∗(Vr

ϕ) ⊂ Vr
ω for r ≤ N .

(iii) If α, β ∈ Hr(Y ; Q), then (f ∗(α), f ∗(β))ω = deg(f)(α, β)ϕ. In particular,

degree of f equals 〈ωN ,µX〉
〈ϕN ,µY 〉

.

Proof. (i) This is trivial.
(ii) Let dim(X) = 2N . Since deg(f) 6= 0, f ∗: H i(Y ; Q)−→H i(X; Q) is a
monomorphism for all i ≤ 2N . Comparing the second Betti numbers of X
and Y we conclude that f ∗: H2(Y ; Q)−→H2(X; Q) ∼= Q is an isomorphism.
Let ϕ ∈ H2(Y ; Q) be the unique class such that f ∗(ϕ) = ω. Since f ∗ is
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a homomorphism of rings, we have 0 6= ωN = (f ∗(ϕ))N = f ∗(ϕN ) and so
ϕN 6= 0.

Let r ≤ N be a positive integer. One has a commuting diagram:

Hr(Y ; Q)
∪ϕN−r

−→ H2N−r(Y ; Q)
f ∗ ↓ ↓ f ∗

Hr(X; Q)
∪ωN−r

−→ H2N−r(X; Q)

The vertical maps are monomorphisms since deg(f) 6= 0. By our hypothe-
sis on X, the homomorphism ∪ωN−r in the above diagram is an isomorphism.
This implies that ∪ϕN−r is a monomorphism. Since, by Poincaré duality, the
vector spaces Hr(Y ; Q) and H2N−r(Y ; Q) have the same dimension, ∪ϕN−r

is an isomorphism and so (Y ; ϕ) is c-Hodge. It is clear that f ∗(Vr
ϕ) ⊂ Vr

ω.

(iii) Suppose that α, β ∈ Hr(Y ; R). Then

(f ∗(α), f ∗(β))ω = 〈f ∗(α)f ∗(β)ωN−r; µX〉
= 〈f ∗(αβ)f ∗(ϕN−r); µX〉
= 〈f ∗(αβϕN−r); µX〉
= 〈αβϕN−r, f∗(µX)〉
= deg(f)〈αβϕN−r; µY 〉
= deg(f)(α, β)ϕ.

The formula for the degree of f follows from what has just been estab-
lished by taking α = β = ϕ. �

Observe that the summands in the Lefschetz decomposition (3.1.5) are mu-
tually orthogonal with respect to the bilinear form (·, ·). Indeed, let α ∈
Vr−2p, β ∈ Vr−2q, p < q. Thus αωN−r+2p+1 = 0 and so αωN−r+p+q = 0.
Therefore (ωpα, ωqβ) = 〈αβωN−r+p+q, µX〉 = 0. As observed earlier the form
(·, ·) is non-degenerate. It follows that the form restricted to each summand
in (3.1.5) is non-degenerate. In favourable situations, the form is either pos-
itive or negative definite as we shall see in Proposition 3.2.1 below.

Proposition 3.2.1 Suppose that (X, Ω) is a compact connected Kähler man-
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ifold such that Hp,q(X) = 0 for p 6= q. Let ω be the cohomology class
corresponding to Ω. Then the form (−1)q+r(·, ·)ω restricted to ωqV2r−2q ⊂
H2r(X; R) is positive definite for 0 ≤ q ≤ r, 1 ≤ r ≤ [N/2].

Proof. First assume that N = dimC X is even, say N = 2s. In view of our
hypothesis, all odd Betti numbers of X vanish and we have Bp,q

k = 0 for all
p 6= q, k ≥ 0, so that

H2r(X; C) = Hr,r(X) =
⊕

0≤k≤r

Br,r
k . (3.2.1)

Recall that the real cohomology group H2r(X; R) ⊂ H2r(X; C) = Hr,r(X)
has an orthogonal decomposition with respect to (·, ·)ω induced from (3.1.4):

H2r(X; R) =
⊕

0≤k≤s

Er,r
k (3.2.2)

where Ep,p
k = {α ∈ Bp,p

k | α = ᾱ}. Now taking r = s = N/2 one has
#α = (−1)s+kα for α ∈ Es,s

k . In particular the bilinear form (·, ·)∗ equals
(−1)s+kQ(·, ·), which in turn equals (−1)s+k(·, ·)ω. Therefore (−1)s+kQ(·, ·)
restricted to each Es,s

k is positive definite.

We shall show in Lemma 3.2.2 below that ωkVN−2k = Es,s
k . The propo-

sition follows immediately from this since (α, β)ω = (ωs−rα, ωs−rβ)ω for
α, β ∈ ωkV2r−2k as N = 2s, completing the proof in this case.

Now suppose that N is odd. Consider the Kähler manifold Y = X × CP1

where we put the Fubini-Study metric on CP1 with Kähler class η being the
‘positive’ generator of H2(CP1; Z) ⊂ H2(CP1; R) and the product structure on
Y so that the Kähler class of Y equals ω + η =: ϕ. By Künneth theorem
H∗(Y ; R) = H∗(X; R)⊗H∗(CP1; R). We shall identify the cohomology groups
of X and CP1 with their images in H∗(Y ; R) via the monomorphisms induced
by the first and second projection respectively. Under these identifications,
Hp,q(Y ) = Hp,q(X) ⊕ Hp−1,q−1(X) ⊗ H1,1(CP1). In particular, Hp,q(Y ) = 0
unless p = q. By what has been proven already, the form (−1)r+k(·, ·) is
positive definite on ϕkV2r−2k

ϕ ⊂ H2r(Y ; R).
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Choose a base point in CP1 and consider the inclusion map j: X →֒ Y . The
imbedding j is dual to η. Also j∗(ϕ) = ω. It follows that j∗(ϕkV2r−2k

ϕ ) ⊂
ωkV2r−2k

ω for 0 ≤ k < r, 1 ≤ r < N . Since the kernel of j∗: H2r(Y ; R)−→H2r(X; R)
equals H2r−2(X; R) ⊗ H2(CP1; R), and maps H2r(X; R) ⊂ H2r(Y ; R) isomor-
phically onto H2r(X; R), we must have j∗(ϕkV2r−2k

ϕ ) = ωkV2r−2k
ω .

Let α, β ∈ H2r(X; R) ⊂ H2r(Y ; R). Since j: X →֒ Y is dual to η, we have
j∗(µX) = η ∩ µY . Therefore,

(j∗(α), j∗(β))ω = 〈j∗(αβ)j∗(ω)N−2r; µX〉
= 〈αβωN−2r, j∗(µX)〉
= 〈αβωN−2r, η ∩ µY 〉
= 〈αβωN−2rη, µY 〉

Since η2 = 0 we have ϕN−2r+1 = ωN−2r+1 + (N − 2r + 1)ωN−2rη. Fur-
thermore, αβωN−2r+1 ∈ H2N+2(X; R) = 0. Therefore, we conclude that
(j∗(α), j∗(β))ω = 1

N−2r+1
〈αβϕN−2r+1, µY 〉 = 1

N−2r+1
(α, β)ϕ. This shows that

the bilinear form (·, ·)ω on H2r(X; R) is a positive multiple of the form
(·, ·)ϕ on H2r(Y ; R) restricted to H2r(X; R). It follows that the bilinear form
(−1)r+k(·, ·) on H2r(X; R) restricted to ωkV2r−2k(X) is positive definite. �

We must now establish the following

Lemma 3.2.2 With notations as above, assume that N = 2s is even. Under
the hypothesis of the above proposition, Es−k,s−k

k equals ωkVN−2k, 0 ≤ k ≤ s.

Proof. Since L preserves real forms, it suffices to show that Er,r
0 = V2r

when r ≤ s. By definition Er,r
0 = Br,r

0 ∩ H2r(X; R) = {α ∈ Hr,r(X; C) |
Λ(α) = 0, α = ᾱ}.

Let α ∈ Er,r
0 . Suppose that p ≥ 1 is the largest integer such that ωN−2r+pα =:

θ is a non-zero real harmonic form of type (N − r + p, N − r + p). Since
LN−2r+2p: Hr−p,r−p(X)−→HN−r+p,N−r+p(X) is an isomorphism, and since ω
is real there must be a real form β ∈ Hr−p,r−p(X) such that LN−2r+2p(β) =
θ = LN−2r+p(α). Since p is the largest, using the decomposition (3.2.1) we
see that β ∈ Br−p,r−p

0 . Applying ΛN−2r+p both sides and (repeatedly) using
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ΛLqβ is a non-zero multiple of Lq−1β when r − p + q < N we see that β
is a non-zero multiple of Λpα = 0. Thus β = 0 and hence θ = 0, which
contradicts our assumption. Therefore LN−2r+1(α) = 0 and so α ∈ Vr

0 . On
the other hand Λ maps H2r(X; C) onto H2r−2(X; C). A dimension argument
shows that Er,r

0 = V2r. �

Example 3.2.2 (The Case of the Complex Grassmann Manifold)

The Grassmann manifold CGn,k, which has complex dimension N = k(n−k),
has the structure of a Kähler manifold with Kähler class ω := c̄1 = [Ω1] ∈
H2(CGn,k; Z). (This fact follows, for example, from the Plücker imbedding

CGn,k →֒ CP(n

k)−1.) The bilinear form (·, ·) is understood to be defined with
respect to ω.

Example 3.2.3 (The Case of the Quaternionic Grassmannian)
Although quaternionic Grassmann manifolds are not c-Kähler, one could use
the symplectic Pontrjagin class η := e1(γn,k) ∈ H4(HGn,k; Z) in the place of
c̄1 ∈ H2(CGn,k; Z) to define a pairing (·, ·)η on H4r(HGn,k; Q) and the primitive
classes vj ∈ H4j(HGn,k; Q). We define V4r ⊂ H4r(HGn,k; Q) to be the kernel
of

∪ηN−2r+1: H4r(HGn,k; Q)−→H4N−4r+4(HGn,k; Q).

The form (·, ·)η is definite when restricted to the space ηqV4r−4q ⊂ H4r(HGn,k; Q).
The degree doubling isomorphism from the cohomology algebra of CGn,k to
that of HGn,k maps the i-th Chern class of the tautological complex k-plane
bundle over CGn,k to the i-th symplectic Pontrjagin class of the tautological
left H-bundle over HGn,k.



Chapter 4

Proofs of Main Results

In this chapter we prove the main results of the thesis, namely Theorems
1.0.1, 1.0.2 and 1.0.3. We will only consider the case of complex Grassmann
manifold CGn,k, which we will refer to as Gn,k in this chapter. The proofs
in the case of quaternionic Grassmann manifold follows in view of the fact
that the cohomology algebra of HGn,k is isomorphic to that of Gn,k via an
isomorphism that doubles the degree.

Recall that complex Grassmann manifold Gn,k is a smooth projective va-
riety and that Schubert subvarieties yield an algebraic cell decomposition.
In particular its Chow ring is isomorphic to singular cohomology ring (with
Z-coefficients) via an isomorphism that doubles the degree. It follows that
Hp,q(Gn,k; C) = 0 for p 6= q. Therefore results of the previous chapter hold
for Gn,k. The bilinear form (·, ·): Hr(Gn,k; R) × Hr(Gn,k; R) → R is given by
(α, β) = 〈αβωN−r, µX〉, α, β ∈ Hr(Gn,k; R), is understood to be defined with
respect to ω = c̄1 ∈ H2(Gn,k; Z) ∼= Z.

We have the following lemma whose proof follows immediately from Lemma
3.2.1(i) and (iii).

Lemma 4.0.3 Let f : Gn,k−→Gm,l be any continuous map where k(n − k) =
l(m − l). Suppose that f ∗(c1(γ

⊥
m,l)) = λc1(γ

⊥
n,k) where λ ∈ Z. Then

deg(f) = λN deg Gn,k

deg Gm,l

.

31
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4.1 Theorem 1.0.3

We are now in a position to prove Theorem 1.0.3. We first recall the state-
ment of Whitehead’s theorem, which will be used in the proof of Theorem
1.0.3:
Whitehead’s Theorem: A map f : N → M between simply connected CW-
complexes is a homotopy equivalence if f∗: Hq(N ; Z) → Hq(M ; Z) is an iso-
morphism for each q.

Theorem 1.0.3 Let F = C or H. Suppose that k(n − k) = l(m − l), and
1 ≤ l ≤ [m/2], 1 ≤ k ≤ [n/2]. If f : FGn,k−→FGm,l is a map of degree ±1,
then (m, l) = (n, k) and f is a homotopy equivalence.

Proof of Theorem 1.0.3. We may suppose that F = C and that l ≤ k; other-
wise k < l ≤ [m/2] in which case deg(f) = 0 for any f by [19, Theorem 2]
(see also Theorem 2.2.4 in Chapter 2 of this thesis).

Suppose that deg(f) = ±1, and l < k. We have

deg Gn,k

deg Gm,l
= 1!···(k−1)!(m−l)!···(m−1)!

1!···(l−1)!(n−k)!···(n−1)!

= l!···(k−1)!(m−l)!···(m−1)!
(n−k)!···(n−1)!

= (
∏

1≤j≤k−l
(l−1+j)!

(n−k+j−1)!
)(

∏
1≤j≤l

(m−j)!
(n−j)!

)

Note that after simplifying (l + j − 1)!/(n− k + j − 1)! for each j in the first
product, we are left with product of (k − l) blocks of (n− k − l) consecutive
positive integers in the denominator, the largest to occur being (n − l − 1).
Similar simplification in the second product yields a product of l blocks of
(m − n) consecutive integers, the smallest to occur being (n − l + 1). Since
(k − l)(n − k − l) = l(m − n) we conclude that deg(Gn,k) > deg(Gm,l).

In the notation of Lemma 4.0.3 above, we see that either deg(f) = 0 or
| deg(f)| > |λ|N ≥ 1— a contradiction. Therefore (m, l) = (n, k) if deg(f) =
±1. Now f ∗: H∗(Gn,k; Z)−→H∗(Gn,k; Z) induces an isomorphism. Since Gn,k

is a simply connected CW complex, by Whitehead’s theorem, f is a homotopy
equivalence. �
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Theorem 1.0.3 is a topological analogue of the result of Paranjape and Srini-
vas [18] that any non-constant morphism f : Gn,k−→Gm,l is an isomorphism of
varieties provided the Gm,l is not the projective space. Our conclusion in the
topological realm is weaker. Indeed it is known that there exist continuous
self-maps of any complex and quaternionic Grassmann manifold which have
large positive degrees. See [1] and also [21].

4.2 Theorem 1.0.1

The proof of Theorem 1.0.1 requires the construction of an orthogonal basis
for V2r

n,k ⊂ H2r(Gn,k; Q), which can be obtained inductively using Gram-
Schmidt orthogonalization process as follows. Recall from §2 the basis C̄r

for H2r(Gn,k; Q). Clearly ω · C̄r−1 = c̄1 · C̄r−1 = {c̄j ∈ C̄r | j1 > 0} is a basis
for ωH2r−2(Gn,k; Q). Therefore we see that the subspace spanned by C̄r,0 :=
{c̄j ∈ C̄r | j1 = 0} is complementary to ⊕q>0B

r−q,r−q
q ⊂ H2r(Gn,k; Q). The re-

quired basis is obtained by taking the orthogonal projection of C̄r,0 onto V2r.
Indeed, inductively assume that an orthogonal basis {vj} for ωH2r−2(Gn,k; Q)
that is compatible with the direct sum decomposition ⊕q>0B

r−q,r−q
q has been

constructed. We need only apply the orthogonalization process to the (or-
dered) set {vj} ∪ {c̄j ∈ C̄r | j1 = 0} where the elements c̄j are ordered,
say, according to lexicographic order of the exponents. For example, taking
n = 12, k = 6, r = 6, the elements of C̄6,0 are ordered as c̄3

2, c̄2c̄4, c̄
2
3, c̄6. We

denote the basis element of V2r obtained from cj ∈ C̄r by vj. Note that when
r ≤ k, the span of the set {vj | jr = 0} ⊂ H2r(Gn,k; Q) equals space of the
decomposable elements in H2r(Gn,k; Q) since, according to our assumption
on the ordering of elements c̄j, the element c̄r is the greatest and so c̄r does
not occur in any other vj. Thus vr − c̄r belongs to the ideal D ⊂ H∗(Gn,k; Q)
of decomposable elements, and vj ∈ D for all other j.

We illustrate this for r = 2, 3. (When r = 1, V1 = 0. ) The element

v2 = c̄2 − (c̄2,ω2)
(ω,ω)

ω2 = c̄2 − deg c̄2
deg Gn,k

ω2 ∈ H4(Gn,k; Q) is a basis for the one-

dimensional space V4.
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Similarly, v3 is a basis for V6 where

v3 := c̄3 − (c̄3,v2ω)
(v2ω,v2ω)

v2ω − (c̄3,ω3)
(ω3,ω3)

ω3

= c̄3 − deg c̄3
deg Gn,k

ω3 − deg Gn,k deg(c̄3c̄2)−deg c̄2 deg c̄3
deg Gn,k deg(c̄2

2
)−(deg c̄2)2

v2ω.

This leads to
(v3, v3) = (v3, c̄3) = deg(c̄2

3) − (deg c̄3)2

deg Gn,k
− deg(c̄3c̄2) deg Gn,k−deg c̄2 deg c̄3

deg Gn,k deg(c̄2
2
)−(deg c̄2)2

deg(c̄3v2).

To avoid possible confusion, we shall denote the primitive classes in H2j(Gm,l; Q)
corresponding to j = 2, · · · , l by uj. Also V2r

m,l ⊂ H2r(Gm,l; Q) will denote the
space of primitive classes. The following lemma is crucial for the proof of
Theorem 1.0.1.

Lemma 4.2.1 Suppose that f : Gn,k−→Gm,l is a continuous map such that
f ∗(c1(γ

⊥
m,l)) = λc1(γ

⊥
n,k) = λc̄1 with λ 6= 0. Let k(n − k) = l(m − l), 2 ≤ k ≤

n/2, 2 ≤ l ≤ m/2 and l ≤ k. Then, with the above notations, f ∗(uj) = λjvj

where λj ∈ Q is such that

λ2
j = λ2j deg Gn,k

deg Gm,l

(uj, uj)

(vj , vj)

for 2 ≤ j ≤ l.

Proof. The degree of f equals λN deg Gn,k/ deg Gm,l 6= 0 by Lemma 4.0.3.

Therefore f ∗: H2j(Gm,l; Q)−→H2j(Gn,k; Q) is an isomorphism and f ∗(V2j
m,l) =

V2j
n,k, since f ∗ is a monomorphism and the dimensions are equal as j ≤ l ≤ k.

Note that f ∗ maps the space of decomposable elements D2j
m,l ⊂ H2j(Gm,l; Q)

isomorphically onto D2j
n,k. Since uj ⊥ D2j

m,l∩V2j
m,l we see that, by Lemma 3.2.1

(ii), f ∗(uj) ⊥ D2j
n,k ∩V2j

n,k. As the form (·, ·) on V2j
n,k is definite by Proposition

3.2.1 and V2j
n,k = Qvj ⊕ (V2j

n,k ∩D2j
n,k) is an orthogonal decomposition, we must

have f ∗(uj) = λjvj for some λj ∈ Q.
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Recall that deg(f) = λN deg Gn,k/ deg Gm,l. Note that

λN−2j(f ∗(uj), f
∗(uj)) = (f ∗(uj), f

∗(uj))λc̄1

= deg(f)(uj, uj)ω

= λN deg Gn,k

deg Gm,l
(uj, uj)

by Lemma 3.2.1. Thus λ2
j(vj , vj) = (f ∗(uj), f

∗(uj)) = λ2j deg Gn,k

deg Gm,l
(uj, uj). �

We are now ready to prove Theorem 1.0.1.

Theorem 1.0.1 Let F = C or H and let d = dimR F. Let f : FGn,k−→FGm,l

be any continuous map between two F-Grassmann manifolds of the same di-
mension. Then, there exist algebra generators ui ∈ Hdi(FGm,l; Q), 1 ≤ i ≤ l,
such that the image f ∗(ui) ∈ Hdi(FGn,k; Q), 1 ≤ i ≤ l, is determined upto a
sign ±, provided degree of f is non-zero.

Proof of Theorem 1.0.1: We need only consider the case F = C. Recall
that the cohomology algebra H∗(Gm,l; Z) is generated by c̄1, · · · , c̄l where
c̄j = cj(γ

⊥
m,l). Therefore f ∗: H∗(Gm,l; Z)−→H∗(Gn,k; Z) is determined by the

images of c̄j, 1 ≤ j ≤ l.

As observed in Example 3.2.2, one has uj − c̄j ∈ D2j
m,l, 2 ≤ j ≤ l. It follows

easily by induction that each c̄j , 1 ≤ j ≤ l, can be expressed as a polynomial
with rational coefficients in c̄1, u2, · · · , ul. Therefore c̄1 =: u1, u2, · · · , ul gen-
erate H∗(Gm,l; Q).

Lemma 4.0.3 implies that f ∗(u1) = λc1(γ
⊥
n,k) where λN—and hence λ upto a

sign—is determined by the degree of f . Now by Lemma 4.2.1, the image of
f ∗(uj) = λjvj where λj is determined upto a sign. �

Note that, since the degree doubling isomorphism from the cohomology al-
gebra of Gn,k to that of HGn,k maps the i-th Chern class of the tautological
complex k-plane bundle over Gn,k to the i-th symplectic Pontrjagin class of
the tautological left H-bundle over HGn,k, the formula given in Lemma 4.3.1
holds without any change for the quaternionic Grassmannian. Hence, the
proof of Theorem 1.0.1 also carries through for the quaternionic Grassman-
nian.
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Endomorphisms of the cohomology algebra of Gn,k have been classified by M.
Hoffman [11]. They are either ‘grading homomorphisms’ defined by
ci 7→ λici, 1 ≤ i ≤ k for some λ or when n = 2k, the composition of a grading
homomorphism with the homomorphism induced by the diffeomorphism
⊥: Gn,k−→Gn,k defined as U 7→ U⊥.

4.3 Theorem 1.0.2

The following calculation will be used in the course of the proof of Theorem
1.0.2.

Lemma 4.3.1 Let v2 ∈ H4(Gn,k; Q) denote the primitive basis element ob-

tained from c̄2. Then, (v2, v2) = deg Gn,k
(k2−1)((n−k)2−1)

2(N−1)2(N−2)(N−3)
.

Proof. The proof involves straightforward but lengthy calculation which we
work out below.

Since (v2, c̄
2
1) = 0, we get (v2, v2) = (v2, c2) = (c̄2, c̄2) − deg c̄2

deg Gn,k
(c̄2, ω

2) =

deg Gn,k(
deg(c̄2

2
)

deg Gn,k
− ( deg c̄2

deg Gn,k
)2).

Since c̄2
2 = [Ω2]

2 = [Ω4] + [Ω3,1] + [Ω2,2], we see that
deg c̄2

2

deg Gn,k
= deg c̄4

deg Gn,k
+

deg Ω3,1

deg Gn,k
+

deg Ω2,2

deg Gn,k
.

Now an explicit calculation yields, upon using N = k(n − k):

deg c̄4
deg Gn,k

= (n−k−1)(n−k−2)(n−k−3)(k+1)(k+2)(k+3)
4!(N−1)(N−2)(N−3)

,
deg Ω3,1

deg Gn,k
= (n−k+1)(n−k−1)(n−k−2)(k+2)(k+1)(k−1)

2!4(N−1)(N−2)(N−3)
,

deg Ω2,2

deg Gn,k
= N(k−1)(k+1)(n−k+1)(n−k−1)

2!3·2(N−1)(N−2)(N−3)
,

deg c̄2
deg Gn,k

= (k+1)(n−k−1)
2!(N−1)

.

Substituting these in the above expression for (v2, v2) we get (v2, v2) =

deg Gn,k
(k+1)(n−k−1)

4!(N−1)2(N−2)(N−3)
A where, again using N = k(n − k) repeatedly,
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A := (N − 1){(n − k − 2)(k + 2)(n − k − 3)(k + 3)
+3(n − k − 2)(k + 2)(n − k + 1)(k − 1) + 2N(k − 1)(n − k + 1)}
−6(N − 2)(N − 3)((n − k − 1)(k + 1))
= (N − 1){(N + 2(n − 2k) − 4)(N + 3(n − 2k) − 9)
+3(N + 2(n − 2k) − 4)(N − (n − 2k) − 1) + 2N(N − (n − 2k) − 1)}
−6(N − 2)(N − 3)(N + (n − 2k) − 1)
= 12(N − (n − 2k) − 1)
= 12(k − 1)(n − k + 1).

Therefore, (v2, v2) = deg Gn,k
(k2−1)((n−k)2−1)

2(N−1)2(N−2)(N−3)
. �

Next, we give the proof of Theorem 1.0.2:

Theorem 1.0.2 Let F = C or H. Fix integers 2 ≤ l < k. Let m, n ≥ 2k
be positive integers such that k(n − k) = l(m − l) and f : FGn,k−→FGm,l any
continuous map. Then, degree of f is zero if (l2 − 1)(k2 − 1)((m − l)2 −
1)((n− k)2 − 1) is not a perfect square. In particular, degree of f is zero for
n sufficiently large.

Proof of Theorem 1.0.2: We assume, as we may, that F = C. We preserve
the notations used in the previous section. From Lemma 4.3.1 we have

(v2, v2) = deg Gn,k
(k2−1)((n−k)2−1)

2(N−1)2(N−2)(N−3)
. Therefore, by Lemma 4.2.1 we have

λ2
2 = λ4 deg Gn,k

deg Gm,l

(v2,v2)
(u2,u2)

= λ4(
deg Gn,k

deg Gm,l
)2 (k2−1)((n−k)2−1)

(l2−1)((m−l)2−1)

= B2(k2 − 1)(l2 − 1)((n − k)2 − 1)((m − l)2 − 1)

where B :=
λ2 deg Gn,k

deg Gm,l(l2−1)((m−l)2−1)
∈ Q. It follows that deg(f) = 0 unless

Q := (l2 − 1)(k2 − 1)((m − l)2 − 1)((n − k)2 − 1) is a perfect square. It re-
mains to show that there are at most finitely many values for m, n for which
the Q is a perfect square. Before proving this in Proposition 4.3.1, we recall
the statement of the following theorem of Siegel, which will be used for the
proof of the proposition:
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Siegel’s Theorem: [6, Theorem D.8.3, p. 349] Let K/Q be a number field,
let S ⊂ MK be a finite set of absolute values on K that includes all the
archimedean absolute values, and let RS be the ring of S-integers of K. Let
f(X) ∈ K[X] be a polynomial of degree at least 3 with distinct roots (in K̄).
Then the equation Y 2 = f(X) has only finitely many solutions X, Y ∈ RS.

Proposition 4.3.1 Let 1 < a < b be positive integers. Then there are at
most finitely many solutions in Z for the system of equations

y2 = Q(a, b, x, z), az = bx, (4.3.1)

where Q(a, b, x, z) := (a2 − 1)(b2 − 1)(x2 − 1)(z2 − 1).

Proof. Let r = gcd(a, b) and write a = rs, b = rt so that tx = sz. Then
the system of equations (8) can be rewritten as y2 = F (x) where F (x) :=
(1/s2)(a2 − 1)(b2 − 1)(x2 − 1)(t2x2 − s2). Note that F (x) ∈ Q[x] has distinct
zeros in Q. By Siegel’s Theorem it follows that the equation y2 = F (x) has
only finitely many solutions in the ring RS ⊂ K of S-integers where K is any
number field and S any finite set of valuations of K, including all archimedean
valuations. In particular, taking K = Q and S the usual (archimedean)
absolute value, we see that there are only finitely many integral solutions of
(4.3.1). �

For the rest of the chapter we shall only be concerned with the number
theoretic question of Q(a, b, c, d) being a perfect square.

Remark 4.3.2 (i) We observe that there are infinitely many integers 1 <
a < b < c < d such that Q(a, b, c, d) is a perfect square. Indeed given a, b, let
c be any positive integer such that (a2−1)(b2−1)(c2−1) = Pu2 where P > 1
is square free. Let (x, y) be any solution with x 6= 0 of the so called Pell’s
equation y2 = 1 + Px2. Then d = |y| is a solution whenever d > c. Since the
Pell’s equation has infinitely many solutions, there are infinitely many such d.

(ii) Suppose that (l2 − 1)(k2 − 1)(c2 − 1) = x2 is a perfect square. (There
exists such positive integers c—in fact infinitely many of them— for which
this happens if and only if (l2 − 1)(k2 − 1) is not a perfect square.) Then
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there does not exist any d > 1 such that Q(l, k, c, d) is a perfect square. As-
sume further that l|(kc)—this can be arranged, for example, taking k to be
a multiple of l—and set n := c + k, m := kc/l so that k(n − k) = l(m − l).
Then Q(l, k, n − k, m − l) is not a perfect square.

(iii) We illustrate below situations Q(l, k, n − k, m − l) is not a perfect
square (assuming that k(n− k) = l(m− l)) depending on congruence classes
modulo a suitable prime power of the parameters involved.
(1) For an odd prime p, suppose that k ≡ p2r−1 ± 1 | p2r and none of the
numbers l, m − l, n − k is congruent to ±1 | p. Then p2r−1|Q but p2r ∤ Q.
(2) Suppose that m ≡ l ≡ 5 | 8, and k ≡ 7 | 16. Then (m − l)2 − 1 is odd,
l2 − 1 ≡ 8 | 16, k2 − 1 ≡ 16 | 32 and l(m − l) = k(n − k) implies (n − k) is
even and so (n − k)2 − 1 is odd. Thus Q ≡ 27 | 28.
(3) Suppose that l ≡ 0 | 8, m ≡ l | 2, k ≡ 3 | 8 , then Q ≡ 8 | 16.

Proposition 4.3.3 Let c > 1 and let k = 3 or 7. Suppose that Q(2, k, 2c, kc)
is a perfect square. Then there exists integers ξ, η, v > 1 such that c =
1
2
(ξ2η2 + 1), ξ2η2 − 3v2 = −2 and (i) ξ2 − 3η2 = −2 when k = 3 and (ii)

ξ2 − 7η2 = −6 when k = 7.

Proof. Assume that k = 7 and that Q := Q(2, 7, 2c, 7c) = 3224(2c −
1)(2c + 1)(7c − 1)(7c + 1) is a perfect square. There are several cases to
consider depending on the gcd of the pairs of numbers involved. Write
(2c − 1) = αu2, 2c + 1 = βv2, 7c − 1 = γx2, 7c + 1 = δy2, where α, β, γ, δ are
square free integers. Since Q is a perfect square and since gcd(2c−1, 2c+1) =
1, gcd(7c−1, 7c+1) = 1 or 2, gcd(2c±1, 7c±1) = 1, or 5, gcd(2c±1, 7c∓1) =
1, 3, or 9, the possible values for (α, β) are:
(1, 1), (1, 5), (1, 3), (3, 1), (5, 1), (1, 15), (15, 1), (5, 3), (3, 5). The possible val-
ues for (γ, δ) are the same as for (α, β) as well as (2α, 2β).

Suppose (α, β) = (1, 1). Since (2c − 1) + 2 = (2c + 1), we obtain u2 + 2 =
v2 which has no solution. If (α, β) = (3, 1), then 3u2 + 2 = v2. This
equation has no solution mod 3. Similar arguments show that if (α, β) =
(5, 1), (1, 5), (1, 15), (15, 1), (5, 3), there are no solutions for u, v. If (α, β) =
(3, 5), then (γ, δ) = (5, 3) or (10, 6). If (γ, δ) = (5, 3) again there is no solu-
tion mod 3 for the equation 5x2 + 2 = 3y2. When (γ, δ) = (10, 6) we obtain
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10x2 + 2 = 6y2. This has no solution mod 5.

It remains to consider the case (α, β) = (1, 3). In this case obtain the equa-
tion u2 + 2 = 3v2 which has solutions, for example, (u, v) = (5, 3). Now
(α, β) = (1, 3) implies (γ, δ) = (3, 1) or (6, 2). If (γ, δ) = (3, 1) then we
obtain the equation 3x2 + 2 = y2 which has no solution mod 3. So assume
that (γ, δ) = (6, 2). As (α, δ) = (1, 2) we obtain 4y2 − 7u2 = 9, that is,
4y2 − 7u2 = 9. Thus (2y − 3)(2y + 3) = 7u2. Either 7|(2y − 3) or 7|(2y + 3).
Say 7|(2y − 3) and write (2y − 3) = 7z. Now z(7z + 6) = u2. Observe that
gcd(z, 7z + 6) divides 6.

Since β = 3, 2c − 1 = u2 is not divisible by 3. Also, u being odd, we must
have gcd(z, 7z + 6) = 1. It follows that both z, 7z + 6 are perfect squares.
This forces that 6 is a square mod 7—a contradiction.

Finally, suppose that 7|(2y + 3). Then repeating the above argument we see
that both (2y − 3) =: η2 and (2y + 3)/7 =: ξ2 are perfect squares. It follows
that 7ξ2 − 6 = η2 is a perfect square. Hence 2c − 1 = u2 = ξ2η2. Since
2c + 1 = 3v2, the proposition follows.

We now consider the case k = 3. We merely sketch the proof in this
case. Let, if possible, Q = 233(2c − 1)(2c + 1)(3c − 1)(3c + 1) be a per-
fect square. Write 2c − 1 = αu2, 2c + 1 = βv2, 3c − 1 = γx2, 3c + 1 =
δy2, where α, β, γ, δ are square free integers and u, v, x, y are positive inte-
gers. Arguing as in the case k = 7, following are the only possible values
for α, β, γ, δ: (α, β) = (1, 3), (3, 1), (3, 5), (5, 3), (1, 15), (15, 1), and (γ, δ) =
(1, 2), (2, 1), (2, 5), (5, 2), (1, 10), (10, 1). It can be seen that only the case
(α, β, γ, δ) = (1, 3, 2, 1) remains to be considered, the remaining possibilities
leading to contradictions. Thus we have 2c−1 = u2, 2c+1 = 3v2, 3c−1 = 2x2

and 3c+1 = y2. Therefore, we have 4x2−1 = 3u2, i.e., (2x−1)(2x+1) = 3u2

. Hence, 3|(2x − 1) or 3|(2x + 1).

Suppose that 3|(2x − 1). Write 3z = 2x − 1, z ∈ Z. Since z is odd, we
have gcd(z, 3z+2) = 1. As z(3z+2) = u2 we conclude that z and 3z+2 have
to be perfect squares. This implies that 2 is a quadratic residue mod 3–a
contradiction. Therefore 3 6 |(2x − 1) and we must have 3|(2x + 1) and both
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z and 3z−2 will have to be perfect squares. Write z = η2 and 3z−2 = ξ2 so
that ξ2 − 3η2 = −2 and v2 = u2 + 2 = ξ2η2 + 2. This completes the proof.�

Remark 4.3.4 (i) Let K = Q[
√

7] and let R be the ring of integers in K. If
ξ+η

√
7 ∈ R, then ξ, η ∈ Z. Denote the multiplicative ring of units in R by U .

Note that any element of U has norm 1. (This is because −1 is a quadratic
non-residue mod 7.) Using Dirichlet Unit theorem U has rank 1; indeed U
is generated by ν := (8 + 3

√
7) and ±1. The integers ξ, η as in the above

proposition yield an element ξ + η
√

7 of norm −6 and the set S ⊂ R of all
elements of norm −6 is stable under the multiplication action by U . An easy
argument shows that S is the union of orbits through λ := 1+

√
7, λ̄ = 1−

√
7.

Thus S = {±λνk,±λ̄νk | k ∈ Z}.

Observe that if ξ, η are as in Proposition 4.3.3(ii), then ξ +
√

7η ∈ S. Listing
elements ξ + η

√
7 ∈ S with ξ, η > 1 in increasing order of η, the first three

elements are 13 + 5
√

7, 29 + 11
√

7, 209 + 79
√

7. Straightforward verification
shows that when ξ + η

√
7 is equals any of these, then there does not exist

an integer v such that ξ2η2 + 2 = 3v2. Since the next term is 463 + 175
√

7,
we have the lower bound 2c > 1752 × 4632 = 6565050625 in order that
Q(2, 7, 2c, 7c) be a perfect square (assuming c > 1).

(ii) Now, let K = Q[
√

3] and let R be the ring of integers in K. Note that
ξ + η

√
3 ∈ R, then ξ, η ∈ Z. Denote the multiplicative ring of units in R by

U , which is generated by generated by (2 +
√

3) and ±1.

Suppose that Q(2, 3, 2c, 3c) is a perfect square, c > 1. Then the integers ξ, η,
as in the above proposition, yield an element ξ + η

√
3 of norm −2. The set

S ⊂ R of all elements of norm −2 is stable under the multiplication action
by U . In fact it can be verified easily that S = {±(1+

√
3)(2+

√
3)m | m ∈ Z}.

Listing these with ξ, η > 1, in increasing order of η, the first five elements are
5 +3

√
3, 19+11

√
3, 71+ 41

√
3, 265+153

√
3, 989+ 571

√
3. If ξ + η

√
3 equals

any of these, direct verification shows that there is no integer v satisfying the
equation ξ2η2 +2 = 3v2. The next term of the sequence being 3691+2131

√
3

we obtain the lower bound 2c > 21312 × 36912 = 61866420601441.
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Perhaps, the above arguments can be applied for other values of k and l to
obtain lower bounds for n, particularly when k + l and k − l are primes or
prime powers.

The above discussion might tempt one to conjecture that, for integers a, b, c, d
such that 1 < a < b < c < d and ad = bc, Q(a, b, c, d) cannot be a perfect
square. However, J. Oesterlé gave the following counterexample:

Example 4.3.5 For a = 23, b = 69, c = 1121 and d = 3363,
1 < a < b < c < d and ad = bc but

Q(a, b, c, d) = (232 − 1)(692 − 1)(11212 − 1)(33632 − 1)
= 22 · 24 · 68 · 70 · 1120 · 1122 · 3362 · 3364
= 216 · 32 · 52 · 72 · 112 · 172 · 292 · 412

is a perfect square.
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