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me to visit Ulm University and discussions on the hardness of graph isomorphism).

I also thank all the Computer Science faculty at the Institute of Mathematical
Sciences, IMSc, who have been responsible for imparting to me the knowledge of
various aspects of computer science during my course work and through numerous
seminars.

e work leading to this thesis was carried out completely at IMSc. I would like
to thank the institute for its financial support and the wonderful infrastructure and
working environment that it provides to its members.

A warm thanks to the all my friends for making my social life extremely inter-



esting and enjoyable. e books, the music, the movies, the long chai sessions, the
long nightouts spent talking, the treks, the dance lessons, the cooking; what would
I be without all this? A big thanks to Chikku for her support and for teaching me
to become responsible.

Finally, but most importantly, I wish to thank my parents who have filled my
life with joy and have always had confidence in me, even when I myself did not. If
it wasn’t for their encouragement and support, taking up research would have been
nearly impossible. Words are not enough to express my gratitude for how much
they have done for me.





Abstract

We explore the complexity classes contained in LogCFL by drawing connections to
language theory. Along the way, we study many depth reduction techniques.

We consider two factor-2 approximation algorithms for B  and
show that both the algorithms can be implemented in LogCFL. We use depth re-
duction techniques and specialize them for these problems and give explicit NC2

algorithms. We also study membership problem for multi-pushdown machines.
e stacks in these machines are ordered and pop moves are allowed on the first
non-empty stack. We prove that the membership problem for these machines is
complete for LogCFL.

We consider visibly pushdown languages, VPLs, and many generalizations of
VPLs and use these languages to draw connections to the complexity classes in-
side LogCFL. A VPA is a nondeterministic pushdown automaton with the restric-
tion that the height of the stack for a given input is same along every nondeter-
ministic run and is easy to compute. We abstract out this idea to define the no-
tion of height-determinism and obtain generalizations of VPLs, namely rhPDA(FST),
rhPDA(rDPDA1-turn), rhPDA(PDT), where rhPDA denotes the realtime height deter-
ministic PDA.

We prove that the height of the stack for these machines are functions (height
functions) computable in NC1, L, and LogDCFL, respectively, and prove that the
membership problem for all three of them is in Lh where h is the complexity of the
height function.

We also consider multi-stack pushdown machines with visible stacks. A phase is
a set of consecutive computation steps during which the machine pops exactly one
stack. We consider membership problem for multi-stack pushdown machines with
bounded phases and show LogCFL upper bound.

Finally, we consider the counting problem for VPLs, and its generalizations,
namely: rhPDA(FST), rhPDA(rDPDA1-turn), and rhPDA(PDT), and prove LogDCFL up-
per bound for all. We also consider the counting functions corresponding to VPLs
and analyze their closure properties.
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1
Introduction

e subject of complexity theory deals with bounding the exact amount of resources
needed to perform certain computational tasks. e resources may be time or space
or any other relevant parameters. Complexity theory is a rich, flourishing, and
a well-studied area in computer science. Over the years, many natural problems
have been studied by complexity theorists. e progress in understanding the re-
sources needed for solving the natural problems has been noteworthy. Also many
relations between seemingly orthogonal resource bounded computations have been
uncovered. For example, it is known that if a Turing machine uses nondetermin-
ism and certain amount of space, the nondeterminism can be removed by squar-
ing the space []. Many such containments and relations have been established
among the known complexity classes. However, the progress made towards obtain-
ing separations between the complexity classes has been unsatisfactory. Most of the
containments are not known to be strict.

Language theory is one of the oldest areas of study in computer science. A lan-
guages can be thought of as a set of strings over an alphabet which is accepted by
a machine. Here, a machine is a device consisting of a finite control and possibly
a storage mechanism. e set of strings on which the computation of the machine
ends in a favorable configuration is the language accepted by the machine. Finite
state machines, pushdown machines, Turing machines etc. are examples of ma-
chines, and regular languages (REG), context-free languages (CFL), and recursively
enumerable languages are the languages accepted by them, respectively. Many re-
lations and containments regarding the language classes are known. And unlike in
the case of complexity classes, many of the containments are known to be strict.





Chapter . Introduction

e work discussed in this thesis is inspired by the early works of Sudborough
and Barrington who discovered close connections between language theory and
complexity theory [, ]. e primary goal of this thesis is to understand the
connection between the language classes and the complexity classes. e language
classes we study properly generalize REG. e complexity classes to which they have
connections are contained in the class P, a class of functions or languages computable
by polynomial time Turing machines. e peculiarity of the complexity classes con-
sidered in this thesis is that they have polynomial time algorithms which are depth
reducible. (We will give an informal description of the notion of depth reduction
shortly.) us the other competing goal of this thesis is to better understand the
known depth reduction techniques and to use them in newer contexts.

e two goals are very well motivated from complexity theoretic point of view.
To state it in a nutshell, the motivation is to take another approach to attack the
problem of separating the complexity classes. e main driving force is the belief
that the knowledge about the language classes can become useful in order to improve
our knowledge about the complexity classes. Also, this method benefits from wit-
nessing depth reduction ideas at each juncture. In recent times, depth reduction is
gaining importance in making concrete statements about fundamental problems in
computer science [, ]. is motivates the need for understanding this technique.

In Section . we will summarize the primary contributions of this thesis. In or-
der to describe the main results, we will need to develop some common vocabulary.
e next section is devoted to building up the vocabulary.

. Important notions

Each notion described in this section is discussed in detail in the main exposition.
Here, we mainly give an informal description of the notions in order to build up a
common set of words. If the notions are familiar, you may choose to jump to the
next section.

.. Depth Reduction

Let A be an algorithm to solve a problem P that runs for time t(n), where n is the
length of the input and t is a polynomial in n. If there is a way to find polynomially





Chapter . Introduction

many subproblems of the problem P such that each can be solved independent of
all the others in time polylogarithmic in the length of the input (i.e. O(logi

t(n))

for some i ∈ N) and the answers of all the subproblems can be combined with an
additive polylogarithmic overheard (of O(logj

t(n)) for some j ∈ N) then the im-
plementation A is said to be depth reducible. It is also called parallelizable. is
refers to the property of such implementations to solve many independent subparts
simultaneously. (It should not be mistaken for processor efficient parallel imple-
mentations.)

.. Membership problem

Fix a machine. e membership problem deals with, given a word over the alphabet
of the machine, checking whether it is accepted by the machine. In the literature,
the problem is also sometimes referred to as fixed membership problem because the
machine is fixed. e version of the problem where machine is also a part of the
input has been considered in the literature. But our focus is on the question where
the machine is fixed.

.. Counting problem

For a fixed machine, the membership problem deals with checking whether there is
at least one accepting path in the machine for a given input. e counting problem
asks for more. Fix a machine. Given an input over the alphabet of the machine, it
asks for the exact number of accepting paths in the machine on that input.

us, the counting problem is at least as hard as the membership problem. If the
underlying machine is deterministic then an algorithm for membership problem can
solve the counting problem. e complexity of the counting problem is interesting
when the fixed machine is nondeterministic.

.. Visibly Pushdown Language: e starting point

Visibly pushdown language, VPLs, are a proper subclass of context-free languages.
ey are defined as accepted by certain restricted pushdown machines as well as gen-
erated by certain restricted grammars. We will focus on the former. e pushdown
machines that accept VPLs use their stack in a restricted manner. ere are three


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NC1 // L //

##GGGGGGGGGG LogDCFL

%%LLLLLLLLLL

NL // LogCFL // NC2 // P

Figure .: e complexity classes at the center stage of the thesis.

different ways in which the stack can be altered. Either one can push something
on the stack, or pop from the stack, or leave it unchanged. If the input alphabet of
a pushdown is partitioned into three parts and if each part contains letters of the
alphabet which modify the stack in exactly one way then the languages accepted by
such pushdown machines are called VPLs. e word visibly signifies that the input
letter makes the stack movement transparent. e term was coined by Alur and
Madhusudan in their paper []. However, such pushdown machines existed in the
literature under the name of Input driven pushdowns, see for example [, ].

We use this PDA model as the starting point for drawing connection between
language classes and complexity classes.

. Contributions of this thesis

is thesis investigates the language classes from the perspective of a complexity
theorists. We give a high level description of the contributions of this thesis here.

Figure . shows the complexity classes of concern for the purpose of this thesis.
At this point it is not important to know the definitions of the classes. However,
the main point to be emphasized is: the considered classes are all contained in P.
We are inside that region of P for which parallelizable algorithms exist. e class
NC2 and NC1 are the two ends of the spectrum of interest to us. e former class
contains many interesting complexity classes and the latter is at the frontier of the
lower bounds literature. It is this region of the complexity zoo that is known to
benefit from connections to language theory. Our main contribution therefore is to
further this study and examine this region under a magnifying glass.

e results obtained are of three types. e thesis is divided into three parts each
dedicated to one of the types. Given below is a succinct summary of the flavor of
the results established in each part of the thesis.





Chapter . Introduction

Part I Depth reduction applied to natural problems to obtain improved
upper bounds.

Part II Membership problems for various languages giving close
connections to the complexity classes.

Part III Counting problems for various language classes.

Part I e first part of the thesis considers three problems that were known to be
in polynomial time. e problems considered are natural problems, the first two of
them arising in biology and the third one in parsing applications. ese problems
were not known to be hard for P. In this part, upper bound of LogCFL is obtained for
all the three problems. e upper bound is an improvement over the known bounds
for all the three problems and settles the complexity of the third one (i.e. LogCFL
hardness was known for it and this upper bound makes the problem complete for
LogCFL).

e ideas used for obtaining the upper bound arise from depth reduction liter-
ature. A detailed explanation of one such depth reduction is presented here. It is
known that LogCFL is in NC2 (see Figure .). However, from a LogCFL algorithm
an explicit NC2 implementation may not be directly clear. Also, very often the NC2

implementation is needed explicitly for application purposes. For two out of the
three problems an explicit NC2 algorithm is presented in this part of the thesis.

Part II e second part of the thesis deals with the membership problem for var-
ious generalizations of VPLs. e membership problem for VPLs is known to be as
easy as that for regular languages []. is is in contrast to the membership prob-
lem for CFLs. us, these two known results grab the two ends of the spectrum of
the complexity classes of our concern. e study done in this part involves obtaining
a systematic generalization of VPLs to be able to traverse the spectrum. e main
contributions here are: we obtain bounds on the membership problem for three
generalizations of VPLs. We show that the weakest and the strongest generalizations
characterize NC1 and LogDCFL respectively. We give an upper bound of logspace
for the intermediate generalization. Many interesting depth reduction techniques
are implicitly used to prove these bounds. e methods developed here achieve the
connections between complexity classes and language classes in a unifying manner.





Chapter . Introduction

Part III e third part deals with the counting problem for VPLs and for some of
the generalizations of VPLs. Here, the counting problem for VPLs is shown to be in
LogDCFL. e problem is at least as hard as its membership problem and hence at
least as hard as the membership problem for regular languages. us, it sits between
the classes NC1 and LogDCFL.  We study the closure properties of the counting class
corresponding to the VPLs in order to improve our understanding of this class.

e technique used for proving LogDCFL upper bound is a significant modifi-
cation of a depth reduction method of []. e most important and interesting
aspect of this modification is its increased scalability. We give LogDCFL upper bound
for the counting problem of a powerful generalization of VPLs using the ideas coming
from the same method. e most general language class we consider is equivalent
to realtime DCFLs, and VPLs are a proper subclass of it. But the counting problem
continues to have the same upper bound as for VPLs.

In fact, it is also at least as hard as the counting problem for regular languages (the machine
model considered for this is an NFA), and hence harder than a class which contains NC1, namely
BWBP.


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Preliminaries

Some results and notations that are used throughout the text are collected in this
chapter for convenience. A reader may wish to review this chapter quickly at first
and refer back to it as the concepts appear in the course of the text.

. Language classes and automata models

A pushdown automaton (PDA) over a finite input alphabet Σ is a tuple P = (Q, q0, F,

Γ, Σ, δ) where Q is a finite set of control states, q0 ∈ Q is the initial state, F ⊆ Q is
a set of final or accepting states, Γ is a finite alphabet of stack symbols, and δ is a
finite set of transition rules: pU

a→ qV with p, q ∈ Q, U,V ∈ Γ∗ and a ∈ Σ ∪ {ɛ}.
If all the rules pU

a→ qV ∈ δ are of the form p
a→ q or p

a→ qA or pA
a→ q with

A ∈ Γ , i.e. |UV | 6 1 then P is called weak. If in every rule pU
a→ qV ∈ δ, either U or

V is ɛ, then P is called one-way-strong , strong otherwise. If a is ɛ, the move defined
by δ is called an ɛ-move. A PDA is ɛ-move-free or realtime if δ has no ɛ-moves.

A configuration is a three tuple 〈q, w, γ〉, where q ∈ Q, w ∈ Σ∗, and γ ∈ Γ∗. e
stack height at configuration 〈q, w, γ〉 is |γ|, where |x| denotes the length of the string
x. e initial configuration on input w is 〈q0, w, ɛ〉. A configuration is final if q is
in F.

e transition relation δ gives a step relation between configurations. If pU
a→

qV ∈ δ, then the PDA P in state p can read a letter a and if the stack-top is U, it
can go to state q in one step replacing U with V. Formally, 〈p, aw,Uγ〉 ` 〈q, w, Vγ〉.
Here ` denotes the step relation. A reflexive transitive closure of the step relation
defines the runs of the PDA.


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An input string w is said to be accepted by P, if P has a run that reaches a final
configuration starting from 〈q0, w, ɛ〉. is acceptance condition is called acceptance
by final state. A PDA is said to accept with an empty stack if starting from configuration
〈q0, w, ɛ〉, P reaches a configuration 〈q, ɛ, γ〉where γ = ɛ. e set of strings accepted
by PDA is called the language accepted by the PDA. e two acceptance conditions
for PDA are equivalent and the class of languages accepted by PDA are called context-
free languages (CFLs).

e semantics of P can also be defined with respect to its transition graph GP

whose vertices are of the form pW with p ∈ Q and W ∈ Γ∗. And edges are given by
{pUW

a→ qVW | pU
a→ qV ∈ δ, W ∈ Γ∗}.

A run of P on input word w ∈ Σ∗ from a vertex pW is a path labeled w in
GP from vertex pW to some vertex qW ′. Such a run is successful (or accepting) if
pW = q0 and q belongs to the set F of accepting states of P. By L(GP, S, T) where
S, T are sets of vertices of GP, we mean all words w ∈ Σ∗ such that for some vertices
c ∈ S, c ′ ∈ T , there is a run from c to c ′ on w. e language accepted by a PDA P is
the set of all words w over which there exists an accepting run, or equivalently it is
the language L(GP, {q0}, FΓ

∗) which we also denote by L(P).
A context free grammar G is a tuple (N, T, P, S) where N is a finite set of non-

terminals, T is a finite set of terminals, S is a designated start non-terminal, and P

is a finite set of productions of the form A → γ where A ∈ N, and γ ∈ (T + N)∗.
A sentential form is a string over (T + N). If A → wγ is a production in P then
αAβ ⇒ αwγβ is a derivation in the grammar where α,β ∈ (T + N)∗. We use ⇒∗

to denote the reflexive transitive closure of ⇒. e language L(G) generated by a
grammar G is set of all the strings in T∗ that appear as a sentential form in some
derivation starting from S, i.e., L(G) = {w|S ⇒∗ w and w ∈ T∗}. Context-free
languages are also defined as languages generated by such grammars.

If for a PDA P, the transition rule δ is a (possibly partial) function then PDA P is
said to be a deterministic PDA, DPDA. e languages accepted by such PDA are called
deterministic context-free languages, DCFLs. If every run of the PDA is restricted such
that once it pops something from the stack it never pushes on it, then it is called
one-turn PDA, PDA1-turn. For a PDA1-turn, consider the time-vs-height of the stack
graph, where time is on the x-axis and heights on the y-axis. It has non-decreasing
heights till the first pop step. After which it has non-increasing heights. e turn
refers to the turn that this plot makes at the first pop. e languages accepted by such
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PDA are called linear languages, LIN.  One can define a deterministic counterpart of
the same. It is called one-turn DPDA, DPDA1-turn. e languages accepted by such
PDA are called deterministic linear languages, DLIN.

If we remove the stack from the description of a PDA, we are left with only the
finite control, i.e., with a finite set of states and a finite set of transition rules. e
automata thus obtained are called nondeterministic finite state automata, NFA. Its
deterministic counterpart is called deterministic finite state automata, DFA. NFA are
known to be determinisable. e languages accepted by them are called regular
languages, REG.

Consider the following example:

Example .. Let Σ = {a, b}.

• Consider the set of strings over Σ that end with the letter b, Σ∗b. ese are accepted
by a finite state automata.

• Consider the set of strings {wcwR | w ∈ Σ∗}. We call this a set of marked palin-
dromes (palindromes with a halfway marker). is is accepted by DPDA1-turn.
But it is known that NFA do to not accept it.

• e set of palindromes, {wwR | w ∈ Σ∗}, is accepted by a PDA1-turn but not by a
DPDA1-turn or by a DPDA.

• e set of string with equal number of a’s and b’s, EQ(a, b) = {w | a(w) =

b(w)}, is accepted by a DPDA but not by PDA1-turn.

• e set of strings, {w | where w is not of the form uu for u ∈ Σ∗}, is accepted by a
PDA but by none of the above machine models.

Figure . shows the various machine models we have defined. An arrow from
machine model M to M ′ indicates that M ′ generalizes M. Figure . shows the
corresponding language classes for the above machine models. e dotted arrows
indicate proper containments. e dashed arrows between two language classes
indicate that they are incomparable. e above relations and various properties of
the language classes or the machine models discussed above are well-known. See for
example, [].

e name linear comes from the grammar form for it. See for example [].


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DFA //

%%KKKKKKKKKKK
DPDA1-turn //

''OOOOOOOOOOO
DPDA

%%JJJJJJJJJJ

NFA // PDA1-turn // PDA

Figure .: Machine models for the languages in Figure .

REG // DLIN //

%%

DCFL

% %���
�
�

LIN //

OO�
�
�

CFL

Figure .: e containment relations for the formal language classes

. Complexity classes

.. Pushdown machines and complexity classes

In this section, we assume basic familiarity with the Turing machine model, the no-
tion of polynomial time or logspace reductions, and the notion of complete prob-
lems for a complexity class.

e class of languages accepted by a nondeterministic Turing machine whose
work-tape is upper bounded by O(logn)-space defines a complexity class NL. e
natural problem complete for this is directed graph reachability. L is the complexity
class consisting of languages which are accepted by a deterministic Turing machine
whose work-tape is bounded by logspace. e natural problem complete for this
class is undirected graph reachability []. 

e class of languages logspace many-one reducible to a CFL is called LogCFL.
is complexity class was defined by Sudborough []. A deterministic counterpart
of the above, LogDCFL, is the class of languages logspace many-one reducible to a
DCFL.

An auxiliary pushdown automaton, AuxPDA, is a pushdown automaton aug-
mented with a S(n)-space work-tape. If a DPDA is augmented with a S(n)-space
work-tape, the automata thus obtained is called deterministic auxiliary pushdown

Here the problem is assumed to be hard under some reductions which are more restricted than
logspace reductions. We will define this carefully below.
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automaton, DAuxPDA.
Various bounds can be put on the work-tape size in the above defined machine
model. e following are the complexity classes that can be derived by putting
meaningful bounds on time and space used by the above machines.

AuxPDA-Time(f) is the class of languages accepted a AuxPDA having logspace
bounded work-tape and time bounded by O(f). Note that, due to auxiliary space,
NL⊆ AuxPDA-Time(poly). In the case of CFLs and PDAs we know that there is an ex-
act correspondence between the two. Similarly, it is known that LogCFL = AuxPDA-
Time(poly), and that LogDCFL = DAuxPDA-Time(poly) [].

.. Alternating Turing machines and complexity classes

In this section we will formally define the computation model of alternating Turing
machines and introduce basic notions related to the model. We will also define
some complexity classes that are of interest to us.
An alternating Turing machine, ATM, is a quintuple M = (Q, Σ, δ, q0, g) where,
Q, Σ, δ are set of states, input alphabet and transition rules respectively. g is a state
type function g : Q → {∧,∨, 0, 1}. Let q ∈ Q. If g(q) = 0 then q is a rejecting state.
If g(q) = 1 then q is an accepting state. If g(q) = ∧ then q is a universal state, and
if g(q) = ∨ then q is an existential state.
ATM’s are a generalization of nondeterministic Turing machines.

A computation of an ATM can be viewed as a tree of configurations. A tree is
a computation tree of an ATM M on string w if its nodes are labeled with the con-
figurations of M on w, such that the descendants of any non-leaf node labeled by a
universal (an existential) configuration include all (respectively, one) of its successor
configurations.

A computation tree is an accepting tree if its root is labeled with the initial con-
figuration and all its leaves are accepting configurations.

e time or space utilized by the ATM is measured as follows: An ATM is said
to use time T(n) if for all the accepted inputs of length n there is an accepting
computation tree of height O(T(n)). An ATM is said to use space S(n) if each
node of the tree can be labeled by a configuration using space O(S(n)). It is known
that ATMs that use O(logn) space are computationally equivalent to deterministic
polynomial time Turing machines i.e., P.
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Let M be an alternating Turing machine, and let t : N → N. We say that M

is tree-size bounded by t, if for every x ∈ L(M), there is an accepting computation
subtree of M on x which has O(t(|x|)) nodes.

Consider a nondeterministic Turing machine M and an ATM M ′ both using
space O(S). e height of their computation trees will be 2O(S). e accepting
subtree for M is a root to leaf path and hence of size 2O(S). e accepting tree for
M ′ can be potentially the whole computation tree and hence of size 2O(S)O(S).

Using tree-size as a parameter, a hierarchy of ATMs can be defined. It is not
known whether any of the containments in the hierarchy are strict.

Given below are some complexity classes that can be obtained from the ATM
model by bounding the tree-size parameter.

ASPACE-TREESIZE(S(n), Z(n)) is the class of all languages L for which there
is an alternating Turing machine M which is space bounded by S(n) and tree-size
bounded by Z(n), such that L = L(M)

e class ASPACE-TREESIZE(S(n), Z(n)) where S(n) = O(logn) and Z(n) =

O(poly(n)) clearly contains NL and is clearly in P. It is known to be equivalent to
the class AuxPDA-Time(poly) due to [] and thus characterizes LogCFL.

.. Boolean Circuits and related complexity classes

Switching circuits were investigated in early papers by Lupanov and Shannon. e
research of circuits was highly influenced by Savage’s early papers and text book [].
Savage related Boolean circuits to other well-established computation models like
Turing machines. Also around s some interesting lower bounds were obtained.
Around the same time circuits were related to the parallel computation model, in
particular, parallel random access machines (PRAMs).
is model of computation differs from the other models of computation in the
following sense. In circuits there are only fixed number of input gates. Hence a
single circuit only works on inputs of fixed length in contrast to the other models
like Turing machines which work for inputs of arbitrary lengths. us to solve usual
problems on circuits we need to look at a family of circuits as opposed to a single
circuit.

A Boolean circuit C is a directed acyclic graph (DAG) whose source nodes are
input gates, one of the sink node is a designated output gate, and intermediate nodes
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are ∧ (), ∨ (), or ¬ () gates. e size of the circuit is the size of this DAG.
Let Cn denote a circuits over n inputs. Let C = (Cn)n∈N denote a family of circuits.

An input gate labeled 1 (0) is said to have value 1 (0, respectively). A gate labeled
xi (¬xi) is assigned the value of the variable xi (negation of xi, respectively). e
value of a gate g labeled  () with predecessors g1, g2, . . . , gk is ∧k

i=1gi (∨k
i=1gi,

respectively). A gate g labeled  has only one predecessor, say g ′. e value of
the gate g is ¬g ′. e value of the circuit is 1 if and only if the value of its designated
output gate is 1. A circuit on n inputs accepts x = x1x2 . . . xn ∈ {0, 1}n if and only
if it evaluates to 1 on x. A language accepted by a circuit family C = (Cn)n∈N is a
union over all n ∈ N, of the set of strings accepted by each Cn.

Uniform circuit families: Informally, uniform circuit family is a circuit family
with a finite description. Let the gates of the circuit be numbered in some order
say v1, v2, . . . , vs. Let each gate of the circuit be encoded using its gate number,
its type (the types are , ,  and they too are numbered in some arbitrary
order) and the numbers of its predecessor gates. Let v̂ denote the encoding of gate v.
en the encoding of C, denoted as Ĉ, is given by (v̂1, v̂2, . . . , v̂s). A circuit family
C = (Cn)n∈N of size s is

• logspace-uniform if the map 1n → Ĉn is in DSPACE(logn).

• P-uniform if the map 1n → Ĉn is in DTIME(nO(1)).

e gates of the circuit may have bounded or unbounded fan-in (i.e., in-degree
of a node in the underlying DAG may be bounded or unbounded).

NCk is the class of languages A for which there is a circuit family C = (Cn)n∈N

over bounded fan-in  and  gates of polynomial size and O(logk
n) depth that

accepts A. NC =
∪

k>0 NC
k

ACk (SACk) is the class of languages A for which there is a circuit family over un-
bounded fan-in  and  gates (over bounded fan-in  gates and unbounded
fan-in  gates, respectively) of polynomial size and O(logk

n) depth that accepts A.
TCk is the class of languages A for which there is a circuit family over unbounded

fan-in ,  gates, and Majority gates of polynomial size and O(logk
n) depth that

accepts A. e Majority gates evaluate to 1 if atleast half its inputs are 1, 0 otherwise.
e class AC is defined as AC =

∪
k>0 AC

k, SAC is defined as SAC =
∪

k>0 SAC
k,

and TC is defined as TC =
∪

k>0 TC
k.
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NC1 // L //

##GGGGGGGGGG LogDCFL

%%LLLLLLLLLL

NL // LogCFL // NC2

Figure .: e containment relation for the complexity classes

e following are the known relations between these classes (see for example
[]).

Lemma .. For all k > 0, we have NCk ⊆ SACk ⊆ ACk ⊆ TCk ⊆ NCk+1, hence AC
= NC = SAC= TC.

We will see in Chapter  why SAC1 contains LogCFL. In fact, it is known that
SAC1 characterizes LogCFL [, , ].

ere is a notion of reducibility that is coined from the class NC1. We used the
notion called logspace many-one reducibility to define LogCFL. We formally define
notion of NC1 many-one reducibility as follows:

For A, B ⊆ {0, 1}∗ we say that A 6NC1

m B, if there is a function f ∈ FNC1 such that
for all x ∈ {0, 1}∗, we have: x ∈ A ⇐⇒ f(x) ∈ B.

is notion of reducibility is helpful to prove hardness for smaller complexity
classes. Here, FNC1 refers to functional NC1. If g is in FNC1, the language

Lg = {(x, i, b) | ith bit of g(x) is b} is in NC1

Figure . depicts the containment relation between various complexity classes
that we will use in the subsequent chapters. Note that it is not known whether any
of these containments are strict.
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A general paradigm for efficiently

parallelizable problems

. What is depth reduction?

It is believed that problems that are polynomial time complete have an inherently
sequential solution. On the other hand, the problems that are solvable in NC have
efficient parallel implementations. By efficient we mean they use polynomial sized
circuits which have polylogarithmic depth.

In the literature of parallel computation these NC algorithms may be considered
non-efficient in the following sense: If the problem for inputs of length n has circuits
of size, say n10 then for all practical purposes for large n this gives impractical im-
plementations (in spite of their polylogarithmic depth). However, from complexity
theoretic point of view, this will be termed as efficient implementation. is is
because, our measure of efficiency is the depth of the implementation.

It is not known whether any problem complete for P can be solved in NC, i.e.,
whether P = NC? e technique of converting a long sequential computation into a
short parallel computation, is called depth reduction. e P = NC? question can be
restated as whether a depth reduced computation can be explicitly and efficiently
designed for any polynomial time sequential computation.

ough this more general question is hard to answer, depth reduction results
for various other sequential models of computation exist in the literature. Given a
Boolean formula, which is essentially a tree with internal nodes labeled by Boolean
operators {∨,∧,¬} and leaves labeled by {x1, x2, . . . , xn, 0, 1}, and given an assign-
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ment for the variables x1, x2, . . . , xn, checking whether the formula evaluates to 1

or not, is referred to as Boolean formula value problem. e depth of this tree or
the formula can be polynomial in n. e obvious sequential computation to solve
this problem is a simple depth first traversal of the tree which will take time linear
in the size of the tree. But it is known due to Buss [] that this problem can be
solved in NC1. is means that there is a way to cleverly cut the underlying tree
into subparts. Each subpart can be solved efficiently in parallel (in this case using
polynomial size circuits of O(logn) depth or NC1) and the solutions can in turn be
combined efficiently in parallel (in NC1) to solve the whole problem.

LogCFL is the largest Boolean complexity class inside P for which a general (not
problem specific) depth reduction is known. A detailed explanation of a depth
reduction result for LogCFL is presented in Section .. e proof presented here is
by Venkateswaran []. ere are two more proofs for the same result extant in the
literature due to Vinay, and Niedermeier and Rossmanith [, ].

In Section ., Section ., we consider three different problems. All of them
were known to have polynomial time upper bound. We prove a LogCFL upper
bound for all of them. e ideas used for obtaining the improved upper bound
arise from depth reduction literature.

. Depth Reduction for LogCFL

e first depth reduction for the class LogCFL (which is same as AuxPDA-Time(poly),
see Section ..), was given by Venkateswaran []. e depth reduction proof
used the ASPACE-TREESIZE characterization of LogCFL (see Section ..) and
proved that ASPACE-TREE(O(logn), poly(n)) is equal to SAC1. is result com-
bined with [, ] proves that LogCFL and SAC1 are equal.

It is easy to see that SAC1 is contained in ASPACE-TREE(O(logn),poly(n)). e
ATM simulating a uniform SAC1 circuit simply makes universal guesses at  gates
and existential guesses at  gates. It in effect guesses a proof tree on a run. e
size of the circuit is polynomial, hence the space needed by the simulating ATM
is O(logn) and the bounded fan-in of  gates results in polynomially bounded
proof tree.

In this section, we describe the proof of the other direction of this, namely
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ASPACE-TREE(O(logn),poly(n)) is contained in SAC1.
Informally, this result says the following: given a restricted long computation,

one can perform a depth reduction and convert this computation into an efficient
parallel computation.

We now describe the depth reduction technique used by []. Let A be a lan-
guage accepted by an ATM M that uses space O(logn) and has polynomial proof
tree size. We assume without loss of generality that every configuration of M has
at most two successor configurations. We first design M ′ simulating M such that
configuration trees produced by M ′ will be shallow. To describe the simulation we
need two definitions.

For a fixed input x let TM(x) be a computation tree of M on x. A fragment of M

on x is a pair (r,Λ) where, r is a configuration of M and Λ is a set of configurations
of M. Intuitively, Λ signifies a set of conditions under which we check whether r

accepts. e size of a fragment (r,Λ) is the minimal number of nodes in the subtree
T ′ ⊆ TM(x) witnessing that (r, Λ) is realizable.

A fragment (r,Λ) is said to be realizable if there is a subtree T ′ of TM(x) having
one child of non-leaf existential node, all children of non-leaf universal node and
the properties that:

• e root of T ′ is r

• Each leaf of T ′ is either accepting or an element of Λ

• No element in Λ is accepting and all elements of Λ appear as leaves in T ′

is says that (r, Λ) is realizable if under the assumption that Λ holds, all the
leaves that belong to the subtree rooted at r but not in Λ are accepting. Keeping
the elements of Λ exclusive of the accepting leaves is to avoid the overkill. Elements
of Λ are leaves because we assume values of them and providing any information
about them (in terms of subtree rooted at them) is redundant.

A polynomial size proof tree can possibly have polynomial depth. Intuitively, to
convert a polynomial depth proof tree into a logarithmic depth tree, we will need to
come up with a good cutting strategy. e following lemma will give such a strategy.

Lemma .. (r,Λ) is realizable if and only if at least one of the following holds:

. ere is a tree T ′ with at most 3 nodes witnessing that (r,Λ) is realizable.
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Λ = {1, 2, 3}

r

1
Λ ′′ = {2, 3}
Λ ′ = {1}

s

2 3

Figure .: A possible configuration for Λ,Λ ′, Λ ′′ when |Λ| = 3.

. (r,Λ) can be divided into two fragments (r, Λ
′ ∪ {s}) and (s,Λ

′′
) that are both

realizable and strictly of smaller size than (r,Λ), whereΛ = Λ
′∪Λ

′′ andΛ
′∩Λ

′′
=

∅.

Proof: (⇐): If 1 holds then trivially (r, Λ) is realizable. Else concatenate two trees T ′

and T ′′ witnessing realizability of (r,Λ
′ ∪ {s}) and (s, Λ

′′
), respectively, by replacing

the leaf s in T ′ by the tree T ′′. is gives a tree witnessing realizability of (r,Λ).
(⇒): Let T ′ be the tree witnessing realizability of (r,Λ). If it has at most three

nodes then the first part of the lemma holds. Else there exists a non-leaf node s ∈ T ′

which is not a root. Let Λ
′′ be those leaves in Λ which are descendants of s and

Λ
′
= Λ − Λ

′′ . us the second part of the lemma holds. �
Lemma .. can be converted into an ATM M ′. Let c0 be the initial configu-

ration of the ATM M. M ′ tries to prove that (c0, ∅) is realizable using the following
algorithm:

M ′ existentially picks one of the following two possibilities

• M ′ tries to prove realizability of (r,Λ) by constructing a witnessing tree of size
at most 3.

• M ′ existentially guesses s, Λ
′
, Λ

′′ ,

– verifies that Λ = Λ
′ ∪ Λ

′′ and Λ
′ ∩ Λ

′′
= ∅

– universally starts two recursive calls realize(r, Λ ′ ∪ {s}) and realize(s,Λ ′′
)

e correctness follows from Lemma ... We now analyze resources needed
for M ′ and prove that L(M ′) is in SAC1. Note that the following two propositions
hold:
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Proposition .. e size of Λ need not be greater than three.

Proof: When Λ has exactly three elements, there exists a node s which is a common
ancestor of exactly two elements of Λ. (See for example Figure ..) Let Λ

′′ consist
of those two elements and let the third element of Λ be now called Λ

′ . us when
Λ is of size three we have a way to reduce sizes of subsequent Λ

′ and Λ
′′ . �

Proposition .. ere is always a good cut that gives sufficiently small fragments.

Proof: e classical tree-separator theorem states that: Let T be the tree with more
than three nodes, say z nodes, where each node in T has at most two successors.
ere is a node v in T such that, if z1 is the number of descendants of v including
v and z2 is the number of nodes in T which are not proper descendants of v then
z1, z2 are at least one third and at most two third of z.

Such a v will be selected to get the desired good cut. We will have to make
following two calls to the realize routine: realize(r,Λ ′ ∪ {v}) and realize(v, Λ ′′

).
Note that Λ

′′ is a subset of Λ, and Λ
′ equals Λ − Λ

′′ . �
Note that, Λ

′ may be equal to Λ before making the cut. us the size of Λ may
increase by (at most) one in the next step after the cut.

As long as size of Λ is less than three, we can appeal to Proposition .. and split
the fragment according to the good cut. In the process the size of Λ might increase
by one. When the size of Λ is three, we can appeal to Proposition .. and split the
fragment such that in the next step size of Λ is two. (|Λ ′| = 1, |Λ ′∪{s}| = 2, |Λ

′′
| = 2).

Hence, at least in every other step we will appeal to Proposition .. and reduce
the fragment size by a constant fraction. us, logarithmic recursion depth will
suffice. We have a circuit of depth O(logn). Now note that universal branches are
made to two calls realize(r, Λ ′ ∪ {s}) and realize(s, Λ ′′

). us resulting circuit has
unbounded fan-in  gates, but only bounded fan-in  gates and log-depth. is
proves that L(M ′) is in SAC1.

Observe that, what we get is in fact a uniform SAC1 circuit. e direct connec-
tion language for the circuit is in NC1.

. Block sorting, block merging, and block deletion

In this section, we will consider some problems arising from biology and will apply
technique of depth reduction to them in order to obtain LogCFL upper bound.
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.. Overview of the   problem

e   problem arises in optical character recognition, and is also a
natural restriction of the well-studied genome rearrangement problem of
  . Simply stated, the problem is as follows: given a string
which is a permutation of n elements, bring it to the identity permutation idn with
as few block moves as possible. A block move consists of moving a block – a maximal
substring that is also a substring of idn – so that it merges with another block. For
instance, in the string 6 2 3 4 1 5, the blocks are 6, 2 3 4, 1 and 5, and a block sorting
sequence is 6 2 3 4 1 5 to 6 1 2 3 4 5 to 1 2 3 4 5 6.

Since attempts at designing polynomial time algorithms for  
failed, various heuristics for the problem were considered [, , ]. Finally the
problem was shown to be NP-hard by Bein et al. [], and so attention shifted to ef-
ficient approximibility . e structure of the problem guarantees a simple factor-3
approximation, and none of the earlier heuristics obtained a factor better than that.
e first factor-2 approximation was devised by Mahajan et al. [, ]. It defined
a related problem,  , and showed that (a)   can be
solved optimally in P-time, and (b)   approximates  
to within a factor of 2. e   algorithm runs in O(n3) time. Subse-
quently, another faster factor-2 approximation algorithm was devised by Bein et al.
[]. is considered the related problems of    
and   , and showed that (a)    can
be solved optimally in P-time, and (b)    approximates
  to within a factor of 2. e    algorithm
runs in O(n2) time. e two approximation algorithms are quite different in flavor,
and are incomparable: there are infinite families of instances where one outper-
forms the other in terms of the actual approximation factor achieved []. A point
in common to both is that the P-time implementation is via dynamic programming.

In Section .., we prove the following theorem which improves the known
upper bound for   and   :

eorem ..   and    can be solved in
In contrast, the status of the    problem is still open – it is neither

known to be in P-time nor known to be NP-hard. However, it has several factor 3/2 approximation
algorithms [, , ] and most recently a factor-11/8 approximation algorithm [].
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LogCFL.

From the theorem it follows that there is an NC algorithm that approximates 
 within a factor of 2. But this does not immediately give an explicit NC
algorithm. As we saw in Section ., placing LogCFL in NC requires fairly intricate
complexity-theoretic arguments. In Section .., we unfold the depth reduction
proofs of Venkateswaran and Vinay [, ] and specialize them to  
and    to obtain explicit NC2 algorithms for both. is
provides concrete illustrative case studies for the depth reduction techniques of [,
]. Our algorithms are self-contained without any references to the complexity-
theoretic results.

In the following section we will describe a few definitions and known lemmas
regarding   and   .

.. Approximation algorithms for  

A block in permutation π is a maximal substring of π which is also a substring of the
identity permutation idn. A block move in permutation π is the operation of picking
a block of π and placing it elsewhere in the string so as to merge with another block.
Let bs(π) be the minimum number of block moves required to obtain idn from π.

Given a permutation π, it can be uniquely decomposed into maximal increas-
ing substrings. Sπ is the multiset S consisting of these substrings as sequences
S1, S2, ..., Sk. Let bm(S) denote the minimum number of block moves needed to
transform a given multiset S = {S1, S2, ..., Sk}, of disjoint increasing sequences whose
union is [n], into a multiset Mn = {idn, ɛ, ɛ, ..., ɛ}. Here a block move places a block
from one sequence into another sequence. For any given π, we can create an instance
Sπ of  .

Given a graph G = (V, E), and an ordering on its vertices, edges (i, j) and (k, l) are
said to be crossing if i 6 k < j 6 l or k 6 i < l 6 j. A subset E ′ of E is said to be non-
crossing set if no two edges of E ′ cross. Given a π we can obtain Sπ = {S1, S2, ..., Sk}.
A graph G1 = (V1, E1) can be defined using Sπ as follows: the vertex set is [n]. Two
vertices u, v share an edge if there exists some sequence Sp in Sπ such that both u

and v are a part of Sp. e edge is directed from u to v if u appears before v in idn

and v to u otherwise. V1 = [n] and E1 = {(u, v) | u < v, ∃p ∈ [k] : u, v ∈ Sp}. Let
ncs(π) denote the size of the largest non-crossing set for this graph.
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Given a permutation π, abd(π) equals the minimum number of block deletions
needed to convert π into a single increasing sequence. cabd(π) equals the minimum
number of block deletions needed to empty π.

e following are the key lemmas from [, , ] that will be used crucially
in the later sections.

Lemma .. [, ]

. bs(π) 6 bm(Sπ) 6 2bs(π)

. bm(Sπ) = n − ncs(π)

. ncs(π) = c(1, n) where:
For i ∈ [n], c(i, i) = 0

For i ∈ [n − 1], c(i, i + 1) =

{
1 if (i, i + 1) ∈ E

0 otherwise

For 1 6 i 6 j − 2 6 n − 2

c(i, j) = max{t(i, j), q(i, j)}

t(i, j) =

{
1 + c(i + 1, j − 1) if (i, j) ∈ E

0 otherwise

q(i, j) = max
i<k<j

c(i, k) + c(k, j)

Lemma .. []

. bs(π) 6 abd(π) 6 2bs(π).

. abd(π) can be computed from cabd(π) in O(n2) time.

. cabd(π) = t(1, n) where t(i, i) = 1 for all i, t(i, j) = 0 for all j < i, and for
1 6 i < j 6 n,

t(i, j) =


min

{
1 + t(i + 1, j)

t(i + 1, p − 1) + t(p, j)

}
if i < p 6 j where πp = πi + 1

1 + t(i + 1, j) otherwise
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..   and    in LogCFL

LogCFL algorithm for  : Here we will give a AuxPDA-Time(poly) M

for  . e input to the machine M is a diagraph G and 〈1, n, k〉. M

returns 1 if c(1, n) is at least k and 0 otherwise. From Lemma .. it is known that
ncs(π) equals c(1, n) where G is obtained appropriately from π. Hence this machine
M will in fact answer the question ncs(π) > k?

We will use the dynamic algorithm for computing c(1, n) and give a AuxPDA
simulation for it. We will argue that this AuxPDA will run for polynomial time.
Hence, achieve a LogCFL bound.

. Initialize work tape with 〈1, n, k〉.
. For any intermediate stage for tuple 〈i, j, l〉 on work tape,

(We have to verify that c(i, j) > l.)
. If ((i = j)  l = 0)  ([(j = i + 1)  (l = 1)  (i, j) ∈ E])
. en If stack empty en accept Else pop
. Else

(a) guess i 6 u < j

(b) If [(u = i)  ((i, j) ∈ E)] en replace 〈i, j, l〉 by 〈i + 1, j − 1, l − 1〉
(c) Elseif [(u = i)  ((i, j) 6∈ E)] en abandon this path
(d) Elseif [(u 6= i) en guess 0 6 l ′ 6 l, push 〈u, j, l − l ′〉, write 〈i, u, l ′〉.

e non-crossing set can also be explicitly constructed by making a minor mod-
ification to the above procedure. Change the AuxPDA algorithm at steps  (in the
case where i 6= j) and (b) to output the edge (i, j). On any accepting path of this
modified AuxPDA, the output edges put together will give a non-crossing set of size
at least k.

e AuxPDA runs in polynomial time, because every unit interval (i.e., the leaf of
the proof tree) is visited at most once. Note that the polynomial time dynamic algo-
rithm for computing ncs(π) had a structure such that max operator had unbounded
fan-in while the plus operator had bounded fan-in. Intuitively, for dynamic algo-
rithms with such structure, there will be a hope to find a LogCFL algorithm. Of
course, it will be essential that the number of smallest intervals that algorithm com-
putes values of, will have to be polynomially many, without which the proof tree
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size will not be polynomially bounded.
LogCFL algorithm for   : We give a AuxPDA implemen-

tation for cabd(π) = t(1, n) that runs in polynomial time. is is merely a nonde-
terministic recursive implementation of the recurrence relation for t(i, j), with the
recursion records explicitly stacked onto the pushdown store. Observe that in the
recurrence for t(i, j), if πi + 1 = πi+1, then for each j > i + 1, t(i, j) in fact equals
t(i + 1, j); we build this into the recursive program.

e runtime of the AuxPDA is nO(1) because on any computation path, the value
of l in the triple (i, j, l) is partitioned non-trivially with each push-and-rewrite, and
is initially at most n.

Input: π, k

Output: Yes if cabd(π) 6 k, No otherwise.
Method: Let |π| = n.
Initialization: Guess 1 6 l 6 k.
(Now verify that there is a complete block deletion sequence of length exactly l.)

Write (1, n, l) on work tape.
Repeat forever: Let the tape hold (i, j, l), where i 6 j and l > 1.

(Verify that πi, . . . , πj can be emptied with l deletions.)
Find the largest q ∈ {i, ..., j} such that πi...πq is a block in πi...πj.
If q = j  l = 1 en

pop stack top onto tape, overwriting (i, j, l).
(If stack is empty, accept and halt.)

Elseif (q < j  l = 1) (q = j l > 1) en reject and halt.
Else Let p be such that πp = πq + 1. (p is undefined if πq = n.)

If p ∈ {i, . . . , j} en
nondeterministically choose b ∈ {0, 1}.
If b = 0 en replace tape with (i, q, 1)

and push (q + 1, j, l − 1).
Else Guess a 1 6 l ′ 6 l

Replace tape with (q + 1, p − 1, l ′)

and push (p, j, l − l ′).
Else replace tape with (i, q, 1) and push (q + 1, j, l − 1).

In the algorithm above, for l = 1, the tape is replaced with the tuple (i, q, 1). is
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step is redundant in the above algorithm, however we use this crucially while de-
signing an NC algorithm.

Now we come to absolute block deletion.
e method from [] is as follows: construct a weighted DAG G with V =

{0, 1, ..., n + 1}, E = {(i, j)| i < j}, and for all i < j, w(i, j)=ti+1,j−1. e weight of
the minimum weight 0, n path in this graph equals abd(π). Note that all the edge
weights in G are polynomially bounded (in fact, bounded by n, since t(i, j) is at
most j − i + 1).

In such a situation (poly bounded weighted DAG), the shortest path compu-
tation can be done in NL with oracle access to the edge weights. We have seen
that computing all the values ti,j is in AuxPDA-Time(poly) = LogCFL. (Actually, we
have seen that checking whether t(i, j) at most k is in LogCFL. Checking equality
follows from the fact that LogCFL is known to be closed under complementation
and intersection, see [, ].) Combining the two in the obvious way, we get an
AuxPDA-Time(poly) for abd(π); hence abd(π) can be computed in LogCFL.

.. Case studies: NC algorithms for   and -
  

NC algorithm for  : We now give a O(logn) depth circuit for bm(π).
We use the construction of Venkateswaran [] that converts a polynomial-sized
proof tree into a SAC1 circuit. e idea, as applied to block merging, can be stated
as follows: Any accepting computation path of the AuxPDA actually constructs a
non-crossing set of size, say, l. e construction of this set can be represented as a
tree. Each internal node labeled (i, j) has two children; if the edge (i, j) is used in
the set, then one child is trivially a leaf checking that this edge exists. An example is
depicted in Figure .. Clearly, this tree is of polynomial size. (In fact, it has exactly
l leaves.) In such a tree rooted at r, the tree-separator theorem guarantees that there
is always a unique node u which divides the tree in roughly equal sized parts. Once
this node is located, the two sections of the tree can be evaluated in parallel: verify
Tu, and verify Tr assuming Tu. (e assumption corresponds to a pruning of the
tree.) If we repeatedly use this argument, then due to halving of the sizes at succes-
sive steps, total time to verify becomes logarithmic in the size of the tree. But we
may need to keep track of too many pruned points. erefore, we use this splitting
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..

.(29 − 43)

..

Figure .: e construction tree for a non-crossing set

only if the number of cuts already made is not too large (in fact, at most 2). If it is 3,
then we split not necessarily at the separator node, but at a node which will decrease
the number of cuts in each part. Such a node always exists; simply take the node
which is the least-common-ancestor of exactly two cut-points. is gives rise to a
restructured tree for the same non-crossing set, but with depth 6 logn. (e non-
balanced splitting is never used in two consecutive stages.) Figure . illustrates the
restructured tree for the example of Figure ..

Since we do not know the trees (or their splitting points) a priori, we check all
possibilities; there are only polynomially many splitting points. us, along with
each label (i, j, l), we also carry a parameter d, which acts as a time stamp when the
gate gets activated. By the above argument, d ranges from  to 6 logn.

We design a circuit, for finding whether ncs(π) > k given π and k. e labels of
the gates are of the form ((i, j, l) | H, d), where 1 6 i 6 j 6 n, 0 6 d 6 6 logn, and
H contains , ,  or  triples of the form (i ′, j ′, l ′). e tuples in H correspond to
disjoint (i ′j ′) intervals, each contained in the interval (i, j), and are ordered left-to-
right. e l ′ values add up to at most l.
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Figure .: e restructured tree for constructing the non-crossing set of Figure .

A gate labeled ((ijl), d) will try to find whether the interval (i, j) has a non-
crossing set of size > l (i.e., c(i, j) > l). e gate labeled ((ijl) | H, d) will try to find
whether the interval (i, j) has a non-crossing set of size > l under the hypothesis
that the triples in H are true.

A gate labeled ((ijl) | H, d) with |H| = t 6 2 can be evaluated using the values
computed by gates with at most t+1 hypotheses at time d−1. Ranging over all new
hypotheses (ijl) ′, if (ij) ′ subsumes some intervals of H, then (ijl) can be verified
with (ijl) ′ replacing these intervals in H, and (ijl) ′ itself is verified assuming the
subsumed intervals. If (ij) ′ does not subsume any interval of H, it can be added to
H, and verified independently.

A gate labeled ((ijl) | H, d) with |H| = 3 can be evaluated using the values com-
puted by gates with  hypotheses at time d − 1. Ranging over all choices of (ijl) ′,
we want to verify (ijl) with the first two hypotheses replaced by the new choice, and
the new hypothesis verified independently assuming the first two hypotheses of H.

Formally, the gates’ operations are as described below.

. e gate labeled ((ijl), 1) is initialized to  if l = 0 or if l = 1 and (i, j) is an
edge in G, and to  otherwise.

. e gate labeled ((ijl) | H, 1) is initialized to  if the l ′s in H add up to at least
l, or if the l ′s in H add up to at least l − 1 and (i, j) is an edge in G, and to 
otherwise.
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. e gate labeled ((ijl)| (ijl)1(ijl)2, d), checks all choices of a new hypothesis
(ijl) ′ which may subsume , or  of the given hypotheses. For each choice,
it evaluates a bit as described below, and then computes the logical OR of all
these bits.

(a) (ijl) ′ subsumes both hypotheses.

∨
i6i ′6i1;

j26j ′6j;

l1+l26l ′6l

[(
(ijl) (ijl) ′, d − 1

)
∧
(
(ijl) ′ (ijl)1(ijl)2, d − 1

)]

A gate performs this big (with polynomial inputs) ∨ in O(1) depth (or
in depth O(logn) using small (with O(1) inputs) ∨ gates).

(b) (ijl) ′ subsumes first hypothesis.

∨
i6i ′6i1;

j26j ′6j;

l1+l26l ′6l

[(
(ijl) (ijl) ′(ijl)2, d − 1

)
∧
(
(ijl) ′ (ijl)1, d − 1

)]

(c) (ijl) ′ subsumes second hypothesis. Similar to above case.

(d) (ijl) ′ subsumes none of the hypotheses and (ijl) ′ is on left of (ijl)1∨
i6i ′6i1;

i ′6j ′6i1;

06l ′6l−(l1+l2)

[(
(ijl) (ijl) ′(ijl)1(ijl)2, d − 1

)
∧ ((ijl) ′, d − 1)

]

(e) (ijl) ′ subsumes none of the hypotheses and (ijl) ′ is on right of (ijl)2.
Similar to above case.

(f ) (ijl) ′ subsumes none of the hypotheses and (ijl) ′ is between (ijl)1 (ijl)2.
Similar to above case.

. e gates with labels ((ijl)|H) where |H| is  or  can be described similarly.

. For the gate with the label ((ijl)| (ijl)1(ijl)2(ijl)3, d), guess a new hypothesis
(ijl) ′ necessarily subsuming exactly . For (ijl) ′ subsuming (ijl)1 and (ijl)2
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the expression is:

∨
i6i ′6i1;

j26j ′6i3;

l1+l26l ′6l−l3

[(
(ijl) (ijl) ′(ijl)3, d − 1

)
∧
(
(ijl) ′ (ijl)1(ijl)2, d − 1

)]

Similar expression can be obtained when (ijl) ′ subsumes (ijl)2 and (ijl)3.

. e output is the value ∨
6 logn

d=1 ((1, n, k), d).

We can also carry another parameter ptr in the labels of the gates. It will hold
a pointer to the gate-pair which yields the non-crossing set corresponding to the
current interval. With this book-keeping, we can also explicitly extract the non-
crossing set by an O(logn) depth circuit.

NC algorithm for   : To obtain a parallel algorithm from
cabd( )we use the depth-reduction proof idea originally due to [], and generalized
in [], see also []. e idea, as specialized to the problem of computing cabd(π),
can be described as follows: Any accepting computation path of the AuxPDA con-
structs a specific complete block deletion sequence. e construction can be de-
picted as a tree: the block deletion sequence of length l for πi . . . πj is comprised of
two sequences which can be independently constructed. (One replaces the tape, the
other is stacked.) For instance, for π = 5 6 2 7 1 3 8 4, Figure . shows the trees cor-
responding to the two -move sequences (56, 7, 1, 8, 234) and (2, 567, 1, 8, 34). Here
a node labeled (i, j, l) checks the predicates asserting that the sequence i . . . j can be
emptied with at most l block deletions. Clearly, any such tree is binary (each inter-
nal node has exactly two children), has l leaves if it witnesses an l-length sequence,
and can have depth up to O(l). (Each leaf corresponds to a block deletion.)

Since the two children of a node can be verified in any order, consider a re-
ordering of the tree such that at each internal node, the heavier child (with more
leaves in its subtree) appears as the right child of its parent. is implies that any
root-to-leaf path has at most logn left moves. Along the rightmost path (called the
spine), we can identify an edge (w → u) where the number of subtree-leaves first
drops below l/2. Let u’s other (lighter) child be v. Let P(x) denote the predicate
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Sequence: 56, 7, 8, 234 Sequence: 2, 567, 1, 8, 34

..(1, 8, 5)

.(1, 2, 1) .(3, 8, 4)

.(4, 5, 2)

.(4, 4, 1) .(5, 5, 1)

.(6, 8, 2)

.(7, 7, 1) .(8, 8, 1)

..(1, 8, 5)

.(3, 3, 1) .(4, 8, 4)

.(4, 4, 1) .(5, 8, 3)

.(5, 5, 1) .(6, 8, 2)

.(7, 7, 1) .(8, 8, 1)

Figure .: e construction trees for two complete block deletion sequences for
5 6 2 7 1 8 3 4

being checked at node x. en, the predicate at the root r can be checked via
P(r) = (P(r) given P(u)) P(v) P(w), since P(v) and P(w) together imply
P(u). And node v is not on the spine (it is at a distance of  from the spine).
Repeatedly divide the segments of the spine, with division points chosen to halve
the number of leaves, until verifying P(r) is reduced to verifying other predicates at
distance  from the spine. is results in a restructuring of the tree, and yields a new
tree of depth at most O(logn). Figure . shows the restructured trees corresponding
to those in Figure ..

Unfortunately, the trees themselves are not known to us a priori, let alone the
optimal division points for restructuring. So we check all possible division points
that may work for a potential unknown tree. ere are only polynomially many
such points (guess the three triples corresponding to nodes u, v, w), hence this is
feasible. We abandon a particular choice if it leads to the construction of a path
with more than logn left moves. So we also need to carry this value along with the
node label.

e circuit can now be described as follows: Initially, compute and store π−1.
en compute and store, for each i 6 j, the largest q = q(i, j) such that q ∈ {i, ..., j}

and πi...πq is a block in πi...πj. Also, compute and store p = p(i, j) such that if
πq = n then p is undefined; else let πr = πq + 1, and p = r if q + 1 6 r 6 j,
undefined otherwise.

Assign a gate to each label [i, j, l, r] where i 6 j, 0 6 r 6 logn, 1 6 l 6 k. Also,
assign a gate to each label ([i, j, l, r] | [i1, j1, l1, r]) where i 6 i1 6 j1 6 j, {i, j} 6= {i1, j1},
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Sequence: 56, 7, 8, 234

..(1, 8, 5)

.((1, 8, 5)|(3, 8, 4))

.(1, 2, 1)

.(4, 5, 2)

.(4, 4, 1) .(5, 5, 1)

.(6, 8, 2)

.(7, 7, 1) .(8, 8, 1)

Sequence: 2, 567, 1, 8, 34

..(1, 8, 5)

.((1, 8, 5)|(5, 8, 3))

.((1, 8, 5)|(4, 8, 4))

.(3, 3, 1)

.(4, 4, 1) .((5, 8, 3)|(5, 8, 3))

.(5, 5, 1) .(6, 8, 2)

.(7, 7, 1) .(8, 8, 1)

Figure .: e restructured trees for constructing the complete block deletion se-
quences of Figure ..
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and 1 6 l1 6 l. ese are the “valid labels” for gates that we refer to below. In the
description below if label of a gate is not valid, it is to be read as a constant gate with
value 0. ese gates function as follows:
[i, j, l, r] = True if q(i, j) = j and l = 1,
[i, j, l, r] = False if [q(i, j) = j ∧ l > 1] ∨ [q(i, j) < j ∧ l = 1], and otherwise

[i, j, l, r] =
∨(

[i, j, l, r] [iu, ju, lu, r]
)

∧ [iv, jv, lv, r + 1] ∧ [iw, jw, lw, r]

where the ∨ is over all triples [i, j, l]u, [i, j, l]v, [i, j, l]w satisfying

• [i, j, l, r] | [iu, ju, lu, r] is a valid label,

• lv 6 lw 6 l/2 and lv + lw = lu > l/2

• [iv, jv, lv] and [iw, jw, lw] can possibly be children of [iu, ju, lu] in some tree
(that is, the intervals [iv, jv] and [iw, jw] lie inside [iu, ju] and cover it, except
possibly for a prefix [iu, q(iu, ju)]).

Similarly,
(
[i, j, l, r] [i ′, j ′, l ′, r]

)
= True if [i, j, l] = [i ′, j ′, l ′], and

∨(
[i, j, l, r] [iu, ju, lu, r]

)
∧ [iv, jv, lv, r+1]∧

(
[iw, jw, lw, r] [i ′, j ′, l ′, r]

)
; otherwise

where the ∨ is over all triples [i, j, l]u, [i, j, l]v, [i, j, l]w satisfying

• [i, j, l, r] | [iu, ju, lu, r] and ([iw, jw, lw, r] | [i ′, j ′, l ′, r]) are valid labels,

• lv 6 lw, lv + lw = lu and lw − l ′ 6 (l − l ′)/2 6 lu − l ′.

• [iv, jv, lv] and [iw, jw, lw] can possibly be children of [iu, ju, lu] in some tree.

Finally, a new gate evaluates and outputs the value ∨k
l=1(1, n, l, 0).

is procedure will check whether t(1, n) 6 k. By invoking this procedure in
parallel on the n distinct choices for k, we obtain the smallest k for which this
holds, namely, t(1, n) itself. (Also, by exiting at appropriate stages (or making more
copies), t(i, j) can be evaluated for each i 6 j. )

Clearly, this algorithm can be implemented by a depth O(logn) circuit. A lit-
tle more, straightforward, book-keeping, allows us to also extract the witnessing
complete block deletion sequence within the same depth.





Chapter . A general paradigm for efficiently parallelizable problems

Now we come to absolute block deletion. As described in Section .., this is
in NL, once the t(i, j) values are computed. To uncover an NC algorithm for this
stage, we need not use the complex depth reduction for LogCFL. NL is in NC by a
classical, far simpler, argument due to Savitch, see for instance []. Applied here,
it yields the following algorithm:
Assign a gate to each triple [i, j, w] where i, j, w ∈ {1, . . . , n}; it is expected to return
true if and only if there is a path of weight at most w from i to j. en

[i, j, w] = True if i = j, and otherwise
[i, j, w] =

∨
i6k6j

([
i, k, bw

2
c
]
∧
[
k, j, dw

2
e
])

Clearly, this can be implemented by SAC1 circuit (in O(logn) depth). (is is an-
other way of saying that NL is in SAC1.)

Hardness results: For   the only hardness known is TC0 hardness.
(e hardness is due to reduction to membership problem for Dyck sets.) It would
be nice to know (in the best case) LogCFL hardness or hardness for some slightly
larger class, say L or LogDCFL. Unfortunately, none of these are known.

In the following section, we will see another problem for which we will prove an
upper bound of LogCFL. is problem is also known to be hard for LogCFL. us,
this problem is more interesting for us.

. Multi-pushdown machines

.. Membership problem

In this section and in the next chapter, we will consider a problem called the mem-
bership problem. Consider a fixed machine M (the machine can be for example a
finite state automaton, or a pushdown automaton etc.) over an alphabet Σ. Typi-
cally, the machine consists of a finite control, a finite set of rules that describe the
way the machine moves from one configuration to another reading an input from
Σ∗. e machine also has marked initial and final configurations. If on an input
string w ∈ Σ∗, the machine starts from one of its initial configurations and ends up
in one of the final configurations then w is said to be accepted by the machine M.
e set of strings from Σ∗ that are accepted by the machine is called the language of
the machine, denoted as L(M).
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e membership problem for a fixed M, deals with given a input string w ∈ Σ∗,
deciding whether w is in L(M). Let A be a set of machines/automata. And let L be
a set of languages accepted by A. We use either MEM(A) or MEM(L) to denote the
membership problem for the machines in A.

e membership problem is interesting for two different reasons. Firstly, it is
well motivated from the application point of view. e membership problem is
also known as the parsing problem. e parsing problem has been of interest since
the time of automation back in the seventies []. For various different machine
models, this problem has been studied. Efficient algorithms for various classes of
machines have been developed. Secondly, the problem is of interest from complexity
theory point of view. For many machine models, the problem becomes complete
for a complexity class. (We will elaborate on the connection between membership
problem and complexity classes in the next chapter.)

e parsing community only needs that useful class of machine models A have
polynomial time algorithms for membership testing. However, it is fascinating for
complexity theorists to obtain equivalent characterizations for known complexity
classes. e complexity class of our interest, namely LogCFL, has been characterized
by the membership problem for CFLs, MEM(CFL). It is known that MEM(CFL) is
complete for LogCFL [].

In this section, we consider membership problem for machines that consist of
multiple pushdowns along with finite control. In general, with two stacks one can
simulate any Turing machine. e head movement of the machine is captured at the
top of the stacks. But the model that we consider here is somewhat restricted. And
with this added restriction, the membership problem becomes much easier. In fact,
we get a LogCFL upper bound. is is another illustration of the depth reduction
technique.

.. Definitions and known results

A PDk M = (Q, q0, F, Γ, Σ, δ, Z0) is a k-stack pushdown machine where Q is a finite
set of states, q0 is the start state, F ⊆ Q is a set of final states, Γ is a finite set of
stack alphabet, Σ is a finite input alphabet, Z0 (this component is different from the
standard definition of a PDA described in Section .) is the bottom of the stack
marker, and the transition function δ is of the form δ ⊆ Q× (Σ∪ɛ)× Γ ×Q× (Γ∗)k.
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A configuration is a (k + 2)-tuple, 〈q, w, γ1, . . . , γk〉 where q ∈ Q, w ∈ Σ∗, and
γi ∈ Γ∗ for each i represents the contents of the ith stack. e initial configuration
on a word x is 〈q0, x, Z0, ɛ, . . . , ɛ〉. A configuration is called a final configuration if
q is in F.

If there is a transition (q ′, α1, . . . , αk) ∈ δ(q, a, A), the machine in state q can
read a letter a from the input tape, pop A from the first non-empty stack, push αi

on stack i for each i ∈ [k], and move to state q ′. Formally,
〈q, aw, ɛ, . . . , ɛ, Aγi, . . . , γk〉 ` 〈q ′, w, α1, . . . , αi−1, αiγi, . . . , αkγk〉.

If (q ′, α1, . . . , αk) ∈ δ(q, ɛ, A) then 〈q, w, ɛ, . . . , ɛ, Aγi, . . . , γk〉 `
〈q ′, w, α1, . . . , αi−1, αiγi, . . . , αkγk〉.

e PDk M accepts a string w if it can move from 〈q0, w, Z0, ɛ, . . . , ɛ〉 to some
〈q, ɛ, γ1, . . . , γk〉where q ∈ F. e set of all the strings accepted by M is the language
accepted by M, denoted L(M). is model was defined by Cherubini et al. in [].
e membership problem for PDk was considered by Cherubini et al. []. ey
proved the following:

eorem .. ([]) For a fixed PDk, given an input string w ∈ Σ∗, checking if
w ∈ L(M) is in P-time. i.e., MEM(PDk) ∈ P-time.

In [], PDk are characterized by grammars. We describe the D2-grammars
that correspond to languages accepted by PD2. A D2-grammar G is a 4-tuple G =

(N, Σ, P, S) where N, Σ, S are as usual, and P has productions of the form: A →
w(α)(β) where A ∈ N, w ∈ Σ∗ and α,β ∈ N∗.

Sentential forms in a derivation are of the form x(α)(β) where x ∈ Σ∗, α,β ∈ N∗.
e initial sentential form is (S)(ɛ). If A → w(α)(β) is a production rule, then
w ′(Aα ′)(β ′) ⇒ w ′w(αα ′)(ββ ′) and w ′(ɛ)(Aβ ′) ⇒ w ′w(α)(ββ ′) are the only valid
derivations using this rule. Note that only leftmost derivations are allowed. We say
that A ⇒∗ w(α)(β) if (A)(ɛ) ⇒∗ w(α)(β) and that A ⇒∗ w if (A)(ɛ) ⇒∗ w(ɛ)(ɛ).
e language generated is the set L(G) = {w | S ⇒∗ w}.

Example .. e language {anbncn | n > 0} is accepted by the following D2 gram-
mar: G = (N, Σ, P, S), where N = {S, B,C}, Σ = {a, b, c}, and P consists of the following
productions: S → a(SB)(C)|ɛ, B → b(ɛ)(ɛ)|ɛ, and C → c(ɛ)(ɛ)|ɛ.

e initial sentential form is (S)(ɛ). And a typical derivation can be given as
follows: (S)(ɛ) → a(SB)(C) ⇒k−1 ak(SBk)(Ck) → ak(Bk)(Ck) ⇒k akbk(ɛ)(Ck)⇒k akbkck(ɛ)(ɛ), where ⇒k indicates k derivation steps.
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eorem .. ([]) For every D2-grammar G there is an equivalent normal form
D2-grammar G ′ where each production is of one of the following types:

• A → (BC)(ɛ);A, B, C ∈ N (branching production)

• A → (ɛ)(B);A, B ∈ N (chain production)

• A → a;A ∈ N, a ∈ Σ. (terminal production).

A derivation in such a grammar is said to be a normal form derivation if whenever
a non-terminal A is rewritten by a chain production, say A → (ɛ)(B), then that
occurrence of B is eventually rewritten by either a branch production or a terminal
production. at is, no occurrence of any variable participates in two chain rules.
For every derivation, there is an equivalent normal form derivation [].

A typical derivation in this grammar arising from the use of a branching pro-
duction produces non-contiguous substrings. Say A → (BC)(ɛ) ∈ P. Also say
B ⇒∗ β1(ɛ)(β) ⇒∗ β1β2(ɛ)(ɛ) and C ⇒∗ γ1(ɛ)(γ) ⇒∗ γ1γ2(ɛ)(ɛ). en A ⇒
(BC)(ɛ) ⇒∗ β1(C)(β) ⇒∗ β1γ1(ɛ)(γβ) ⇒∗ β1γ1γ2(ɛ)(β) ⇒∗ β1γ1γ2β2(ɛ)(ɛ).
us, we say that in the string β1γ1γ2β2, the substring β1β2 is produced by B with
a gap, and the gap is filled by C with the substring γ1γ2.

A chain production does not explicitly give rise to a gap in the string. However,
the application of a chain production swaps the order of substrings being produced
by the non-terminals in the first list. Say A → (ɛ)(B) and B ⇒∗ β; i.e., A produces
a string β via a chain rule. Also say C ⇒∗ γ. Consider a sentential form w(AC)(δ).
e string β produced by A appears in the final string after the string γ that is pro-
duced by C. at is, we get w(AC)(δ) ⇒ w(C)(Bδ) ⇒∗ wγ(ɛ)(Bδ) ⇒∗ wγβ(ɛ)(δ).
Hence when A produces a string β via a chain production, we assume that β has a
gap (of length 0) at the beginning (before β). us, a chain rule always results in a
gap at the beginning.

Consider a terminal rule A → a. Say A appears in some list in a sentential form.
e terminal a produced by A appears before all the strings produced by all the
non-terminals that follow A in its list. Consider sentential form w(AC)(δ). en
we get w(AC)(δ) ⇒ wa(C)(δ) ⇒∗ waγ where C ⇒∗ γ. us, a terminal production
produces a gap (of length 0) at the end (i.e., after the terminal).
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.. Reviewing the P-time algorithm for MEM(PD2)

e main result we intend to establish is the following theorem:

eorem .. For every fixed k > 1, MEM(PDk) is in LogCFL.

e main structure of our LogCFL algorithm closely follows that of the P-time
algorithm for membership testing for PD2 as given in []. So in this section, we
first describe the P-time algorithm in some detail following the presentation from
[]. We then give (Section ..) a different implementation of the same algorithm
and improve the upper bound to LogCFL, thus establishing eorem .. for k =

2. A P-time algorithm for MEM(PDk) is given in []. It is very similar to the
algorithm from []. In Section .., we discuss the changes needed to be made in
our implementation for the LogCFL bound to hold for all fixed k, thereby proving
eorem ...

e P-time algorithm uses the characterization of PD2 via D2 grammars in nor-
mal form, and normal-form derivations.

Given an input w ∈ Σ∗, the algorithm needs to keep track of substrings of w

being produced with gaps. is is done as follows: A table T is constructed such
that any entry in the table is indexed by four indices, T(i, j, r, s). e algorithm fills
entries in the table with subsets of N. A non-terminal A is in T(i, j, r, s) if and only
if A generates the string wi+1 . . . wj with a gap of length s at position i+1+ r. Here
r is the offset from i + 1 where the gap begins. e table entry T(i, j, r, s) deals with
the interval inv = [i + 1, j] modulo the gap interval gap = [i + r + 1, i + r + s]. Let
l = j − i denote the total length of the interval and l ′ = j − i − s denote the actual
length of the interval under consideration i.e., length of the interval without the
gap. e table is filled starting from smaller values of l. Further, the table entries
with intervals of the same length l are filled starting from l ′ = 1 going up to l ′ = l.
All entries are first initialized to contain the empty set.

For fixed values of l and l ′, we call a tuple 〈i, j, r, s〉 valid for l and l ′ if and only
if j = i + l, s = l − l ′ and i + r + s 6 j (i.e., r 6 l ′).

For l = 1 all the entries are filled by the following two rules, using information
from the input and the fixed grammar.

. T(i, i + 1, 1, 0) = {A | A → wi+1}
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. T(i, i + 1, 0, 0) = {A | A → (ɛ)(B), B → wi+1}

In the first (second) rule, the table entries correspond to intervals of size 1, where the
zero-length gap is at the end (beginning, respectively). It contains the non-terminals
that produce the terminal wi+1 using a terminal (chain, respectively) production.

As the value of l increases, depending on the position and size of the gap, various
rules are used to fill up the table. For l > 1, the following rules are applied to fill
the table entries corresponding to valid tuples:

Rule : is rule is applied provided the interval size is at least 2, and values of
r ′, s ′ satisfy r ′ < r, s < s ′ < j − i = l.

T(i, j, r, s) = T(i, j, r, s) ∪

A

A → (BC)(ɛ),

B ∈ T(i, j, r ′, s ′),

C ∈ T(i + r ′, i + r ′ + s ′, r − r ′, s)


For this update, the algorithm uses values from T(i, j, r ′, s ′) and T(i + r ′, i + r ′ +

s ′, r− r ′, s). ese values are already available. To see this, note that for T(i, j, r ′, s ′),
the actual interval length is j − i − s ′ which is strictly less than l ′ as s ′ > s, and for
T(i + r ′, i + r ′ + s ′, r − r ′, s), the interval length is s ′ where s ′ < l.

Rule : T(i, j, 0, s) = T(i, j, 0, s) ∪ {A | A ∈ T(i + s, j, 0, 0)}. is rule is applied
when the offset r is zero, i.e., when the gap is on the left. Note that this rule makes
no update when the length s of the gap is zero.

For this update, the algorithm uses values from T(i + s, j, 0, 0) (for which length
of the interval j − i − s < l). is value is already available.

Rule : T(i, j, r, s) = T(i, j, r, s) ∪ {A | A ∈ T(i, j − s, r, 0)}. is rule is applied
when the gap of length s is on the right. is happens when the gap stretches all
the way till j, i.e., i+ r = j− s. Note that this rule makes no update when the length
s of the gap is zero.

For this update, the algorithm uses values from T(i, j − s, r, 0) (for which length
of the interval is j − s − i < l). ese values are already available.

Rule : T(i, j, 0, 0) = T(i, j, 0, 0) ∪ {A | A → (ɛ)(B), B ∈ T(i, j, r ′, 0)}. is rule is
applied when s and r are both zero. And 0 6 r ′ 6 j − i.

For this update, the algorithm uses values from T(i, j, r ′, 0) checking if A →
(ɛ)(B) and B ∈ T(i, j, r ′, 0) for some 0 6 r ′ 6 j − i. Now for T(i, j, r ′, 0), the l and
l ′ values are the same as that for T(i, j, 0, 0). So we cannot immediately conclude
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that the required values are already available. However, for fixed l, l ′, the P-time
algorithm performs steps 1, 2, 3 before the step 4. Steps 2, 3 leave entries unchanged
if s = 0. It is sufficient to argue that step 1 in fact puts B in T(i, j, r ′, 0), which is
then used in step 4. Suppose not. i.e., suppose B is written in T(i, j, r ′, 0) by rule
4. Let r ′ = 0, as rule 4 cannot have been applied if r ′ 6= 0. Also as B is written
in T(i, j, r ′, 0) by rule 4, there exists a C ∈ N and a rule B → (ɛ)(C) such that
B ⇒ (ɛ)(C) ⇒∗ wi+1 . . . wj. But then the complete derivation is A ⇒ (ɛ)(B) ⇒
(ɛ)(C) ⇒∗ wi+1 . . . wj. is contradicts the assumption that we have a normal form
derivation. Hence, the required values are already available even for this step.

After a systematic looping through these indices, finally the entry of interest
T(0, n, 0, 0) is filled. If S ∈ T(0, n, 0, 0), then the algorithm returns ‘yes’, else it returns
‘no’. e time complexity of the algorithm is O(n6).

.. LogCFL algorithm for MEM(PD2)

We now give a top-down algorithm to fill up the table T . We will see that it can
be implemented by a poly sized circuit having ∧ and ∨ gates and having poly sized
proof trees. From [, ] it follows that this algorithm is in LogCFL.

e polynomial time algorithm that fills up the table can be viewed as a polyno-
mial sized circuit. However, this circuit need not have polynomial size proof trees.
In particular, the index computations may blow up the proof tree size. We note that
these index computations are independent of the input, and give a way to build a
circuit with small proof trees.

For each l ′ 6 l 6 n, for all valid tuples corresponding to these values of l, l ′, and
for each A ∈ N, we introduce 5 gates: an OR gate 〈A, i, j, r, s〉 called amain gate, and
4 intermediate gates X1

A,i,j,r,s, X2
A,i,j,r,s, X3

A,i,j,r,s, X4
A,i,j,r,s called auxiliary gates. We

design the circuit in such a way that 〈A, i, j, r, s〉 = 1 if and only if A ∈ T(i, j, r, s).
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e root of the circuit is labeled 〈S, 0, n, 0, 0〉. e circuit connections are as follows:

〈A, i, j, r, s〉 =
∨

k∈[4]

Xk
A,i,j,r,s

X1
A,i,j,r,s =

∨
r ′ < r

s < s ′ < j − i − r + 1

{B,C| A → (BC)(ɛ)}

(
〈B, i, j, r ′, s ′〉

∧
〈C, i + r ′, i + r ′ + s ′, r − r ′, s〉

)

X2
A,i,j,r,s =

{
〈A, i + s, j, 0, 0〉 if r = 0

0 otherwise

X3
A,i,j,r,s =

{
〈A, i, j − s, r, 0〉 if i + r = j − s

0 otherwise

X4
A,i,j,r,s =

{ ∨
06r ′6j−i,fBj A!(ɛ)(B)g X

1
B,i,j,r ′,0 if r, s = 0

0 otherwise

is finishes the description of all the non-leaf gates.
A predicate [i, a, 1, 0] takes value 1 if ith symbol of the input is the letter a, 0

otherwise. We define such predicates in order to describe the input gates of the
circuit as done in Allender et al. []. e values of the input gates are propagated
via the following depth-1 circuit.

〈A, i, i + 1, 1, 0〉 =
∨

faj (A!a∈P)g

[i, a, 1, 0]

〈A, i, i + 1, 0, 0〉 =
∨

faj ∃B(B!a∈P)^(A!(ɛ)(B)∈P)g

[i, a, 1, 0]

Note that the above connections give an acyclic digraph of depth O(n2).
It is now easy to see the following claim, and hence the correctness of the above

circuit follows from the correctness of P-time algorithm.

Lemma .. 〈A, i, j, r, s〉 = 1 if and only if A ∈ T(i, j, r, s).

e LogCFL bound for MEM(PD2) now follows from the following claim:

Claim .. e circuit constructed above has polynomial size proof trees.
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Proof: e leaves of the proof tree are unit intervals representing a letter from the
input string. e number of distinct unit intervals is equal to the length of the
input and every unit interval appears at most once in the proof tree. is gives a
polynomial size proof tree. �

It is easy to see that the circuit is uniform.

.. LogCFL algorithm for MEM(PDk)

e grammars [] corresponding to PDk have rules with a single non-terminal
belonging to one of the k lists on the left hand side and at most k lists of non-
terminals on the right hand side. e normal form of the grammar is as follows:

• (A)h → (BC)1; k > h > 1 (branch production; always expands into list )

• (A)h → (B)g; k > g > h > 1 (chain production; from list h to a later list g)

• (A)h → a; a ∈ T ; k > h > 1 (terminal production)

Now, any typical string derived by a non-terminal can have as many as 2k−1

gaps; see []. If (A)h → (BC)1 is a branch rule, and B,C derive strings γ and δ

respectively, then the string derived from A is a systematic merge of γ and δ. In the
case when k = 2, only one gap was possible, whereas here we need to keep track of
2k−1 gaps to interleave γ and δ properly. Arrays r̃ and s̃, of length 2k−1 each, keep
track of the off-sets and the lengths of the gaps.

Each table entry is indexed by i, j, r̃, s̃, as in the case k = 2. But now the tables are
2k +2 dimensional (as each r̃ and s̃ are 2k−1 length arrays). e table entries contain
non-terminals and they are filled in such a way that a non-terminal A belongs to a
certain entry Ti,j,r̃,s̃ if and only if the string wi . . . wj with gap off-sets as in r̃ and
gap sizes as in s̃ can be obtained from A. e rules for filling up the table are slightly
more complicated. However, they simply involve some index manipulations. ese
can be implemented as we did for k = 2. Once these rules are established, the order
of filling up the entries and hence the rest of the algorithm is exactly the same. us,
we obtain eorem ...
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. Concluding Remarks

In this chapter we reviewed a depth reduction technique by []. Using the ideas
of depth reduction, we obtained new LogCFL upper bounds for

•  

•   

• MEM(PDk).

As case studies we unfolded the depth reduction from [, ] to explicitly de-
scribe NC2 algorithms for   and   .
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4
Membership problem for

generalization of VPLs

. Why study the membership problem?

In this chapter, we will consider the membership problem for various restrictions of
CFLs and some restrictions of context-sensitive languages and show improved upper
bounds within LogCFL.

e study conducted here is of interest from the complexity theoretic point of
view. Here we characterize various complexity classes (between NC1 and NC2) by
the membership problem for subclasses of CFLs. In the past, MEM(L) for the class
of languages that are proper restrictions of CFL have been studied. ey are known
to characterize known complexity classes; i.e., they can be solved using resource
bounds corresponding to a complexity class for which they are also hard.

From the years of study, a lot is known about the structure of the language
classes. e fact that the membership problem for these language classes has a con-
nection to known complexity classes is very useful. is is because, as compared to
language classes, a lot less is known about complexity classes. e hope, therefore is,
to make connections between language classes and complexity classes to understand
the structure of the complexity classes.

Recall that we use A to denote a set of machines/automata, L to denote a set of
languages accepted by A. We use either MEM(A) or MEM(L) to denote the mem-
bership problem for the machines in A. We will relate the complexity of MEM(L)

for these language classes to complexity classes. e complexity classes of inter-
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NC1,
MEM(REG)

// L,
MEM(DLIN)

//

%%LLLLLLLLLL

LogDCFL,
MEM(DCFL)

%%KKKKKKKKK

NL,
MEM(LIN)

// LogCFL,
MEM(CFL)

Figure .: Connection between MEM(L) and complexity classes

est to us are those between NC1 and LogCFL. e containment relations between
the complexity classes we consider are shown in Figure .. Note that none of the
containments here are known to be strict.

Recall that MEM(CFL) is complete for for the class LogCFL []. e set of
languages logspace many-one reducible to MEM(DCFL) define the complexity class
LogDCFL which is a subclass of LogCFL []. Sudborough [] proved that mem-
bership problem for LIN languages, MEM(LIN), is complete for NL. Holzer et al. []
proved that MEM(DLIN) (where the definition of DLIN is acceptance by DPDA1-turn)
is complete for logspace. Barrington [] proved a similar correspondence between
MEM(REG) and NC1. (Refer to sections ., .., and .. to recall the definitions
of the above language classes and complexity classes.)

e known connections between membership problem for subclasses of CFLs
and complexity classes are depicted in Figure ..

. Basic facts about VPLs and IDLs

Recently, many new subclasses of CFLs have been defined. Visibly pushdown lan-
guages, denoted as VPL, is one such subclass of CFLs. VPLs were first defined by
Mehlhorn [] and studied for the complexity of MEM(VPL). But later, they were
rediscovered by Alur et al. []. ey mainly studied language theoretic properties of
VPLs. Informally, VPLs are the languages accepted by pushdown machines called vis-
ibly pushdown automata (VPA) which are ɛ-moves-free pushdown automata whose
stack behavior (push/pop/no change) is dictated solely by the input letter under
consideration.

More formally, VPA can be defined as follows:
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Definition .. (Visibly pushdown automaton) A visibly pushdown automaton
(VPA) over an input alphabet Σ is a PDA P = (Q,q0, F, Γ, Σ, δ). Here, Q is a finite set
of states, q0 is an initial state, F ⊆ Q is a set of final states, Γ is a finite stack alphabet
which contains a special bottom-of-stack marker ⊥, the finite input alphabet Σ is par-
titioned as Σc ∪ Σr ∪ Σi, and transition relation is a finite set δ contained in the union
of (Q × Σc × Q × Γ \ {⊥}), (Q × Γ × Σr × Q), and (Q × Σi × Q). On reading a letter
from a particular part of the input alphabet, the PDA is allowed to make exactly one of
the three moves: push, pop, and no change.

VPA has no ɛ-moves. e language accepted by VPA M is denoted as L(M). e
languages accepted by VPA are called visibly pushdown languages, VPLs.

A VPA is deterministic if the δ relation is a (possibly partial) function.

e following two theorems state known interesting properties of VPA.

eorem .. (Determinisation []) Given a VPA M over an input alphabet Σ

with the three partitions Σc, Σr, and Σi, there exists a deterministic VPA M ′ over the
same alphabet and the same partition of the alphabet such that L(M) = L(M ′).

eorem .. (Boolean Closure []) Let L1 and L2 be two VPLs accepted by VPA
M1 and M2 respectively over the same tri-partitioned input alphabet Σ. en L1 ∪ L2,
L1 ∩ L2, L1, L1 · L2, and L∗

1 are also VPLs accepted by VPA over the same tri-partitioning
of Σ.

e input driven PDA as defined by [] are slightly different from VPA.

Definition .. (Input driven PDA) An input driven pushdown automaton P =

(Q, q0, F, Γ, Σ, δ, Z0) is a realtime PDAwith tri-partitioned input alphabet Σ = Σc∪Σr∪
Σi. Z0 is a special bottom-of-stack marker not contained in Γ , and transition relation δ

is a finite set contained in the union of (Q× Γ × Σc ×Q× Γ2), (Q× Γ × Σr ×Q), and
(Q × Γ × Σi × Q × Γ).

ere are two primary differences between the definitions of input driven PDA
and VPA.

• In all the moves of an input driven PDA, the transitions may depend on the
current stack-top unlike in the case of VPA where they are allowed to depend
on the stack-top only during the pop moves. at is, VPA are weak PDA but
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input driven PDA are not. e latter has rules of the form pU → qV, where
|U| = 1 and |V | 6 2.

But by remembering the stack-top in the state for push and local moves, one
can easily obtain (by using standard techniques from []) a VPA from an input
driven PDA.

• e transition function of a VPA is allowed to have transitions of the form
(p ⊥)

a→ (q ⊥), for a in Σr i.e., a VPA is allowed to “pop” on an empty stack,
however an input driven PDA is not. Due to this restriction, IDL are a proper
subclass of VPLs. Example .. gives a language that is a VPL but not an input
driven language, IDL.

Example .. A set of strings of the form {(anbn+1)∗ | n > 0} is accepted by a
VPA but not by any input driven PDA.

A string over a tri-partitioned alphabet is called well-matched, if every prefix of
the string has at least as many push letters as pop letters, and the total number of
push letters in the string equals the total number of pop letters.

A VPA that accepts only well-matched strings, does not pop on an empty stack.
Let wm(VPL) denote the set of languages accepted by such VPA. Clearly, wm(VPL)
can be accepted by input driven PDA. Note that there are input driven languages
which contain strings that are not well-matched. For example {ambn | m > n} is an
IDL. us, wm(VPL) ⊂ IDL. And we know that IDL ⊂ VPL.

e following lemma tells us that it is enough to consider wm(VPL) as long as
TC0 computations are allowed.

Lemma .. For every VPA M over alphabet Δ, there is a corresponding VPA M ′ over
an alphabet Δ ′ and a TC0 many-one reduction g such that for every x ∈ Δ∗,

. accM(x) = accM ′(g(x)), and

. g(x) is well-matched.

Proof: Let M = (Q,Δ, Qin, Γ, δ, QF). e VPA M ′ = (Q ′, Δ ′, Q ′
in, Γ ′, δ ′, Q ′

F) is es-
sentially the same as M. It has two new input symbols A, B, and a new stack symbol
X. A is a push symbol on which X is pushed, and B is a pop symbol on which X is
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expected and popped. M ′ has a new state q ′ that is the only initial state. M ′ expects
an input from A∗Δ∗B∗. On the prefix of A’s it pushes X’s. When it sees the first
letter from Δ, it starts behaving like M. e only exception is when M performs
a pop move on ⊥, M ′ can perform the same move on ⊥ or on X. On the trailing
suffix of B’s it pops X’s. It is straightforward to design δ ′ from δ.

Let |x| = n. e TC0 circuit does the following. It counts the difference d

between the number of push and pop symbols in Anx. It then outputs y = AnxBd.
By the way M ′ is constructed, it should be clear that accM(x) = accM ′(y) and
that M ′, on y, never pops on an empty stack. In fact y is well-matched. �

As a corollary we get the following:

Corollary .. TC0 closures of wm(VPL), IDL, and VPL are equivalent, i.e.,
TC0(wm(VPL)) = TC0(IDL) = TC0(VPL).

Henceforth, we do not differentiate between wm(VPL), IDLs, and VPLs as long as we
are allowed to use TC0 reductions.

REG is contained in VPL for any partition of the input alphabet. e accepting
VPA ignores the stack and simulates the NFAmoves by its finite control. Given below
are two examples of VPLs that are known to be non-regular.

Example .. e language {anbn | n > 0} is accepted by a VPA for which the parti-
tion of the alphabet is: Σc = {a}, Σr = {b} , and Σl = φ.

..q0.start .qrej

.[b,⊥ −]

.[a, +A]

.[b, A−]

Here, we indicate the transitions between the states as in the case of an NFA. e
changes on the stack are indicated by means of arrows. In particular, on reading a
push letter, the letter to be pushed is indicated with a + sign on the arrow which
points to the state reached after such a push. On reading a pop letter, the stack-
top being read is indicated with a − sign on the arrow with again arrow pointing
towards the state reached after such a pop move. e initial state is indicated by an
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unlabeled arrow pointing into it. e final states are marked with concentric circles.
We will use the same notation for describing a VPA in all the subsequent examples.

In Example .., the VPA has no accept state. e acceptance is by an empty
stack. But one can easily change the VPA slightly and make it accept by a final state
to abide by Definition ...

Example .. Dyckk = {balanced strings over k pairs of parenthesis}. All the open-
ing brackets form Σc and all the closing brackets form Σr. Σl is empty. e accepting VPA
matches the stack-top with the pop letter and proceeds if they are a pair of parenthesis of
the same type. Given below is a VPA accepting Dyck1 with a final state.

..q0.start .q1

.[{, +A]

.[}, A−]

.[{, +B]

.[}, B−]

us, VPLs strictly contain REG.
In [], it was shown that VPLs are determinisable; i.e., they are contained in

DCFLs. Also the language EQ(a, b) from Example .. is known to be not accept-
able by any VPA (i.e., for any partition of the input alphabet). us, VPLs are known
to be strictly contained in DCFLs.

It is known that NFA can be determinised []. But there are languages for which
it is most natural and easy to come up with a nondeterministic finite state automata.

Example .. Consider the regular language from Example .. (Σ∗b). e NFA
accepting this language can be given as follows:

..q0.start .q1
.b

.a, b

Given below is a VPL for which the most natural VPA accepting it is nondeter-
ministic.
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Example .. Let LastDyckk consist of set of strings each consisting of marked sub-
strings out of which the last substring is in Dyckk; i.e.,

LastDyckk = {w1w2 . . .wn | wn ∈ Dyckk, n > 0}.

Here, the input alphabet Σ consists of k types of parentheses, {[1, [2, . . . , [k, ]1, ]2, . . . , ]k}

and the marker . Σc consists of all the opening parentheses, Σr consists of all the closing
parentheses, and Σi consist of the marker. Each wi is a string over (Σc ∪ Σr).

..qinit.start

.qwait

.q0 .q1

.[]

.[] .[]

.[{, +Y]

.[{, Y−], []

.[{, +A]

.[}, A−]

.[{, +B]

.[}, B−]

e VPA accepting this language needs to guess at every  whether the string following
it is the last substring or not. After this a check for Dyck is done by a deterministic VPA
as described in Example ...

. Known algorithms for MEM(VPL)

e membership problem for VPLs was first studied by Mehlhorn [] where a space
upper bound of O((logn/ log logn)2) was proved. is was improved by Braunmühl
et al. in [] where a logspace upper bound was proved for the problem. Later,
Dymond [] settled the complexity of the problem by proving an upper bound of
NC1. As MEM(REG) is already known to be hard for NC1, it follows that MEM(VPL)
is hard for NC1 and hence NC1-complete.

us, from the known result about MEM(VPL) we can modify Figure . and get
Figure ..

We review three known algorithms forMEM(VPL) in the following three sections.
We first revisit the NC1 algorithm for MEM(VPL) by Dymond []. is is the best





Chapter . Membership problem for generalization of VPLs

NC1,
MEM(REG),
MEM(VPL)

// L,
MEM(DLIN)

//

$$JJJJJJJJJJJ

LogDCFL,
MEM(DCFL)

$$IIIIIIIIIII

NL,
MEM(LIN)

// LogCFL,
MEM(CFL)

Figure .: Connection between MEM(L) and complexity classes

known algorithm for MEM(VPL) while the other two presented here are useful for
developing parsing algorithms for generalizations of VPLs.

.. NC1 algorithm by Dymond []

In [], Dymond proved that the membership problem for VPL is inNC1. Dymond’s
proof transforms the problem of recognition/membership to efficiently evaluating
an expression whose values are binary relations on a finite set and whose operations
are functional compositions and certain unary operations depending on the inputs.
is transformation is done in NC1. e containment in NC1 follows from the
result, due to Buss [], that the evaluation of formulae involving expressions as
k-ary functions over a finite domain is in NC1. We will discuss Buss’s algorithm in
more detail in Section ... Here we describe Dymond’s algorithm for MEM(VPL).

As TC0 is contained in NC1, applying Lemma .., we can assume that the input
is always a well-matched string and that the VPA never pops on an empty stack.

For a VPA, on an input w, let h(i,w) denote the stack height after processing
i letters. We use h(w) to denote h(|w|, w). We make following two observations
about the height function:

Observation .. For any VPA, on an input w, h(i,w) is the same across any run.

Proof Sketch. As the stack movement depends on the partition of the input alphabet,
height of the stack depends only on the input. e nondeterministic choices affect
the state reached or the stack contents, but not the stack height. �

Observation .. For a VPA that never pops on an empty stack, on an input w,
h(i, w) can be computed in TC0.
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Proof Sketch. To compute h(i,w), it is sufficient to compute the difference between
the number of push letters and pop letters in first i letters of w. It is known that
this can be done in TC0. �

Define a set of binary relations on Q (i.e., on subset of Q × Q), denoted ⇒i,j

for 1 6 i 6 j 6 |w|. In fact, they can be thought of as tables with rows and columns
indexed by Q. e [q, q ′]th entry of the table corresponding to the interval [i, j] is set
to 1, ⇒i,j [q, q ′] = 1, if and only if starting in state q with nothing on the stack, the
VPA ends in state q ′ with again nothing on the stack on reading string wi+1 . . . wj.
And it is set to 0 otherwise.

A pair (i, j) of indices is called height-matched if the string wi+1 . . . wj is well-
matched. e binary relations ⇒i,j are defined only for height-matched (i, j). We
wish to compute the value of ⇒0,n. (It is crucial that the input string w is well-
matched.)

Note that i, j are integer indices of this relation, however, the domain for any
relation indexed by i, j is finite (i.e., Q×Q). ese relations are expected to capture
all cases where the state, stack-top pairs (surface configurations) are reachable from
one another without accessing the previous stack profiles. A unary operation, and a
composition operation, are defined on these relations. Assuming that the tables for
the smaller subintervals are available, these operations help in computing the tables
for the larger subintervals. Suppose we have tables corresponding to consecutive
intervals (⇒i,i ′ and ⇒i ′,j), say T1 and T2 respectively. en the composition operator
is defined in a standard way:

T1 ◦ T2 =
{

(q, q ′) ∃q ′′ such that (q, q ′′) ∈ T1, (q
′′, q ′) ∈ T2

}
is gives a table for Ti,j given the tables Ti,i ′ and Ti ′,j. If we have a table T , we
will define two unary operators. e first unary operator (which we will denote by
Extfa,bg) is defined when a ∈ Σc and b ∈ Σr and is given as follows:

Extfa,bg(T) =

(q, q ′)
∃q1, q2 ∈ Q, ∃A ∈ Γ : T [q1, q2] = 1,

(q1, A) ∈ δ(q, a), q ′ ∈ δ(q2, b, A)


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e second unary operator is defined for c ∈ Σl and given as:

Extfcg(T) =
{

(q, q ′) ∃q1 such that T [q, q1] = 1 and q ′ ∈ δ(q1, c)
}

ese compute tables for Ti−1,j+1 and Ti,j+1 given table Ti,j, respectively. Extfa,bg is
applied at height-matched indices (i, j) if for any index between i and j the height
of the stack is strictly more than the height at i or j and wi and wj+1 are a and b

respectively. Extfcg is applied if wj+1 is c and c is in Σi.
Let IdjQj denote the identity table, i.e., IdjQj[q, q ′] = 1 if and only if q = q ′.

en Extfa,bg(IdjQj) and Extfcg(IdjQj) give the table generated by the moves made by
the VPA on reading the string ab and c, respectively.

time
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Figure .: Height vs time profile of a VPA with Σc = {a}, Σr = {b}, and Σl = {c} on
word w = aabaabcbb

Example .. In Figure ., we have shown a run of a VPA with Σc = {a}, Σr =

{b}, Σl = {c} on word w = aabaabcbb. e formula over Extfa,bg, Extfcg and ◦ that
we obtain for this is given as follows:

Extfa,bg(Extfa,bg(IdjQj) ◦ Extfa,bg(Extfa,bg(IdjQj) ◦ Extc(IdjQj)))

Given a string w, the main work is to figure out the correct indices for the rela-
tions and then the appropriate operations. But that can be accomplished essentially
by computing the stack heights for various configurations, which is easy for VPL.

As pointed out in [], the above transformation works not only for VPA but for
a potentially larger class of PDA.
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Observation .. ([]) e NC1 membership algorithm for VPLs also works for any
pushdown automaton M satisfying the following three conditions.

• ere should be no ɛ-moves.

• Accepting runs should end with an empty stack (and a final state).

• ere should exist an NC1-computable function h such that for w ∈ Σ∗ and 0 6
i 6 |w|, h(i, w) is the height of the stack after processing the first i symbols of w.
If M is nondeterministic, then h(i,w) should be consistent with some run ρ of M

on w; further, if M accepts w, then ρ should be an accepting run.

Clearly, VPA satisfy these conditions. By definition, they have no ɛ-moves.
ough they may not end with an empty stack, this can be achieved by appro-
priate padding which is computable in TC0 (Lemma ..). ough VPA may be
nondeterministic, all runs have the same height profile, (Observation ..). Appli-
cation of Lemma .. also makes sure that the function h(i,w) can be computed
in TC0, (Observation ..).

.. LogDCFL algorithm by Braunmühl et al. []

In [], it is shown that deciding membership in a fixed VPL is in L by first describing
a O(log2

n) space, O(n logn) time procedure and then modifying it to lower the
space bound to O(logn) (at the cost of time going up to O(n2 logn)). We note that
the first algorithm in fact has a LogDCFL (DAuxPDA-Time(poly)) implementation.

ese are weaker bounds as compared to the bound given by Dymond. (See
Figure . to recall the relationship between L and NC1.) However, we review these
bounds mainly because this technique generalizes to give bounds on the complex-
ity of membership problem of larger class of languages. We adapt the LogDCFL
algorithm in Chapter  and the logspace algorithm later in this chapter.

We now give an overview of the first algorithm from [], stating it explicitly as a
LogDCFL procedure. We use the characterization of LogDCFL as languages accepted
by polynomial-time DAuxPDA.

e algorithm of [] assumed that VPA accept only well-matched strings. By
Lemma .., we know that this is not a restriction.
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Lemma .. (Algorithm  of []) Let M = (Q, Δ,Qin, Γ, δ, QF) be a VPA accept-
ing well-matched strings. Given an input string x, checking if x ∈ L(M) can be done in
LogDCFL.

Proof: Let xij = xi+1..xj be a well-matched substring of the string x. (Define
xii = ɛ, the empty string.) Define a (|Q||Γ | × |Q||Γ |) matrix over 0, 1, where each
row and column is indexed by a state-stacktop pair (surface configuration). e
entry indexed by [(q, X), (q ′, X ′)] is 1 if and only if X = X ′ and M goes from surface
configuration (q, X) to (q ′, X ′) while processing the string xij. We will call such a
matrix the table Tij corresponding to the string xij. M has an accepting run on the
string x if and only if the [(q0,⊥), (q,⊥)]-th entry is 1 for some q ∈ QF in the table
T0n. us, it is sufficient to compute this table. However, in order to do so, we may
have to compute many/all such tables.

We say that an interval r = [i, j] is valid if i 6 j and xr, the string represented by
the interval, is well-matched; otherwise it is said to be invalid. A fragment is a pair
(r,Λ) where Λ is a pair (r ′, T ′), r and r ′ are valid intervals, T ′ is a table. e fragments
that arise in the algorithm satisfy the properties: () the interval r ′ is nested inside
the interval r, and () T ′ is the table corresponding to the string xr ′ , that is, T ′ = Tr ′ .
For r = (i, j), Λ = (r ′, T ′) is trivial if r ′ = [l, l] where l = d(i + 2j)/3e (this is the
value of l used in [] to obtain balanced cuts), xr ′ = ɛ, and T ′ is the identity table
id. e recursive procedure T takes a fragment (r,Λ) as an input and computes the
table Tr, assuming that T ′ = T ′

r ′ where r ′ is a valid interval nested inside r. e main
call made to the procedure is ([0, n], Λ) with trivial Λ.

e procedure T does the following: If the size of r − r ′ is at most 2, then it
computes the table Tr immediately from δ and T ′. If the size of r − r ′ is more than
2, then it breaks r into three valid intervals r1, r2, r − (r1 ∪ r2), where () the size
of each of r1, r2, r − (r1 ∪ r2) is small (in two stages, each subinterval generated will
be at most three-fourth the size of r − r ′), () one of r1, r2 completely contains r ′,
() r1, r2 are contiguous with r1 preceding r2. It then creates fragments (r1, Λ1)

and (r2, Λ2) where Λ1 = Λ and Λ2 is trivial if r1 contains r ′, and Λ2 = Λ and Λ1

is trivial if r2 contains r ′. Now it evaluates these fragments recursively to obtain
the tables T(r1, Λ1) = Tr1

, T(r2, Λ2) = Tr2
, and obtains the table Tr3

= Tr1
× Tr2

,
where r3 = r1 ∪ r2 and the × represents Boolean matrix product. Setting Λ3 =

(r3, Tr3
), it finally makes the recursive call T(r, Λ3) to compute Tr. In [], it is
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shown that such fragments can always be defined and can be found deterministically
and uniquely. We will describe this strategy, as well its complexity, shortly. It is also
shown, and it is easy to see, that the tables computed by above recursion procedure
have the following property: for the table T corresponding to the interval r = [i, j],
the [(q, X), (q ′, X ′)]-th entry is 1 exactly when the machine has at least 1 path from
(q, X) to (q ′, X ′) on string xij. is proof is by induction on the length of the
intervals.

Note that the above procedure yields a O(logn) depth recursion tree, with each
internal node having three children corresponding to the three recursive calls made.
e leaves of this recursion tree are disjoint effective intervals (for the fragment
(r, (r ′, T ′)), the effective interval is r − r ′). As the main call is made to the fragment
([0, n], Λ) with trivial Λ, the size of such a tree will be O(n). Also note that the
depth-first traversal of the recursion tree generated by the above procedure can be
performed in LogDCFL. is is because the deterministic AuxPDA will stack one
fragment (say (r1, Λ1)) and process the other fragment (r2, Λ2) on the logspace work-
tape. Once it finishes processing both these fragments, it will then have Λ3 on its
work-tape and hence can start processing (r, Λ3). is amounts to a depth-first
traversal of the recursion tree. As the size of the tree is of O(n), the DAuxPDA will
run in time p(n) for some polynomial p, provided the selection of the subintervals
r1, r2 from (r,Λ) can be done on a logspace work-tape.

Now we describe the deterministic logspace procedure to compute intervals r1

and r2. Let r = [i, j] and r ′ = [i ′, j ′] be such that i 6 i ′ 6 j ′ 6 j and (r − r ′) > 2.
Consider the larger of the two subintervals [i, i ′] and [j ′, j]. Break it into two equal
size parts. Consider the part closer to r ′. In this, find an index t such that the
height of the stack of M just after reading xt (denoted as h(t)) is the lowest in that
part. Now find two more points b, a such that h(b) = h(t) = h(a), and the interval
[b, a] is the maximal valid subinterval containing t and within [i, j]. Let r1 = [b, t],
r2 = [t, a]. See for example Figure .. Observe that r1 and r2 are contiguous with r1

preceding r2. Also, r ′ is fully contained inside either r1 or r2. (Why? Consider the
case when t 6 i ′ 6 j ′. t was the lowest in the part preceding r ′, thus h(t) 6 h(i ′).
If a < j ′, then by maximimality of [a, b], h(a + 1) < h(a) = h(t) 6 h(i ′), and
a + 1 ∈ [t + 1, j ′]. By choice of t, a + 1 > i ′. us a + 1 ∈ r ′, and h(a + 1) < h(i ′) =

h(j ′), contradicting the fact that r ′ is a valid interval. Hence it must be the case that
t 6 i ′ 6 j ′ 6 a, and so r2 contains r ′. e case when i ′ 6 j ′ 6 t is similar.)
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Figure .: Finding b, t, a given i, j and i ′, j ′.
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It is easy to see that r−r3 is of size at most three-fourth the size of r−r ′, and so is
the interval that contains r ′ (either r1 or r2). e same may not be true of the third
part; the subinterval which does not contain r ′, say rb, can be as large as r − r ′. But
it is easy to observe that at next step, this part will get tri-partitioned into intervals
with sizes at most two third the size of rb each.

Once r1, r2 are fixed, the three fragments can be found as described above. us,
finding the three fragments essentially boils down to finding b, t, a. is can be done
in TC0 for the input string x over pushdown alphabet Δ, and hence in L. �

.. Logspace algorithm by Braunmühl et al. []

Now we describe the second algorithm of [] due to which we get a logspace upper
bound for membership testing of VPLs.

Lemma .. (Algorithm  of []) Let M be a VPA accepting well-matched strings
over an alphabet Δ. Given an input string x, checking if x ∈ L(M) can be done in L.

Proof:
We describe the modifications to be made in the proof of Lemma .. to get

the logspace bound.
Note that all the fragments need not be carried along explicitly. Just remember-

ing the path in the recursion tree, and the tables for all nodes on the path, suffices.
Say the recursion tree is labelled as follows: e three children of a node are called
l, r, o to mean ‘left’, ‘right’ and ‘other’, for the recursive calls T(r1, Λ1), T(r2, Λ2),
and T(r,Λ3) respectively. Label a node by a string w ∈ {l, r, o}∗ to denote the po-
sition of the node in the tree. (e.g label the leftmost leaf by ld where d is depth of
that leaf, label the root of the tree by ɛ.) It is easy to see (and this was used in []
to prove correctness of their algorithm) that if one knows the label for a node, then
reconstructing the intervals r, r ′ at this node from this label is possible in L (in fact
a more general statement will be proved in Claim ..). ey also observed that
computing the next label from the current node label can be done in L (in fact, it
is easy to note that this can be done in TC0.) us at any stage our algorithm needs
to remember the label of the current node being processed, and appropriate tables.
We already saw that the table size is O(1). Our procedure needs to know at most
one table (the table in the Λ part of the fragment) per node along the current path.
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As the depth of the recursion is bounded by O(logn), the depth of any node is also
bounded O(logn). us, the label size, and the number of tables that need to be
stored, are both at most O(logn) for any node using which the tree can be traversed
(something more general holds, see Claim ..). Hence the procedure does not
need to remember more than O(logn) bits at any stage of the recursion. �

. Extending the logspace algorithm

We observe that the above logspace algorithm can be implemented as Lh where h is
the height function for the VPA. e base logspace machine needs to figure out the
break points a, b, t for which it needs the height of the stack at various time-steps.
Once that is provided by an oracle, the rest of the recursion takes place in logspace.

Fix a PDA M on input alphabet Σ. We assume that the PDA satisfies the following
conditions:

condition : In PDA M makes no ɛ moves and the height of the stack
on all the runs is the same for a given input string.

condition : Let h : Σ∗ → Z+ be a function computing the height of the
stack reached after having read a string from Σ∗, height
function. Let h be computable in complexity class C.

For such PDA we can generalize Lemma .. and Lemma .. as follows:

Lemma .. For every M that satisfies conditions 1 and 2, there is another PDA M ′

on Σ ′ and a many-one reduction g in C such that M ′ satisfies conditions 1 and 2 and
for every x ∈ Σ∗,

• accM(x) = accM ′(g(x)), and

• g(x) is well-matched.

Lemma .. For every M on input alphabet Σ that satisfies conditions 1 and 2 and
accepts well-matched input strings from Σ∗, given an input x ∈ Σ∗, the tables corre-
sponding to well-matched substrings of x can be computed in Lh. In particular, checking
if x ∈ L(M) can be done in Lh.
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We will also give details of the following two claims which we used in the proof
of Lemma .. implicitly. We describe them in their full generality, as they will be
used later.

Claim .. Given the label (the path from the root) of any node in the recursion tree,
the intervals corresponding to the fragment associated with the node can be computed in
Lh.

Proof: e input to the logspace oracle machine querying the height function of
the transducer, h, is a label w = w1w2 . . . wk where k is O(logn) length string over
the alphabet {l, r, o}. e machine is expected to compute the indices of the inter-
val corresponding to the label and the gap indices for that interval. e following
algorithm will compute these indices. Let trivial([i, j]) for 0 6 i 6 j 6 n be de-
fined as the trivial interval corresponding to [i, j], that is [d2j + i/3e, d2j + i/3e]. e
work-tape of the machine is initialized with (r = [0, n], r ′ = trivial(r)).

A prefix of the label corresponds to a node in the recursion tree. After having
read w1w2 . . . wm, suppose the the node in the tree corresponding to this prefix is
an interval [i, j] with a gap [i ′, j ′]. en the invariant maintained after having read
w1w2 . . . wm is r = [i, j] and r ′ = [i ′, j ′]. Supposing the work-tape has a correct
pair r, r ′ after having read m − 1-bits of the label, we now describe how to compute
the next r, r ′ upon reading wm. Supposing for the current pair (r, r ′), the intervals
r1, r2, r3 can be computed in Lh, the bit wm is read and the pair (r, r ′) is modified
as follows: For each such pair if the bit is ‘l‘ (‘r‘) then r is set to r1 (r2, respec-
tively). If r ′ ⊆ r1 (r ′ ⊆ r2) then r ′ is left unchanged else it is modified to trivial(r1)

(trivial(r2), respectively). If the bit is ‘o‘ then r is left unchanged and r ′ is set to
r − r3. e modifications continue as long as |r − r ′| > 2 after which r and r ′ can be
thought of as left unchanged. (In the algorithm, this case will not arise.)

We now describe how to compute r1, r2, r3 given r and r ′ in Lh. In the proof
of Lemma .., we saw that to compute these intervals we need to compute three
points a, b, and t. Observe that these points depend only on the height of the
stack. Hence they can be computed using a logspace machine that queries the height
function.

�

Claim .. e tree can be traversed in Lh.





Chapter . Membership problem for generalization of VPLs

Proof: From Claim .., we know that once the label is available the interval itself
can be computed Lh. We now see how the rest of computations be performed by a
logspace base machine.

e depth of the tree is O(logn). us, the size of any label is O(logn). Depend-
ing on which child is going to be evaluated, the label is updated by suffixing it with
appropriate letter l, r or o. Also if the step results in computing a table, that table is
stored along with the just added suffix. At any stage, the tables to be remembered
are also at most the maximum depth of the tree. Each table is of size O(1). us the
overall space required is O(logn). To move along the recursion tree, the intervals
are needed to be computed which can be done in Lh by the previous claim. us
an overall traversal can be done in Lh.

�
We make the following two observations about the proofs of above claims:

Observation .. (Regarding Claim ..) Given the label (the path from the root)
of any node in the recursion tree, the computation of the intervals corresponding to the
fragment associated with the node is independent of the table entries and table sizes.

Observation .. (Regarding Claim ..) As long as the table entries are of size
O(1), the recursion tree can be traversed in Lh.

In the next section, we will consider PDA satisfying conditions 1 and 2 and study
the complexity of membership problem for such PDA in a unified manner using the
above lemmas and claims.

. Stack-Synchronized PDA: a generalization of VPA

e height of the stack on any run of a VPA is easy to compute, since the input
alphabet is partitioned into push/pop/internal letters. We generalize this notion
following the framework developed by Caucal [] to define synchronized PDA. We
capture the notion of easy to compute height functions using a transducer. Consider
a complete deterministic transducer T that reads letters and outputs integers. It
defines a map from strings to numbers as follows: trace the path of T on input
w = a1 . . . an. Let the numbers output along the way be k1, . . . , kn. en T(w) =∑n

i=1
ki, and define T ′(w) = |T(w)|.
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For IDLs, a single state transducer that outputs a +1 on push letters, −1 on
pop letters, and 0 on internal letters will correctly compute its stack height. For
wm(VPL), the same transducer will work. Such a transducer, may not compute the
height for a VPA due to pop moves on empty stack. But due to Corollary ..,
TC0(VPL) = TC0(wm(VPL)). Hence for TC0 closure of VPLs, similar transducer can be
defined.

However, note that such single-state transducers can also compute stack-heights
for languages that are provably not VPLs. For the language EQ(a, b) from Exam-
ple .., we give a PDA whose stack-height is computed by a single state transducer.

Example .. Recall, EQ(a, b) = {w | |w|a = |w|b}. is language is not accepted by
any VPA for any partition of the input alphabet. Consider transducer T = (Q, q, Σ, δT )

where Q = {q}, Σ = {a, b}, δT = {(q, (a, +1)q), (q, (b, −1)q)}, and a PDA P =

(QP, q0, F, Γ, Σ, δ) where QP = {qa, qb, q0}, F = {q0},Γ = {X,A, B}, and δ is as fol-
lows. A ′ correctly computes the stack-heights of P.
q0

a→ (qa, X) qa
a→ (qa, A) (qa, A)

b→ qa (qa, X)
b→ q0

q0
b→ (qb, X) qb

b→ (qb, B) (qb, B)
a→ qb (qb, X)

a→ q0

Note that P is in fact deterministic.

We can generalize this by allowing more states in T , or larger output alphabet
for T , or both. If for each w, T(w) correctly describes the stack-height of a PDA M

on input w, then we say that M is stack-synchronized by T . is is a special case of
Caucal’s synchronized PDA [] , and we define it more formally below.

.. Stack Synchronized PDA: formal definition

Definition .. We consider a class of finite transducers mapping words to integers. A
transducer T over Σ and Z is a finite automaton (Q, q0, F, (Σ × Z), δ) whose transitions
are labelled with pairs (a, k), where a is a letter and k an integer. e first component
of any such label is considered as an input, and the second component as an output. A
run q0(a1, k1)q1 . . . qn−1(an, kn)qn is associated to the pair (w, k) = (a1 . . . an, k1 +

. . .+kn). Such a transducer defines a relation gT ⊆ Σ∗×Z defined as the set of all pairs
(w, k) labelling an accepting run in T .

In our setting, we only consider both input-complete (not getting stuck on any
input) and input-deterministic transducers (i.e., transducers whose underlying au-
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tomaton is deterministic), in which all states are final. Consequently, for any such
transducer T the relation gT is actually a function, and is defined over the whole set
Σ∗.

If the transitions of T are labelled over Σ×{−1, 0, 1}, then T is said to be incremen-
tal. e transition graph GP of a PDA P is said to be compatible with a transducer T

if for every vertex s of GP, if u, v ∈ L(GP, {q0}, {s}) then |gT (u)| = |gT (v)|. Note that
here we are using the graph based definition of a PDA from Section ..

Definition .. A pushdown automaton P is stack-synchronized by a transducer T if
the transition graph GP of P is compatible with T , and further, the absolute value of the
function gT , ||gT ||, computes the stack-height in the sense: if u ∈ L(GP, {q0}, {pW}) then
||gT (u)|| = |W|.

us, a stack-synchronized pushdown automaton, SSPDA is specified by a pair (P, T)

where P is a PDA, T a transducer, and P is stack-synchronized by T . e SSPDA is said
to be weak or one-way-strong if P is weak or one-way-strong.

Example .. REV = {wcwR | w ∈ {a, b}∗} is not a VPL. Consider the standard
DPDA accepting this. It is stack-synchronized by a two-state transducer, one state (push
state) having +1 on a and b and other (pop state) with −1 on a and b. e transducer
moves from the push state to the pop state on seeing the letter c. It is known that for any
PDA accepting REV, two states in the transducer are essential for stack-synchronization.

Example .. EQk,l(a, b) = {w | k|w|a = l|w|b} is accepted by a strong SSPDA.
Modify the transducer from Example .. so that gT (q, a) = +k and gT (q, b) = −l.
We can define a PDA, similar to that in Example .., accepting this language and
synchronized by T . However, no weak SSPDA can accept this language unless k = l = 1.

As observed in Example .., even SSPDA synchronized by a single-state trans-
ducer properly generalize VPA. e generalization from single to multiple-state
transducers is also proper, as is the generalization where the transducer is a gen-
eralization of incremental. (See Example .. and Example .. given above.)

e class we define as SSPDA is a restricted (and simpler) subclass of the syn-
chronized pushdown automata considered by Caucal in []. Even though Caucal’s
results require, for a PDA to be synchronized by a transducer T , that the transition
graph of P ′ satisfy some additional geometric properties with respect to T , these
properties are always satisfied when only considering stack-synchronization.
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Consequently, SSPDA enjoy all the good properties of the more general class of
synchronized PDA. In particular for any fixed transducer T , the family of languages
accepted by all PDA stack-synchronized by T contains all regular languages, is a
sub-family of deterministic realtime context-free languages and forms an effective
Boolean algebra. ese results about synchronized PDA are established in [].

.. Membership problem for SSPDA

We now discuss the complexity of the membership problem for SSPDA. We first
prove a lemma that generalises Observation .. and Observation .. which we
proved for VPLs. (Recall that VPA are stack-synchronised by a single state trans-
ducer):

Proposition .. For any fixed SSPDA (P, T), and an input word w, the stack-height
of P after processing i letters of w, h(w, i), is the same across all nondeterministic runs.
e function h(w, i) is computable in NC1.

Proof: Even though P may be nondeterministic, the stack-synchronization ensures
that all runs have the same stack-height profile. Let q0(a1, k1)q1 . . . qn−1(an, kn)qn

be the run of transducer T on input w = (a1 . . . an). In NC1, we can construct the
run and hence the sequence k1, k2, . . . , kn. Now a TC0 circuit can compute, for each
i, the sum si =

∑i

j=1
kj. Since the stack-height is si if si > 0 and −si otherwise,

overall, the function h(i,w) is computable in NC1. �
is proposition along with Observation .. allows us to extend Dymond’s

algorithm for SSPDA.

Lemma .. For any fixed weak SSPDA M, the membership problem is in NC1.

Proof: Proposition .. implies that conditions  and  from Section Section .
hold for SSPDA. us, we can apply Lemma .. and obtain another well-matched
SSPDA M ′. For M ′, Observation .. applies. Hence, we have NC1 bound. �

Already, this membership algorithm exploits Dymond’s construction better than
VPAs, since the height function requires a possibly NC1-complete computation (pre-
dicting states of the transducer). Recall that for VPAs, the height function was com-
putable in TC0, a subclass of NC1.
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An alternate approach for proving Lemma .. is by reducing the membership
testing for SSPDA to that for VPA. is turns out to be useful in more general settings
of ‘arithmetization’ to be considered in the next chapter.

Let us first consider the alternate approach for weak SSPDA. We reduce mem-
bership testing in (P, T) to that in some VPA that combines the operation of P and
T .

A naive approach is to convert a weak SSPDA (P, T) to a VPAwould be to construct
a single PDA P ′ that simulates (P, T) by running PDA P along with transducer T .
However, such a PDA P ′ will not necessarily be a VPA. Now consider the string
rewritten using an enriched alphabet which consists of the input letter along with
a tag indicating whether P should push or pop. On this enriched alphabet, if the
tags are correct, then a PDA that simulates the original PDA P (i.e., ignores the
tags) behaves like a VPA. But by Proposition .., the correct tags for any word can
be computed in NC1. More formally, the alternate proof for Lemma .. is given
below:
Proof: Formally, given a SSPDA (P, T) where P = (QP, qP

0 , F, Γ, Σ, δP) and T =

(QT , Σ, qT
0 , δT , fT ), we construct a VPA M as follows: M = (Q, qP

0 , F, Γ, Σ ′, δ), where
Σ ′ = Σ× {c, r, i}, the partition of Σ ′ is defined as: Σ ′

x = Σ× {x} for x ∈ {c, r, i}, and δ

is the same as δP (i.e., it ignores the second component of the expanded alphabet).
Given input w = a1 . . . an, consider the string wT = 〈a1, t1〉 . . . 〈an, tn〉, where

tj ∈ {c, r, i}, and tj = c, r, i depending on whether h(w, j) = h(w, j − 1) + 1 or
h(w, j − 1)− 1 or h(w, j − 1). By Proposition .., we can produce the string wT in
NC1. �

One can show that M accepts the string wT if and only if P accepts w. e above
proof works as long as P is weak and T is incremental (i.e., fT maps strings over Σ∗

to the set {−1, 0, +1}).
If P is not weak but is one-way-strong, then a slight modification of the above

construction works. On a letter ai, if P has to push/pop k letters, then in wT we in-
troduce k−1 dummy call/return letters immediately after ai so that M can push/pop
one symbol per input letter. Since M must know what letters to push/pop, we put
this information into the state set of M.

Formally, we first describe the mapping from w to wT . Given an input string
w = a1 . . . an, we encode each letter aj by a string vj as follows:
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If h(w, j) − h(w, j − 1) = +k for k ∈ N, then vj = 〈aj, c〉ck−1.
If h(w, j) − h(w, j − 1) = −k for k ∈ N, then vj = 〈aj, r〉rk−1.
If h(w, j) − h(w, j − 1) = 0, then vj = 〈aj, i〉.

Now wT = v1v2 . . . vn. We can produce the string wT in NC1.
e VPA M = (Q, Q0, F, Γ, Σ

′, δ) is constructed as follows. Define m to be the
max{|U|, |V | | pU

a→ qV ∈ δP}. en Q = (QP × Γ6m), Q0 = (QP
0 × {ɛ}), F = (FP ×

Γ6m), Σ ′ = (Σ×{c, r, i})∪{c, r}, and the partition of Σ ′ is defined as: Σ ′
x = (Σ×{x})∪{x}

for x ∈ {c, r}, Σ ′
i = Σ × {i}.

e transition function δ is defined as follows:
For p

a→ q ∈ δP, δ includes (p, ɛ)
(a,i)→ (q, ɛ).

For p
a→ qVα ∈ δP, δ includes (p, ɛ)

(a,c)→ (q, α)V.
For pUβ

a→ q ∈ δP, δ includes (p, ɛ)U
(a,r)→ (q, β).

For each (q, Wγ) ∈ Q, δ includes (q, Wγ)
c→ (q, γ)W and (q, Wγ)W

r→ (q, γ).
is finishes the description of the VPA. us, we have the following lemma:

Lemma .. e membership problem for one-way-strong SSPDA is in NC1.

e proof of the above result does not directly extend to strong SSPDA. We
may have h(w, i) − h(w, i − 1) = +k, but the PDA doesn’t merely push k symbols; it
pops l symbols and then pushes k+ l symbols. Figuring out if this happens requires
tracing out the computation of not just T but also P, which we do not know how
to do in NC1. However, it turns out that every strong SSPDA has an equivalent
one-way-strong SSPDA.

Lemma .. For any strong PDA stack-synchronized by some transducer T , there exists
an equivalent one-way-strong PDA stack-synchronized by T .

Proof: Let P = (Q,q0, F, Γ, Σ, δ) be a PDA. Let k be the smallest integer such that for
every transition pU

a→ qV in δ, min{|U|, |V |} 6 k (note that k = 0 if and only if P is
one-way-strong). We define a new PDA P ′ = (Q ′, q ′

0, F
′, Γ ′, Σ, δ ′) with Γ ′ = Γ ∪ {X},

Q ′ = Q × Γk, q ′
0 = (q0, X

k), F ′ = F × Γ ′k and

δ ′ = {(p, S)W
a→ (q, T)W ′ | ∃pU

a→ qV ∈ δ, SW = UU ′,

TW ′ = VU ′ and min{|SW|, |TW ′|} = k}.
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Intuitively, P ′ is identical to P except that it simulates the top-most k stack cells
of P using an enlarged control state set. It starts with a “virtual” stack containing
k dummy symbols X (which will always remain on the stack since X is not part of
P’s original stack alphabet) and proceeds similarly to P while suitably updating the
top-most k stack cells inside its control state after each simulated transition.

It is not difficult to show that the transition graphs GP and GP ′ of P and P ′

are isomorphic, where any configuration pUV of P with |U| = k corresponds to
the configuration (p, U)VXk of P ′, and any configuration pU with |U| < k to the
configuration (p, UXk−jUj)XjUj. Hence by definition of q ′

0 and F ′, P and P ′ accept
the same language.

Also note that the stack policy of P ′ is identical to that of P: every transition rule
(p, S)W

a→ (q, T)W ′ of P ′ corresponding to a transition rule pU
a→ qV of P induces

a stack height difference d = |W ′| − |W|. Since |S| = |T | = k and SW = UU ′, TW ′ =

VU ′, we have d = |TW ′|− |SW| = |VU ′|− |UU ′| = |V |− |U|. Another way to see this is
to note that corresponding configurations of P and P ′ in the previously mentioned
isomorphism have precisely the same stack height. Hence P ′ is synchronized by T .

Finally, by definition of δ ′, in every transition rule (p, S)W
a→ (q, T)W ′ of P ′ we

have either |W| = 0 or |W ′| = 0, meaning that P ′ is one-way-strong. �
Putting together Lemma .., Lemma .., and Lemma .. we get the fol-

lowing corollary:

Corollary .. For any SSPDA, the membership problem is in NC1.

.. Advantages of the model

SSPDA are a restriction of the more general model defined in []. e model starts
from the class of languages that we understand well, namely VPLs. And perfectly ab-
stract out the properties of VPLs that give them a nice structure and thereby provide
a handle to generalize VPLs.

To us, this gives a natural way to understand the effect of existence of height
function on the complexity of membership problem for languages between VPLs
and DCFLs. is also gives us a way to quantify the hardness of the height function
and give unified bounds for all the generalizations.

In the next section we will see the most general class of languages which arise
from Caucal’s idea of generalizing language classes from VPLs.
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. Realtime height-deterministic PDA

We start with recalling a few things here. Adding a pushdown stack to an NFA
significantly increases the complexity of the membership problem (NC1 to LogCFL,
refer Section .). However, if stack operations are restricted to an input driven
discipline, as in VPA, then membership is no harder than for NFA. What is being
exploited (by VPA or by the SSPDA model we defined) is that, despite nondetermin-
ism, all paths on a given input word have the same stack-profile, and this profile is
computable in NC1 for SSPDA and in TC0 for VPA. One can view the partitioning
of the input alphabet as providing an advice regarding the height of the stack to an
algorithm that decides membership. is naturally leads to the question: what can
be deduced from the existence of such a height function, independently of how this
function is computed?

To precisely capture this idea,we use the term height-determinism, coined by [].
A PDA is height-deterministic if the stack height reached after any partial run de-
pends only on the input word w which has been read so far, and not on nonde-
terministic choices performed by the automaton. Consequently, in any (realtime)
height-deterministic pushdown automaton (rhPDA), all runs on a given input word
have the same stack profile. Another way to put it is that for any rhPDA P, there
should exist a height function h from Σ∗ to integers, such that h(w) is the stack-height
reached by P on any run over w.

Any rhPDA that accepts on an empty stack and whose height h is computable in
NC1 directly satisfies the conditions in Observation .., and hence its membership
problem lies inNC1. In this section, we explore some subclasses of rhPDA and discuss
the complexity of their membership problem.

.. Formal Definitions and properties of rhPDA

Definition .. (rhPDA, []) A realtime pushdown automaton P = (Q,q0,F, Γ,

Σ, δ) is called height-deterministic if it is complete (does not get stuck  on any run), and
∀w ∈ Σ∗, q0

w−→ qα and q0
w−→ qβ imply |α| = |β|.

In [], the definition involves rules of the form pX
a−→ qα where α ∈ {ɛ, X} ∪ {YX|Y ∈ Γ }. is

is not an essential requirement for the results presented here.
a PDA is stuck if for the current stack-top and state, no move is defined for the current input

letter
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Note that the requirement that an rhPDA be complete can be interpreted in more
than one way. As a syntactic requirement, the PDA is complete if for every node in
GP, and every letter a ∈ Σ, there is an outgoing edge labelled a. A (weaker) semantic
requirement would be that this condition is met only on nodes reachable from the
initial node. A more subtle (and also weaker) semantic requirement would be that
for every word w ∈ Σ∗, there is a path q0

w−→ qW ′ in GP for some q ∈ Q, W ∈ Γ∗.
e robustness of the notion of height determinism is illustrated by the fact that

rhPDA retain most good properties of VPA, even when the actual nature of the height
function is left unspecified.

Proposition .. ([, ]) Any rhPDA can be determinised. Consequently, for a
fixed h, the class of languages accepted by rhPDA and whose height function is h forms a
boolean algebra (and properly includes regular languages). Moreover, language equiva-
lence between two rhPDA with the same height function is decidable.

All these results are effective as soon as h is computable. Since any deterministic
realtime PDA can be completed and is height-deterministic, another consequence
of the fact that rhPDA can be determinised is that the whole class rhPDA accepts
precisely the class of realtime DCFL.

Something slightly stronger than determinisation is shown in [] and will turn
out to be useful for us.

Proposition .. ([]) For every rhPDA A, there is an equivalent realtime, complete
DPDA B (accepting the same language) such that if q0

w−→ qW labels a path in GA and
p0

w−→ pY labels a path in GB, then |W| = |Y|.

.. Instances of height-deterministic PDA

e definition of a rhPDA, unlike that of SSPDA leaves the exact nature of the height
function h unspecified. is is troublesome, since h could be arbitrarily complex.
We consider some classes of specific height functions, the simplest being VPA.

Definition .. For any class T of complete deterministic transducers, rhPDA(T) is the
class of rhPDA whose height function h can be computed by a transducer T in T, in the
sense that h(w) = |gT (w)| (absolute value of gT (w)) for all w.





Chapter . Membership problem for generalization of VPLs

e definition of a transducer is same as in Definition ...
In this setting, like in the case of SSPDA, we only consider both input-complete

and input-deterministic transducers (i.e., transducers whose underlying Σ-labelled
transition system is deterministic and complete), in which all configurations are final
(in which case we omit F in the definition). Consequently, for any such transducer
T the relation gT is actually a function, and is defined over the whole set Σ∗.

One may consider several kinds of transducers.
e class referred to as rhPDA(FST) is same as SSPDA. We from now on refer to

SSPDA as rhPDA(FST). As an aside, we note that [] considers the class rhPDA(FST)
as equivalent to synchronized PDA. is is not guaranteed to be true and has to be
proved, since [] also permits synchronization by norms other than stack-height.

e other classes we consider are rhPDA(PDT) where PDT stands for a pushdown
transducer, and also to some extent on the class rhPDA(rDPDA1-turn), where the
transducer is a -turn PDT.

We first note that it is in fact unnecessary to consider more complex transducers
than deterministic and complete PDTs. Formally:

Proposition .. For any rhPDA P whose height function is h, there exists a deter-
ministic and complete pushdown transducer T such that h(w) = gT (w) for all w ∈ Σ∗.
at is, every rhPDA is in rhPDA(PDT).

Proof: Let P = (Q, q0, F, Σ, Γ, δ). If P is syntactically complete, the we can proceed as
follows: We define P ′ = (Q, q0, F, Σ, Γ, δ ′) in which δ ′ is a subset of δ containing only
the lexicographically first transitions for every nondeterministic transition defined
in δ. is automaton is deterministic, and since rhPDA are complete, it is also
complete. It has its own height function h. But since the automaton P is height-
deterministic, all runs of P, and in particular the lex-first run, have the same stack
height. is implies that P and P ′ admit the same height function h.

If P satisfies the weaker completeness requirement, appeal to Proposition ..
and use the DPDA obtained there as P ′.

It is now straightforward to define a deterministic and complete pushdown trans-
ducer T whose underlying pushdown automaton is P ′, and such that gT (w) = h(w)

for any input word w (each transition of T simply has to output the integer match-
ing the stack movement performed by this transition). By definition of P ′ and T

and since T is complete, P’s height function is correctly computed by T .
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�

.. Complexity of the membership problem

As we already mentioned, rhPDA have exactly the same power as realtime DPDA in
terms of accepted languages. us the membership problem for the whole class
rhPDA (and thus also for rhPDA(PDT)) is in LogDCFL.

It turns out that this is in fact a completeness result. It was shown by Sudborough
[] that the following language is a hardest DCFL and is complete for the class
LogDCFL.

Definition .. ([]) Let u be a string over an alphabet {(1, (2, )1, )2, [, ],} in the
form

x0[w1z1][w2z2] . . . [wkzk] for some k ∈ N where,

x0 ∈ {(1, (2}
∗,

∀i : 1 6 i 6 k wi ∈ )1 · {(1, (2}
∗,

and ∀i : 1 6 i 6 k zi ∈ )2 · {(1, (2}
∗.

A string u of this form is said to be in the language DetCh(Dyck2) if and only if for
each 1 6 i 6 k, ∃xi ∈ {wi, zi} such that x0x1 . . . xk ∈ Dyck2 that is if and only if there
is a (deterministic) way to choose one of the two substrings wi, zi for each i such that
all the chosen substrings put together in the correct order along with x0 form a balanced
string of parentheses over two types of parentheses.

e language DetCh(Dyck2) is deterministic context-free and is complete for the
class LogDCFL.

A realtime DPDA starts reading the string u and on x0 simply pushes the string
on the stack. e invariant it maintains is: the stack contains unmatched opening
parentheses. After having processed i − 1 blocks, suppose it has type 1 parenthesis
on the stack-top then it decided to choose xi to be wi, pops the stack-top, and
pushes all but the first letter of wi on the stack. Otherwise, xi is zi and wi is read
bit-by-bit and ignored by the DPDA. On zi the stack-top is popped and all but
the first letter of zi is pushed on the stack. e letters [, ], are treated as markers
and appropriate state changes are performed over them. If finally the stack becomes
empty, the language is accepted by the DPDA, else rejected. us this language can
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be accepted by a realtime DPDA; and hence membership testing for rhPDA is hard
for LogDCFL.

is settles the complexity of the membership question for the whole class rhPDA
(and thus also for rhPDA(PDT)); we have

Proposition .. e membership question for the class rhPDA (and thus also for
rhPDA(PDT)) is complete for LogDCFL under logspace many-one reductions.

We already saw that for complete deterministic finite state transducer, the height
function can be computed in NC1. We observe easy bounds on the complexity of
the height function computed by other transducers:

Lemma .. For a complete deterministic transducer T computing function gT ,

. If T is a rDPDA1-turn, then gT is computable in L.

. If T is a PDT, then gT is computable in LogDCFL.

Proof:

. It is known that DPDA1-turn can be simulated in logspace ([]). us if a
function is computed by a rDPDA1-turn transducer, a logspace machine can
keep track of its output, and hence gT is in L.

. Given input x and an index 1 6 i 6 |x|, a DAuxPDA uses its stack for simulating
the stack of T and the auxiliary work-tape to maintain a counter which sums
all successive integers output by T . e DAuxPDA needs no more than linear
time, and a logarithmic size counter suffices.

�
Using Lemma .. and Lemma .. we get the following corollary:

Corollary .. e membership problem for rhPDA(rDPDA1-turn) is in L.

e class rhPDA(rDPDA1-turn) referred to here contains languages accepted by
realtime DPDA1-turn as well as languages accepted by rhPDA(FST). It is contained in
DCFLs.
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. Restricted multi-stack machines

.. Multi-stack visibly pushdown automata

In this section, we discuss membership problem for a model recently considered
by La Torre et al. []: a pushdown machine equipped with two stacks where the
access to both the stacks is completely dictated by the input alphabet. is is a nat-
ural generalization of VPLs and a proper restriction of general pushdown automaton
having more than one stack. ey call such machines multi-stack visibly pushdown
machines, MVPA. In their definition, these machines cannot simultaneously access
both stacks. On reading any input letter, the MVPA either pushes on one of the
stacks or pops from one of the stacks. A phase of the input string is a substring
such that while reading it, all the pop moves of the machine are on the same stack.
In [], it is shown that MEM(MVPL), where MVPL denotes the class of languages
accepted by MVPA, is NP-complete. e proof of NP hardness is a reduction from an
instance of SAT. For a fixed MVPA M, a string w is constructed from an n-variable
formula such that it has n phases. at the number of phases depends on the input
formula is important for the proof of hardness.

In this section, we consider a restriction of the above problem, where the num-
ber of phases is a constant. We define another version of the membership prob-
lem, MEM(MVPLk). For a fixed MVPA M and fixed positive integer k, the problem
MEM(MVPLk) is to decide whether a given w ∈ Σ∗ is in Lk(M), where Lk(M) denotes
the language {w ∈ Σ∗ | w is accepted by M with 6 k phases }.

is restriction of MVPA, where the number of phases is bounded, is also useful
for many applications and has been defined and considered in []. e class is
known to generalize VPLs and is properly contained in context-sensitive languages.
In this paper, we show that the problem MEM(MVPLk) is in LogCFL.

In order to show this, we use the other model of multi-pushdown machines, PDk,
defined by Cherubini et al. [] which we considered in Section .. Recall that it
is a restriction of multi-pushdown machines wherein there is an order given to the
stacks of the machine. e machine is allowed to push on any stack. However, pop
moves are allowed only on the first non-empty stack. Also recall, eorem ..,
that MEM(PDk) is in LogCFL.

Here, we give a reduction from MEM(MVPAk) to MEM(PDk). e LogCFL upper
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bound for MEM(PDk) thus gives a LogCFL upper bound for MEM(MVPLk). Note
that MVPA does not have an ordering restriction on the stack usage. e reduction
therefore is not immediately obvious. e languages accepted by MVPA within two
phases are a proper subclass of context sensitive languages, a proper generalization
of VPLs, and are incomparable with CFLs.

is result implies the same upper bound as for MEM(CFL) for an incomparable
class of languages. (CFLs and MVPLk are incomparable.) However, we do not know
if MEM(MVPAk) for any fixed k is hard for LogCFL.

.. Formal definition of bounded phase MVPA

Visible two stack machines ([]). An MVPA M is a pushdown machine having
two stacks, where the access to the stacks is restricted in the following way: e input
alphabet Σ is partitioned into 5 sets. A letter from Σj

c causes a push move on stack j,
that from Σj

r forces a pop move on stack j, and both the stacks are left unchanged on
letters from Σi. (e subscripts c, r, i denote call, return and internal respectively.)
Formally, an MVPA M = (Q,Σ, Γ, δ, q0, F) is a two-stack nondeterministic pushdown
machine where Q is a set of finite states, Σ is the finite alphabet which is a union of
5 disjoint sets Σ0

c, Σ
0
r , Σ

1
c, Σ

1
r , Σi, q0 is the initial state, F ⊆ Q is a set of final states,

Γ is the finite stack alphabet containing a special bottom-of-stack symbol ⊥ that is
never pushed or popped, and δ has the following structure: δi ⊆ Q × Σi × Q, and
for j ∈ {0, 1}, δj

c ⊆ Q × Σj
c × Q × Γ \ {⊥} and δj

r ⊆ Q × Σj
r × Γ × Q.

e machine is allowed to pop on an empty stack; that is, on reading a letter
from Σj

r and seeing ⊥ on the jth stack top, the machine can proceed with a state
change leaving the ⊥ untouched.

A phase is a substring of the input string w ∈ Σ∗ during which pop moves happen
only on one of the stacks. Define the set

PHASEk = {w | w ∈ Σ∗, number of phases in w 6 k}

Clearly, for any fixed partition of Σ, PHASEk is a regular set. e finite state au-
tomaton accepting PHASEk for fixed k is depicted in Figure .. In the figure,
X = Σ0

c ∪ Σ1
c ∪ Σ0

r and Y = Σ0
c ∪ Σ1

c ∪ Σ1
r . (Moves on letters from Σi are not shown.

For any such letter, the automaton stays in its current state.)
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Figure .: Finite state automaton accepting PHASEk (for k odd)

A k-MVPA is an MVPA M such that language accepted by it is L(M) ∩ PHASEk.
Let M be a fixed MVPA M and k a fixed positive integer. Its k-phase language

Lk(M) is defined as Lk(M) = L(M) ∩ PHASEk. By taking a direct product of a
finite state automaton accepting PHASEk with MVPA M, we can obtain an MVPA
M ′ = 〈M, k〉 such that L(M ′) = Lk(M ′) = Lk(M). In Section .., we assume that
the given MVPA M satisfies L(M) = Lk(M).

.. MEM(MVPLk) is in LogCFL

In this section, we consider the problem MEM(MVPLk) and establish the following
theorem:

eorem .. For every fixed k > 1, MEM(MVPLk) 6 MEM(PDk). e reduction is
a logspace many-one reduction.

From Section .. we know that MEM(PDk) is in LogCFL. Using this and eo-
rem .. we get LogCFL upper bound for MEM(MVPLk). e simplest case is when
k = 1; for all fixed MVPA M, L1(M) ∈ VPL. Since VPLs are known to be in NC1 [],
for which membership in a fixed regular language is complete [], MEM(MVPL1) re-
duces to MEM(NFA), where NFA are nondeterministic finite-state automata. But a
PD0 is precisely an NFA. Hence MEM(MVPL1) reduces to MEM(PD0).

For k > 1, we reduce this problem to MEM(PDk). As described in Section ..,
we assume that Lk(M) = L(M). We convert M into a multi-pushdown machine N





Chapter . Membership problem for generalization of VPLs

having k stacks, called Maini for 1 6 i 6 k, and show that L(M) reduces to L(N)

(via logspace many-one reductions).
Consider a phase i in which stack-j (j ∈ {0, 1}) of machine M is being popped.

e PD works in two stages – mimic stage and buffer stage. (Exception: phase k has
only a mimic stage.)

In the Mimic stage, Maini and Maini+1 contain the contents of stack j and 1 − j

respectively and mimic the moves of machine M on these two stacks. e rest of
the stacks are empty. (In particular for all l < i, Mainl is empty.) In the Buffer stage,
Maini+1 is marked with a special symbol. e contents of Maini are popped and
are pushed onto top of the special symbol (in reversed order), and then popped and
pushed into Maini+2. us, the contents of Maini are transferred into Maini+2 in
the same order. Note that the contents of Maink need not be popped at all since
there is no subsequent phase, and hence k stacks suffice in N.

To carry out these phases, the input string is padded with some new extra letters
by a function f. On reading these letters, N does the necessary transfers. As the next
phase expects to pop stack Maini+1, after such a transfer all the stacks are ready for
next processing step. More formally,

Lemma .. Fix a MVPA M and an integer k. ere exist a PDk N and a function
f ∈ L, such that ∀w ∈ Σ∗, w ∈ Lk(M) ⇔ f(w) ∈ L(N).

A small technical difficulty is that MVPAs are allowed pop operations on empty
stacks, but PDs cannot make any move if all stacks are empty. If a prefix of an input
string has unmatched pop letters (pops on empty stack), then during the mimic
phase the simulating machine N may get stuck. To prevent this, we pad the input
string with a sufficiently long prefix that causes push moves on both the stacks.
is boosts the heights of the stacks and ensures that the resulting string has no
unmatched pop move. (A similar idea was used in Lemma .. for making VPAs
height matched.) Formally, we show the following:

Lemma .. Fix a MVPA M. ere exists another MVPA M ′ and a function g ∈ L
such that for every string w ∈ Σ∗, w ∈ L(M) ⇔ g(w) ∈ L(M ′), M on w and M ′ on
g(w) have the same number of phases, and M ′ never pops on an empty stack.

Proof Sketch. Let g : Σ∗ → (Σ ∪ {X, Y})∗ where X, Y 6∈ Σ. For each w ∈ Σ∗,
g(w) = Xjwj+1Y jwj+1w. We convert the fixed MVPA M into another MVPA M ′:
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M ′ = (Q ′, Σ ′, Γ ′, δ ′, q ′
0, F

′) where Σ0 ′
c = Σ0

c ∪ {X}, Σ1 ′
c = Σ1

c ∪ {Y}, and other parts
Σj

r, Σi, of the alphabet are the same. e machine M ′ has two new letters in its
stack alphabet, say A, B. A (B) is pushed on stack 0 (stack 1 respectively) while read-
ing X (Y respectively). Also, if (q, a,⊥, p) ∈ δ for a ∈ Σ0

r , then (q, a, A, p) ∈ δ ′. If
(q, a,⊥, p) ∈ δ for a ∈ Σ1

r , then (q, a, B, p) ∈ δ ′. On string w, machine M ′ behaves
essentially the same as machine M; only the pop-on-empty-stack moves are replaced
by pop-A or pop-B.

It is easy to check that for w ∈ Σ∗, w ∈ L(M) ⇔ g(w) ∈ L(M ′) and M ′ never
pops or pushes on empty stack.

�
We will call strings obtained by reduction g as extended strings and machine

M ′ thus obtained a good MVPA. By Lemma .., we assume that we have a good
MVPA M that never uncovers the bottom-of-stack marker (except at the beginning)
on either stack on the inputs that it receives.

For an extended string w, let htj(w) denote the height of stack-j of a good MVPA
M after having processed the string w. Here, j ∈ {0, 1}. To compute the function f

in Lemma .., we need the values htj(x) for each prefix x of w. ese values are
easy to compute:

Proposition .. For any extended input string w, computation of htj(w) and de-
marcation of the string into its first k phases can be done in L.

Suppose we have the extended string w = w1w2...wk (on the extended alphabet
Σ) already marked with the phases. at is, wi is the string processed in the ith
phase, and the individual strings w1, w2, . . . , wk are known.

We describe the reduction assuming that the first phase pops on stack-0. e
other case can be handled similarly.

Let ki denote the height of the stack that was popped in phase i, after having
processed the ith phase. We have ensured that ki > 1 for all i. Let U,V, W, Z, 
be new letters not in Σ. During the mimic stage, the strings wi are read. During
the buffer stage, reading the marker , the top of the second non-empty stack is
marked with a special symbol. (Recall that there can be at most two non-empty
stacks.) Reading the string of Us, the contents of the first non-empty stack are
pushed above the marked second non-empty stack. ese contents are in turn
pushed into the next empty stack reading the string of Vs. e letter W is used
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for popping out the special symbol. e letter Z is used for a technical reason to
maintain certain invariants. en f is defined as below. (No padding is needed after
wk.) f(w) = Zw1Uk1+1Vk1+1Ww2Uk2+1Vk2+1W . . . wiUki+1Vki+1W . . . wk.
(e string f(w) can be prefixed with 1 or 2 indicating that the first phase pops stack
1 or 2, respectively.)

For the PDk N = (Q ′, Σ ′, Γ ′, δ ′, q ′
0, F

′), Q ′ consists of 3k copies of the states of
M, 3 copies for each phase. e first copy is used during the mimic stage and the
second and third copies are used for the first and the second steps in the buffer stage
respectively. e padding symbol  is used in order to mark the stack Maini+1 with
a special marker before the buffer-stage begins and then to pop the marker after the
contents on top of it are moved into Maini+2. Also Γ ′ consists of k copies of Γ , with
the i-th copy used as the stack alphabet for Maini.

Formally, the invariant maintained with respect to M can be stated as follows:

Lemma .. Machine M on input w has a nondeterministic path ρ in which for each
i ∈ [k], after phase i (where phase i pops stack j) βi is on stack j, αi is on stack 1 − j and
M is in state q if and only if machine N has a nondeterministic path ρ ′ along which
for each i ∈ [k], after reading the prefix up to and including wi in f(w), (1) βiZ0 is
on Maini, (2) αiZ0 is on Maini+1, (3) all the other stacks are empty, and (4) the state
reached is [q(1), i].

at is, the runs of machines M and N are in one-to-one correspondence.

It follows that, M accepts w if and only if N accepts f(w); hence Lemma ..
and eorem ...

e problem MEM(MVPAk) is known to be hard for NC1 because a special case
of it MEM(VPA) is hard for NC1. But no better hardness result is known. It will be
interesting to have at least L or LogDCFL hardness for this.

Also, the only way to obtain upper bound is through a reduction to PDk. Prob-
ably, lack of hardness should be thought of as a hint for existence of better upper
bounds obtained possibly by bypassing this reduction.

. Concluding Remarks

In this chapter we studied the membership problem for various subclasses of CFLs
and generalisations of VPLs. e main goal of this was to characterize various com-
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plexity classes in the landscape between NC1 and LogCFL.
e various language classes that we considered were chosen as likely candidates

for refining the region of complexity classes in the following arm of containments: L
⊆ LogDCFL ⊆ LogCFL. ere were some language classes which we discarded either
because they did not add to the knowledge about this range of complexity classes
because their membership problem trivially reduced to MEM(VPL) (e.g., nested word
languages [], motley word languages []) or their membership problem did not
seem to fit the LogCFL regime in any obvious way (e.g., 2-visibly pushdown automata
[]).

is region is of interest for obtaining hardness results for many natural prob-
lems. For example, consider the graph isomorphism problem: given two graphs,
check whether there is an edge preserving bijection between their vertices. is
problem is known to be hard for GapL. No other hardness result is known. Of
course, it is hard for L, but it would be interesting to see a LogCFL or a LogDCFL
hardness. Given that both are not known, it may make sense to look at classes
between L and LogDCFL and prove hardness with respect to these. We feel that
studying MEM(L) is one of the promising approaches of making a progress in this
direction.
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5
Counting problem for VPLs and their

generalization

. Arithmetic functions and complexity classes

e Boolean complexity classes we have been discussing give bounds on resources
needed to compute Boolean functions, {f | f : Σ∗ → {0, 1}}. In this chapter we dis-
cuss arithmetic functions, {f | f : Σ∗ → N } and complexity classes dealing with them.
Given a Boolean complexity class defined via acceptance of a resource bounded non-
deterministic Turing machine, defining the corresponding arithmetic class can be
done in a natural way as follows: Let M be a nondeterministic Turing machine. M

computes a Boolean function f if and only if for all the inputs x ∈ Σ∗, f(x) = 1 if
and only if M has at least one accepting path over x in M. M is said to compute
an arithmetic function f if and only if for all inputs x ∈ Σ∗, f(x) = k if and only if
M has k accepting paths over x in M. We will call the process of coming up with
an arithmetic complexity class corresponding to a Boolean complexity class (in this
case, by changing the acceptance criteria) arithmetization.

In fact, for any nondeterministic machine (such as PDA, PDA1-turn, VPA, NFA,
rhPDA, SSPDA, MVPA), such an accepting criterion can be defined which will yield
a set of arithmetic functions counting the accepting paths in these machines. For-
mally, for any class C of automata, its arithmetic version C is defined as follows:

C = {f : Σ∗ → N | for some M ∈ C, f(x) = accM(x) for all x ∈ Σ∗}
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If this is our method for defining a set of arithmetic functions, it places an imme-
diate hurdle in arithmetizing deterministic Turing machines or other deterministic
computation models. In particular if we start with a deterministic complexity class,
we don’t get any arithmetic complexity class that corresponds to it in this way. But
complexity theorists would like to define some set of arithmetic functions for each
Boolean complexity class. In particular for L and for P-time, there are no known
corresponding arithmetic complexity classes. (We will discuss the importance of
arithmetic complexity classes for complexity theorists, shortly.)

Counting the number of proof trees is another known method of arithmetiza-
tion. (Recall the definition of proof tree from Section ..). is can be used
for arithmetizing Boolean circuit classes. Inspired by the circuit characterization of
LogCFL [], this method was used to arithmetize NC1 by Caussinus et al. in [].
(Jiao in [] had suggested this method for arithmetizing NC1.) Let the arithmeti-
zation thus obtained be denoted as NC1.

In the past, another approach to arithmetize Boolean complexity classes which
have deterministic underlying models was used in []. One of the ways to arith-
metize NC1 in [] was by counting the number of accepting paths in a NFA. Let us
denote the class thus defined as NFA. ey also proved that NFA ⊆ NC1.

We now discuss the importance of the arithmetization of Boolean complexity
classes and that of arithmetic functions. For nondeterministic complexity classes
such as NP, NL, LogCFL arithmetizations have been considered (by counting the
number of accepting paths) in the past by [, , ] respectively. Arithmetizations
are denoted as P, L, LogCFL, respectively. ese complexity classes are properly
characterized by certain natural problems. Computing permanent of a matrix over
N characterizes P. Its determinant can be computed in L(and characterizes a com-
plexity class called GapL). And evaluation of poly-degree polynomials characterizes
LogCFL. Similarly, in [] it is shown that NFA is characterized by multiplication
of constant-sized matrices, where the matrices are over N. us counting accepting
paths in resource bounded machines or NFA corresponds to computing natural and
useful arithmetic functions.

Motivated by the work of [] and by even more fundamental reason that arith-
metic functions are really important and natural, we define arithmetic functions
corresponding to counts of accepting paths for all the non-deterministic compu-
tations we have seen in the preceding chapters. We analyze their complexity. We





Chapter . Counting problem for VPLs and their generalization

use the notion of height determinism defined in Chapter  in order to obtain the
complexity bounds.

In Section ., we define the arithmetization of VPA, denoted as VPA, and study
its complexity. We prove that VPA⊆ FLogDCFL. (A containment F ⊆ C involving
both a function class F and a language class C means: ∀f ∈ F, Lf ∈ C, where Lf =

{〈x, i, b〉 | the ith bit of f(x) is b}.) We also prove some closure properties for the
class VPA.

In Section ., we study the arithmetization of rhPDA(FST) and rhPDA. We prove
that rhPDA(FST) is complexity theoretically equivalent to VPA.

Recall that, MEM(rhPDA) is complete for LogDCFL. e class rhPDA thus gives
a handle for arithmetizing a deterministic complexity class LogDCFL. To our knowl-
edge this is the first arithmetization of LogDCFL known in the literature. For rhPDA,
we get FLogDCFL upper bound. us we have an arithmetization for the determin-
istic complexity class LogDCFL using the nondeterministic model of rhPDA. And the
arithmetization gives a set of functions which are of the same complexity as their
Boolean equivalents. A few observations regarding this result will be discussed in
Section ...

In Boolean setting, MEM(VPL) and MEM(REG) both characterized NC1. But their
arithmetizations seem to have a large gap. We end this chapter with a list of hurdles
we have faced while trying to close this gap.

. Counting Paths in a VPA

e following is the main result established in this section:

eorem .. Arithmetization of VPA is contained in FLogDCFL, i.e., VPA⊆ FLogDCFL.

We also define another class of languages called ModpVPA as follows:
For any function class C, let ModpC denote the class of languages L such that

there is an f ∈ C satisfying

∀x ∈ {0, 1}∗ : x ∈ L ⇐⇒ f(x) ≡ 0 mod p

As an aside we also prove the following corollary:
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Corollary .. For each fixed k, ModkVPA ⊆ L.

e theorem is established by essentially using Lemma .. and making appropri-
ate changes to it. e idea is the same, namely of building tables corresponding to
well-matched strings and then combining them together. e modifications needed
in order to combine them correctly are described in detail in Section ... e main
difference is that the table entries are now over N. Combining such tables may blow
up the entries to exponential values. e technique of Chinese remaindering is used
for bounding the size of each table entry. e algorithm can then be implemented
by an oracle DAuxPDA making queries to the height function. e height function
for VPA is in TC0. Section .. describes these steps in more details.

We analyze the class VPA for its closure properties in Section ...

.. Modifications to the LogDCFL algorithm for MEM(VPL)

To adapt this algorithm to the arithmetic setting, we now consider the tables that
we defined in the proof of Lemma .., and lift them over to N. e entry
[(q, X), (q ′, X ′)] of the table corresponding to the interval (i, j) is filled with k if
and only if X = X ′ and the VPA starting in state q reaches q ′ along k different paths,
processing the string x(i,j).

Consider the fragment (r,Λ), where Λ = (r ′, T ′). e interval r ′ is a sub-interval
of the interval r. Let two strings over the input alphabet, say u, v, be such that
xr = uxr ′v (note that one of u, v, xr ′ can possibly be ɛ). e modifications to
procedure T are given below.

If |xr| 6 2 (in this case Λ will be trivial), then the table Tr can be filled as follows:
the [(q, X), (q ′, X ′)]-th entry will be set to k if X = X ′ and the machine M can start
from surface configuration (q, X), read xr, and reach configuration (q ′, X ′) in exactly
k ways. is can be filled by simply looking up the transition function δ ′. us at
the base case, we can fill the tables.

If |xr| > 2 but |uv| 6 2 (so Λ is not trivial), then assume that inductively, we have
the table T ′

r ′ computed correctly. en set the [(q, X), (q ′, X)]-th entry of the table
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Tr as follows:

T [(q,X),(q ′,X)]
r =

∑
q1,q2∈Q

[(q, X) u (q1, X)] · T
[(q1,X),(q2,X)]
r ′ · [(q2, X) v (q ′, X)]

(.)
[(q, X) u (q ′, X ′)]M is used to indicate the number of different ways in which the
PDA M can go from (q, X) to (q ′, X ′) reading the string u. M is omitted if it is clear
from the context.

e only other case is that u is a push letter and v is a pop letter; since uxr ′v and
xr ′ are well-matched. In this case,

T [(q,X),(q ′,X)]
r =

∑
q1,q2∈Q,
Y∈Γ

[(q, X) u (q1, Y)] . T
[(q1,Y),(q2,Y)]
r ′ . [(q2, Y) v (q ′, X)]

(.)
Both these cases can be combined into the following single equation:

T
[(q,X),(q ′,X)]
r =

∑
s1,s2∈Q×Γ

[(q, X) u s1] · T
[s1,s2,]
r ′ · [s2  v (q ′, X)]

T
[(q,X),(q ′,X ′)]
r = 0 if X 6= X ′

(.)

Since T ′
r ′ is available through recursive computation, and since the other terms in

these equations can be found from δ, T can compute Tr.
For handling the case when |uv| > 2, we just redefine the ×-operator as matrix

multiplications over N. Let Tb denote the table corresponding to interval rb, for
b = 1, 2, where r1 and r2 are contiguous with r1 preceding r2. en the table T3 for
r3 = r1 ∪ r2 is given by T3 = T1 × T2; that is,

T
[(q,X),(q ′,X ′)]
3 =

∑
p,Y∈Q×Γ

T
[(q,X),(p,Y)]
1 . T

[(p,Y),(q ′,X ′)]
2 (.)

(Inductively, this sets an entry to be  if X 6= X ′.)
Under this semantics for tables and × operator, we can establish the following:

Claim .. For every interval r = [i, j] arising in the recursion tree on input ([0, n],

([2n/3, 2n/3] , id)), the [(q, X), (q ′, X ′)]-th entry of the table Tr computed by T equals
the number of distinct paths of M from (q, X) to (q ′, X) on string xij.

Proof:(of claim) e procedure T processes intervals as fragments. e correctness
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proof proceeds by induction on the effective size of the interval; that is, for a recur-
sive call on input (r, (r ′, T ′)), we show by induction on the size of r − r ′ that if T ′ is
correct for r ′, then T returns the correct table for r.

e base case is when r − r ′ is an interval of size  or less. If |r ′| = 0, then T

computes Tr directly from δ and so is correct. If r ′ 6= 0, then correctness follows
from Equation ..

For the inductive case, consider a fragment where |r − r ′| > 2. T computes frag-
ments (r1, Λ1) and (r2, λ2) and makes recursive calls. Assume that {b, c} = {1, 2} and
that rc contains r ′. As argued in [], the effective interval in fragment (rc, Λc) is
strictly smaller than |r − r ′|, and so by induction, T correctly computes Trc

. rb has
a trivial pair attached and may not be smaller. Assume for now that it is smaller,
so by induction, T correctly computes Trb

as well. Now Tr3
is computed by Equa-

tion . which correctly combines paths over xr1
and xr2

. Finally, T is invoked with
(r, (r3, T3)), and by induction, this call terminates with the correct value of Tr.

Suppose now that rb is not smaller than r− r ′. (is can happen, for instance, if
rc contains just r ′ and rb is all the rest of r.) But then T, while processing (rb, Λb),
makes calls with inputs (rbl, Λbl) where l ∈ {1, 2}, and each call has a smaller effective
interval length. So Trb1

and Trb2
are computed correctly by induction, and T ′′ =

Trb1∪rb2
is obtained via Equation . which correctly combines paths. en T is

invoked with (rb, (rb1∪rb2, T
′′)). By induction, this call terminates with the correct

value of Tr2
. �

.. VPA is contained in FLogDCFL

e modified recursive procedure for computing the newly defined tables over N
cannot directly be implemented in LogDCFL, because each entry of a table may
need polynomially many bits. (e number of paths of a VPA on any string cannot
exceed 2O(n), so polynomially many bits suffice.)

e Chinese Remaindering Technique: We will use the following result, and its
algorithmic version stated below.

Lemma .. (Chinese Remainder eorem CRT; folklore) For each k, let Pk be
the product of the first k primes, p1 < . . . < pk. en each integer in the interval [0, Pk)

is uniquely determined by its residues modulo these k primes.
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Lemma .. (Algorithmic version of CRT; [], see also []) For each k, let Pk

be the product of the first k primes, p1 < . . . < pk. Given a k-tuple 〈a1, . . . ak〉 where
for each i, ai ∈ [0, pi), the unique integer a ∈ [0, Pk) such that ai = a mod pi for each
i can be computed in L.

e technique of Chinese remaindering can be used in order to obtain LogDCFL
upper bound as follows: if we were to perform all the operations modulo small
(logarithmically many bits) primes, then, analogous to Lemma .., the modified
procedure can be implemented in FLogDCFL. e fragments that get pushed on
to the stack and processed on the work tape will have O(logn)-bit representations
owing to not only the indices of the intervals but also the tables. (In the previous
case, the tables were of size O(1).) is can be handled by a DAuxPDA. If we do the
above implementation for sufficiently many primes, then by Chinese Remaindering
(Lemma ..) we will be able to recover the exact number in FL. Overall, we
have that counting number of accepting paths in machine M over input x can be
performed in FLFLogDCFL = FLogDCFL. In conjunction with Lemma .., this
shows that VPA⊆ FLogDCFL, establishing eorem ...

We now prove Corollary ...
Proof:[of Corollary ..] Note that it suffices to compute the table operations, as
defined in Equations .,., and ., modulo k. Hence, the tables will be of size
O(|Q|2|Γ |2k) = O(1).

As the tables are of size O(1), we can apply Observation .. and Observa-
tion ... Now similar to Lemma .., the tables corresponding to well-matched
intervals can be computed in Lh. Here, the height function is in TC0 and we know
that L(TC0) is in L. us, the corollary.

�
Note that if the recursion tree is to be addressed by indices explicitly and not

by node labels, then Claim .. and Observation .. will not be applicable.
In this case, we will have to generalize Lemma .. that refers to the recursion
tree explicitly by indices of the intervals. And this will give a LogDCFLh bound as
opposed to Lh bound.

In the following table we summarize the various results obtained in the arith-
metic setting, using the algorithms from []:
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Recursion tree node Table entries over Bounds
description Z/ Zp

explicit indices p is a constant LogDCFL
only path labels p is a constant L
explicit indices p is poly-valued LogDCFL
only path labels p is poly-valued LogDCFL

Table .: Results obtained using algorithms from []

.. Closure properties of VPA

Recall that VPA enjoy many nice Boolean closure properties []. In this section we
examine the closure properties of VPA.

We first discuss what we mean by closure for the class VPA. We know that when
a function f is in the class VPA, there is a nondeterministic VPA M, that is, there is
a pushdown machine with tri-partitioned input alphabet Σ, which on reading any
input x ∈ Σ∗ generates as many accepting paths as f(x). erefore, a function in
VPA can be qualified with two things: the VPA itself and the partition of the input
alphabet.

We consider two different types of notions for closure of VPA.

• Type 1: Same input alphabet, same partition: Here, the closures we show are
for a set of functions computed by VPA that have the same input alphabet and
the same partition of the input alphabet. In fact, the Boolean closures shown
by [] are also for VPA with the same input alphabet and the same partition of
the input alphabet.

• Type 2: Same input alphabet, different partition: Here, the closures are for
a set of functions computed by VPA that have the same input alphabet but
possibly different partitions. Note that the first notion of closure is more
strict than this.

However, to prove closures here, we need to cheat. We know that the class
VPA is hard for NC1. erefore, in some sense, even if we take NC1 or AC0

closure of the class VPA, the resulting class of functions, i.e., AC0(VPA), may
not be much more powerful as compared to VPA. Consider say two functions,
f1 and f2 which are in VPA, possibly by VPA having different partitions of the
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same input alphabet Σ. Now, say, we wish to prove that f1 + f2 is also in VPA.
We instead prove that f1 + f2 is in AC0(VPA).

For this we design a VPA M ′ which may have possibly different input alphabet
Σ ′ and/or different partition of the input alphabet. And a function g ∈ AC0

such that for every x ∈ Σ∗, g(x) ∈ Σ ′∗ and f1(x) + f2(x) equals the number of
accepting paths in M ′ on g(x).

Type 1 closure properties:

e closure properties for this type can be stated as follows:

eorem .. For a fixed k ∈ N, let M1, M2, . . . , Mk be VPA over an alphabet Σ

having the same partition of the input alphabet. Let f1, f2, . . . , fk be functions from Σ∗

to Z. If ∀x : x ∈ Σ∗ and ∀i : 1 6 i 6 k, fi(x) = accMi
(x), then, there exist VPA

M, M ′N, N ′ over Σ with the same partition of Σ as M1, such that for each x ∈ Σ∗,
(a) accM(x) = f1(x) + f2(x) + . . . + fk(x).
(b) accM ′(x) = f1(x) × f2(x) × . . . × fk(x).
(c) accN(x) = (f1(x))k

(d) accN ′(x) =

(
f1(x)

k

)
.

We prove the above theorem for k = 2. It is easy to generalize the methods for any
fixed k.
Proof:[eorem ..] e main ideas for proving the closures (a) and (b) above,
are similar to those used for proving Boolean closures. To compute addition, one
constructs a VPA by taking union of the two VPA M1 and M2. For multiplication,
a product VPA is constructed. By correctly defining the acceptance criteria, one can
generate the desired number of accepting paths.

In the constructions, having the same input alphabet and the same partition of
the input alphabet plays a vital role.

Let M1 = (Q1, q1
0, F

1, Σ = Σc∪Σr∪Σi, Γ
1, δ1) and M2 = (Q2, q2

0, F
2, Σ = Σc∪Σr∪

Σi, Γ
2, δ2). Note that here Q1 and Q2 have to be disjoint. e VPA M that we design

for computing f1 + f2 on reading any letter in its initial state, nondeterministically
simulates the moves of machines M1 and M2. And from there on, depending on the
current state and stack-top pair, it simulates a move if it is defined in either δ1 or δ2
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for the pair. (Note that simply taking the union of the two start states would suffice.
We do this stick to the definition of a VPA which insists that there is a unique initial
state.) Formally, M = (Q,q0, F, Σ = Σc ∪ Σr ∪ Σi, Γ, δ), where Q = Q1 ∪ Q2 ∪ {q0},
F = F1 ∪ F2, Γ = Γ1 ∪ Γ2, and δ is a union of δ1, δ2, and δ ′ where, δ ′ is defined as
follows:

∀a ∈ Σc: q0
a→ q ′X ′ ∈ δ ′ ⇔ q1

0

a→ q ′X ′ ∈ δ1 or q2
0

a→ q ′X ′ ∈ δ2

∀a ∈ Σi: q0
a→ q ′ ∈ δ ′ ⇔ q1

0

a→ q ′ ∈ δ1 or q2
0

a→ q ′ ∈ δ2

∀a ∈ Σr: q0 ⊥ a→ q ′ ⊥∈ δ ′ ⇔ q1
0 ⊥ a→ q ′ ⊥∈ δ1 or q2

0 ⊥ a→ q ′ ⊥∈ δ2

For such a machine we prove the following, more general, claim.

Claim .. On input x ∈ Σ∗, M1 reaches a set of configuration S1 ⊆ Q1 × (Γ1)
∗ and

M2 reaches a set of configurations S2 ⊆ Q2 × (Γ2)
∗ if and only if M reaches S1 ∪ S2.

We prove this by induction on the length of the input. But suppose this claim holds,
then it is easy to see that the machine M will correctly compute the addition of f1

and f2 and hence the first part of the theorem.
Proof: [Claim ..] For |x| = 1, there are three cases, namely x ∈ Σc, x ∈ Σr, and
x ∈ Σi. We elaborate on the first case, the others can be worked out similarly. For
j ∈ {1, 2}, q

j

0

x→ Sj ⊆ (Qj × Γ j). By construction, q0
x→ {S1, S2}. us the base case

hold.
We assume that the claim holds for |x| < k. Now say x = x ′a and |x| = k. Here

too three cases arise: a ∈ Σc, a ∈ Σr, and a ∈ Σi and we consider the first case.
e other cases are similar to this. Say on x ′, Mj reaches Sj ⊆ Qj × (Γ j)

h where
h = ht(x ′). But induction hypothesis, M reaches (S1 ∪S2). On reading a, whatever
subsets are reached by M1 and M2, are due to a move of the machines starting from
one of the configurations among S1 and S2. By the definition of δ all those moves
are possible in M. And hence M reaches all the configurations reachable by either
M1 or M2. �

Now we construct M ′ over the same alphabet Σ with the same partition as for
M1 and M2 which is such that ∀x, accM ′(x) = f1(x) × f2(x). It is essentially the
product of the two VPA M1 and M2. e stack alphabet is also the product of the
stack alphabets of M1 and M2. e moves here can be simulated mainly because
the partition of the input alphabet is the same for both M1 and M2. We describe
the construction for the sake of completeness.
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M ′ = (Q = Q1 × Q2, q0 = (q1
0, q

2
0), F = F1 × F2, Σ, Γ = Γ1 × Γ2, δ). Here, the

transition function δ is defined as follows:(p1, p2)(α1, α2)
a→ (q1, q2)(β1, β2)

p1α1 a→ q1β1 ∈ δ1

and
p2α2 a→ q2β2 ∈ δ2


where,

|α1| = |α2| =

{
0 if a ∈ Σi or Σc

1 if a ∈ Σr

|β1| = |β2| =

{
0 if a ∈ Σi or Σr

1 if a ∈ Σc

e following claim can be proved using induction on the length of the input
and this will prove the second part of the theorem.

Claim .. On input x ∈ Σ∗, M1 reaches a set of configuration S1 ⊆ Q1 × (Γ1)
∗ and

M2 reaches a set of configurations S2 ⊆ Q2 × (Γ2)
∗ if and only if M ′ reaches S1 × S2.

is proves the part (b) of the theorem. Part (c) trivially follows from (b) (taking
all the k functions to be f1). Part (d) needs extra work. We now prove the part (d).

e idea is similar to the one used for proving closure under multiplication.
Here too, we construct product pushdown automata using product of M1 with

itself. To generate
(

f1

2

)
(= m, say) many accepting paths, the product automata

must disallow same runs to be simulated on the two components of the product
automata. at is, the number m corresponds to all those pairs of accepting runs
(ρ, ρ ′) of M1 for which ρ 6= ρ ′.

is is achieved by maintaining a flag in the state space. is flag is off initially,
to indicate that the runs have been similar till now. e flag remains off as long as
the moves being made on the two components are the same. e flag is turned on
as soon as two different moves are made on the two components of the product au-
tomata. At this point, the first component is forced to move to a (lexicographically)
smaller state, stack-top pair as compared to the one that the second component
would go to. Once the flag is on, it remains so for the rest of the run, and all the
moves are allowed on both the components.
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We now give a formal description of the automata N. M ′ = (Q = (Q1 × Q1 ×
{0, 1}), q0 = (q1

0, q
1
0, 0), F = (F1 × F1 × {0, 1}), Σ, Γ = Γ1 × Γ1, δ). Here we assume

lexicographic ordering on the state and stack alphabet. We assume that ⊥ is defined
to be strictly smaller than all the letter in Γ1. And we assume (without loss of gen-
erality) that states are all smaller than the stack letters. is gives a total order, say
<M1 , on the state, stack-top pairs.

e transition function δ is defined as follows:
For all a ∈ Σc:
(q, q, 0)

a→ (p, p, 0)(X,X) ∈ δ ⇔ q
a→ pX ∈ δ1

(q, q, 0)
a→ (p, p ′, 1)(X,X ′) ∈ δ ⇔ q

a→ pX ∈ δ1, q
a→ p ′X ′ ∈ δ1

and pX <M1 p ′X ′

(q, q ′, 1)
a→ (p, p ′, 1)(X, X ′) ∈ δ ⇔ q

a→ pX ∈ δ1 and
q ′ a→ p ′X ′ ∈ δ1

For all a ∈ Σi:
(q, q, 0)

a→ (p, p, 0) ∈ δ ⇔ q
a→ p ∈ δ1

(q, q, 0)
a→ (p, p ′, 1) ∈ δ ⇔ q

a→ p ∈ δ1, q
a→ p ′ ∈ δ1

and p <M1 p ′

(q, q ′, 1)
a→ (p, p ′, 1) ∈ δ ⇔ q

a→ p ∈ δ1 and
q ′ a→ p ′ ∈ δ1

For all a ∈ Σr:
(q, q, 0)(X,X)

a→ (p, p, 0) ∈ δ ⇔ qX
a→ p ∈ δ1 X ∈ Γ1 ∪ {⊥}

(q, q, 0)(X,X ′)
a→ (p, p ′, 1) ∈ δ ⇔ qX

a→ p ∈ δ1, qX ′ a→ p ′ ∈ δ1

and pX <M1 p ′X ′

(q, q ′, 1)(X,X ′)
a→ (p, p ′, 1) ∈ δ ⇔ qX

a→ p ∈ δ1 and
q ′X ′ a→ p ′ ∈ δ1

e following claim can be proved by induction for correctness of the construc-
tion:

Claim .. On input x ∈ Σ∗, M1 reaches a set of configurations S1 ⊆ Q1 × (Γ1)∗ if
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and only if N reaches the following set of configurations

S ′
1 =

((q, q ′, 1), (γ, γ ′))
(q, γ) <M1 (q ′, γ ′)

(q, γ) ∈ S1 and (q ′, γ ′) ∈ S1

∪
{((q, q, 0), (γ, γ)) | (q, γ) ∈ S1}

�
Note that the input need not be well-matched for these closure properties to

hold.

Type 2 closure properties

e main theorem we prove in this section can be stated as follows:

eorem .. For a fixed k ∈ N, let M1, M2, . . . , Mk be VPA over an alphabet Σ

having possibly different partitions of the input alphabet. Let f1, f2, . . . , fk be functions
from Σ∗ to Z. If ∀x : x ∈ Σ∗ and ∀i : 1 6 i 6 k, fi(x) = accMi

(x), then,

• there is a VPA M over another alphabet Σ ′ and a function g : Σ∗ → Σ ′∗ in AC0

such that for all x ∈ Σ∗, f1(x) + f2(x) + . . . + fk(x) = accM(g(x)).

• there is a VPA M ′ over another alphabet Σ ′ and a function g : Σ∗ → Σ ′∗ in AC0

such that for all x ∈ Σ∗, f1(x) × f2(x) × . . . × fk(x) = accM ′(g(x)).

• If f ′(x, 1n) is defined as (f1(x))n, then (for f1 ∈ VPA as assumed above) there is
a VPA N and a function g : (Σ∗ × 1∗) → Σ ′∗ in AC0 such that for all x ∈ Σ∗ and
n ∈ N, f ′(x, 1n) = accN(g(x, 1n)).

Proof: We prove the first two parts of the theorem for k = 2. It is easy to generalize
the following techniques for any fixed k. e VPA we design for addition here, has
its input alphabet as two copies of Σ. is can be thought of as the letters from Σ

being colored red and black Σred, Σblack. e AC0 reduction thus makes two copies
of input x separated by a new delimiter, say $, with the first copy being red and the
second black. e VPA we design works on the union of Σred, Σblack, {}, Σ ′ say, as
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Figure .: e number of accepting paths in M is the sum of the number of ac-
cepting paths in M1 and M2.

the input alphabet. Within the red and the black copy, the partition respects that of
Σ1 and Σ2, respectively. e function f1+f2 is simulated as [f1·1+1·f2]. e machine,
in its initial state, nondeterministically guesses the copy of x which is valid for the
run. Suppose for a run, the red copy is guessed to be valid, then it simulates M1 on
the first copy. Upon seeing a delimiter, the machine deterministically pushes or pops
depending on the partition of the letters read from the second copy. But the state
does not change. us if it reaches an accept state of M1 during the run, it remains
in it without increasing the number of accepting paths any further. Symmetrically,
if the machine guesses the black copy to be valid, it deterministically pushes or pops
a fake symbol on the stack during the red copy and upon a reading a delimiter, it
starts simulating M2 on the black copy treating the fake stack symbol similar to the
bottom of the stack. (is is to avoid the issues regarding the well-matchedness. If
we wish to make the string well-matched we may have to use TC0 reductions. But
as seen here, that is not necessary)

Figure . gives an intuitive idea as to why the construction should work.
For multiplication, the VPA M ′ again has Σ ′ as its input alphabet. For this ma-

chine the stack alphabet is a union of Γ1 and Γ2, and it is important that they are
disjoint. If not, the copies of stack alphabet are also colored. e machine simulates
the moves of M1 on the first copy of x. Upon reading the delimiter the accepting
paths of this simulation continue with simulating M2. e letters from the alpha-
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bet Γ1 are treated as bottom of the stack marker during the simulation of M2. is
achieves the multiplication.

is same idea is extended further in order to obtain the third part of the theo-
rem.

To prove the third part, i.e., powering of the VPA functions can be computed
in AC0 closure of VPA, we give a reduction. e reduction itself is computable in
AC0. Given a number n (in unary), the task is to compute fn. First we convert
every string x into a string x ′ containing n copies of x separated by delimiters, say $,
and an extra string of padding letter A which was not originally in Σ. is addition
letter is treated as a pop letter. e reduction produces a string x ′ which is (xAjxj)n.
is reduction can be performed in AC0. We design a machine N over an alphabet
Σ ′ = Σ ∪ {, A}.

e machine N simulates the moves of M1. e additional internal moves on $

take the state control from a final state to the initial state and get stuck on all the
other states. Suppose on x, on a run, machine M1 reaches a final state with an empty
stack. e machine N restarts the simulation of the machine M, starting from the
next copy of x in x ′ after having read the delimiter $ which follows the current copy
of x. is process repeats itself (every time the machine reaches an accept state at the
end of reading a copy of x, i.e., at most n times) thereby resulting in powering the
number of accepting paths. Assuming that M1 ends up with an empty stack after
processing x, the additional padding with a string of A is not needed. However in
general, on an input x, M1 need not end up with an empty stack. e padding is
added to take care of the remnant stack after every simulation of M1. e stack
can be at most of height |x| and the added pop letter A makes sure that the stack is
empty before the second simulation of M1 begins. �

e results we obtained are summarized in Table .:

. Realtime height-deterministic PDA.

e aspect of rhPDA which interests us in this study of counting problems is that it
is a nondeterministic model capturing the deterministic class LogDCFL. It thus pro-
vides a way of arithmetizing LogDCFL, simply by counting the number of accepting
paths on each word in an rhPDA. We call the class of such functions rhPDA. In
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Types Operations Complexity
Same partition of the input

∑k

i=1
fi,

∏k

i=1
fi,

alphabet for all the machines fk,
(

f

k

)
. in VPA

for constant k

Different partition of the
∑k

i=1
fi,

∏k

i=1
fi, fn

input alphabet for constant k, AC0 reducible to VPA
and given n.

Table .: Analysis of VPA functions

particular, we consider the classes rhPDA(FST) and rhPDA(PDT).

.. Bounds on rhPDA(FST)

We have seen that although rhPDA(FST) properly generalizes VPA, the membership
problem has the same complexity as that over VPA. It turns out that even the path-
counting problem has the same complexity.

eorem .. rhPDA(FST) ≡ VPA (via NC1 reductions).

Proof: By Lemma .., we know that any strong SSPDA can be converted into
an equivalent one-way-strong SSPDA. And from Lemma .. we know that the
membership problem for a one-way-strong SSPDA reduces to that of a VPA. us,
combining these lemmas and Lemma .., membership problem for any SSPDA
reduces to that of a VPA. In addition, if these reductions are parsimonious, we would
establish the required result.

e transformation from strong SSPDA to one-way-strong SSPDA is a simple
rewriting of the configurations of the strong SSPDA and hence is parsimonious. e
reductions in Lemma .. and Lemma .. are padding functions. e additional
moves on the padding letters in the new machines are deterministic. Hence, again
the number of paths are preserved. us the theorem.

�

.. Bounds on rhPDA(PDT)

e main theorem of this section, eorem .., shows that the membership prob-
lem and the counting problem for rhPDA have the same complexity, a situation
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rather unusual for nondeterministic complexity classes. is calls for some discus-
sion.

We have defined an arithmetization for LogDCFL and as we show below, we
have upper bounded its complexity by the same complexity class LogDCFL. us,
this arithmetization does not yield functions which are more powerful. Usually
the arithmetizations defined for nondeterministic complexity classes seem to have
higher complexity than their Boolean equivalents. It may be interesting to define
and study other arithmetizations of LogDCFL.

If we compare this result to arithmetizations of deterministic complexity classes,
in particular NC1 we might find this arithmetization interesting. For years, the
problem whether NC1 = NC1 has been open. is problem is still open, but the
gap between NC1 and NC1 is very small unlike the gap between NP and P. Many
complexity theorists believe this to be true. at is, they believe that when one
arithmetizes inherently deterministic class, the class of functions obtained cannot
be too much more powerful. Which is what we have for the class LogDCFL.

eorem .. rhPDA is in LogDCFL.

e proof proceeds in several stages, similar to the proof for LogDCFL upper
bound of VPA. To compute a rhPDA function f on input x, we first compute f(x)

modulo several small (logarithmic) primes, and then reconstruct f(x) from these
residues using Lemma .. specialized to rhPDA as given below:

Lemma .. (folklore) Let P be a fixed rhPDA. ere is a constant c > 0, depending
only on P, such that given input x, the number of accepting paths of P on input x can
be computed in logarithmic space with oracle access to the language Lres defined below.
(Here pi denotes the ith prime number.)

Lres = {〈x, i, j, b〉|1 6 i 6 |x|c, the jth bit of accP(x) mod pi is b }

We now need to bound the complexity of the oracle language Lres itself. Lres

itself can be computed by a DAuxPDA with oracle access to the height function gT .
In fact, the procedure from Section .. can be described as a LogDCFL algorithm
making oracle calls to the height function.

Lemma .. If P is any rhPDA and T a PDT computing its height function, then Lres

is in LogDCFLgT .
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In the case of VPA, the height function is in TC0. However, here the height
function is in LogDCFL(see Lemma ..). Lemma .. and Lemma .. together
imply that Lres is in LogDCFL(LogDCFL). is is not adequate for us, since it is not
known whether LogDCFL(LogDCFL) ⊆ LogDCFL. (Relativising a space-bounded
class is always tricky. Here, we have a pushdown class with auxiliary space, making
the relativisation even more sensitive.) However, we further note that the LogDCFLgT

machine accepting Lres makes oracle queries which all have short representations:
each query can be written in logarithmic space. (Strictly speaking, the input x is
also part of the query. But for eliminating the oracle, this plays no role.) In such a
case, we can establish a better bound, which may be of independent interest:

Lemma .. Let L(MA) be the language accepted by a poly-time DAuxPDA M which
makesO(logn)-bits oracle queries to a languageA ∈ LogDCFL. en L(MA) ∈ LogDCFL.

Proof: Consider aDAuxPDAM ′ that has three auxiliary tapes s1, s2, s3 of size O(logn)

bits each. e machine starts simulating M using s1. When M is computing query
bits, it notes down the query bits on tape s2. When the query is computed, it is on
the tape s2 of M ′. At this stage, M ′ marks the stack with a special stack marker to
indicate that the simulation of the oracle machine is going to begin. It then starts
simulating the machine for A, say M ′′, using the tape s3 as a work tape and tape s2

as the input tape. Once the simulation of M ′′ is completed, the answer to the query
is available on s3. Machine M ′ now pops the stack till the special marker is popped.
At this stage it has all the information needed to resume the computation of M. �

As L(LogDCFL) equals LogDCFL, combining these lemmas we get eorem ..

. Barriers in improving parallelizability for count-
ing problem of VPLs

e best known bound for the membership problem for VPLs, NC1, is by [].
Currently, the best known bound we have for VPL is LogDCFL which is obtained
by tinkering the algorithm of []. We tried to improve this bound by trying to
modify the Buss’s algorithm [], which is at the heart of the NC1 algorithm of [].
We have not managed to obtain any improvement in the bound for VPL. In the
following section, we present Buss’s algorithm. In Section .. we present Buss’s
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algorithm adapted for proving NC1 upper bound for MEM(VPL). In Section ..
we discuss the hurdles we faced while trying to generalize Buss’s algorithm.

.. Boolean sentence value problem in NC1 []

A Boolean sentence is a tree with leaves labeled by {0, 1} and internal nodes labeled
by the Boolean operators ∨,∧,¬. e sentence may be specified either by pointers
or as a string over the alphabet {∨,∧,¬, (, ), 0, 1}. e complexity of the problem is
sensitive to the specification of the input. Buss assumes that the input is specified
as a string. We will assume without loss of generality that arity of each Boolean
operator is at most 2.

Example .. Consider a Boolean formula given below:

..∧

.∧

.∧

.1 .1

.∨

.0 .1

.∨

.¬

.0

.∧

.1 .0

e above sentence specified as a string in infix notation can be given as:
(((1 ∧ 1) ∧ (0 ∨ 1)) ∧ ((¬0) ∨ (1 ∧ 0)))

We present the approach of Buss’s algorithm from []. e main steps involved in
getting the NC1 bound are as follows:

. Convert the given Boolean sentence into a normal form called Postfix Longest
Operand First form (PLOF form).

. Play P-C game on this sentence such that P has a
winning strategy if and only if the sentence evaluates to 1.

. Prove the following two things about the game:

• e game can be played in NC1.
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• Given the moves of the game, the validity of the moves and the winner
can be decided in NC1.

e conversion of the given sentence into PLOF is straightforward and we will not
reproduce the details of this conversion here. Our focus will be the second step. We
will first play a very easy game on the sentence and note that analysis of this game
does not give NC1 bound. After this, we will describe the extra work done in []
in order to get this bound.

PLOF is the normal form for Boolean sentences such that the operands come after
the corresponding operands. Also if the two operands are not of the same size then
the longer operand comes first. (Note that the operators are commutative.) e
sentence from Example .. can be written in PLOF as follows (we assume without
loss of generality that 1 is longer than 0): 11 ∧ 10 ∨ ∧10 ∧ 0¬ ∨ ∧.

It is essentially a type of re-writing which additionally involves counting the sizes
of the operands attached to each operator. Buss defines such a function, denoted
as count and proves that it can be computed in NC1. After this, the conversion to
PLOF follows easily.

P-C game We now specify the rules of a very easy game being
played on the Boolean sentence. e game consists of multiple rounds. A round
consists of a P’s move followed by a C’s move. e P is
allowed to pebble the node with a colored pebble. e colors of the pebbles are
either 0 or 1. e C is allowed to challenge one of the pebbled nodes.
e game is described below:

Round 
P: Pebbles the root with a pebble of color 1.
C: Challenges the root.
[Round i]
P: Let v be the node challenged in round i − 1. P

guesses a divider u for the subtree rooted at v. Also guesses
its value as either 0 or 1. Note that the P can not go
below any earlier pebbled node.

C: Either decides to continue challenging v or challenges u.
e game ends when all the children of the challenged node are pebbled. If the
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sentence value is 1, then for every round P has a way to pebble the divider
node correctly with its value. Hence, finally, the challenged node will have children
consistently labeled by P’s pebbles. If sentence value is 0, the root is pebbled
wrongly and there will be a witnessing subtree that will force the root value to be
zero. By staying in the original position or by shifting (depending on whether the
newer pebbled value is right or wrong respectively) C will be able to win
the game. us, the P wins the game if and only if the value of the sentence
is 1.

e P’s moves are simply guesses. P needs that at least one guess
is right about the values. e C’s moves, on the other hand, are verifica-
tions of the pebbled values. In this game, the P’s guesses can be simulated by
an ∨ gate and C’s verifications can be simulated by an ∧ gate. is gives
us the circuit over ∧,∨. If the P guesses the dividers correctly, the circuit
corresponding to correct guesses will be of depth O(logn). However, the in-degree
of ∨ gates will be high due to guesses involving the labels of the divider nodes. us,
the circuit we will obtain will be a SAC1 circuit as opposed to NC1.

is simple game now needs a modification in order to make the in-degree of
the ∨ gates small. is is in fact the main contribution of Buss’s work. It is clear
that to achieve depth of O(logn) it is important that the size of the subproblem
reduces by a constant fraction at every round. In order to achieve this, Buss uses the
structure of the sentence as a string, as opposed to thinking of it as a tree.

e whole string  of length 2k for some k is cut into three parts of size 2k−1

each. ese cuts are predecided and depend only on the length of the sentence (and
not on the specific sentence itself ). ere are four nodes marked which are pebbled
in each round. Once the length of the sentence and round number are fixed, these
four places also get fixed. P now only specifies pebble values for these nodes.
e C’s moves are exactly same as in the previous game. us, P’s
guesses are now constant bit long, giving us the desired NC1 bound.

For details regarding the exact nodes to be pebbled, we refer the reader to [].
it is possible to assume that the length of the sentence is a power of 2. If not, one can pad the

string with ¬ and make it a power of 2. e final value will be negated if the number of ¬ gates
added in this process is odd.
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.. Modification to Buss’s algorithm for MEM(VPL) in NC1

We recall some properties of the sentence that Dymond obtains from given input w

for the problem MEM(VPL) from Section ... e sentence is over unary operators
Extfa,bg, Extfcg, and binary operator compose, ◦. Note that, the compose operator
is not commutative. erefore, to convert it into PLOF Dymond [] introduces
another operator. We will call it ord-compose and denote it by ◦ ′. In [] a ◦ ′ b is
defined as b◦a. To make the length of the sentence a power of 2, we define another
operator called id which is an identity map. id(a, b) = (a, b).

Now the sentence in the PLOF form has five operators, each a finite relation.
e Buss’s P-C game on this now does not use only 2 colored

pebbles. e range of each operator is Q×Q. e P puts a pebble on a node
to indicate the value taken by the node upon evaluation. Hence, the P needs
2jQj2-many pebbles.

In Round 0, the P pebbles the root with S0 = {(q0, q) | q ∈ F}. e
C challenges the root. For round i, depending upon the C’s
move in the previous round, P decides to shift to the appropriate portion of
the sentence and for that subsection of the sentence pebbles 4 nodes with pebbles
colored with subsets of Q × Q. e rest of the rules of the game remain the same.

Lemma .. P wins if and only if w ∈ L(M) if and only if (q0,⊥) →w (q,⊥)

for some q ∈ F.

If (q0,⊥) →w (q,⊥), then starting with root pebbled as S0, P has a way to
pebble each node u correctly with the pebble colored S, where S is the value of the
node u. Else, C can keep shifting the focus of the game to that sub-
sentence which eventually leads to contradiction (the root of the subsentence, not
necessarily maximal, due to which the root of the whole sentence cannot evaluate
to S0).

.. Arithmetizing Buss’s technique

We now discuss how the above sentence over Extfa,bg, Extfcg, and ◦ is already good
enough to compute VPA functions (here, a ∈ Σc, b ∈ Σr, c ∈ Σl as in Section ..).
Let Ti,j be Q × Q matrices over N as defined in Section .. (referred to as Tr).
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Redefine the ◦ operator as × (matrix multiplication) and change the semantics of
Extfa,bg (Extfcg) to the following: It takes as an input a Q × Q integer matrix for
an interval (i, j) and gives out a matrix corresponding to the interval (i − 1, j + 1)

((i, j+1) respectively). It is defined in such a way that the output matrix has k in its
(q, q ′)th entry if and only if there are k different ways in which VPA goes from state
q to state q ′ on the interval (i − 1, j + 1) ((i, j + 1), respectively) assuming the input
table T is correctly filled (i.e., entries in T count paths as defined in Section ..).

e following method of filling up the entries will ensure such a definition: fill
the entry Extfa,bg[q, q ′] with ∑

q1,q2∈Q

fqq ′(q1, q2),

where fqq ′(q1, q2) equals l × m for l = the number of A ∈ Γ such that δ(q, a) =

(q1, A) (i.e., the number of different stack-tops which allow for a successful ex-
tension of the existing interval) and δ(q2, A, b) = q ′ and m = T [q1, q2] (i.e., the
number of different ways in which the VPA goes from state q1 to state q2 as per the
table T). (Similarly, Extfcg[q, q ′] can be filled.)

It is easy to see that, with this new definition of the operators, the same sentence
as constructed by [] will evaluate VPA. But for these operators, there is no known
nice algorithm that will evaluate the sentence in NC1. We do not even know a
logspace algorithm for this. In other words, the depth reduction for such sentences
is not known.

e following two things seem to be at the heart of the problems encountered
while trying to arithmetize Buss’s approach:

• the ◦ operator is not commutative. However, this is not a big hurdle. ere
are known methods for evaluating sentences over non-commutative multipli-
cations [].

• there seems to be no obvious way to express the Ext operators as small circuit
over + and ×.
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. Concluding Remarks

• We have the same, LogDCFL, upper bound for both rhPDA and VPA. Now
we discuss two different issues arising from this result.

. We know that the membership problem and hence the counting problem
for rhPDA is hard for LogDCFL. erefore, this result gives a class of arith-
metic functions, i.e., functions whose range is Z, which are equivalent
to a Boolean deterministic complexity class LogDCFL. is is interesting
because no such set of arithmetic functions was known before this work.
It gives more avenues to understand the class LogDCFL. e result also
proves that these counting functions are only as powerful as the func-
tions computable by LogDCFL. e arithmetic functions corresponding
to nondeterministic Boolean complexity classes are usually much more
powerful than their Boolean counterparts. But arithmetic functions cor-
responding to a deterministic complexity class are believed to be as pow-
erful as the deterministic complexity class itself. is is indeed the case,
for our result.

. is also indicates that there is a scope for improvement in the upper
bound for the counting problem for VPLs. Our attempts for the same
have failed on various fronts. We give an overview of various attempts we
made to improve the upper bound for the counting problem for VPLs and
the intuition behind why they could not go through. It is an interesting
open problem to improve this upper bound or prove impossibility of any
such improvement.

• Another interesting open question is to bound the complexity of the counting
problem for k phase visible multi-stack machines, MVPAk. In order to prove
LogCFL upper bound for their membership problem, the following steps were
involved:

. Reduction from MEM(MVPLk) to MEM(PDk), eorem ...

. Conversion of the PDk into a Dk grammar, [].

. Conversion of the Dk grammar into a normal form grammar, [].
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. Finally giving a LogCFL upper bound for parsing the normal form gram-
mars, Section .. and Section ...

It is easy to see that the reduction from MEM(MVPLk) to MEM(PDk) is parsi-
monious. If all the above steps are parsimonious, then we get a LogCFL upper
bound for MVPLk.
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[] Dirk Nowotka and Jiŕı Srba. Height-deterministic pushdown automata. In
MFCS, pages –, .





Bibliography

[] P. San Pietro. Two-stack automata. Rapporto Interno n. -, Dipartimento
Di Elettronica e Informazione, Politecnico di Milano, Milano., October .
http://home.dei.polimi.it/sanpietr/pubs/twostack.ZIP.

[] Omer Reingold. Undirected ST-connectivity in log-space. In STOC ’: Pro-
ceedings of the thirty-seventh annual ACM symposium on eory of computing,
pages –, .

[] W.L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System
Sciences, :–, .

[] J. Savage. e Complexity of Computing. John Wiley and Sons, .

[] Walter J Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences, ():–,
April .

[] I. Sudborough. On the tape complexity of deterministic context-free language.
Journal of Association of Computing Machinery, ():–, .

[] I. H. Sudborough. A note on tape-bounded complexity classes and linear
context-free languages. J. ACM, ():–, .

[] L. G. Valiant. e complexity of computing the permanent. eoretical Com-
puter Science, ():–, .

[] H. Venkateswaran. Properties that characterize LogCFL. Journal of Computer
and System Sciences, :–, .

[] V Vinay. Counting auxiliary pushdown automata and semi-unbounded arith-
metic circuits. In Proceedings of th Structure in Complexity eory Conference,
pages –, .

[] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-
Verlag New York Inc., .





A list of publications included in the thesis
• Membership testing: Removing extra stacks from multi-stack pushdown

automata.
Nutan Limaye and Meena Mahajan.
in Proceedings of rd International Conference on Language and Automataeory
and Applications LATA, April , Tarragona, Spain. Springer-Verlag Lecture
Notes in Computer Science series Volume  pp.–.

• On the complexity of membership and counting in height-deterministic
pushdown automata.
Nutan Limaye, Meena Mahajan, and Antoine Meyer.
in Proceedings of rd International Computer Science Symposium in Russia CSR,
June –, , Moscow. Springer-Verlag Lecture Notes in Computer Science
series Volume  pp.–.

• Arithmetizing Classes around NC1 and L.
Nutan Limaye, Meena Mahajan, and B. V. Raghavendra Rao.
to appear in eory of Computing systems , special issue for STACS .

A list of other publications
• A Log-space Algorithm for Canonization of Planar Graphs

Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, omas ierauf, and
Fabian Wagner
in Proceedings of the  th Annual IEEEConference on Computational Com-
plexity CCC, July –, , Paris, France. pp. –.

• Longest paths in planar DAGs in unambiguous logspace.
Nutan Limaye, Meena Mahajan, and Prajakta Nimbhorkar.
to appear in the special issue of Chicago Journal of eoretical Computer Science,
CJTCS

• 3-connected planar graph isomorphism in Logspace.
Samir Datta, Nutan Limaye, and Prajakta Nimbhorkar.
appeared in Proceedings of Foundations of Software Technology and eoretical
Computer Science, FSTTCS, December -, , Bangalore, India.



• Planarity, Determinants, Permanents, and (Unique) Perfect Matchings.
Samir Datta, Raghav Kulkarni, Nutan Limaye, and Meena Mahajan.
to appear in the journal Transactions on Computation eory.

• Upper Bounds for Monotone Planar Circuit Value and Variants.
Nutan Limaye, Meena Mahajan, and Jayalal Sarma M. N.
appeared in the journal Computational Complexity, Volume , , pp. –.


