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1. INTRODUCTION

Until very recently the vector field has not been popular
anong physicisgts. The main reason is the following:
Experimental physicists said that except for photon there
seemed to be no elementary particle which had spin.one. Also,
for higher spins there exists the unpleasant feature that the
theory involves singularities strenger than these of spin
or spin 1/2 fields, so that one cennct derive reliable answers
f;om the theory.
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However, the situation has changed recently; experimental
‘physicists have found some resonance 5? es which have spin one
e.g. particles such as the u)zuui-? mesons. On the other hand;
-some theoreticians have proposed the so-called gauge theory of
strong and weak interactions, that'is, they formulate the theory
of these interactions on the basis of the gauge principle by

introducing vector fields,.

Usually, to describe perticles with spin one and With
non-zero mass one uses a vector fileld LL}‘ . This field
nust satisfy the subsidiary condition %4,u)¢’?= O in order
to reduce the number of degreccs of freedom from 4 to 3, which
correspond to the different orientstiong of spin. However there
exists another formalism originzlly due to Stueckelberg, in
which one uses five variables Afu ond B satisfying some subsi-
‘diary conditions.

It is well-knowvn that the Stueckclberg formalism of vector
meson fields is scmetines more convenient than the ordinary

formalism. The most characteristic features of the former gre
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the followings
(i) The vector field A behaves in a way very similar to

/\A.
we

the nhoton field with which are more familiar, and so it is
suitable for discussing the conrection between the mesorn and
photon fields;

(1i) The gauge covariance »nronerty mapifests itself more

explicitly here than in the srdinary formalism and is very simi-

lar to that of guantum electrodynamics;
L

(ii1) The derivative terms in the commutation relation of
the vector field, which is the cause of non-renormalizable diver-
gences in most vector field interactions, arises, in this forma-
lism, solely from an auxiliary scal-r field B. Thus, the ques-
tion of the renormalizability of interactions can be reduced to
another question of whether or not the field B can be eliminated
from Haamiltonian by certain transformations. For these reasons
the Stueckelberg formalism has been avnnlied to various problems
by many authors. It seems to us, however, that a detailed acrount
of the formalism itself has not been givern in the literature.
Thus, the aim of the oresent lectures is to give such an account
by discussing the most gereral pronerties of this formalism.

Qur main results are summarized as follows: To formulate
the theory in a rigorous manner, we need to introduce an indefi-
nite metric. We can show, however, that there does not arise any
difficulty in connection with negative »nrobabilities. A proof
of the equivalence betwean the Stueckelberg formalism and the

ordinary formalism is given.
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In this series of lectures I would like to discuss a

G LCloun
detaile&ko? The formalism thereby showirg the eguivalence bet-
weecn this formalism and the ordinary one. I will also discuss
some acplications to the problemc of gauge transformation and

of the renormalizability of vector field interactions.




2. General Formalism

In the ordinarvy formalism, we have a field overator W

/u,

which satisfies the (free) equations of motion

o U ok
5] /U-\L) —+‘ X u/A_ - O )

-~ (2.1}
U./AU = 3/4 (AD ) C))J LL/J-

Thaese also lead to the condition

”C _ (2.2)
/u SUBSIDIARY CONDITION

Condition (ii) states that of the 4 comvnonents o}
u}& \ }L,: 1,2,3,4, only three are independent, corres-

nonding to the three inrdependent spin orientations.

Tiice field equations (i) may be obtained from the free-

‘c{/ o s R S U ! —
= - = = e UL (2.3)
SNk st R i
The field overators 1€/¢ obay the commutation relation
S 3, 9,
CRCIHES Y Y o
: O |

In contrast to the ordinary formalism, we introduce in

the Stueckelberg formalism 6 variables, a vector field %ﬁb
and a scalar field B, and impose a subsidiary condition on the
state vectors to rsduce the number of degrees of frecdom to

three.
. E.¢c & Sfuaokewzvt
% H el - Ph_\d/s_ /:\C_:Zo, _‘_,l__. (f438> QQ?
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We introduce the field onerator LJ

/J,

U = A R e ety
i RS

The free field Lagranglan is

X 3
L= B0 @m) (3u8) +x A,\A]

[() \jS(J %) 4 L //u }{] 2.6)

and the commutatlon relations in the absence of interaction are

Bﬁ(xﬁ) x)] o/u)a(,a_xb)

[TEB ()(j ) = (7{;;} T LA (7( —}X’)

(2.7)
The commutation relation for the onsrator U (){) is the
same as that for ?ij (X> in the ordinary formalism,

£ L WVWAL
eqn. (2.4) is the derivative term oamggg%rom the B-field.

The Interaction of a Vcetor Field with a Spinor Field:

The total Lagrangian for a s»inor field \+J interacting
with a.vector field ({;L , with a conserved current, may be

written as follows:

‘w—”f (B -ty sx] @ o

fﬁxﬂ }ﬂaici -~ Lagrangian for the vector field (2.8




From the Lagrangian (2.9) follow the equations of motion:

(Y}L 8}&+x\ Y = {,e( ‘”/*L@

2.9)

(2.10)
_ 5 :
L - —L2 T ==
CD " >Aj“‘ ks a/“ ) (2.11)
R 13 QD y el
(D > ) BlE il (2.12)
As seen above LJ nlays a role very similar to u
) /u, < /LL

u One can easily check the conservation of the current

| o 13)

\ (2.
TR

"

In the Stueckelberg formalism we have to impose the following

subsidiary condition on the state vector

<)J Y + X > Y =n P = .

14)
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It is easy to see that the above condition (2.14) is consistent
R v I SR s TS

tistlee: for, all "t r Notiece

e

with eqns.(2.19) (2.12), Thus,
at €=k, , then (2.11) is
that by virtue of (2.12), the condition (2.14) leads to

(),L /A CE (2.15)

T.e Lagrangian (2.9) and the subsidiary condition (2.14) are

n
[

invariant under the tgauge' transformation

AM () =5 /\Mx)\ A}L(xpa /\(@

<X) = V,(XD B(x) - x N(x)us
)
LR > “/(f\ G (X)) (5018
nrovided x) satisfies

7 2 2 17)
Wi 7)) A = (
Wo aléo note that (2.9) is invariant under
either (I) _ | Le Alx)
W) SWPix)= @ G ()
I

; A (Y= A 4 T

A}AC*> s [%&L%) = /M(Y) ,<§AA(X>)

) (2.182)

R{(x)— & () = R(%x)

or (I1I) . . ce A(X)
WBW(4)— wi*) = e %JQX>)
!

A\/M{/) 5 Ak(\‘) = A/L(X)




However, the subsidiary condition is not invariant under either

2.18a) or (2.18b)

Tae above gauge transformation can be generated by the
unitary transformation exb (L G; [Q"J) defined on a space-

like surface

e J’o{ [/\ 3 /L\)\*IBD

(219)
fj\(BAAA+?Bﬁ
vy may devnend exnlicitly on the time. G}[}r] is hermitian;
thus exn (ri C% (}y]‘> is a unitary operator. Under the
unitary transformation effected by this operator, }&u C)é> (6
and \P C¥~) transform as follows (far X on the space-like
surface o ):
Y / i:GIE’Q:l ) "('G-'[G:]
K X)) = - K) €
A = AL = e Au(r) &
—
a5 Af(?() b i O}.l/\(x>
P kG‘![J] ) [G_]
RO S tis e R(x) e (2.20)
Py B A0
o ¢ Glo] -t G [«]
W)= w( = Y e
e Q.acb (Ce A0 Y (x)
Note: (2.9) is not invariant under (2.20)

In the case of free field, i.e. e = O, q/ is unchanged by G.

Then (2.9) is.invariant. Jhe Awnud.uona, condubiervo
3 (Q«"Lf') Qb)Q WA vl JJ\Mo\mb [Va'a® "E\U\ C aAse .

By. using the equatione of motion one can easily show the surface

independence of Gy that is, that

g_..f__.,. G L] = 3 (A%, - 9 A JLA:-_ S
(X (2, 51

., = 5,\ Aol g 3




nrovided A(x)satisfises eg.(2.17)
This property »f G, howsver, doss not mean that G is a constant

of motion, because G vuces not commute with ; the

(

Cim:r gy momepntum 4-v-ctor.

L[Gq/;:j g\f =~ EP>(”]
o fd_rm[/\?}k LI _}W/\ a}.L‘FL)\}

G (2.22)
# O in general.

Thiis is due wo tiae exalicit descudence of /\ on X
i.¢. the fact that /\ is not a dynamical variable and can

de.end exolicitlyon JIC .
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B+ The free fleld:

In order to nrenare for our later discussion in the inter-
action representation, let us study in this section some general
properties of the free fields A and B y combined by the

}.L

subsidiary condition (2.14).

The field onerators now satisfy the following commutation

relations:

[4 00, Ap ()] = & g/*» A (XK) | pov=tonh

- ; e o
' 1
B OS] 2 A%
The equations of motion are
(E] *gxiﬁ A (%) =0
" p o ? (3.1a)
[D-x*] R (%) =0
First, we may regard, as usual, all the ovperators
AL, ) AO oacy \L AL’_ and B as Hermitian operators and

expand them in terms of creation and annihilation operators
Q. UQ>) A, CR) ] /e)(lq) and oj'(h)) Qo+(h))4»{7+(1q\
Then, we have, for the free Hamiltonian, the following expression
He = & Egd Z (Ma(@\\ @y () Ay (k) + 4 (r.z)mq)f
R (3.2)*
Hore, let us introduce the following terminology: In a sveclal

re ference frame in which R =0 particles described by

* We use the following notations: 'ﬁ' Hermitian conjugate;

* Complex con?ugate, (+£) positive
(negative)frequency part.
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CLL(O) CL‘_‘{’(O) ‘ T e

are called

! Clu-particles' or the ‘ordinary particles', since these are
the narticles which annear in the ordinary formalism ard the
three states o = | y D 3 corresnond to three snin orténtations.

~ )

Particles described by 610(1;) a j_(o) and  b{9) X{+kg)
Qo )
!

are called Y-particles' and 'b-particles' respectively.
These narticles have no spin, since s:in is defined by referring
to space rotation. Ia (3.2) we see that the Qt;particles have
negative energies, and, moreover, for this component the roles
of creation and annihilation are interchanged, ¢ e (3.1); 4,

is creation o»nerator and CL;f the annihilation onerator (This

can be seon from (C.1). We have [AD(‘%) )Aj'(x‘)]: -0 A+ )()

so that [QD (R qt(k)]: -1 L@j—/k\) Qo(h)‘} = + |

In connection with this there arise the same kind of 4ifficul-

ties as those we encounter in quantum elecctrodynamics.
We Look ak
First,,the normalization of state vectors which satisfy

the subsidiepy condition (2.14): In terms of a's and b's.(2.14)
takes the form

LR alk) <k @)+ x 8(0)]w =07

[_L—{{)a (*2)-*_4_(, h‘oc‘»a(h)“--‘__ 3 %(R)ﬁ-}\k: o ( for all R

(3:3)
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In a special coordinate system in which k = p (2.5) becomes

[0 ao st W -
[ agtotibot] ¢ =0

L~t us denote, by K_B (n}m) an eigenstate of HO with

(2.21)

eigen-values T, and Yyy for the number oncrators of CLD

and b narticles. By substituting the expansion
Z Y S ’
\:E = C ("\,YY\> \‘E (%V ,m> , (2.4)
n J;qu

into (5.3') we obtain the coefficients:
VRS
d(M,YYV) = C (-——() g\n
2! ¢ Cj ('V" JYY\’) \I.Y\-\-—‘» warpe £ ('m +|)y«+t)jvﬁ+) (3.5

: Uos g = 0
7y c CV\';TYM>‘VF;\J_ R (“n-..l) mq)m L »)

where C is a constant. Thnus, in the physical states satisfying
(6.3'), the negativc energies due to QD -narticles are exactly
cancell=d out by the contributions from bh-narticles. Howaver,
such states are no longer narmahza‘)lo. A= in the case wf '
qu@ntum electrodynamic ;, thiq di fJ.']_C”l].ty is also mahifps+ed in
the comautation relations. Since for the cRlie (o o)

there hold the relations A (+) Qf(o 03 p:'*' Y (o, O> -0
and \:E (o )0>




8~ & % ‘Qf )AU%>O L0 [gﬂA;EJAIUJBO
& Abu Ak -x) Fo

AL e N)

~ ) S A;)U)- : N L ‘5(
Ap e R T

In order to remove these difficulties we have $0 invoke tho

b

technique of an indefinite metric in the Hilovcrt snace.

To do this we follow exactly the same procedure as was
applied by Gupta and Blsuler in quantum electrodynamics. First,
we regard all operators A_ , A4 and B a3 Hermitian

operators, and exsand them as follows

Ap ey = L o

kX + ~{ Rt

(RYe - G (k) e
Wk \215,? [‘ﬂ e .
ke ) _tR X
B(x) = —'\;—%\/‘;L_ [b(r}@ Y-x- 'é-}'(éx)@. ( ]
(5:6)
From (3.1), we get, for %};) §)¥+ ! )S and ,@~+
r%u("ﬂ a (4&)1 - g)w g&ﬁ
e TSR R o sl

all other commutators = O

Tue free Hamiltonian becomes
Z I:f\i(.i o5 ks Oﬂ\) 4_,5"(&3%(&)

(2.8)
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In cortrast with (%.2) 211 4 components of Q, are treated
/ P
here on an equal footing, and 'so all O, A"are now annihilation

+
a
/AA’S

particles hawe positive energiles.

onerators and all crecation oserators. . Tno QA-——

S~cwidly, we replace the subeidiary condition (2.14) by a

weaker one

H% 2 SO | (3.9)
’+> (a ,¢ ekt B>

This 1s done in ard?r to remove the difficulty in comnatibility
of the commutation relations and the subsidiary conditi»n. 1In

momentum snace, (3.9) reads

for all R .

and in a s»ecial e=ystem in which R
[Qq_,’_(g\)\'g)(o)]\i/ -0

Thirdly, we introduce an indefinite metric, characterized hy
N =
TSR S U+ (3.19)
i
4

vector Y/ and the exnectation value of an onerator A by

(3.9}

Q-R~ and define the scalar sroduct of a

where N L\,. =

v

Ly, kf> S e (3.11)

</B\\> 2 (E}:'%Y)A Y>

and

(3.12)
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respectively. T recality condition of an owerator A is thus

given by
4
A: g YlA‘:g (3.13)
From (2.10) we have

L

A%w)z - Ay @ I+

We first assume these relations and (3.192) only for the nart

A; YL o YlA (Consider only orw "mocb.,—Z)

of ADM' with wave vector .7;7:: O Then one can show, by

means of a Lorents: transformation they also hold for all E

Hence, from (L.13) and (S.14),
- (AL
LhLS = — (AQX, (3.15)

as required. +LD is real in this sense.

We are now in a nosition to study the pronerty of state
vectors which satisfy the conditio»n (3.9''). ILct us denote by
ég;(ﬂq)n&> an eigenstate of I<3 civen by (S.8) in which occu-
pation numbers M of CH+)I@ and Q. particl~s are 71)Tn)°%1

respectively. Substituting agair the expansion

g o= > clom) P Gm)

(3.16)
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into (3.9'Y, we find, by use of the relation CL4 %(\« ,WL)

| LY e, =
-ﬁ%(wlﬂﬂ)ec>
¢ (v +y ;W\')

= (m+1>
i QR \c (v+1) (3ol

whence one gets the following set of orthonormal vectors, each
6f which satisfies the condition (3.9W)

Y = 2 (0,0
1£) e é’f(:,o)+§(o)!>

!

VY = %_(Q)O>+E %(,);)_;.%'(o)&))
A

¥ = 330rE (FaD+E00)
A i(o)@,

¥ v ' . r v (3.18)

vy s

e e AR T T

+ oo 4 UGy % (‘r\:-me).’,
o e L e el T

From (3.10) and (3.11l) we sce that the

LI S

Norm™ S

of all
thesec veetors but kfo

are 2zZero.

<£~Eko > EEDi>~: ]-

ZEEW)EPW\>:D (W:I)Z-.\-m>

(3.19)
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Or genecrally,

< (tE’YV ELJY\,> = gYLo gnlo (3.19")

t should be noted also that 'fm is the eigenstate of HO

with the eigervalue YV E/;(

_ ; (3+20)
HO qu - thEh L'f?\)
but the exvectation value of HO is nil:
%\ ¢
LHody, = L MK, %"«» = (3.21)

Ai;y physical state which satisfies the subsidiary condition (3.9

)
can thus be expressed as a linear combination of EL’\N/;
&
i C. v, 0.
"

L] . . . L
which has certainly a finite Nohw lCo! and the vanishing
expectation value of H, LRy =09, dov Ni=o, v I
Therefor~, (3.22) can be regarded in general as a vacuum state.
Sometimes we shall call EL/G the true vacuum. Tae difficulty

related to the commutation relation also disapnears. Any state

in which M, @, carticles exist can be given as a direct
product of @ ('Y\\ ‘N ,'“3> an eigenstate of
Eh a, (k)Y ay frg and the vector (3.22). When

considering all the modes R~ , we have to take an infinite

product of the above kind of vectors.




18

Finally, let us consider effects of the gauge transforma-
tion definzd by (2.16), (2.19). Since [;?1. (%), .Q~L;‘) = O
for any point x and %', the gauge transformation onerator (for
the free field) (2.19), commutcs with _(1ﬁ+> . Therefore,
any state vector which satisfies the subsidiary condition (3.9) ic
is transformed, tunder an arbitrary gauge trarsformation, into
another vector which also satisfies the subsidiary condition,

that is, if _® Y = o  then

L0y 6’!

In other words, the snace spanned by the physical states
Eko ;Sﬁl Y. .,+ss: 1s invariant under gauge transformations.

We can see this more ~x»nlicitly in momentum space as follows:

When we write

it ~tR- X ] (3.24)
s L {}\(h)e + N (R)e ]‘)(.

|
v k V2 Eg
then the gauze transformation (2.18) taken, in momentum space,

the following form.

N ._l ’ ._; _"%
I)(":’\ R Oj(h} — Cz(h) Pt }?/\(}?>

6, (RY A, (R) = %4 (B) _R,A (K
bRy = bRy = Aled - x A (k)

(3.25)




192
2 61__ 2o E_AM @m’ (R) + R ag(R)
x % k)—}->
X -,
— ACR) (qkh & iR) ﬂ-hoaqfk>
+)( '23 \R))AJ (2.25)

irsfarmation sueh

It wr Lake an < 3
| —
" :&—(y( k:O)

true vacuum

then the effect of such a gauge transformation on t
for example, 1is

state lifo
Q\,G‘D)} [“+ A ( Gy ! o) +’Q (u)> @(J)D)
(3. 21)

=+ AT
Lf. with the cigenvalue E: @)

‘Thus the true vacuum stat
the gauge trarnsformation (3.26), into

of L}O_is transformed, Dy
ics that the t rue vacuum state &E'
o

a non-eigenstate. his imnplies
from the fact that

is not gauge-invariant Tiils we can also sece
the Hamiltonian (3.3) is not invariant under the g-uge transfor-
However, it is oasy to show that

mation (2.25). ( L;&- EV(Q.?’,)
, {Hors % nuof»

the =xnectation value of H s

and so it is gauge invariant*.

remains zcro
- *
In cuontun elec .rodynariics "¢ have zlzo the sane si uotion.
Thg true vncvuﬂ atate in v iech 1.0 lon: lif(inal @4 .ecalar otocton
exist s changed, JMLTr o gaurc Lran afe atlorn, nto a giate wh
shete of the free lin .11, L8, T_'-ﬂ;;-s, the t.ue

is #ot =5 eirens
i cavge invariant.

vacuun staie 1is not
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4. Relativistic Inveriaance 2f the Theory.

In the zbove we have considered stote vzectors only for
3 ‘—§ ¥ |
the mod: h =0 . lowever, a genwril state vector
is a lincar combination of vectors of the form

T w(®
Y - Al )

(4.1)

where the 42(25 ;>) is the state vectors for the modes #E?)
are all independent since the corresponding creation and anni-
hilation onerators commute with each other. We shall Show

in the following that in our discussion it is convenient to
obtain Q(F)with _k—):}:_o from P (—}2 :-_o> by means of a

ILorentz transformation.

Let us consider a lorentz transformation

5 e x/w = Cf'/w R (4.2)

For simpnliclty we can take, without loss of generality of our

argument,

L = H G}wl

W5 o) o / *J e




2k

Wc assume that the transformation of A- and B

, e jk
A}Luﬂ__\, Ary = Yuv Ay (%)
B(x)— B’(;(.) & B(X> (4.4)
cin be generated by an onerator U (lf) such that

HL _i I
U (L) Apw 0 L(L) = B Aslie X) -_-_A/._,vgx)

4.5)

= » L _:g i
U aUCY = B (%) =B[X>
We can then prove the relation

(g pioyw) =( A 0 %)
(@*v B'(*) &’) - (@ ¥V)B(ﬂ)€§> (4.6)
H (E & LT (4.6")

provided the onerator 1J satisfies
U+’V] u ::“-'}

which 1s a gencralized unitarity condition. Incidentally

(4.6), (4.6'), and (4.7) enable us, as in the usual theories,

to internret the transformation in two ways i.e. as 'passive!

and active! transformations (Lg.Wigner) For example, (6')

implies that under the Lorentz transformation the state Y 1is

transformed into erother state state ;5-an active transforma-
~ )

tion.
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Next, let us consiif_r the transformation oroperties of
Ol/lA CRY, @ N (K) defined vy (5.6) and (5.7).
If we interpret aj’v ( R) a ‘l"( h)
as the Belinfante onerators whlch gre defined as the averaged

values over a small Lorentz invariant domain Cb in the 4-dimen-

==

sional momentum space R being a orojéction of this region
or to the space plané) >f the operators (k) ‘/A (k)
introduced by
cRex o+ _LkRX
N ' Otjk /}QBQ {_(R>Q
R (4.72)

_ ! /
Ay, (X)) = — —
/ A 73
The onerators ?y“ (R) ; %/:fz»k> are transformed in a
covaru:nt way under Iorentz transformations and so are i;ﬂ,(h>
and +(R> G

qustituting (¢.6) into (4.5) we obtain

|
U“‘ CLfA(F‘«)LJ e O\f,-\u ab(l—

Lf‘ a/f(h)u = /uyou (L R)

Ul AR U - As (L" -ﬁ)
U aTu = I k)

(4.8)
*
( )It should be remarked that the operators @ .(h),ckﬁ“(ﬁ)
) 2ER < jA

do not transform in a Poxariant way, although the last expres-
sion looks as if it tends to the ~xpression (4.7a) as VY — 0@
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whenece
) _
Qv (h) ‘_% a/,\‘u
,{}(R\ e
where JQ‘ = L-,J‘Z

For the L given by (4.3) we have

U'\l)(h) Ij',Q&Q

U™ a, (RYU ,

jj

(4.8")

)

Oty (R u’l (0,(«a)+w Q;_F(O))U
e
Ll
Cob e L a, (XU,
<! p
g U 0 (0 U,
i |
Q4_(k> = J QL}(U)-*L'UQ,(O))-U)
Ji-u™
e L LT
(4.9)
and | Ll +
ot IR WA S PP O
Vi—u?
QL+(k;): Wk Oj(':)U ,
oi(R) oy +(J) L
qi“(h): T j_(>)~\1r0(o)>b,

(4.10)
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S | A
where we have put k O and dropned the prime from R
and so ( 3 = - VX 55 e LR

’ =13 ] 4 2 , jy e

By taking thc Hermitian conjugate of (4.10) and comparing it with
(4.9), we obtain an alternative expression for @& (R)and a+(t;)

U T (0»‘ (9) - aq(o)\)(uﬂ‘l

Ji-vx |
NOFREAOICLY

a, (k) = qu 0360)&)*)",

: -1
as(R) = U+<0Lf(0) —HU“\(D))(UH
p=0y & + £
+CR> | U+[a,+[0) - LV aq(o)1(u+) )
M 2
4 - |
i 20 (U +>

U+a3(o) (U )
L yt(ef o sty

(4.11)

We may regard (4.9) and (4.10) as the defining eguations for

C?/A(h)) a(/A+(k> in terms of Gi/%(o)) aj:())

From (3.14) follows the relations given below for df_”O )h% 8
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o TR i R R (R
Qﬁ_(k)yl - 7L ., (k>)
Q (i{\'ﬂ = -VL CXLF(}?)
—F(&{)WL _.yl ClL* (}K)

(3.14')
We assume (3.14) only for —}z§ = 0 and obtain (3.14') by 2
Lorentz transformation from the corresponding relations for

G (()) ﬁ‘(\g This can be proved by using (4.9). (4.10)
(4.11) ard (4. 7? Tiiis indiecates that our formalism of the
indefinite metric is sclf-consistent and also that although the
properties of ¥  look non-covariant, the who'e formalism is
essentially covariant.

Now,: let us consider the subsidiary condition (3.9') for Ek’(h_)

C h,a,(h) Eh Gy (R) 4+ A #2] Y (k)=0

(2.9*)

By using (4.8') the exnression ip the bracket can be written as
2] i
T g (auCO)-%(o))U

So (3.9') becomes

(aycor - 42 ) U F (k) =

{(3.9'%)
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The solution of eqn. (3.7¢'') is

g PRy 2 T <“'>“H'\"33 Wy (4.12)

wWow <
where L}fL (N, ;7\35 is the --' function for the a4 ,,%,;

modes and xki, is the wav< function for the QL+)Q>4‘ mode

=1 f ;
YikY= U, (2 Yo (nymang) Yo (4.12a)
&

where we have attached a suffix kR to U as t§ is different

for different h\ . We can easily show that the state vector

(4.12) is an eigenvector of 4~ _+
. 0 K () (K)
e = Ey (2 (k) a },( ) + 4 (R <2 L

—

F%k is the nart of the Hxmiltonian for the mode #{ 5

Thus, to specify state vedtors QE’(&) we can use eigenvalues

2

of the numher of onerators in the corresponding rest system viz.

CL\"}'(Q) o (o), aj”(a) a, (o) Since

the overator [ J satisfies (4.7) the nghvv of gg(g)

is

(Q(h\\ Vbqf(bg = @fo(’“w“)“%) _)E}fo(”‘\mzmz'b

A s
= Oy
(4.12)

and the expectation value of FJ& is

LRy = (memems) Be oI

(4.14)

Q

5



a7

To specify the states Q? (¥£> we can &lso use the
eigenvalues of @+fr) Q (R) Qj(h) QL,. )
ond /&ff(k{)gs(in‘

(4.1432)
LF‘"W

JW\|. “b\ [;T?G;\ Q,(ﬁ)+u;a“(§>
E(cuj_(o) _wa, (oﬂhqg(aj(oﬂ 2 (03(0)) o

N D5+(O>]nX’ (O> (4.14b)

where we have chosen the K axis in the direction of the

momentum R

We can then show that from the relation

! ! ! | 4‘~>
<\f h& )%LL ;“)(_) (U> 9 ’L‘KYLL Ny }\m_‘:(D}> = (—-—\) 5;\'“ S;L,nq-(fl. 1l4ce)

follows the relation

LE g, P (k)

WL)WL}‘- )7\"{}

qu_(b)
= (=1 st

ni oy,
(4.144)
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(90}

the argument given a fter eqn.(3.14"')
However,

This, together with
covariance af the metric.

completes the proof of the
given by eqn.(4.14a3) is inconvenient

the use of such vsctors as
subsidiar; condition (3.92°)

because of the complicazted
50 for we hove assumed the existence of the operator U
we

(9) and (10) (or (&)).

whicih satisfies the conditions (7),
shall now prove this by explicitly constructing the operator.
It is sufficient to discuss thc case of an infipitesimal
Lorentz transformation L(U)of the form (4.3) W bei..g small
The corresponding trans-

may be negl-=cted.

enough so that U
U may be coanstructed as follows:
aroduct of two transformations L)Q

formation
T as 2

! and UJ commute and satisf

Ua, Ay 7

Write

and Ub
the following relations:

, such that

J o=
-1 |
e a,(0) UQ. % 0.(@)~»LU QH_(‘QD)
Ug! aa (o) Wy = ag@e)s ug! ag(odl, = ag T)
U, an(0) Uy = G4(R) +Lv &, (k)
Uyl b Uy = b (R) e
0T (R (v Qj(h)

and
Uc;l O.(—ik(’\))puka =

ug e (U, = oty g el U, < ad i)

odUe = ad (k) + v aTR),

Sy
(——)OT\ XJ+(O>UQ = /(}+(h>

T E~D

(4.

Y
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It is casily verified that (J = UQ Ub satisfiex

the corditio.us (7) (9), ard (10).
UGL may be constructed as a vroduct of a non-’'nfinitesimal

transformation Ual and an infinitesimal transformation UQ
Ua = Ua | UQL 5

Tha f-ul’i 0*3@)10.\:0‘{};)

=
Ug, QilodUg = ay(k) 3 U

{4.16)
%»J: U’iom/;.j_mwd_d oA

"“1 . ~

a, a:)_(o) UO_' = ‘*’Q (b>

U;.. (1‘+<0) an: Olq.(h)) U;l 03(0)(.)&' = Q3CQ>

=
oz, et u,, - 0 T(0), Ug, af (0 Ua,= a5 (k)

a, 43
] il
UCT‘) ai(o) UQ\: GL;}(){) ) UQ' Qj-(o) UO‘\\, o O?(}Q)

—

(4.17)
and

A
Uy

~ |
Ug,

a, (R) U, = a/fR)-vvay (k)

Oq(ﬁ) UO\, - Qu(h)+L'U~Ql(ﬁ'23}
0 s
Uo\\i 0!+(h)UQL = Q;—’»(k) ~LVU Ay (k)

U3 Al (k) Ugy = sty o (k)

(4.18)
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(and Ua:b leaves QQ(R)) C13(h)) +(‘<) 4/ (32)

unchanged)

An operator UO_‘ with the »roverties (4.17) is glVon by

(4.19

Similarly, LJQ, and L{XY are given by

&

UQ& = | + LV [ QL;]L-U?)Q;(R)-— Q‘}_Ch) Qg(hj])
(4.20)

s
Uy = exb 71—;} (N(m;(o) y U(ow(mj

(4.21)

We have thus given an explicit construction of the

operator T;T obeying the general unitarity condition (4.7)

Till now we have dealt only with the free Stueckelberg
field. We shall now construct the interacting Stueckelberg

field.
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E.. The fleld-1n interaction

Let us go back again to the case of the interacting
field, the Lagrangian of which is given by (2.9). The total

Hawwiltonlan is

e — . (__ | p .
H= Hy-te Wyw?-_»_gz_ ywsjmxp) (5.1)

when # o 1is given by (3.8) and the different sign of the
third term is due to the use of a non-canonical variable in

the second term. Since /xq_ is now taken to be Hermmitian
the interaction term —-QQ(G;XQAPB A1+ is not Hermitian in
the usual senss, but satisfies the reality condition (3.12)

sy LT

{5.23

¥

which in fact guarantieces the conservation of the Moh'wu
of the wave functions, 4%)$> - (k:}_/*n/ Elj}Th:.t ta, 41

MO L N LR CERIOMEY

then for anv™ k= we have
-
L= 2 lewt
o

The 'Unitarity! of the S-matrix with such a Hamiltonian is

now expresseﬂ,in the form

5*% .= h (4.3)

m
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The completeness relation is written in the form

wr e
43‘ Cﬁ S(Y‘?az”'loz&bo (4.4)*

From (4.3) aixd (4.4) follows the following relations

5
%WGM?GYLSQ}Q \/ Zn )<(g)5d>j (4.5)

Thus, for an initial state<§:< with 7]°<-: | , we have the

conservation law of »robability in the form

= Z Yl(,’kfststo&ll‘

where l<«3lslq\ ,zp gives the transition probahility
for _9(5

Now, we should notice that even in the case of interacting
field, the operator - : :

1 ; ‘QH“ 8/"" Aj/\"\\“)(@ in
the Hoisenberg representation still satisfies the free Klein-
Gordor equation, as can be scen from (2.11), (2.12). Thr~refore
in this representation we can define the pésitive-frequency

part in an invariant way and impose a subsidiary condition

(4.6)+

* Notice that our notation ard definition are somewhat diffe-
rent from those employed in some literatures.

+ The suffices H,I and S rofer to the H-:iscnberg interaction
and QCurodlncel renresentations, respectively.
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(+) >
Thus, if we assume ‘-‘Q—H %N: Ay L__L)H = O

at a certain time E = to then (4.6) will hold at any
time t.
In terms of canonical variables the operator _-(1_. can be

written inlthe form

—dfl'F} - ;9{ lALF{ £ ‘rr.A'H 40N E%)ﬁ (4.6")

In order to obtain the corresponding subsidiary conditions in
the interaction and Schrodinger represcntation one has only to
apply canonical transformations to (4.6'). Since canonical
variables go over into the corrcsoonding ones in other renresen-

tations and the field A has no coupling of deriv=tive tynpes,

H
the subsidiary conditions 1n other revresentations are of the
same form as (4.6!') but with cenonical variables in the res-
vective representations. Thus, in the intcraction reoresentatior

we have

_ -+
<5# ’ﬂ‘)u (‘A,BI ity B(x)j) Sfr (Ey =0 47

In t.ae Schodinger representation it is convenient to use the

expression in momentum space,

- : (§.8)
(m TR ko A (1) b () 2o 8

W~ shall now assume in the Schirodinger revnresentation that all

initial states are confined to vsctors of the form

Sk{z’ S (jt‘: e CK{) 2i5ed gifo<‘73: E&Q}Cki)

(4.9)
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+Where \fo(. is a wave function for 2o particles and
E‘_/O(p) the true vacuum state for @,  and A
particles in the mode R 4.9) clearly satisfies the

subsidiary condition (4.8). Since the final state EP§J< t - do\

also satisfies (4.8) it should have the form S

& O ' ( AU‘O\
Li)f 5'('E‘+ B“%L‘E@TE(Z}VC@MJR)%W /

/
with L:E%/) dafined by (3.18)

Hore we shall make the followigg remarks (1) If an

initial state is an eigenstate of the total H=miltonian, then

so is the corresponding state at any time t, and the eigenvalue
E 1is, so to speak conserved, (ii) since(ﬁ)satisfies (4.2)

1s also conserved, W2 can also assume the asymptotic condi-

energy eigenvalue of the initial state EL =" Ec‘( and its
expectation value 4\"}‘;_ = Eo( when ED< is the eigen-

value of _JU_{OL . The energy cigenvalues of the final state
- ' : RS - - . . Where
Ej— - E@ + ZET\) = E(Kl"‘ %o E\@L/—' ..
the second terms come from the states Yw (h)) Efwf(lq)
From (i), we have Ei = E:S,

or

e
E )

et e AR Eﬁf + 2 Bl 4

and from (ii1) we have 4 H>L' - <H>:§_ or

(4.12)
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Therefore, from (4.11) and (4.12),
Z T el (4.13)
B4V

!
Since the Eiﬁﬁ carnot be nsgative, (4.13) imnlies that every

EEWx ="y This means that (4.10) must have the same form

as (4.9) i.e. ’\.EQL R H#‘ 'ﬂ{O();O . Thus, we can
<

conclude that actual transitions take place only hetween states

in which only the ordinary vector narticles exist. The condition

(4.5) now takes the form
2 X
| = % { <(3\6fo<>\ :%l(kf(;sy@‘%ﬂ)

Hence, in the sub-space of our Hilbert space the S-patrix is

unitary in the convantional sense.
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6. Comrarison of various formulations:

In this section we shall discuss the connection between
different formulations or renraszentations of the vector field.
For this purvose thes interaction repnresentation is the most
convenient. Tac basic relations in the 'Stucckelberg represen-

tation! ére as follows:

The Tomonaga cequation is

& o [x]

(s.1)

with

_ % AN =
Hmb(’(): “a/-'“U/k 23 in(af“ Xj*) (5.1

/Pk ,/A 3 (et
;tﬂ&- = T ?}A 9’ (5 B
The operators A and P, satisfy the commutation relations

given bl (S.1). Thc subsidiary condition (4.7) in now genera-

11 zed to

&)
[B/w A/A(X) +X B(fﬂ ¢ o] =0 (5.2)

(5)

where the point x need not necess-rily be on the space like

surface <~ O casy to check the following relations:

(1) the integrability condition L %l e _(X) . g. "HW
' —

for a space-like (X;*-X')

* This generalized subsidiary condition is simpler in form than

the one in quantum electrodynamics which contains also a term
ideépending on 4
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(i1) [:—Q._*.(?(\) )fﬂ-_‘{— ()())-] il 5 for any points
}

Y X X
¢ +
(iii) b e HW\H’O . -Q_E )( 7()] = O for any points.
bo (%) ) X %
. The last two guarantee the consistency

of (5.2Y with (£.1). The commutation rz=lations for LjPL are
from (3.1),

' 1 . gj >5 3. !
[Lf/” (%) )Uu(x)’] b [f £\ @3)

oA
Since (5.1') znd (£.3) ( and consequently th~ propagation func-
tion for the 1;{}L;) hWave the same form as the corresponding
quantities. in the ordinary formalism of vactor field, it {is
evident thercfore that as far as the nart of S-zatrix elements

which contain only virtual meson lines is concerned, the

Stueckelberg formalism givas the same result is the »rdinary
formalism. Ae for the nart which involves axternal meson lines
we can make the followi~g observation: A~ was ovroved in the
previous section, if therc are no G,H_or ,fr particles pre-
sent in initial states, such particles will not appear

in final states either. Thus, und-r this ecircumstance, the
incoming and outgoing ~xternal mesons ar: restricted onlv to the
ordinary vecctor narticles. The »art of matrix elements which

are resnonsible for absorpntion and emission of these vnarticles

a

are cxactly the same in both the formalisms, since the inter-
A

action Huw:iltonian Uy. the same, Therefore, we cén conclude
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that both formalisms are quite cquivalert with cach other as
far as the S-matrix is concerned. W- shall now make the unitary

transformation

- - L dao B
W) o i) =exp| 7t | A BB
3
Tiic Tomonaga equation is changed to

bl L A ' :
X MG = — [ y [G‘} ) £.5)
P LCJ)A f') G

and the stibsidiary condition to

[( fo 0 e T%/xb ga(ﬁ(x ix) g}}/udg/: (5.6)
x oylo Jue =0

This we shall call the 'Matthews-Glazuber renresontation' which
is the most convenient one for discus the connection between
a vector field and the vhoton fleld. T 1limit ¥ 35 QO
ccn be made without encountering singularities. The complete
disappearance of the fisld B from the interaction Hamiltonian
is due to the ¢ nservation of the currcnt a)d' . Thus, we
can interpret (5.6) as a defining ecuation »f B and regard all
A \' /A as independent variahlzs. The whole formalism is

invariant under the gaugc transformation (similar to (2.9).

A —*-3 7 \ ~ - E
j/\ A/v\ +6/m A (with /\ arbitrary) (5.7)

if this is followed by a nitarv transformation on the state

vector

R4 DS}MG-‘% B EG}NG« e [_L é—» A5 Al e
x LPFG}MG




The subsidiary condition remains unchanged if /\ satisfies

OAN =0 Suen a restriction, however, may not be
necessary unlcss we ne2d the variable Eg . At any rate,
because of this invariance the effective number of indenendent
variables reudces to 3. This representation is also very
suitable for discussirg the renormalizability problem of vector
field interactions. Siance non-renormalizable divergences come
only from the B-field, whether an interaction is renormalizable
or not de»ends on whether the B-ficld can be eliminated from
the Interaction Hamiltonian by some unitary transformation.
Notice here that the sans. 1n the Tepvemmb are of Kwridon. form
to those of Nuantum Electro Dynamics. Moreover in this

L uoSeenk |
represaertation one can ﬂ1k3 the }anwt L —> 0}*\”@ﬁﬁghnter-

the ordinary formalism.

ing singulerities such e ﬁop:n

n
ol Gy :
-The course betwean the twd theories and WL %:{) aed. X =0

Q
=
D

)

)

i

.

(»noton) are very
We shall make a further unitary transformation

W‘BMG—' LG]:R[’SI, JEexp *""b" ct—d( (5
> TP [ )‘15— f 3’ )\Jgffd)-

to ggt the Tomonaga =quation

8k lal |

i _g______OP: § ~ 7 ["\}A—-" D [2AN . (5.9)
gc‘[*] ¢ p s wr /\AKBKAJ

S (aﬂ%)Lg F L] op




40

and the subsidiary condition

(-fl_;:r) & [G]OP = 0 (5.10)

™ o A0 +x B

This we shall csll the Ogicvetski-Polubarinov representation.

If e put
S

uﬁ(#\) = A‘/\.\ e )\:}_ B/A éx%

(5.11)

gy» - 9% | A ( « -x) (512)
i B |

OVde. B L =0 (0\/3 o Vaoy QIPU- o Uov E.v) (5.15)

oy ?:0; uf?*‘ 7 ’q/u(“)ﬁ» @Amaq(o)

Here, we can clearlv ses that onls the field described by 1f/&
has actually the interaction with the (/- field. T!e
relstions (L.13), (H.14) show that this field is nothing but
the ordinary vector field. 1Its Fourier comnonents (ﬁ)
iy Y
in the rcst system h =5 are W, (l«)ﬂ:\) uq(h) )
which im»ly that 1{/*— describes »narticles with three inde-
nendent stat~s. Thc equivalence between the Stueckelberg

formalism and the ordinary formalism is most obwious in this

revresantation. The subsidiary condition (5.10) nlavs the
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fole only of restricting Hilbert snace into its sub-space of
ordinary vector particles*. Firally, wc should remark the
followikrg point: A guestion such as whether a¢+ oT X;
-particles exist in virtual state has no definite physical
mecaning; as is clear from the above arguments, the existence of
these narticles denends on which representation is being employed.
For examvle, no b-particles appears at any time é in the
Motthews-Glau)er represertation if it does not exist at £ = —~

but this is not the cass with the Stuckelberg representation.

* 0gti~vetski and Polubarinov claim in their naper, that such
a subsidiary condition is unnecessary in their formalism:
However, when they restrict themselves into a particular sub-
space, a subsidiary condition 1is essentially being introduced.
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7. ~The case of non-conserved current:

In this section we shall briefly discuss the case in
which the current Z.A is not conserved. Thec Stueckelberg
formalism is stil] possible iaghis case. Tiais is because the

2 Klein-Fordon equation, regardless

(4]

onerator satisfies the fr
of whetheﬁ?ﬁs conserved dinot. Th~ subsidiary condition (2.14)
is thus compatible with the field zquations. It should be
noticed that in case of non-conservad current the correspondirg
condition in the ordinary formalism is not satisfied,

ajﬂ"'/u == ';ll‘w, %Q‘/ﬁ+ O . The »roof of
equivalence between the two formalisms can be given, however,

along lines sinilar to the one in section 4.

Thc only difference between two cases is in the
behaviour under gauge transformations:s the non-conserved
current 1tfh is intimately connected with non-invariance
under gauge transformation. Az uiscussed clegewhere in grent
detzilg, the B-field cannot be completely eliminated in tie
M.tkthews~Gluuber representationfi I* rcuains, after unitary
trarsformation, in gauge non-invariant terms. Accordingly

we o not have any simnle f#-Gh or 0gievetski-Polubarinov

repmeseptationé$) Such a theory is non-renormalizable in general.

Gy < P Movt%f&u&b Phoys. Raw - Tb (lap9) \254
R-T. Glawben  Prog.Theon Phys 9 (1953) 295
(&)\/J,Oas,ceve( <Ky sd INPoA wudso i nov
prec . Jukeymelimal  dowf . e (LGl Cranguy
Plyses , ¢ ERV(D02) 5 bob66
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8. Intecraction of a Single Heortitian Stusckelberg Field with
a Cn-rged Fi-ld.

W@ hove discussed, in the sravious lectures, a fairly
simnle system of gﬁnal Stucckelberg field interacting with a

sninor field via vector counling: such a system has the

nice feature that the theory is gauge inveriant. A= a consequenc
of this, we saw that the MG or OP reurcsentations take very
simnle forms. Today W siiawll consider a more general system

such as a Stugckelberg ficld which is not hermitian or the

system with the more general forms of interactions, with a

snvecial emnhasis on the renormaliability problem.,
we sfiadl

To begin with, discuss in _a general way

tne system of a single Hrraltian Stucckelberg field interactinrg

with a complex or charged spin 2, 1/2 or 1 fields§.

(=4

In QED, we introduce the electromagnetic interaction by
renlacing, in the free field Lagfangian, %%AJ——D ?}A._!e.%#L
As is well-known, the theory thus obtained in gauge invariant.
for a single St.ieckelberg fiecld let us do the same thing;

We introduce the interaction by the renlacement

%p~”_° épf~t'f E9¢ where
' - /A i ;5
U/“ /u ’ /A B (771)




44

Since the free TL.granglan in general contains second
order terms in é s the interaction terms contain not

only terms like 3 /A‘ but also terms such as

3 - A AU , whero /UL ) 3/%1)

o consist only of the
sourg:'ficld, and s> the interaction Hamiltonian in the inter-

action renrescntations takes the following form.,

Hog s oo &fgﬂu}k ;:';fva () UL

+ ":1 { (_J/m;u/@

The Tomonaga-Schwinger equation is given by

\ S ®is) oy \P{G‘} (7.3)

5o

%,
(7°2)

The second term in (7.2) is absent for the interaction with a
spinor field, as Q/AL) must be symmetric in /}A)lj :
Noting this, (7.2) d=scribes the interactions with source

fields having spin 0, 1/2 or 1.

For spin 1/2, a}ku =0 so the Lograngian becomes linear
in F&L . Note also that Q/A\ ngU arc the same as the

corres-onding quantities of Quantum Elsctrodynamies.,
In terms of the Duffin-Kcmmer onerators (g QA the intex

action Heuiltonian may be written

Hood- = L f—(k+’\fh\ﬂ > + &//




Now, as we introduced the interaction is a gauge-invariant manner,

we have the conservation >f the current {/A in the Heisenberg

%U}:o

This can be expressed in the interaction representation by

o ()(> [3}/\(\0 ; gu()(')] = C %(X) a/P ?PU(){ )'y\)

/A ,3))\ Arx-x")

representation,

(7.5)

T () [,X\] g (7.6)
WJJ\ V\U aﬁ( J aux- ) s
/ !
‘h’A Ziqﬁk(g§ ;B)AU Cﬁ;vx)] = 0O
(Remarkss (X =5 x') 1s space-1like; hence ?}A

docs not operate on Y in a}Al)).
Tic above relations were first obtained by Umczawa. *
The Tomonaga-Schwinger zquation (7.3) is invariant under

the gauge transformation

e ) LD .
e S, = Upd0, A, A, s 4, =8, 40,
OR R — B

A !

B__}%l :B—-B(/\ i /'\')/\ - Af/\ (7.7)

J

2\

/\)

provided one makes the following transformation for ’EE [6’

..-‘l s % Rl

b

* Ref. H.Umezawa. amd S kKownefuchu vy 54 vt
Nucd Phyt 93 (1961399 3«
See odso CN Yo omd RiL My phat Rov 94 (1959)

9] .
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W ls| oW fﬁ"l
— exp [——L Kdd)u aﬂb‘) /\(JQ.] Y fo]

In the course of the »roof of this statement th= use

(7.8)

T i - made the relations (7.6)
We notice hers that the unitary transformation (7.8) with the

gauge function /\(7&3 applied to U/A eliminates from
a term with the form %%A N\ . Thus, it is expected that when

annlying a g-number gauge transformation which is obtained
from (%) by replacing N (1) er/ ‘J; E)(’() , the

term %%A_B, in LiﬁA may disappear. In fact in spite of
the non-commutability of ahhg, with ?ib B , ore can
complzt-ly eliminate the B-ficld from the interaction
Hamiltonian.

That is to say, wh=n we apply a transformation
! ‘ ' ' , :
ey .Q)(}D [:k = (10' 4 CRER(x)
Y % O L (7.9)

the Tomonaga cquation for the new state vector becomes

Sy Tt
8‘0‘5*3 * '\_EIECS]

S0, in general, the g-number gauge transformation (7.9) leads

to the MG-representation, T:ic subsidiary condition is changed
e
into the form, "o in the last lecture.

Tne above,gencral discussion is orginally due to "Tmezawa and

we call (7.9), (7.10) the Gicuber-Umezawa theoram.
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%. Conrclusion

Now, this is all th#t dleknow about the Stueckelberg for-
malism and all that, I belisve, is known by »nhysicists about the
Stueckelberg formalism. Sakurai, S.lam and Ward and others have
nronosed a theory with which to expnlain various conservation laws
on the basis of gauge particles, vector bosons, and in fact, the
vector resonances (WJ

W, -8 and }<f*' with isospin 0,1 and 1/2. have been found.
Tuiese resonanees-may or may not be the gauge narticles of the
above-montioned authors. When we want to make such an identifi-
cation, there arises a serious difficulty. That is the mass of“
these »articles. Tuacoretically these particles are introduced
so as to make the theory 'gauge invariant!'. However, as we
have seen, expect for a case of a singlet, the gauge invariance,
requires the manishing mass of the gaugs particles. For the
range-Mills-triplet particles, the mass terms violates the
invariance under the gauge trasnformation with a general gauge
funetion. Ss, we have, to add in an ad hoc manner non-zero mass
terms to the theory, which contradict the very orinciple of gauge

invariance on which we bees our theory.

Thnere have becn many attempts to derive a non-zero mass

from such theories. e.g. Schwingzr and Goldstone, Salam and
Weinberg applied Goldstons's method. But, Schwinger's is nothing
A

more than a con jecture, and the latter neonle have actually
failed, because of the Guldstone thsorem. Our program is to
anply the method af\inequivnlent ranresentations to this problem
which will be discussed lat¥er by Umezawa. For this opurnose, the
Stucckelberg formalism is verv convenient and this is where

Professor Umczawa's lectures and mine meet.
* oo wlee i IZ'a JA)\'" ~P ek — s & &
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