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STUDY 0T SOMB ELEMENTARY PARTICLE INTERACTIONS WITH

SPRCT AL RETERENCE TO THT YISE O STOCHASTIC

MAETHODS. /
(S LIBRARY
_‘|~__—, Dialy; aiiivisesadis
INTRODINTION N% =

It is now well-recognised that after quantum alentfcn
dvnanmics had reached a staze of ''concepthal consisténgy
and physical comnleteness" new difficulties arose in guantum
field theory with the inadeqnacy of perturhation metheds for
atrone interactions non the one hani and the iegnorance of the
nature of the intersetions involvineg strance particles on the
other. BExcludine attempts at a findamental denarture from
the present concents, any further study should naturally deal
with the following three 4asnects.

1. RAs far as quasntum electrodrnamics 1s concerned,
rainements in the methonds of caleulation and inclnsion of higher
order vrocesses are the main nossibilities. ‘vart from this,
it is felt hy the asuthor that a reexamination of the motivation
for quantnm Tield theorv will lead to a better understanding
of its effectiveness and limitations in the study of nhysical
processes.

9. Recentlv new techninues, for examole, dispersion
methods have “ern introdueced to pmeknle the nroblem of strong
interactions in a non-verturhative manner. Such methods can
‘be extended to varions problems involving strange narticles.,
This apnroach has hecome narficularly fruitful in view of the

existence of respnant states of elementary narticles,




3, "xnlanation of ewmerimental data on strange parti-
cles, albeit through ophenomennlogical methods.

Thig thesis comorisine three varts concerns itself with
the study of nrocesses which illustrate the nature and scope
o7 these attemnts with narticular emphasis on a eritical exXa-
mination of the physical hasis of guantum field theory, This
is not only important but neecessary at a time when extreme views
for and against the concept of Tields are being nut “orward
and attemnts st an "ahstract annroach to field theory!" are
beine received with extreme optimism on the one hand and
scenticism on the other. It seems naradoxical that thoueh
the apnlication of perturhation methods to stronz interactions
may be inadenuate and considered leclnmsy!" , it is the field
concent that has led to the discovery of important orinciples
such as the analytie continuation of the § -matrix and
symnetry laws.l}

At this point we wish to make a comment upon what is
meant by the inadequacy o” perturbation theory. It may be
that nerturhation apnrovimations are not® valid for strong
interactions but in studyineg the process from a mathematical

point of view and taking all the terms in a perturhation

expansion into asccount we may still arrive at results which

are ag eood and valid as those obtained by intrinsically
non-perturhative methods as Tor examnle the disnersion

theoratic apnroach, This amounts to taking the inteerand

S—— - e — -_— —

1) G.%.Chew , "The S-matrix t%éaryunf strons interactions',
UCRL - 9701 (1961) '




of the Ei-matrix 'serionsly! and physically internreting

it as an amplitude for a2 'series of events 1n space-time",
The guestion of the resligability of these events need not
concern us as long as we do not establish any correspondence
with nhysical nhennmena before inteerstine over space-time
points and intermediate dynamical wvariables, This principle
has heen emnhasized only recentlHE} and we wish to carry it
to its logical econelusions, We wish to assert in addition
that fthe stniy of interaetions within the franework of per-
tnrhation exn=nsions is nat only concentually satisfying but
hears an aelszant corresnondence with the deseription of
avplutinnary stochastic wrocesses., This also lsads quite
naturally to the 'derivation' of the field operators - a
derivatien which 1s dn essentialiXx departure Trom the con-
ventinnal mode sinece the concept of interaction in this
viewnoint precedes the definition of annihilation and creation

operators. Thus we build a "nhysieal basis of quantum field

B}H
theory on such an internretation of the intesrand of the

S -matrix. 'Te are enconraged to helleve that this attempt
is not a mere reformulation of known axioms since it xkmuia
leads to a new nron® of the enuivalence hetween the Feynman
and Tield theoretic Tormalisms.

The sh»nve re-sxaminatien has a larger objective X®

- tp analyse the role nlayed by causality and the Pauli

2) 4, Ramakrishnan and 1.R.3Ranganathan, "Stochastic Methods
in guantum mechanics!", Journal of Mathematical Analysis

_ and Apnlicatinns (1961) 9in nress). )

3) 1, Ramekrishnan, T.K.Radha and R.Thunga, "The Physical
hasis of guantum field theory", Journal of Mathematical
fnalysis and A4pplications, 19262 (in press).




sxclusion prineinle, both 7 which are there to stay irres-
vective of the views on Tield theory,
Part. I consisting o six chanters deals with

these three asnects, In Chanter 1 , a re-examination of the
physical basis of guantum theory leads naturally to the con-
cept o7 Tleld onperators in essential contrast with the con-
ventional viewnoint in which thelr introduction is ad hoe., In
Ghanter 2 , the Feynman kernel is derived by extending the
concent of equal time density functions in quantum mechanies
to di?"erent times in rlose analogy with what are called
"nroduct densities" in stochastie theory. The exnpressions are
senerallzed to =zive the density correlations at m points
due to n particles,

In Chanter 3 , We wish to revive interest in what
1s 'eonsidered tn he a nlosed subject viz., the distinetion
batween positive and neasative enersies even in virtual states
While it is generally felt that the main advantaze of the
Taynman formalism is its inherent covariance, it should be
emphasized that 3 deeper insight into the strueture of the
Faynman kernel is essential narticularly from the point of
view of causality. BRearine this in mind, we decompose the
Feynman pronacator into fre=m positive and negative energy
parts., The relative contributions from the two parts to the
matrix element for electrodynamic processes like Compton

scattering and RBremmstrahlung are calculated.

4) A, Ramakrishnan, T,K.Radha and R. Thunga,
Proc, Ind. Aecad. Se., LII , 228 (1260)




In Chanter 4 , we demonstrate the squivalence hetween
energy denominators neeurring in the field theoretic formalism
and the method &f the decompnsed Feynman propacator reapectively?
This is done by identifying the enerev denominators in the two
formalisms unto fourth order nerturbation gxpansions. 4 gene-
raliged proof for nth order is zlso eiven.

Chapter & consists of a rew nroof of the eguivalence
in the onerstor “nrmazlism with a redefined intersction term.
The justification for this redefinition is souzht by the appli-
cation of stochastie methods to quantum mechaniecs. The equi-
valence is also established in the usual onerator formalism
in a simnle manner by working with the intezrand of the S-matrix.
Despite their simplicity, we consider these methods to be as
complete and rieorous as those of DysonSJ and Wick,

In Chapter 6 , we study higher nrder nrocesses like
double Compton scatiering. The cross-sections for this process

6)
with eirecularly volarized vhotons are =iven ,

5) See for exampnle, "Mesons and Tields", Vol. T
H.A.Bethe, 5. Schweber and ¥. de Hoffmann,
Row Peterson, REvanston, Illinois (1955),

6) T. K. Radha =nd R. Thunes, Zeit, ¥ur Physik, 161, 20 (1961}
7) A, Rosredwishnoas Tl Regre  anad E-ﬂwun?a J Jour. of Maf, Amnod. (42)
(t frren)
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Part 1T of this thesis consists of an apnlication
of the recent developaents in dispersion theoretic technigues
to various nroblems involving strange particles, The small-
ness of the fine structure constant for electromasnetic
interactions was the only stimulus for nerturbative expan-
sions in powers of thia eanstant and the validity of pertur-
baftive apnrovimations was amnly borne out by the fantastic
aceliracy ot the results ohtained in ghantum electrodyvnamies.
It was evident that such a treatment in the case of strong
interactions wlll hot lend itsel® to any suitable %= apnrovi-
mation., Of the different techninues that were developed
to tackle the problem of strong interactions, the most
suceesstul has heen the disnersion theosretie apnroach.

The fundamental postulates of this theory lie in
the requirement of the analyticity pronerties of the scat-
tering amplitude and the imposition of symmetry and conser-
vation nrincinles sueh as Lorentz invariance, unitarity
and crossing symntry. The nroblem then reducds to an
investisation of the consequences of these restrictions.
The analytiecal nronerties of the S-matrix as a function
of the dynamical variahles are studied, ¥he loecation and
stressth of the dynamieal uvariabies ape studlad, the
loecation and strength of the sinsgularities Feing determined

1)
generally from field theoretic concevts . In the complex

1) @®@.%.Chew, "S-matrix theory of Stron~ Interasctions",
Reprint volume, V.A.Benjamin Inc. (1961).




enercy plane the sum of the masses of the strongly inter-
acting particles determines the loeation of the singulari-
ties, the ones near the orizin bheinz due to one and two
narticle configurations.
This would have heen quite formal but for the

experimental discovery of ressnances., In order to relate
a problem of theoretical interest to one of experimental
feasibility one is forced to make assumptions and spproxi-
mations which in torn are to bhe justified by the accuracy
of the results obtained thereby. The sssumption that is
now made 1s that the nhysical aspects of any problem are
governed by the 'nearby'! singularities alone, a complete
understanding of the effect of multiparticle configurations
being unnecessary. The existence of the resonances intro-
duces considerable simplifination 1in two important resnects:
(1) Two and multiparticle intermediate states can be assumed
te be dominated by the corresponding resonances and can be
apnroximated by these 'single' narticle states and
(2) the exverimental knowledze of the mass of the reschance
amounts to a reductinn in fthe numher of parameters involved.
As an illustration of this we have made use of the Y*?fF
resonances.

The major advantace of the dispersion theoretic
annroach is the absence of an exnlicit intersction Hamil-

tonian, a feature that makes it the only candidate for



problems involving stranse particles, The 3 matrix
annroach therefore vermits '"an =id orderly and systematic
series of annroximations whose validity is subject to a
reallstic anpraisal without any assumption as to the magni-
tudes of the couplinz constants'.

In Chanter T of this part, we have apnlied the
method of sinele variable disnersion relations to the problem
o plon-hyperon scﬁttering.g) In the application of fixed
momentum transfer dispersion relations to pion-nucleon
scattering by Chew =nd mtherﬁa}, it was found that when the
'absorptive' nart of the scattering amplitude occurring in
the dispersion ¥m intezral is expressed in terms of the
scatterinz amplitude by means of the unitarity condition,
the results were identical with those of the static thﬁary.é)
The ef“ective rance fTormulae that were obtalned were hased
essentially on the assumption that barring the sinzle nucleon
pole, the effect of multiparticle conficsurations is dominated
by the Pgqa resonance and can therefore he apnroximated
by a constant fitted by exneriment, In the case of plon-
hyperon scattering the recent discovery of the Y¥* resonance

enables us to adnpt a somewhat similar nrocedure,

1) G:F.Chewy "S-matrix Theory of Strong Interactions”,
Reprint wolume, W.&.Benjamin Inc. (1961)

2) Alladi Ramakrishnan, T.K.Radha, R.Thunga and 4,FP.
Balachandran, Nuovo Cimento, (in press) (1762)

3) 4,%.Chew, M.L,Goldberger, F.E.Low and Y .llambu,
Pnys. Rev., 106 , 1337 (1257), il

4) G.7.Chew and F.E,Low, Phys. Zev. 101, |50 (1956)
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While it is true that the one~dimensgional (fixed
momentum transfer) dispersion relations are extremely use-
ful in the eorrelation of experimentsl data, a knowledge
of fhe “ehaviour of the scattering amplitude as a function
of momentum transfer is naturally desirable: This has been
achieved in the Mandelstaml} renresentation which is the
relativistic analog of the Chew-Low method with hoth gnergy
and momentum transfer heing treated as comnlex variables.
Though a 'comnlete! solutien in the Mandelstam renresenta-
tion seems too ambitions at nresent, results heing possible
only in the limit of one-dimensional dispersiosn relations
0T at most in the ‘'strip aporovimation! s there are several
aspects of the renresentation that nrovide a better insieht
Into a nrobhlem, Fory instance, the exnlicit dependence on
CuSB® 15 very useful in orojecting eut partisl wave
amnlitudes and in examining their analytical proverties,

This 1s varticularly fruitful becauss the unitarity condition
for these amnlitudes takes a simple form in the low enersy
reglon before inelastic processes set in, Frazer and WmchL)

in employinz this method for pion-nucleon scattering have

been able to obtain the Chew-Low effective range fTormulae

in an elegant manner by neelecting all but the closest sin-
zularitiss to the nhysical region, i.e. the physical cut

and the contribation from the erossed pole (the direct pole

1) S.Mandelstam, Phys., Rev. 112 , 1344 (1958).
;L) W-R_-Frazet awd T Fulea Pl\_v,'s' Ren~ 117 fﬁﬂ‘llf‘:fﬁn)




cannot oceur for s Poo amplitude). We have followed
a similar orocedure for pion-hyperon scattering. 4n

important fegture of this extension is the role of the

relative > A parity which determines the sign and map-

nitude of the reside¥ee at the vole. Since the spin and
parity assiegnments of the ¥* have not yet heen experi-
mentally established, partial wave dismersion relatiens
are set up of AT and 3 TU sdattering amnlitudes in
the resonance channels for various spin and »narity assiszn-
ments. An ef®ective ranze analysis is then shown to give
definite indirations reeardinz the most likely spin-parity
assienment for the Y#* 1f the 2. /\ relative narity
weve knhown or vice versq%} in order of magnitude estimate
of the > ATl coupling¥x constant can also be Tound from
the ohserved width of the resonance. This apnlication
is yet another example of a "caleulation beinsg reinforced
at its weak links by experimental information', 5 feature
characteristic of 511 dispersion thecretic methods,

Tn Chapter II , we tackle the problem of photo-
production of nions from [\ hyuernns.g) Making use of
the unitarity condition which relates this inelastic

orocess to the elastie ATV scatterinc, solutions are

ohtained in terms of the /1 scattering phase shifts

10

1) Alladi Ramakrishnan, T,K.Radha, R.Thanea E?d
A.P.Balachandran, Nuovo Cimento { in press

2) Alladi Ramakrishnan, T.K.Radha, R.Thunea and
&.P.Ralachandran, Letter to Muovo Cimento(in nress)
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which were evaluated in the previous chanter. We further "magy
extentl this to electro-production of nions as well. Though
a diresct exnerimental observation of the vrocess nay not be
possible 1t is felt that these considerations will have a3
direct bear}ng on the study of nrocesses like Y + N— A4+K T
The results are algs of sone invortance in the study of the

A\ foram factor,

In Chapter ITI, we mive tha partial wave dlspersion
analysis for the nrodaction process K +N —> = + Ko .1)
EBxnerimental dat=s on this partiecular process is just coming
oiat and it is hoped that such an snalysis will throw licht
on some of the aspects of the problem., The existence of
crossinz symmetry Zor this nrocess is found to be very useful
in the analysis of such a production vproecess.

In Chanter IV , we present results for nroduction
nrocesses in hypneron-nucleon epllisisns in which our nre-
vioits results “ind a direct aonlication. The technique em-
ployed is the extranolation method o7 Chew and Low and finer
detalls such as the "inal state intevactiﬁnsg} have been in-
cornorated. In the case of nion sroaduction in f\P collisions,
the total pross-sections in the physical regian‘ggngValuated

making use of our nrevious results for /1T scattering.

1) illadi Ramakrishnan, G,Bhamathi, S.Indumathi, T.K,Radha
and R.Thunga, Nuclear Physics (in opress)

2) G.Bhamathi, S.Indumathi, T.K.Radha and R.Thunga,
Nuovo Cimento, (in press)
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Problems in Part III of this thesis illustrate
the phenomenological approach to strange narticle physiecs,
In general, a systematic classification of known exnerimental
facts leads to certain well-defined rules resarding the
hehaviour of elementary particles. The apoliecation of these
phenomenological rules to other nroblems leads to results
whiéh when exnerimentally verified strengthen thelr wvalidity.
The theoreticsl justification FTor these rules is of course
a different question.

The best examnle of this is verhans the postulate
o® charece indenendente for strongly interactineg systems which
requires that all physical nrocesses he invariant under rota-
tions in isospin space, In Chanter I of this Part, we have
analysed the consequences of this hypothesis in cascade-
nucleocn EﬂlliSiDﬂEl]. With the recent nroduction Dfrghscade
particle in the laboratory, any theoretical investieation
of its interactions is very relevant esneeiallﬂhince aven
its intrinsic attributes like spin and parity have not yet
been established, Our analysis of = N collisions resulting
in three narticle final states on the assumption of charge
independence leads to interestine equalities and inequalities
gmong the cross-sections sor the different channels. 'le

eurther take into account the nossibility of resonances

1) A41ladi Rama'trishnan, T.K.Radha and ®.Thunga, Nuclear
Physics (in oress)(@éa)
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in the final state. It is interestling to note that this

reaction can throw lizht not only on the now well-gstablis hed
.H.._
?/ resorance bat alsc on passible =TT, Y Y and YN

resonances, It is also shown that an analysis of the angu-

lar distribution of the meson produced in the reactions
can be used to determine the spin and parity of these reso-

nances, The distributioms are given for hoth even and odd

23 fJ narity.

Tn Chanter II, we have investigated the consequences
1)
If

of attributineg spin 3/2 for the cascade particle .
+he cascade were to be an 'elementary! partiele it should

of couarse have spin 1/2 but in the absence of any clear cué

and e¥nerimental evidence in support o” this the possibility

of hirher spins cannot be excluded. We here present some
spin devendent features in strong and weak interactions

involvine the cascade particle. The exnerimentally mo st

feasible reaction :"-_,TH::—% AN 1s analysed retaining

only & and P waves in the final state and it is seen

that for even =" N narity this reaction ecannot occur if

exchange reactlon

=, has spin a/9, Similarly the charde
if it were to hnave a threshold would give rise to a cedsp

in the A\ preoduction aroes-section and our study of this

-

lqads to some definite information regarding the cascade=

nucleon rTelative parity besides the = gpin. We have
G,.Bhamathi, T.K.Radha and R.Thunga,

1) 411adi Ramakrishnoan,
Nuovo Cimento, (1961).
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further ealeulated the binding energy of double hyper-
fragments assuming the cascade to have spin 3/2 end the
correlations between the two charged pions arising from the
decay of the two A-» are caleulated using the technigue of
apin 3/2 in the angular distribution of the reaction

'_-::“':J-'P =y O U SR =, decay distribution and
that of the subsequent A are also given under the agsump-
tion of spin 3/2 for the = » Thia in asddition to reflect-
ing the dependenice on the spin of the initial cascade is

also expected to reveal the nature of the couling in weak
intersctions.

In Chapter IIT we investigate some of the strong and
electromegnetic decay modes of the recently cbserved K*
resononces., Desides fhe strong decay mode by which the
resonances are ususlly identified there may exist other
modes with smell but finite branching ratios. A4 phenomeno—
logical study of such modes viz., the energy ﬁpectra-aﬂd angu-
lar correlation of the decey products is expected to provide
e better understandiig of these resonsnces. We here nregent
calculations assuming some proboble mechanisms for the two

and three particle decay modes of thHe K* rESGnEﬂﬂGE.lj

tha- .
Inﬁfinal chapter we have anclysed the possible

effects of baryon-baryon interaction which con be studied

1) To be submitted to the Nuovo Cimento.
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in cascade-nucleon collisions resulting in two-hyperon
final statea.lj We have envisaged the possibility of
2> Y bound systems and the decay disfributions are also
preaented,
Until recently, the experimental feazibility of

these reasctions appeared quite remote but with the recent

—_

identification of esven the = in the laboratory it is
to be expecied that data on cascade-nucleon collisions would
be quite extenszive.

The Appendix centains a note on the theory of geo-

magnetic effectz,

- e - - - - o

1) G, Bhamathi, 85.Indumathi, T.K.Radha and R.Thungse,
Letter ta Progress of Theoretical Physies, 25, 870 (1961) °
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CHAPTER T,

1)
THE PHYSTCAL BASTS OF QUANTUM FIELD THEORY

|. Introductory Remarks,

The development of any physieal theory is usually
marked by alternate stages of mathematical fermulation and
physical intervretation. & thesry starts in an attempt to
explain a series of connected physical phenomena or atleast
‘to systematise the “actual knowledeoe relatins to such phe-
nomena. A mathematical formulation is made which embraces
all these facts within its scope; onee such a formulation
15 available it is developed to its logzical conclusions
‘gome of which mav not have heen originally anticinateda.

Wo are then compelled to internret physieally the newly
;ﬁhrived conclusions,

Perhaps the best example is the quantum theory of
seattering which passed through the followine stages of
‘development :
1. Weave mechanics of single vnarticles - a mathematical

scheme, the creation of which was demanded by the physical

L

facts relatine to the dual nature of lisght and matter,

2. The theory of rantiparticles!. 0One of the
ematical consequences of a relativistic theory was the.
tive energy states which @ould only he explained in the
ical world throush the nestulate of antiparticles and

- L@n&icular, positrons in electrodynamics,

p—

kwis b exan IR Redle  aaad R g Tertare. ef MHedr, Amal.
(962) (on press)
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3, The quantum theory of fields m - a mathematical

formulation introducinz field operators in an attempt to tackle

the multihlicitﬂﬂﬂ nf particles like the electron and the posi-

tron.

4, The analytic continuation of the S-matrix with
complex dynamical variables, and

5. "he re~internretation of the sinzularities in terms
of particles,; resonances and decaying stateé.

The essential difference hetween classical and wave
mechanics consists in the principle of complementarity. 4 pair
0® canonically conjueate dynamical variables no longer obey
the commutative law of multiplication, The renlacément of the
dynamical variables by operators led to the quantum theory
which was found to be of zeneral apnlicablility to systems
Pormed by an arbitrary number of particles, This generallza-
tion edve birth to the quantised theory of fields where the
wave Tunction is renlaced by a field ‘'overator' containing
the 'ereation! and ‘'annihilation' operators for the particles.
We think it worthwhile to re-examine critieally this develop-
ment since we feel too much is being taken for granted about
the inadequacy of nerturbation methods on the one hand and

the extraordinary efficacy of the analytic aporoach on the
other, It is grati®yins that such a re-examlnation leads to
the estahlishment of a corresnondence between nrobabilistic
and gquantum mechanical concents - a thine which is of interest
since the first interoretation of the modulus of the wave

function was as a nrobability density.
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Wa now malntain that the nassace from the wave Tunction

to the field operator is not as profound as the replacement

of the dynamical variables by Onerators. The introduction of

field operatonrs "is not a guantization but just a definition
of esnvenient onerators related to the cccupation numbers in

a8 way conpatible with the exclusion princinle, In support
of this contention we need only polnt out that the single
partiele formalism of Feymman is able to arrive at all the
results nf field theory within the framework of perturbatloni
This in fact is not surnrisine since the axioms and postulates
of the quantum theory of fields weére in fact suggested by
physical conslderations,

In this chanter we emphasize that the development

of gquantum field theory is merely an extension of wave mecha-
nics. This, as we have already stated 1s a departure from

the sustomary tendenchy to study quantum theory from an axio-
matic point ®f view since the concent of interaction precedes
that 67 the definition o annihilation and creation operafors.
The elése analoey with the unfolding of a stochastie process
15 established. Besides this, we have a larger objective -
to discuss the ways in which the Panli principle has been
imbedded in the field theoretie and Feynman formalisms, It is
well recosnised that the Feynman and field theoretic formalisms
are equivalent, Then why should the Pauli nrineiple be com=-
pletely exnressihle by the commutation relations in one case

while it is to he invoked ad hpc on the other ¥

1) L.Rosenfeld, "Introductory considerations on Elementary
Conatitnents and their Interactions',NDRDITA Publications

No. 44,




20

2, State-Vector in gquantum Pield theory

In wave mechanics a free partiele 1n the absenece of

interaction is renresented by a wave function =y k;? ~t)
o
in confTizuration snace or (#: If-§>in momentum space, the two

being connected by The relation
3 [ Lp X
— g i eir !
Pl t) =iam) J (P .t) e 4% .

= e =8
6B = @) p2g P

When a nartiecle is free and has a momentum E? its enerey

is oiven by the relativistic formula

E:l . Fl-}' S 3,
Tn such a case it wonld he possible to choose a wave function Y,

which is an eigen funcfion of momentum corresponding to the elgeu
value E? . Due to the guadratic relation, EP can take

twp values corresvonding to a siven momentum, E;P =) iZ\I;?:;;EE

and the sigen functions correspondinz to these are called

the positive and rezative energy eigen functions, iny Ifree

particleg wave function can then he expressed as a linear
combination of 11 =8 (1hes }r“ )

p) ‘P(x t JC e (%, €) CFP 4,
where (; 1s a complex number,

We know that the wave function IPP for every ele-
mentary narticle is postulated, the postulate sometimes being
derived (the Dirac enuation) or sug-ested (the Klein-Gordon

enqnation) from first nrincinles, CQOuite zenerally 1FP can
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be written as ILP g where ELP is an entity

with more than one component -- either a vector or z apinor
(denendingz on its transformation vronerties), We shall fTor

eonvenience call Wy  the strugtural part of the wave func-

Lion, We recosnise from ( 2 ) and ( 4 )
'}I“-' ( FJ t): émij‘t‘.‘[ ‘{/Lp EELEF% = 'LLF
and if UPEEL'E- congruent with unity then (1.*{ T:,L_, t) desenerates
to (',B&\) 1tself, 1In any case we may renresent s state by Cr
o¥ (; aF 1tsel” since we know how W and q; are related
to it, IT the eigen values of p  are discrete, the state
ean he renresented as row vector E? with as many comnonents
{;(p) as we havefualrzequI Gl

From wave meHchanical considerations, it is known that
particles fall into two classes - fermions, the total wave
function for such a system heine antisymmetric in the indivi-

dual wave functions and bodsons with a total wave Tunction

which is symmetric, Snch anti-symmetrised or symmetrized
functions can he exnressed in bhoth confizuration and momentum
representations. In either case the analogue of Cp for

the many particle svstem is ohvionsly C (”«1{“51'~-7Lh)renre-
senting % particles of momentum b, ; Mg, of
momentam P% etc. and ™, of momentum P, Or More cene-
rally [,({RQJ where i EK} is some typical aggreszate
‘characterised hy the ocrumation numbers of the various types
Erf narticles in different momentum states. IT the state vector

in ‘eonisuration space for a tynical agzrecate iiaj_ is

igi({kjj fj then any state can be renresented by
= [{ Ri: ﬂ;Hﬁ'ﬁjtj and as in the case of single

[Rh&
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particle theory the momentum transform of '¥J(flif) would

involve (,{é Rﬂ) and the structural part of the wave function

of the ipdilvidusl particles. The description of the state by

the smplitides [ is adenuate thouzh they do not_involve

the structural wart, Tor such a free particle system the

enerey is given by

F %‘i’{ﬁ 11 -n,Eh +n,LE|..L e MAEIF_;L b
where F; are the momenta o™ the components of -iki and the
%%‘4 are given by the relativistie formula, E can also
be treated as an elgen value of an overator H, corres-
ponding to § g { , the renresentation of He¢ devending

on whether we are working with *; (1) or 5P

We cf]zrgﬁfw write q,t Ekgj 1 f) as (14 H_REJ r:-L'
WIE ) “In the absence of interaction. Or equally well,

we can deseribe the state by CI-(k} which we shall call the

il

interaction renresentation of the ntcunation number states or

-LEERfT
bgﬁﬁk}:=fr(1k3)e " hich may be called the Schrodinger re-
nresentaticon of the oecunation number state,

2. Temporal evolution of the state vector in a

collision nrocess

The concent of interaction can be best introduced in a
negative manner by statingm that 17 we have an aggrezate .55
of free narticles it continues to exist as such for all time.
The amplitude that it continusks so, for a duration + is

LB
e i

the modulus o which of course is unity. 'le
now: assime an interaction to be onerative in the time interval

I, to T, the result o® the interaction being that if
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interactions occurrins at v time wolnts ', .1 W, with

24 0 e 1, is siven by

V‘S(’Tﬂ yeMT) = eap [“LER(—F‘%)JEE (R &)
EX p [dL Ew‘lw,l(r}“"— IT'“‘"J'):} gl

erp [ -y [m1(r11_r1,)] R (W‘r-"-“ L) ELE;;‘M
dTy ey

We ean call this the amnlitude in Schrodinzer renresentation
for a tyvlcal teanoral realization or for a typical temporal
Hoomplexion" Lo onear, a "comnlexlon" helne characterized by
the asgrezates attributed to the various time moints. On

summing over all '"complexions", i.e. verfaorming the ordered
integration over the variables, T\ «.v, T from T, to T
gnd summineg over all vossible intermediate asgre-ates, we

obtain the amplitude Tor LS h} in the 3chrodinger representa=-

tion as
=0 GBS
Colknry w3 30 A RS R Rl v R (me-)
NS (B kR 0 LBl —Ewm) )

where E_ i implies summation over all possible inter-

d o)
mediate agqregatesffnfg.,.?wgfnﬂ E;—E denotes summation
over the numher of temﬁnrar& vertices., In writine this

exvression it is assumed that on performing the integration

——

over the range (4 GO {~ the term corresvon’ing to the
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lower 1limlt in the indefinite integral vanishes if T; — — 6

This is #e equivslent to mnltiplyinz the interaction

+&T
amplitude by a Tactor e with & chosen as small

&7
s we nlease so that @ =/ for finite ‘L and

zero for L —> —oQ i.e. the interaction is ”swifﬁ%d

on" only gt In a striet sense therefore we should

T

write any term in the energy denominator as ate)hiera
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B — Ew +1LE& + In the above sxnression for O .
none of the cnereies

£ . The study of the contribation to the integral due

Ej’ Bt = b i E*‘H need be equal to

to any of them becoming equal to ! i.e. due to real inter-

3 L ” L'Jf} J
mediate states raizes dlfpiéﬂii-ﬂﬁthEMHtiﬂﬂl rrobklems dues to

the singularities. Tor the purnoses of aur discussion we may
assume that these enercinss are dif"erent from [ i.e. they

L

are "of® the enersy shell!

Therefore it is clear that just by letting T— + =0
in the exnression for C we will not obtain the matrix
element for a transition to ?#% or what is the same we can-
not replace { 1% by %j;% since to perform the integrafiwe

have assimed E: :F £ . Since we know that
.E%Ehxq_tlEi"EfTﬁJT E'S{ﬁé’Ebj We note that if we revlace
E& by E‘j‘ we miast omit the factor Egf —E[
in the denominator and introducé the § — function in the

¢ numerator, This is alsp eoulvalent to setting 1T -0 and

writineg
Cr(83&$i) :% R{p3euy)C(ty)

In writing this it is also assumed that to R{ig%éﬁ§fﬂ{}we attach

—&T

the Tactor & (i.e.) the interaction is "switched

oot ‘at T as T—s o0 Thus we see that (C ({ f&’ &“;’b-?}j
may he compbuted iF PQ(?“%ujﬂ iqﬁhhqﬂthe Tundamental transition
‘amplitudes in the Schrodineer revnresentation are known.

It is also sustomary te write the interaction renre-
sentation of the matrix element for the transition iﬁiﬂﬁiffas

CT Ef?l{tgi == ?. o -..ml T L
[ 7] =Ry (147 £ 0 Relimsay

ﬁiww+t =it

fey



and may be computed if the fundamental transition amplitudes
i {'kl'”"u'} £— Jpv }‘f) & E'{EW’EEW )t :'(pﬂ je=dm, r-})
in the interaction renresentation are known, It is not only H
cumbersome but also an impossible task to enumerate R}(%jjayﬁi}J
for all 3] and {1} . It is obviously a reasonable
asqu{rytition that when am aggrecate {L%a changes to the sgsre-
ga’tefnnly a few particles are involved i,e. only a few say
EY in LY cease to exist and a few others say {j3]
ape craated which tosether with those remaining i.e.?i}—f{&j
form the agqregate%g& : . Thus the R will involve only
ol + I!E particles and [E; -—F_faé = E:L‘F where |._a,t
45 the sum of enerey of all narticles of ag.qregate ‘i'&j
Mhis is precisely the assumntion that is made in puantum theory.
TIn electrodynamic s 4 +P =3  consists of two fermions and
a boson (photon) in the Yukawa interaction two fernions and
la massive hoson and in some 'catastrophic! interactions mors
+han two fermions and bosons., GConfininz ourselves to the
snhagzerezate 3 .,I’J in %’;i and fFj in % j
it 45 enough i? the momentum of the subaggrerate iP‘J is equal

to the momenfum of {:Lﬁ . fince we know from elementary

mathematlical analysis that

S TR S s | =
j § L APy 2 o Da) 4
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and

L

L(zhL+E}H]y
jﬁ } o>t = NEE (R p))

l: Iz,
{ =1 Ill'.: K
and since free particle wave functions have coefficient ©
o
it isﬁraasenable nostulate In nuantum mechanies to say that
Rl 853 e R = b Pt az P
1 4 ] JLBS & 3 P it

+
H{LPG < 3) = [wsve functione 03] [t opig] s

where iiaﬁ implies Integration of snace point X and all
the wave functions have the same matial argument x and =
denotes that L contains all the terms to the right of
. The total momentum of }4§ need not be equal to that
of fﬁj in the definition of H{{ﬁj&éiﬂsince-tha space inte-
eration ensures momentum conservation,

e can use Hi(tF"J = S ?FJ instead of R,{%_-F.j {——Eo{‘}) in
the expression for the matrix element nrovided we make Spétial
integration over all intermediate snatial vertices.

¥rom the point of view of elegance it would he desira-
ble that fthe concent of interaction should he introdiced in

snch a manner as to he indenendent of the narticular states

L and - under consideration i.e. only through
K pooor FfF;I providéd we know that we can enumerate
its value for all) ol and F} gand take chre that
Rﬂhx when overating on the amplitude for an aggregate

{{ ( to exist yields a non-zero value only if it satis-

fies two fundamental requirements :
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1) That {&\% is a subageregate of (L] 1

2)  {}} dould be added to T = §A3  without
contradicting the Paili prineinle (i.e.) the fermions
in agaresate EPﬁ should not he contained inpi} —f«f

This is achieved in elementary wave mechanics when we

are dealing with only sinzle narticle systems in 3 very simple

way since pd%  and Py contain only one particle and
YLy = fﬂ% » fssumineg that only diserete momentum values
ﬁ; ’ fb . bn ara ﬂﬂSﬂiblEfﬁ particle is known to

exist with momentum Ei y the state |g€> can he repre-

sented by a column vector with its 4 - element equal to

unity and the rest zero. Then if 4 3’ is a row vector
52 Fg ok = C:. ["—\J F'{ ll .'f> FE’-
provided < is g matrivx with components JQIB& « Thus

the revresentation of states by such eplumn vectors and
Interactions by matrices R ensures that the transition
occurs from state  |h» to |B) at + only if J
exlsts at time + :
In this mxim® single particle picture we should of

conrse ask the question how can a state ¢ change to 3
since rearrangenent with eonservation is possible only if we
have more than one type of particle. In such a case we are
constrained to treat the merturbation as "external" and
define R¢fi, a5 i

= ¥ir - _ 7

R =) ¥ @ HW @) d° .
where H is an external perturbation which is a function

of space and time, If it has an sxnonentisl denendence of
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e X
the form = ¥ then an a bsorption of momentum Cp

gecurs and

by P
The perturbation may be due to the particle like a photon
but is not included in the description of the state which
envisazes only electrons (i.e,) sinesle tyne of particles)
thotnrh the nomenclature that Eb + E b is the energy
of the nhoton-electron system is nsed in wave mechanics,
This is anamalous hut has nome:;tay due to historical reasons,
This is Aisnensed with in the more recent sinsgle particle
formalism of Meynman to he discussed nresently.
Turninz now to the amultipidfticle systems we amphé&se

that a columh vector and matrix renresentations of &L and

R resnectively are not suitable and we also have the .
additional difieulty in choosing ?_ﬁ} in Rﬁdxnonsistent
with the Pauli prineciple., This is done by the following
formalism,

Let us define a vacuum state }; as follows: the
sequence of amplitudes C {0 Y with C{(% =0 for all
excent the~ — —null aggrezate oy and C fﬂ} = | ;
Though we will not renresent any general state by a column

vector we can daflne > by the ahnove nrescrintion and
¥

gh as its hermitian conjugate such that
Ao lll' ‘q.

i g e
We then define a state renraesent an sggrecate E L} with

particles of momentum P, -+ P, as
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. _ - SF
LRSS T

which 1s the analozue of the column veetor in the single

particle case. a 5 i3 ealled for obvicus reasons the

ereation operator. 'le shall for the moment concern ourselves
..'.—

with a system of fermions, &n D‘P overating on a state

[ will renresent a agcrezate hLL} plus one particle

oF momentum b . If however H> contains a particle

of momentum b then .’.:_; J¢>;g. In such a case we can

define an annihilation operator af: such that b [ L>

reoresents the system without the narticle of momentum F

and then £ R
apllap)] < 1
since QT{: ] L> =0 We can also write
QPC{E‘{L>1G 32
On the other hand if ff> does not contain a partiecle of
* momentum f’ then r.'x;r,} [¢}=C and Ell ‘L>‘
renresents the system [L> plus a particle ofmomentum =

b and agciplc) is identical with state [0S . Thus
: + ; :
LLFﬁb IL> = }L> na.

a.': ""I:]'L> = 5 AL,

and

Therefore if we impose the enndition tﬁat r_']j_q ! u_tlf:;

the Paull principle is ensured in the renresentation of states

d,a,) (Q¢L++ ala )[‘ > - ]:i)- irresnective of whether
J'L,> contains a varticle of momentum p or not. It

i T 5
is therefore clear that:b:,r o ff-> we imply a state contain-

-

ing an aggreeate ¢ | : sequence of speratons v
ﬁ_i?_{_} whers .p,f 3 L% > indicates a series of
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creation operators, i.e. then EL*lf E':?J\>G - \L>

(but we know that 5‘22 = | ) s we would also like ¥ the
hermitian conjusate of  [¢ D to be £ | and therefore
we note that £ (| (> = |awl¢ilean be revresented as

L ajc 5 ) g

Por bosnns we ecan renresent states and their conju-
gate by the oneratons of the creation and annihilation operators
on the vacuum but we will define their commutation relations

only after invoking the concent of interaction.

We are now in a position to find a sultable represen-
tation for 2 R,Lg a0 that the two fundamental require-
ments are safaéfied; Extendineg these postulates of ordinary
wave mechanies we renpuire that {~ (’B é—cﬂ) — (product of
the wave Tunction of < )} x (product of conjugates of

wave Tunctions of 85 05

I¥ we attach to each wave Tunctiong the annihilation
bu
onerator arﬂ#its comnlex conjuzate the creation cwerator we

will satisfy both the fundamental conditions. Thus defining

P o= = 7 ags a field operator corresronding to the
|~ j"\ it

particle renresented by the wave Tunection i and e

its epmnlex conjuratex as

e
po= 2 Gp Yy

Ry 1s a product of the *ield variables and their ccnjiu-
JEE GO e

— %
gates, J.Zp Hy (_PE—* &) =2 TP .
Ir the case of bosons we are guided by one important

rule that the prohahility of the absorption of a hoson wien

+here arewbosons is nroportional fo Ly while the creasitien
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.1s proportional to T 4| « The amplitudes should therefore
be proportional to |+ andH;g;%ectively. i ki i7ﬂ>
renresent a state with 4! bosons, we would require that
o f‘ﬂ> JRFl (M b> , 13
bfw} = Ny 1 Rt

< T -
This implies the commutatiun relation that doy — @ Q4 = ;

Till now we have envisaged only pnositive energy states and the
Pield onerator obtained is %? ) WYg « IT we now allow for
negative enerey states as welihand nostulate that the annihila-
tion of a nerative energy particle is equivalent to the ereation

of nositive enerey antiparticie we ecan write

+ )
q,__k — bk‘; and u_(-—,#;,) - Y (R)
"hen the Tield operator snd s '
".! '?_ Ay —L k’x b—r { k,i{ 15
el = gg,'f?'ik.(‘ + by Uy e :
This exnansion is also valid for bosonz except that the 4 -4
-4
aﬂdﬁdn not occeur, In this ecase we have
HL-JF{?‘I + l_lt’,ﬁi
N = 2 (El e ¢ ’j
é’ B E =k bk 249

It is interrsting at this staze to disnuss whether
the internretation that the annihilation and creation of a
negative energy narticle is equivalent to creatlon and annihi-
lation of positive snerev anftiparticle also implies the exls-
tence of an unobservable s~a nof nezative eneresy particles.
Postulating the sea it is elear that the destruetion of =
negative energy particle in the ses would imnly the ecreatilon

of a hole - that is the creation of a positive energy antiparticle
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But 1s not this internretation valid even when there 135 no

Sea, as in the case of bosons ? The answer is found in recog-

nising that the postulate of the sea implies something more -

that when a narticle of snergy -— £  1s destroyed in the ses

0" a nesative enerqy, it lmplies that 41t has made a transition

elther to a nosttive enersy sta‘es or another negative energy

state if there is g3 vacancy. Thus thé total number of particles

dn the world if we include the ses

remains the same, Thig i3

equlvalent to statine that the total number of narticles minus
the numher o5f holes remains invariant (i.e) the conservation

of the number mf MEXEEXXEN particles minus antiparticles. That

is why in nature this conservation anpnlies to baryons and lep-

tons which are fermions though the concept of particles and

‘anti-particles needs only the internretation that the annihi-

‘lation of one imnlies the ecreation of other and vice versa,

'?ﬁa additional vostulate of conservation is equivalent to that
‘of the sea,
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4, Evaluation of the matrix element in field theory

We now zive 3 brief discussion on the various ways

of evaluating the matrix element defined as the inteersl over

space and time in ( (0 ) ,

a) The old fashioned aporpach.

This consists in performing the space intesration first
at each vertex so that we obtain the formula siven by (1 ).
The evaluation is complete only 1T we are ahle to specify all
the intermediaste states and thiﬁf“easiblg.only if we consider
approximations which involve only the first few terms in a
®erturbation exnansion. In such cases, the intermediate
states can be enumerated from elementary considerstions and
the correspondine enerzies aserlbed to them. If we used

the field theoretiec renresentation for 14u“%_ we have the
annihilation and creation operators correspondine to each
vertex and their rearrangement results in a numericsl factor
+|l~~| . This factor can also be ohtazined from general
arzuments of Panli princinle when we omit the annihilation
and creatlon operators in l4un+ '

The perturbation theory in this form is felt to be
"gwkward" and theoretical physicists "have heen at great
lengths to set up a relativistically invariant theory". We .
shall however show in Chapter V that the 'old-fashioned!
aporoach could also bhe used to sstablish the equlvalencs
hetween the Feynman and field theoretic formalisms in an

elegant manner,
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4/ The covariant anproach,

In this method we refrain from perfom ing the
space-time integration and reorder the vertices in the Feynman
sequence, The space-time intezratinn is subsequently performed.
The re-arrangement can he done as follows:

We know that the interaction term containine anni-
hilation and crestion operators #i%% the corresnonding wave
funetions attached to them. It is obvious that once the
expression for a "typiecal realisation" is written it is =

mathematically valid operation %o rearranse the operators

@fthout reference to the wave Tunctions. The result of such

a vre-arranzement of the annihilation and erestion onerstors
1s ultimately to yield the numerieal factor 41 or -1 in
view of the commutation relations. The wave functions are
suitably erouped so that we have a product of sealar quantitiess
and because of their scalar nature they can then be rearranged
so that we get a Teynman sequence of wave functions. This,
with the aporooriate sigpn factor + 1 obtained from the
rearrangement of the onerators yields the exact Teynman matrix
element, We shall describe this process of rearrangement in
detall for an 3 th order scattering of a single electron

by taking a typical realisation of the amplitude which makes

a non-vanishine contribution to the matrix element,

The |7 -th order term of the matrix element is an
inteeral over ' n ' space-time points, the time points

slone heine srdered. The inteesran? is therefore
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G I LR ¢ ST IO W %

If the initial state consisfts of an eleectron of momentum
2 does L) - Gj; > and the final stéta, an eleetron of .
momentum P;L then ﬁ.j) = CIL;?Gand avery kj:faj = @(3 S CPQ'J
The symbol > means that the factors on the right hand side
e contained in }ngnnd is used to indicate that we ignore
. constants and matrices which are not relevant for the nresent
digeunssion. We shall also for the present iegnore the photon

or meson onaerator #{a) and conecern ourselves with the bilinear

fermion onerators 'ﬁ}(ﬂj IV(&) only., Thus

S [ - Hew D P wewe [ dm &8 w8 B
_g_‘gbabrf"d} 3

where the symbol A denotes that the operators are accompanied

by their coreesnonding wave Tunctions., We shall now sevparate

. the nonerators from their wave functions and first order the

pperators as Tollows:

Consider a tynieal realisation

S S EN R HRR xR KN
gince the initial eleetron of momentum ‘Eﬁ has to be annihi-
lated there should e an 4  in.Bome bracket [R] . Let
this bracket bhe the first with an 6Lb to occur to the left
of Iﬁiﬁﬁ?%f This bracket would cmngain in addition an ﬂj%;
or BP, to the left of Ckh « ‘e now move a:‘"f to the
left of GLE throngh all the intervening brackets [R—I].nl1]
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and this results in no change of sisn sinee each bracket
contains two fermion operators none of which can be an A,
-I[_
or an iir: (the former by assumntion and the latter since
]

: 7 . 7
Llh(;‘ b,a>o =0 ) . Thus we have

[n] ... [R+] Df—ftjr(f?}[h‘—i]u- [Ijﬂ.h ﬂ‘t;>a 33

or

[»] o [pel] b (R=~T v (] Gp df;;){] 3

: 7
We recognise Clhr @ h;?% :_}E » 1T the realisatlon is as

i gt
in ( 33 ) we next move aﬁbiﬂgj to the rigdht of Clbj .

There should now be another bracket, say [3:] with tJ > ﬁfk
& containing an CIwahicq_is shif'ted throueh all the intervening
a gy
: b
brackets to the left DfiWhiﬂh arain leads to a numeriecal

factor =+ 1 and we have

[n] [§+1] qufg,: [g’—u‘_]m[ra+[}[n*:j.-:abiyﬂ;ﬁﬁ>ﬂ 3.
[ (g#) by g-for Do) [ n g iy

Thus we have =iven a complete prescription for the rearrange-

or

ment of the ovperators <L and 5E+‘ « Turning to the wave
functions corresponding to the ahbove typical realisation,

we can arvange them as

[n] oo [Upn ) Upifg,ﬁj[ﬂp;(iej ﬂia,(wj

- and 'iiﬁu{aj i]jFIURj can he identified to be a single

element of the positive energy part of Feynman kernel for energy.4 e,
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The sum of all such terms for sll possible realisatlons will
eive the positive nart of the Teynman kernel K+<3J R)
with -tj 5 {:fi’,

If, on the other hand [ R] had a bp1 to the left
of C{Ibl then there should be a b b! in a bracket ["ﬁ"}]
with ﬁ:mﬂ <;£-J since the poslitron should be created before

1% ¢an he annihilated, Thus if we have

P ~ A, A'_f‘_ —!'_
[ndeor [Bp 8p k)] o [ET ) by ] v add,

3T

A | At
we move LAP1 to the left of ﬁir] so that
_?L
ilhf{#t)CLb;;%
~
‘with 5 numerical factor (+ 1 ) and if we now move bbr(f?:)
X
S e Tatr Br b (:w) (i.e.)
(h [r MJ Tﬂ)] X r:.M “““CT
[ Jmmrj[n 7 By () Bt dgficy,

i or

F =
ﬂ-u[fumh-ﬂw & [6 o oy by €] 1 A% %
’?

If we now shift ‘5, (R) to the left of

I’Jfﬁ'njdﬁ Ubtain a

negative sien 1.e.

f_
e) ot e, b Byl e v
) %f’”hﬂj ,E (®) 31_ m) e ap, & x51>a Y

We now shift bhe pair _‘13 k) b+ (1) tu the extreme

or

right without any change in siﬂn and identify |er b h':> :1 .
‘This completes the prescription for all the operators.

As regards the wave functions, in this case we have

Enlll [Gpllhj_ubjtid]{.—ablflwlj Vel [



which may be rewritten as -
[_'ﬂj"’ [ﬂbnlbhj \{!_J.L(”T'LJ-_] L-Uﬁ;f(k‘) bLbi (;_E)j R 11]

Tt is to he noted that the positron operatnrs occur in the order

_l’_
bPFi) Ja[g,mjc that if they carried their wave functions with them

- - e =Ll T :l |
we would have had \"'ILJIHE] v_-_,* 6‘*" U 1IM‘IF' Vl.-,.f e é‘mwﬂich cannot be

identified with an element of the Teynman kernel for negative

.-g:.
- 4 ‘S.ﬂ
manner,; as to arrange then in the Weynman sequence and taking over

energles, However by shifting the product of wave function in a

the negative mxxamx sizn obtained from the shifting of the opera-
torg we can recosnise

— + LB (X ~¥ & _
g Uh'hhjrvﬁ’[hjzg g * 8‘31t_T4

E =k

o ha an element of the Teynman kernel for negative energies,

the sum of all such terms for all possible realisntions giving

k:éfﬁxk} Tn this ~ase we have deftached the operators from the

wave functions thyouszh the derivation of the field operators

was based on the concept that the wave function was attached to
the operator. This procedure while mathematically valid is not

in consonance with the snirit of the derivation of field operators
which reauire the onerator to he attached to their wave functions.
A1so the senuence in which the overators occur is not the Feynman
sequence. IT we wish to satisfy this requirement of elegance we
would insist that we move the omerators and wave functions to-

sather, In siech a case we will have to nrescribe a different

(1
method. ) A discussion on this method will te ziven in CkhpterX.

1) 4. Ramakrishnan and N.R.Rangansthan, "Stochastic Methods
in quantum mechaniers", Jour, of Math, Analysis and Apnli-
cations (in nress) (1961),

by
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n.Congequences of renlacing particle hy the corresnonding

zntiparticie onerators.

We now wish to point out an essential peculiarity in
the handline of nosition onerators. 'le have seen that in ob-
taining the expression Tor the Tield variable for the electron-
nositron field we have nsed the interpretation that the anni-
hilation o7 a nazative energy narticle is equivalent to the
creation of '8 pnositive enercy antinarticle i,e.
a(-F,-E)= b'(F +£) 7

But a5 Tar as the wave function was concerned, the transpose

as not faken i,a, 'LI.{—E) was renlaced only by V(+E)

or in other words, while the electron annihilation operator Clh
is attached tn its wave Tunction liF 1t is the ereation
operator for the vositron, b P that goes with its wave
function \/b . This we wish to stress implies the evistence

of the ‘'sea' ©of nesative particles,
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It is also equivalent tolthe” Feynman view point of negative
energy narticles travelline back 16 time 5o that the émerszent
poslitron hecomes the initial state in a Teynman matrix element
and (2) the existence of the 'sea'! and the internretation of
the 'hole!,

We shall demonstrate this ®=m in the evaluatlon of
the matrix element for positron scattering.

RPor eleetron scatterine the initial stats is lﬂgq;ﬁ>

Lbfé is matched with an ﬂlﬁ in the nerturbation

exbansicqhhich carries the wave function lLP and the final
electron of momentum P&, is represented in the interaction
term of the § -matrix by ilz' with the corresponding
transnosed wave function ilpiéi. The (L b, is matched
with alg_ in the final state ‘\/‘QIP&[ and therefore

we have the matrix element in the Feynman “crm

iIL [jra azators | W 47,
b |prope: ] ;
I opn the other hand we had started with a positron
state initially there are two alternative view voinfts devpend-
ine on the de®inition of the wvacuum,

(1) In the Tirst method if we define the true vacuum as
h}\ -0
so that the initial state i& ° ﬂ;ﬂ_) , the corresponding
/0

annihilation operastor in the nerturbation senuence would have

_————— —

the transnosed wave Cfunction \f(ﬁ? +-Eﬂ) attached to it.

Thius we would have

s T e % [ N3 bpﬂﬂJb>
AV Ve [ b Vol

4F



={4|[n]- f[R+4][Rfﬂ-~-L]+*][J*'}"'[g;=" b::‘bj[gp‘b*%&)]l%i
1§JH‘JP|:][£;JV%;]

(

where sinneilv Vl ig mcalar we have tewitched' the two
wrackets and hram 3
[{_) ol qt?JL b‘: } S0

we have Tor the ﬁrnﬁaqntmf

‘ : : ‘tf’ Q‘,( IR
= szjj1jpl(h VFIGFi) VP £ ) )

by He)

L=

= _a(r F‘hg_rl— JJLLt—F}lJ(L}E

and thers’ore leads to the Teynman nezative engroy kernel.

This the natrix slement is in the form

[?Tﬂﬁﬁ’ﬁtﬂrzij \jbgf

sp that the inifial ;tate soeirs ab the lefl end in essential
cantrast fio the case nf alectron seattering. This as We have
now demonstrated 15 mgsentially due +5 the wave function N
hein~ attached to 1j7; and 1s consistent with (&S ).

(2) I* we start with the concent of the sea and define
+hg yacuum as CPL;}*(—‘ED:_;G‘ so that the initial positron state
is Tepresented as the creation of a thole! in the tgra' of

negative enerey electrons and we nave in this picutare
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v VO 7 [ R bb,bg’b] (b5l aees)
(129
P B0l ), e el el ok,

and we have for the pronagator “‘ﬁ;Eﬁiiij'aﬂlﬂﬁﬁ*j

53,
thEﬁ@)Q_Eﬁm]%;lf;

I ——
SR L e

which a=7ain leads to the Feynman matrix element ( && ), Thus

we emnhasise that no matter how we may rearranze the operators

‘%E_far as nositron scattering is concerned, we shall slways

arrive at the matrix element with the initial wave function

\JF; ogcuarrine at the sxtreme left in the formn of the transg-

pose i;ﬁ i,e, the Teynaan initial state is the wave function

*of the emerzent particle \Jhi ‘

Till now we have interpreted only the annihilation
of a negative enerev narticle as the ereation of a positive
enerey antinarticle. The question natnrally arises whether one

can internret aguite renerally the ereation and annihilation

of narticles with a3 ~iven enerey as the annihilation and

ereation of antinartiecles with nnnosite enersy

1.e. aE) = g@-E)
at¢e) = bEE)



We emphasise that there is no loziceal inconsistency in this
view point, In Tact, if we now Tollow the convention that in a
‘matrix element all annihllatisn omerators should he nlaced in
the “inal state while all creatinn onerators are in the initial
state, then the 'vhysieal' and 'non-physical! recions in dis-
persion theary can be easily understood from the S- matrix
formalism,

I, for instance we have a nositron in the initial
state and replace the corresponding bf(J,—E) by an DL(—E) then
since El(~4£)is an annihilation operator WEIShiftlit to the

_iﬂﬂl state, P Rt 2 v i e T o

e

poania =7 Fhe final state 1}(}.EEH) is
replaced by ujz_ Eg) and bhrouzht to the extreme right.

La(-p-8)] s\ “Jr(' Pa 'Eﬂ"»

In eollisisn theory a nrocess is characterized by the narticles

o v T
e A G B i

Thils we have

in the initial and final statesgwthe ahove revresents the
seattering of an electron with nezative energy - i.e, in the
non-physical region. It is to he noted that we have not tam-
pered with the photon overators. Thus if the first process
renresents an incominz eleetron (of four momentum pb (E?EJ
and nhoton of four momentum uLi civineg a final electron

T n |- Y= th by our operation we have
‘of four momentum |5, ( P LEL) en hy

44
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agrived at a nrocess with initial four momenta g, and _'hﬂ;
and final four moments Cai; and ——b} . Defining the enersy
variable for the first nrocess as the square of the sum of
the initial four momenta, i.e.

A Gj!" (f,:!)l:([:’g+ﬁ,1)L S5
we Find that for the second nrocess it is -

3= U-t) = @a-p)* %

which 1s nothing but the momentum transfer squared of the
first »rocess. Thus for a ziven nrocess in the physical region
0" energy, our oneration leads us to an identical matrix element
which renresents the 'erossed' proeess in the non=physical

rezion ile. the fermions having negative enersy. These two

;‘mat'r‘ix elements actually renreseat the risht and left hand cuts

on the real axis of the comnlex enersy nlane, It should be
stressed that on these areuments 1t is possible to establish
the link between these cu$55 only but one cannot bridee the
actual unohysiecal zap hetween —-mn and + v (where ~v is the
mass of the fermion). This requires the prinecivle of analytical
continuation which led to the now well-known Mandelstam
renresantation.

The general nrocedure in a dispersion theoretic apnroach
when we are interested in a ziven process is to arrive at the
'nearby' singularities on arcuments hased on the conservation
of guantum nuombers in initial, final and intermediate states
whirh are now real., The singularities are noles in the case

of single particle intermediate states and branch points for
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two or more particle intermediate states. The former arise
easentially due to the vanishing of the propagator for
real intermediate states and our previous discussions on
scattering has to be medified by the insertion of an (&

in the denominator vhich decomposes the propagator into a
principal value gnd a o funciion part is

) p ol TS ) 51

,-'Iﬁ- L e L B i i /1"-_:. e

In determining the allowed intermediate state, we
make use of the conservation laws of gquantum numbers like
the isocgpin end strangeness,

By "order of any perturbation expansion' we mean

the number of vertices in a Feynman dizgram and we have seen
that in the particular cese of Oompton scattering in
the *1|h' order, there are (m—1) propazators and m [ field
theoretic diagrams., In general the number of propagators
will depend on the number and nature of the external lines
and the number of lines that can be associated with a single
vertex, the latter depending on the form of the interaction.
In the most general case when there are N in-going and
M out-going particles (£or usually = 3 snd ™ > gfor
free particles) the correspordence between vertices and
propagator is not prescribed in any simple way if we assume
that there are more than three lines at a single vertex.
However there exists a method by which we can uniguely
prescribe the seguence of intermediste states by grouping

a class of propsgatoss in such a manner thet we can follow
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through this sequence from the initial to the final state.
We ghell now demonstrafte that in this sequence we shallnot
be concerned with the order of the perturbation expansion

but only with the possibls intermediate states in a sense

we are dealing with a non-perturbative approach leading to
the threshold of the methods of dispersion theory.

Ve shall henceforth characterise a Feynman diagram
not by the order bus by the number of internal and external
lines, While it is true that the sense of time iz dirrelevant
for an internsl line in a Feynman disgram +the external
lines fall into two classes - initial and final. TLet there
be N initial, M final and | intermedizte lines.

By this we mean that under the adiabatic hypothesis we have

only the N particles ap L= — % and the ™ particles
T ) e « We shall characterise the initial, final

end intermediate particles by the four momentEL<Plj By st 4 h‘N_)
(Fr 0 D2 5002 M) and (4, 34, ..y Ac)
regepetively. The four-momenta A ... 8, represent
virtual particles i.e. particles off the energy shell, We
now stolte the following rule for the definition of an inter—
nmediate state.
Suppose we are able to clip [ of the internal lines

such that the Feynman diagram separates into two dimgrams
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(1) and (ii) such that N c(iy and N c(iry i.e. the
initial and final states get disconnceted. (i) now consists
of N dnitial smd 1 outgoing lines. We shallw now say
that the perticles represented by the 1"\ internal lines
is an intermedizte state. OFf course all the particles repre-
seanted by [ are off the energy shell. The diagram (i)
can now be decomposed inte two diagrams by clipping say

6. internal lines such that N and Y get separsted
and a similar procedurc can be adopted for (ii) and the
gequence of intermediate states as we pass from (i) to (ii)
uniquely determined. This of course is formal and does not
give o detailed analysis of the classes of possible inter-
mediste stotes. Howaever the apporently trivial interpre-
tation in the definition of the field operator W  that
creation operator of the antiparticlc as egnivalent te the
annihilation operator of a particle of negative energy has

non-trivial consequences by our pregscription. In faect, even

Trom the concept of elementary perturbation theory the
switehing & of Initial and final states has been shown 1o
lead to the 'ecrossed' processes. Generalising this to our
present cege, by switching one of the ™M final lines to
an initial one which now represents an antiparticle with
oppoaite momenta we have @ system with N+ dinitial snd
f — | final linee. By our prescription, the possible
intermedinte states in the two cezses are mitually exclusive

by very definition.
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We shall etfempt to express these ideas in the form

of a "factorization theorem" relating to the dynamical varia-
bles of the initial, final and intermediate states. Writing
the matrix clement for (N initial and {4 final particles
25 {4q"|q')- i "rllh-ﬁl i:l'l by v 5:’I‘~J> =
IT a possible intermediate statex is characterized by the four
momenta A, ..« A,; , a contribution cccurs duec to this to the
total matrix element, This is of the form

J <%'”'Lﬁi1{51“'4hilﬁ”'hN> Vil

where the integration is over the intermediate variasbles.

If we now consider the 'switched' process with s+ initisl

‘E.nd H—| final particlez such that the matrix element iz now
L%y et | B o By =YD (o

In this form the contribution cannot be expressed as before since

the former represents the intermediate state only for the

» Process (M N and not ok fﬁ—g N +'l) . If for the gecond

case the intermediste variablea are aS_,I ””ng the contribution

o the xx matrix element is

J LAy iy N s ﬂiihﬁ“#w*%)
&f

Some difficult guestions do erise in explicitly under-
gstanding the dependence on the intermediate variables, For

instence, we have assumed a senpe of time in defining initial
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and final states though when we decompose the diagram
into (1) and (ii), the | internal lines now become
'fingl! for (i) and initial for (ii). We should therefore
take 1nto consideration the sense of time by suitably swit-
ching fthe lincg of the origingsl dizngram.

It is to be neoted that while the sequence of
intermediate stetes is now uniquely determined, there
is no restriction on the order of the Feynmen dizgranm.
Henco in spite of the sceming perturbative nature of
the arguments the formalism is essentially non-perturbative.
We hope to examine the prescise meaning of this non-pertur-
bative approach and its rclation to the Mondelstam ropre—

gsentation,



CHAPTER TI

DENSIT™Y CORERELATIONS TN QUANTIM MECHANTICS

|. Introductory Remarks

In postulatine interactions we have areued that
the essentlal featnre of the interaction term is the bi-
linearity in the fermion and linearify in the boson fields.
In the definition of the field operator we have made use
of the fact that the annihilation of a negative energy
particle is equivalent to the crestion of a positive energy
antinarticle, The question arises whether this already
implies the existence of the Dirac 'sea' or not. It was
argued that *he postulate of the 'sea' was enuivalent to
the additional vpostulate of conservatlion of fermions. This
concent of the 'sea' has very larsge consenuences., In fact,
it was shown by 'leisskopf that the existence of the 'sea’
immediately implies a charge snread for the electron lsading
to a lozsrithmically divergent self energy.

It ig felt that g deever insicght #into the problem
can be ohtained hy introducine dif°erent times into the
equal time density fuactions defined hy Weisskopf 1in 1939.
This immedistely leads to = derivaticn of the modified
Wayhman kerpel. It is also weorthwhile to extend this to
mEmtpukake multiparticle phenomena through the forseolism
of auantum field theory. The mathematical operations are

of conrse similar to those of the single particle case,

21
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since the creation and annihilation operstors are lndependent
of tlme. The extension is made in two Aistinct ways :

(1) throush the electron-positron field with
only positive energy states, and

(2) throuesh the electron field with the 'sea' of
negative enerey states, 1t is found that in doing this,
the coneept of the Teynman kernel for a many particle system
comes out as s natural consenuence gnd therefore charifies
the role nlayed by the Panli principle.

The formalism has two definite applications:

(1) The study of secattering phenomena. This aspect
ig disrnssed in the last secflion of this chapter,

(2) Correlatinn problems. For instance, in pion
nu~leus scat“erinz, the seat of the notential is not just
the nueleus but the individual nucleons. Thus the double-
scattering matrix element would ohviously be welghted by
the donhle correlation functisn . This approach has recently
been initiated by Watsunl} and others,

Section & * In considerineg multiparticlex
systems, we shall first assume that there is no interaction
between the narticles of thiiiii?i In analogy with the
concent of product density functinnsg} in the study of
avolutionary stochastic processes, we define the equal time

quantum mechanical onerator

1) K.M.Watson and R.R,Johnston, Nucl,Phys.,28,583 (1961)

2) Alladi Ramskrishnan, Proc. Camh, Phil, Soc.,
46 , 595 (1950),
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where the YW -4 are the field operators at the same time 1=
and j{_ﬁ the density onerators. To get the density fanctions
for a svstem in a sziven state we have to take the expectation
valne of this coperator which will he shown to invnlve the
gcorrectly antisymmetrized (fermions) or symmetrized (bosons)
wave fanctions, 'e now demonstrate this for sequent oroduct
densities }}Tbl} at Aifferent times which is ohtained by
replacine the énace points !ZK by space-time polnts #w{ in

N5

The definition of the field operator HJ in the case

‘nf fermions can take twn equivslant forms, one which in-
volves the crestion operator of the positron and the anni-
hilation operator of the electron and the other with the
annihilation onerator of a negative enerzv electron replacing
the creation operator of the nositron. Wo now develop the
theory of product densities in both these fermapdsms.

1 (1} Rlectron-=nositron field

The field variable at the space-time X% Xk is
i *Li‘“k e L%-Khi
X = 5 j@e U, e + b.ar @ |
¥ Or) zgl-].‘t V e g R
where  Gg and i;% are the annihilation operator of
an electron and the erestion operator .of a positron of four-

momentum fi respectively attached to 1L and 1/ the

1) Alladi Ramakrishnan and T.K.Radha, Proc.Camb.Phil.Soc.
57 , 843 (1961)



‘corresponding spinors. Tha bllinear term '.“HL-ML at a space- 5‘{"
I
time point }'\h would read

e L At A

< S AL TS 4'r:, g &) AT?T”H-F}::’ (R

wr’ibl g, g+ Dy, T0F by S [ H B By {
=22 k]

where the symbol A indicates that the operators are accom-
‘panied by their corvesponiing wave Tunctilons.
We ghall now anply the above considerations to deter-
mine the density correlation funetion }: at v points due
+n Y. electrons Tor the followine cases 1=
(a) One electron and two space-time points(m = | , M=3)
(b) One electron and three space-time points( ~,-(y m-3)
(e) Two electrons and three space-time points(m:=2, m:=2
;‘ (d) Two electrons and four space-time points( o= i,'}'ﬂ:{f)
a) f1y :

F. = f@FO = Z > [R]0] wheneTta>t

W &

The initial system consists of am electron of momentum cbu and
__.hence one of the hrackets has to contain the annihilation opera-
tg\z: 'L%Q . fisssciatad with this .a\cr’,n we can have either an
.f.'t.g’i or ‘a b‘i‘ o Af 1 isiah ?.’;:r%u y this will be annihi-
lated at a later time (i.e. at t&’, ) by an ‘a.fﬁi which has
to contain an atf: (2) to 1ts left since the final system
is an e%ﬁctrmﬂ of momentum 9, .« If the other hand ’f:;:czrd
‘has a I');_br assoeciated with it, a positron should have existed
hefore it could he annihilated so that (TE)_T‘;L! should bhe
associsted with space-time point (1) . Thus the only nossible

combinations are

i LT el ev g has Reen JIT--'A{E';L-'UI;-:E';F by H Romokvizhmon — a
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the nezative sien resulting due to the anti-commutation of the

operators 1n the rearrangement.

Thus we see that the contribution to the density con-

sigts of two parts:

N
(i) Startine with Gﬁb at (1) and going to space-time
A

—
point (2) and (ii) starting with < 95 at (2) and goine to (1).

‘ince t1>'t] (i) revnresents the eleetron going forward in

time and the kernel to he used turns out to he

—;.-
2 Chi,h"} DL‘E;' () (tl}iJ}uhile (ii) represents the electron
"f"-f;

Nepine! backwavn in time and the kernel for this is
. @) - al «
Z Lr) fnci,é‘d = HZK_{: a_,,ma’ 5B tivd

Thus if e ﬂefine

(}‘\' ?&) ‘Z%G‘fb{xm%{ﬂfﬂr &}t;

R e J
T o)y ELYE
—i’b - "(fr

be
we recosnise k4_(K i’) to/the Feynman ternel and the

nroduet density can then be rewritten as
(1)

e -, !
= AN %f;” |<+(a, n)ﬂ%bﬁ) s {”‘??:EU k+{|,2)a%f-2)

>¢,
This form 1s also valid for the case ta d_f1 .

oy

. 29
AT A
(2 fUGT ()
> A0 &8 0G0
and ~ ' .
A i A
¢
% !}(‘{J {J) Q%L- {Q_J bqr“) ﬂ%‘au L
T_he second term can be rewritten as
AT AT L ~
—~2 oy b%‘ (1) brz‘fz) Aq (2) L

fo..
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(b) By arguments similar to those in (a) we find

that when the initial and Tinal system consists of an electron

of momentum 9 , in the product

3. - f P 3 Y [3]/a)[1] win ty> £y 2,
A R

3 I
only the following five terms give non-zero contributions.
(1) > ﬁf{?{; AT U0 a@) Ei.‘?:; o (1)
49> . 2
A A ~ A “ -
o o A Oz Ba_ (2) a (2,0 1] {)
2. 9.3 agPa, k) dgas 1) ja

4.9
A%fﬂ} K03, 30 iy (P8 )%f’) .

(11) = e « -
2—. &(3) G 3 BT{E_} &*?1_; atiu o (1)
& Ch
o i) [ s 2 Al
g %;aj [ b"«(i'} Ei’fzy q%'@ qﬁ:rfu‘]%a)

¥
(_{%:1) [k4_( 513) k_ﬁ_gr UJ a:ij’) 13

]

' If the above term (ii) reads
Cin "\T' -~ N
NENE (3) ?L_}{-'&} b (3 aﬁu & (1)

as it would iT we merely use the definition ﬁﬁ'qj s then

the rearrancement yielﬂs no necative siegn and

-t
(2 (3
{cww%f :-!—ZC‘L(.}J %_)

cannot be identified with the Feynman kernel K+i&j5)gimilarly

the other terms are
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which gives rise to two diagrams

(1v (aj}_z o H[Q a2t (U J: f:;& 3)](1 (3

= L’fLK.:_] Ky (Q,. f) kJ__(!,,?:)&\%ﬂfi;r

i-.'.
(iv (b))
- A 0 &, 3 al @ (2
E‘L {I’J}[JL%’ ) E(EJCA ,(Jt:’ fJJCl )
. a%tu ko )kl (5sa) 3‘%@;
(v) Loty L AR 7]
i gq,. a () bIWJ b (2) bTﬂ_) C*Tf‘)
<9 ¥ .
AT‘ 7 i .}- ry e (
] é%““%f”{ by (0 by ®)61g ) ?‘] e
.«1"

= g 0. ke (12 k‘F(Q‘B)a%@

(
b 5{ Vo Pe)PayF()  with Ly >t 5F b
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But in this case we have a system of two electrons
of momenta gq  and 9 and in addition to the six diagrams
for 9., in (b} we have identical diagrams for Y, - We
alsc have the possibility that when one of the narticles,
say Fls i exlsts at a polnt, the other two points may he
connected by a kernel which takes ﬁ” from one pdint to

the nther., Thus we have the terms
sl 2 By el Tag () AT Gy @t J
% Q'ﬁbf%--’[“‘i ' ?,j] 9, [’ia@ o

AT A
- a%m SREN) Gl.,:brf{] N%(sy

Ig .

where fdgf is the numher operator for ¢, . Theee such

L&
terms arise for ‘1u existing at the three points and similar

terms when ﬁ;r exists at the points and ¢, 1s connected
by kernels. Since each kernel csn occur 1ln two ways corres-

pondine to nronagation forward and backward in time, we have

on the whole twelve such terms.

oy
(4) '}zf = Ry PRy with €, >T3d tq>t’,
This is merely an extension of the previous results,

Wle shall however take the terms which lead to the anti-

symmetric Weynman kernel for a two marticle sfate, 1.6,
At A = ey A f— -
Z @ (&) ﬂ(@}a{.&lfﬂ)ar’w ﬂrg; Yy Aa )
<95

which yields

@- MATHER
'rl’ "‘\ ’ .-.:Ir-/
I'-- LIBRARY

...............

X _MaoRas, * =

--__,_—
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&%ﬂruja (5;&’\ Gy ke (L, )q%ri,qim
%‘f;;a_?‘ () K2 Ky (30) Q_L_ Efjaim))

Z 7;01,} E'\-{-{fﬁﬁ)qjafaj b('-‘-f)ﬂi (D,Jllin (1) qffr)

*agji,,a Ky (L,4) ky (2, 3jﬁq<hj%ga)

+
__(— aiJHdE?JK+ﬁ%4)K+f“3)a%ka€9a

If we require the final state to be antisymmetric, we

find that the kernel KQ—(4! 332,17 1is also antisymmetric,

{illi-.-)(ii ﬁ3 ek I) = k—l—(..l-’rj 1)1(_4_,(})3)- Ik-l— (LU?') J<‘L‘(3" I)

The extension te more than two particles can he made in
the ssme manner and the ™ particle kernel can be expressed

in the fnorm of a Slater determinant of the single particle

kernels,
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2. (b) Electron field with nesative enercy states.

The results »f the previons sectinn are now de-ived by
extending the instant »roduct Aensity funetisng defined by
V.5.Weisskonf as es~ly as 1939, while studyineg the charze dis-
tribhutign in the nepiehhsurhaad 2f an alepctran. Tt s interast-
ing to nate that a straishtforward extensisn 5° this definition

tn sepuent oroduect densitieg leads to the natiural dedoetisn of

the Yeyvoman kernel nat ﬁn1¥ Por 5 sinele particle but for a
1
system of ¥L particles.

In this sectiosn we 9211w Welsskonf's notation and
write the instant density operatar as
- 2o % —3 oy
Ffley = v eyy@®) —o
= =X
where YI(A[| is the field variable at the space point %
and 6 is the density of the unperturbed electrans in the
negative kk® enerzy 'sea' and has to he subtracted in the
thole! theorv, We can define sequent density operator as
_,‘|-
PR = PR Pitk) —s 2.
The field variable QP(EJ at the snace-=time vpoint ﬁkés siven by
YR = = 2g P (R)
1
wher2 the sum over % is aver bnth positive and neesative

enerzirs and 4; . 's are the electran-wave functions mormalized

- gy R S o
[9g R, ¢k § = b

Thus we have far

gsnch that

1) Tt is = curious historieal fact that ten years had to
glansc sinee Veisskopf's paper hefares the Teynman formui-
lated his theory of the oositron.
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=t Z5 5l 6, (), 6, @470 4 B0
E Y 9 %”f;,’” 7 9" qb“ ﬁb)

(2t
L
L
+ G
Since E&x and 2

(2)
% ‘51? @, (ﬂf)n‘g;ﬂ@ - CP fi)a, ; %,,, O) 2

satisfy the ususl anticommutation relations
for creation and annihilation onerators only combinations

of the Torm

g =
ﬁ,- , oy = N
g 1 9' 9 g, Ng/ |
an &
O = N (.]'— o i 1)
Vo g1 Hgr g e

which are dlagonal give eontrlbutinn to tha exnectation value
of ?‘ «: Thus

frayer = Zg NoNgr+ 3z Nyling) dcarg, 2, g, 1y

il .
Tn the one electron theory we have g~z o and assuming the
single narticle to he in the state sbu , We have N =)
and r$:0 for 9, %4, then for tlbt,}
13 ; ; N %
e = Beeieas — ‘r d: (z.) ri} ( 2) qp r:,)c;; (l;. 2
%CP(L)#) (1) can be easily idpntlpw ed as the unmoidif‘ied
Teynman kernel f{(z ) .+ Thus }f VPO -"} I3 gLuen 55(
1}
EOE ﬁ’%ﬂfz} Rol2i1) @ (1) 5
In the Dirac hole theory < - é% th and for the vacuum all
N =} gagnd all =@ ., So the product density function
.._GLI _'.{:L
reduces to
Ve
e ‘P (jcpr.a_)qb(}c,é(;) 3.
2 +1€ c?/ =

This can be interpreted as the vacuum fluctuation effect due




to tha neczative enerey electrons in the 'sea! when there
are no posttive energy electrons nresent, Now for vacuum one
%..1 an

positive enarey electron we have all HV

for jtf[; . Thus

hﬁC+4

7 4) fl}czbf’a.}cp (f'}q‘,r(rj

a N =6
LL

2 Cayl s & (o (0— g
+ cp_q) ) l. 2 qﬂ ‘%. %Eucp%mj 45__%( B ;
Thus -

Vae +1 Yar
Z v
T Y o Bh e (yb*
SR NS SRR AN R N IO

Thus we kx see that the contribition to the density consists

of two narts =

(1) startine with ¢Eﬁ at (1) and zoing to space-time
point (2) and
(11i) startine with (ﬁ% at (2) and rolnz to (1),

Since 't >'t' (1) renreser ts the electron going forward in
time and the kernel to be used turns out to be 4 ¢+31z(2}¢ ()
£ with summation over positive energiea only for
f;-“i} ; While (11i) mar represents the electron 'zoing' back-

ward in time and the kernel for this is

e ? ¢rL(r'\ ¢L;ffl

—, 1
with the summatlon only over necative energies, Thus if we

define
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K (X x) =

™M

g

#
{71]__:. o (f‘) (ﬁ_}_%(x) '}’Lﬁ ‘t; > t

=D

*
= = 5 x) x) 4
| Z ¢ VP0Gt g
we recoghize J(qF(Jf;X) to be the 'Feynman kernsl and the

product density can then he rewritten as

(1 * . 3
B AL gb%(r} Ko(h2) ¢E&%}+fﬁzﬂg{2) Ke(2D C1)
This form is also valid for [, <& ¢,
mn
(v) &y " f6% s -3 ana o=l
(1)

¥, = DY)y fa 135627

-
CPJ{ 3) K, (3:1) f<+,(zn}<_£%§')+ ch%fzﬁ Re(21) kﬁfr;s)cbgf;al
X * :
+ q5%(f) Kl 153)K4(3,2) tb%glwrgb%(n K+(“2"}K+‘~’313)¢¢$)

. i
Hy (2) KL (DK (30 q'Jng + cb%(:ﬂ K (3 KJMJ%E:J

= b et X

Foz ClL;% (3) k+f'.j1 2) qi_%_(-illi 4(5?/0 (,)cjj%ﬂ(;)
7 * _ Sk

+% sﬁ_?(i) K+(?;IJ¢>_¢£O qb%(a)cp%fa)

* X
+ D (3 Kk, (3,060 ) B ()P (
= +40 2) .
The last three terms correspond to the contributions
to the density from the nerative enerzy electrons in the sea
or the ohysical vacuum and are =enerally known as 'vacuum

fluctnation terms", These can be eliminated as should be done

in any physically valid theory, by adopting the subtraction
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procedure for each pair of points when the particle ¥, is

at the third. This nrocedure can be zeneralized when there are

more than three points.

(c) 3:"31 = I ) £E0). wop Jf.:,;_ ‘:?fl‘:tris given by

E rﬁr“(_a} Ky (3,2 K (-s?.f)gé (:J + C;E'.Jé(z) Ky K, {“3]4)(3

i,

b d%?/ DK, (3 K., nqb(:) +¢> () K, (1,2 K+(2;33¢(3J
+ % (Qj Ki(2 k(3,09 (;)+<;s (3,) KJ,(&;IJK (, 2) <}5?/(13

2y er (3)”{ (3,20 k2 ;JgL (f)+c;b (l}k' (21) K (h3ﬁ¢ (3)
+4> (N Ku(h3) K43, l}¢()+q5 EY &l =) K6 3)<p (:.-J
+¢% (o)) Ky02:3) Kk (30%(0+¢ @Yk G 1D (hl)f%(‘*)

Y
4 Mca) eG4 (2) ¢, mcﬁ(o+4 () K03, ljsf)*’fljc? (13"?»?(1

ﬂf’ ( ) K, (2 f)dJ(fJf# fa)fﬁ%(i)wj (2)K, (2,) 4 (ajgbr_a)q,fﬂ
+ c;b (3) K. (3, ch;amqb r’w (z)+ cb mm cdjl)gbmgb {1}¢{;]
4 % m Ky (2 ¢(3) d’» mcf@( )+ 6, a)k (2,3)¢, fe-w <’”¢fﬂ
4.% D Kilhdd (2)4J mcb () + <i>*(|} K,(12) ¢ fl)ib Cs’)cp f&)
AAHOWNE 43{33# ar) mﬂb%m K (LD (zJCb(f'}
— 95, (P K310 dy () b 0) — $,7C2> K308, (1) 9, @ fﬁafﬂ

36
@ e twumrry ‘{?.;Mﬂ?r‘ld,ﬂt,#_&.;*ﬂ terms .
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Thus we have the six diagrams corresponding to these in ( b )
for the two electrons of energy %, and qﬁ and in addition
we also have the terms corresvondine to the existence of the
particle Q;D(‘@‘) at one of the points while the other two
points are conneeted by the kernel which takes f@}(tpaifrom one
to the other,
@ I o =l wetar me 4

This is merely an extension of the nrevious results,
and sipee no new principle iz involved, we relewste the expres-
sion te the Apvendix, Ve shall however croup those terms
which lead to the antisymmetric Teynman kernel for a two

particle state, i,e.

43%*“*)@5 (3) K, (3,2) Kk nﬂjlq‘) (z:;c;b (r)
d
+ ¢ {?*;c,b (4) K (4,21&(30«1)(:.):# (r)

= t’a)%(?:)k (3 1) KeClyih) gb(i} )‘P (f)

— - CP‘I«! (3J¢ (4) (z,,,:L) K403 *)dﬁcp 2)9!)(’)]
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If we require the final state to he antisymmetric, we find

that the kernel k}f 4, 33 2, 1) is also antisymmetric (i.e.)

Kilhs852,0= K, (1)K (3D — K, (4, DK 311
The extension to more than two particles follows immediately

and the 71 particle kernel can be exnressed in the form of

a8 Slater determinant of the sinecle varticle kernels,

It is relevant to draw attention to some nbservations

made by Teynman = 1pn this connection, In the fundamental paper

in whiech he introduced the kernel formalism he made a snecial
reference to the connection between the minus sien occurring
before the sum over the nevative energy states in the definition
of P(+( 2 4, 1 ) & (when sz:f f] ) and the Pauli princinle.
Later in introducine the kernel corresnondine to two narticles,
the antisvmmetrical formn was nsed hy calline into aid the

Pauli prineinle, ™Mherefore it was clear that the existence

of the mlnus si#n in the nesative energy part of K, while
" consistent with the Pauli nrinciple, is not coequal with it,

In snite of this Peynman seems to have attempted to deduce

the Panli nrineciple from the sinzle partiele kernel itself by
studying the nrobahility for an electron to eo from (1) to

(2) with any number o virtusl pairs occurring and proving

that an inconsistency occurs unless the Pauli prineiple is

invoked,

1) R.P."eynman, Phys, Rev., 76, (1949). See discussions
on pages 75% and 758,



Our eounsidoratliosns howavar lead to the eancliasion
that Che kerauls o0 single 9=rticle, tws darties and
far Y\ , cam be deduccd by sace assuning the Paali prin-
ple and therefars it 1s not pnassible to spesk o7 the sinzle
particle kernsl itself as implyling the nrinciple in its
entirety. Or in other words, the Pauli orinciple implies
at anee that the Yerncl for tha single particle is F(4#

and Tar two nartieles is asntisyametric.
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2 (e) Density correlations in the pras=nece of interaction

Till now we have heen considering the case when there was
no interaction, (i.e.) the state of the svstem was the same
from T —— o5 to t = 1o and to gzet the density function we had to

take the expectation wvalue of the density operator hetween

6Y

the same stafef£¥> . However if we "gwitch on" the interaction,

the final state 15 not the same ag the initigl state and
therefore the transition matrix element fmm a definite ﬂ‘i)
to [$> is given by <;H5]{,> . The 5 matrix is an intesral
over space and time egiven by ot i
" i

S= Pexpl&id [ ;M (x)47X
where P 1s the Dyson operator and ¥ is the interaction
Hamiltonian density. Since density onerators are funectlons of
space and time we have to take the exvectation value when the
interactlon is on, l.e. | ( }i S:
where | 1s Wick's time operator with the understanding that
we have to write the set of operators in 35', then feed in
the S matrix and use the time ovdered produet in the inte-

wrand Then we have
TP (2 £ = { P(ITLY®Y] i §
=T § W' 6020 Wy |
whera(ﬁ{%ﬂis recognised to He tha nrovacator in the inter-

getion representatian definad as

Al

3%

be
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‘ ﬂﬁd a9
)
sy {—i{[d fm‘*x d?x*”dx < {wmw

Gl = mﬁ BE (x i m)f)
= S
S "*f mf'{j'}fmp!d#“rm L dtx <T§cﬂMt(H'm,‘)

T rhl-ud — o 3L ke
31 (‘Lm )’ ‘JI?K
M'
Takine the sinnloasgt case of an electron being
scattered from an initial state P to:a final: state Pi
in a potential field which is ftreated as classical and
not quantized, we find that .
- . LBy —L b X
E}(ﬂa}m%’lﬁ -’Lji:_} = fJ EF e {b 16;(1;!) w e ch{irxldi’t\
X, X,
= Wt .

M =
where L{a'fp”) 32_5 C’Lb% i1s the expectation value

of }29 obtained by infeesrating over }4} and XL .
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It is evpected that the above considerations
when applied to scatterineg processes will be useful
in
in nnderstanding the structure of the phenomenon. Also
the eorrelastion functions arse of some importance in
naclear nroblems, Tor instance, in the study of vnion
nucleus secat‘ering the pion-nucleon interaction is modified
by the presence of the remalning nucleons 1n the nucleus
snd in the second order mstrix element the effect may
be included thronegh the introduction of double correla-

1)

tion functions,

1) R.R.Johnsen and K.M.Watson, Nuclear Physies,

28 , 583 (1741)
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CHAPTER IT1

)
ON THE DECOMPOSITION OF THE FEYNMAN PROPAGATOR

|. Introductory Remarks

It 1s well-known that with the advent of the Dirac theory,
prohlems in auantum electrodynamics had to include tﬁe effect of
nezative enerey in intermediate states. But the Feynman formula-
tion of guantum electrodynamics characterized by 1ts "ilnherent
covariance" made the distinction hetween positive and negative
energy in intermediate states unnecessary. This formalism of
pourse esuarantees covariance under nrover Lorentz transformations
which hawever cannot prodnce a change from positive to negative
energy. It is therefore felt by the author that a hetter under-
atanding of virtual processes is possible if we can study the
separate contributions to the matrix element from positive and
nezative enargy intermediate states.,

| This is possihle if, in a perturbation expansion the
spgce intesration is perﬁggg first and the time integration
suhsequently in the "old-fasnioned" manner unlike as in the
Teynman formulation where the integrations over space and time
are nerformed tozether.

This method gives a clearer picture of the contributions
due to the different types of virtual processes. It leads to the
snlittineg of the Feynman propasator ad while not affecting the
glegance of the inher=ntly relativistic aporoach, reveals the
structure of the Teynman propagator in a manner which facilitates

the computation of the relative contributions from transitions

¢ A ] T k- § n :
LA Rov~akzigh mows, 7. k- Rodha o R thivwge | Prov. Tmel. Bcad e Lo 228 (196



o postitive and neeative enerey intermediste states. In
particulsr, caleculations lead to the apparently paradoxical
result that the negative energy states do contribute even if
the electron in Compton scat‘ering is non-relativistie, It is
conventionally accented that when the initial particles are
non-relativistic, the enersy dennminators bhecome large For
nerative menercy states and therefore the contribution in
guch cases can he neglacted. This assumption may lead to
erronenls results sinece the numerators may also become large
and this can only he studied by the use of the decomposed

propazator

9o Decomnosition of the Teynman Propaeator

In the Feynman picture since a nezative energy elec-
tron travels hack in time, the positive and negative energy

narts of the intermedinte state can be senarated

73

1) The paradoxical result that the negative energy states
should contribute even in the non-relativistlic case seems
to have heen well recocnized on tha ground that the opera-
$ors Y connects the nositive and negative energy
states.) What we wish Lo emphasise here is that the rela-
+ive contributions can he studied by decomposing the Feyn-
man propazator. the energy denominators in this case being
naturally dif”erent from the field theoretic case. This
is sp hacause the definition of the intermediate states
in field theory refers tp systems of electrons, positrons

and photons while in the Teynman formalism it relates

only to the electron.
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by splittineg the time inteegration in the perturbation
expansion (i.e. from T= —a5 to t = —+eo4 ) into twe
parts corresponding to the ranges o to o with energy
+F and — <«  to © with energy — E respectively. The
integration over space variables alone in a perturbation ex-
pansion say for a nrocess in which an electron of momentum
?? ahsorbs a photon of momentum ?g y Wwould amount to
pilcking out from the kernel, terms corresponding to momentum

Sy
F‘-.'LC{,. and energy £ equal to

+ Ep o= 2P )2 2 ‘.
Peg” V(p+g) Hm
If we now perform the time integrations separstely corres-

pondine to —+ EFigf: and — Eﬁaji we havaikfcr the

Feynman provagator in momentum renresentation,
-+
| - [ }5+'m
= - =
i CE : a—E> =

= - T‘Ei_,_ Ead S ] 9,
(Ea 1:?;3+E o+ Ep.7) '

where P = H-¢%x and P 1s the Feyuman four vector with
|
Y F d has the Tourth component
energy _+-g,]?+;4 and P~ has the fo p.
equal to - — E_, _. o
b4

We shall now make use of the ahove expression fTor the
nronagator and calculate the eross-sectlons for Compton
scattering takine into account intermediate states of positive
energy only, forbiddingz intermediate states of negative

energy and vice-verssa.



The matrix element representine the scattering of
LA L
an incident ohoton of /momentum 4, by an electron (at rest)
4 o JI
to momentum ﬂ/ the electron having a momentum P, is
g B
obtained by considering the two possihilities ( | ) the
photon qfl heing absorbed and QQL being emitted subse-
quently In the Feynman sense and ( 2, ) Q; being emitted
Lz

and Cb

The propagators for the tfu cases are given

absorbed subseqguently.

t = L __f_"?l |-}
¥+, —m b (BEp o) Eo+Ep_Eo —a)

= I c["l = bi %’f .Ibr‘" |
A _ ]
Fal = e = 5
FRa) Bt 5T )
where }3’, has energy component EP*’-@} and
=+ I

where A{L has energy component E—o =

The cross-sections for the entire process taking
the effect of pogitive enersy alone, ignoring the negative
energy part in the intermediate state can be calculated
by usine the sum of the first terms of ( 3 ) and ( L4 )
as the provagator. Thus the matrix element after substi-

=+

tuting for 4@}_ ety is



+0

|

A,
Diagrams for Complon Sestlaring with
the dbwmpnud. Feynman propagntw
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Taking the incomlnz photon to he along the +2 direction

we have for nolarisatiaon

(R) & =7 or (B) ,ﬁf = y}
and xkm for the out-going vhoton

(4) E-(_-_: 7. or (B) K= 3)21'{“” 8 = ?chsu:ﬂ @
Thus the métrix elements M? and M™  for various

polarisation combinations are given by

MT(AR o a") L : BBl = (@
[ (=t )(yne?) AR/ -imie AT

"L e § oo o~ T
F.F:z,g‘i“l “‘f+"”l*°m}€£6+ EICJLE ﬁlﬂ
e i m—wy — [Ty w.‘zj

‘Q—]' — r:‘lx -+ L. ))1

; d
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The differential cross-sections GLG‘are egiven by
_ g0
Q.JJ) ﬁ?Ideenaity off states),

After substituting for
P, etc. 1n terms of @

| and W, , from the following
relations we may compara

the cross-sections for positive and
nesative intermediate energies

]:2 =1 Q_Tyﬂ. + Il..-"J] i gy H

“s  (from enerey conservation)
_.--'!-l — n .
Py = j;,___-rﬂ = (_ZTWﬂ—wf'-LdL)(wr—wL)
Vil
{
P [ (from momentum conservation)
e l'éL#\U J

2b Discussion

Since the exnressions are rather complicated, it is
diffieult to compare the ecross-sections for the positive and

egative enerey intermediate states directly. However we

shall take up some speclal cases to gzet an idea of the rela-
tive contributions:

(1)

Non-relativistic case, l.e, W <<l and w

I’Uw-

-
In the ease of positive energy intermediste states

Aos™ ( AR ) = Glé #!_éf:LMme’tdf_'bj C4360(5f+-uj )

-+(?4QL)<_“1‘JQ}Cf}g)[fh_ MZ/Mn)
—=-ta-“b:3( w, > — u”j)——jLuafaﬁﬂﬁsij

-
(neglecting terms of order “rf/qul
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s mE A .
Similarly
dot ( BBy AB e BA!) o

Wow we shall calculate the cross-section for the intermediate

negative energies

de (Ap')= et I § am [2m(4mBaw})
oL hm¥(141)
T

+§mj(2m+ﬁl>(wi“"“"f‘” B)]_?

I:(; )Co?‘#ﬂtl'rﬂ fipm_plm)
+?_ml(?_ﬁﬂ+w )(ur4mﬁﬂ5)Jf

l 7
s .____ gu’iﬁm Lf_\w(lﬂ?+ = )(},m+ ﬁ}

i o

*;_,MU-,_WICME)M ( ™4 Wy )

2

4ro1(_t,uL— L:_\]Cm,B) <&m_.}. )]E 28
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Neglecting hﬂz/-hﬂz S e v
o ¢ -
dw-(AA%}g ey )__ﬁ%W+F§Wﬁ-ﬁ&EfJ
Sl Loy
[t
¥ a3
A 73
~ 0
Similarly !
: k]
de(mn) = &Y (5% "
o 'J“-'h( A J_";; a R A { ) ER ) ag,

(11) Extreme relativistic case (a) small angles,
i.e. r°3“'1|"“‘J Wy 2> w1, The results for different
polarization are tabulated helow, (h) large angles
W, Dy m n/ Waq , In this case the results are similar

to the nrevions ones excenting that here

el s Aoy BUAT ) :dr(_%&‘);ﬁdﬁ‘{fq/‘i’) Xy

8]

)
This is to he exnected since ;- €4 (fcr B B /v since Crn B ~0
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It is interesting to note that the contributions
arisinz from the negative enercy intermediate states
dominates the ecross-sections in the non-relativistic
limit Tor the electron. In fact the contribution from
nositive enersy intermediate states is almost zero so

that

y de AN+ BB =5 € (hon6)= 1 odelAn+s))
7 = 2 |
since dr.u—-'-'-: (@)

which is the actual cross-section (i.e.) includine both
positive and nezative energy intermediate states).

In the extreme relativistic case, we find that
contributions arise from hoth positive and ne=zative Energy
intermediate states. e also find that in case (a)

Ao (AR )= d~"CAB') though de( AR o B 4’)
is zero. This can he easily seen from the fact

i fﬂ-?b#)*-r"‘? ‘(:Hggnd hence [M¥ M |'r 0. 8imilarly for
dot(an)+da(An')- {:f though do(AA) = e//,m; *
This 1s again obvious since in this case M (ﬁﬂgf)ﬁj + M (34& )
so that o= [T =M )% | 2Mt ¢pa)|s €L,
We tabnlate helow the results.f£ar bremsstrahlung
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CHAPTER IV

ENERGY DENOMINATORS IN THE FEYNMAN FORMALT SM

1. Infroductory Remarks

One of the most important characteristio feature of
a matrix element obtained by the use of conventional field
theory is the occurrence of "energy denominators" which has
been descrihed as 'awkward' since it does not have a co-
variant fopm. On the other hand this has been achieved in
the Feynman farmalism "which enormously simplifies the ezl-

culations particularly the hicher order terms in the perturba-

tion Eeriﬂs”lj The splitting of the Feynman propagator as we
have shown introduces eneréy denominators which still preserve
the relativistic covariance., It is therefore worthwhile to pat
the energy denominators in one faormalism into correspondence
- with the other and demonstrate that by a suitable grouping of

the terms containine energy denominators we gat the corres-
ponding set in the nthegq The moment the grounine is identified
we see no reason for the "swkwardness" of cmnventional field
theoretic methods, It turns out remarkably enmﬁ%g.that the
numerators of the terms which are to he zroupadﬁidentica% E

fact which malkes the simplification and interpretation easy and

elegant, -~

1) 4 survey of field theory - IIT by P.T.Matthews.
Reports on the progress of physics, Vol.l, 443 (1955),

il R ot w o aa , 1.l Redina chga el ﬁ-ﬁtmﬂu?ﬂ J;?M- g fleky,

2) :
pnadt. UGery) (w  plees
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The nth order matrix element for the scattering

| |
of an electron from momentum ﬁﬂ to momentum Fﬁ,is ziven

by . . —
J Cthk-:{“n_ Uy ‘S ‘:qul H"‘)?‘_-.a' [i"‘-) K(Kﬂ *“A““'> = 'I{JQ{Q

In the Feynman formalism, the matrix element 1n momentun
renresentation obtained by performing the 4-dimensional
integration is given by

M o= Tly) A s B o0 €y o Aupy

where the /h refar to interme"‘:iate vlrtual states with

energy #kj# Eﬁi . [h?.+ o ]HL for a given order in the
sequence of nerturhatiuns,ﬁ*La . s d| (l.e. for a sinsle
Feynman diagram), the above can be decomposed into 3ﬁ1-1
terms which are individually covariant as follows: The
space and time intecrations of (1) are separately perloruied,
the former leadineg %o conservation of three momentum %
every vertex and the time inteszration which is subsequenily

performed 1s split into two parts corresponding to the ranzes

‘f’: -=. — 2 to O with energy — E and {':fjto b oy

I'...|.

wlth energy 4+ F£ rTespectively. As was shown in the previou:

chanter this leads to the decomposed Peynman nrcpagatcrs

/ = I i j‘i“ I k. _/\75 4+ 1

———————

f{is-r!’b——m &l bt : E| -+ l:r J’*ﬂj EP-Ju I:_.:ij "LE'i"'ﬂrl
where Eh%"‘m"-"cb'f_*“i(ia”d /?3 in the Feynman four

vector with energy 4 E'F'“:p and J:"‘: has the fourth gomio=

nent —-EF+%.- In fact, the first term corresponding to

positive energy is nothing but the transform of
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il

R & i d“’-rfj
P =

g
@)t Jot Xy >0 b
Cy

and can he obtained from the contour (. omittine the pole

at p#_: E + 1n a similar way, the second term can he
renresented by
J J e |
Pl Un e = = ¥y 0
BTG = e i

If we use this nropagator it is more convenient to
think of the energy of the 'virtusl' particle to be +FEEF+1J
with momentum ??+:% « It is virtual in the sense that
its enersy does not corresnond to ELF**E;U , the energy _
of the system %hefore its creation. In a similar way ..E#§+%j
correspondineg to a nesgative energy ‘'wvirtusl' particle,

These two parts sre taken tosether in the ususl Feynman for-
malism and we atfribute an energy :h to the virtual particle,
The main advantage of this decomposed propagzator is
that it lends itself to an easy method of comparison with
field theory due to the presence of the enersgy denominators
so that the equivalence between Teynman and Tield theoretic
+formalism can be estahlished even in the old fashioned manner,
that is after space inteeration.

3. In g field theoretic picture for a given order in
the sequence of nerturbation, the -y th order term has ?LI
diagrams each of which will give different energy denominators.

This is because the position of every vertex relative to all

other 17—/ vertices is important since the time intesratlon




g0

is performed in s temporarily ordered way. Thus every new
cﬂmplexiﬁn eives a different energy denominator znd a sum
over intermediate states implies a sum over all such diagrams.
If on the other hand, we employ the method of the
decomponsed Feynman pronszator, the position of every vertex
on the time axis with respect to the nrevious (in the Feyn-
man serise) one is relevant since the integration over interval
t11 __Tfm_l ig divided into two ranges, positive and
negativ% whether the 1y th vertex lies 'above' or 'below!
the 9 _|th vertex. Thus, since for an m_ th order process
there are m —| propagators sach of which can he split into
two varts, it follows that we can have thJ dizegrams, It
now remains to he shown that the Tx& diggrams of field theory
are equivalent to the Qj1_1 such diazrams (i.e.) TL! iﬁglhﬂJ

feor all " \/:;, - D 1

8. Calenlations.

Je here demonstrate explicitly the equivalence upto

the fourth order. We have for definiteness considered the
Compton scattering of an electron,

In the second order, since &f1h1:ﬂ1[ for 7 =3, the
correspondence is immediate. Tor the third order, let us
conaider the sequence in which an initial photon of fonr
momen tum %J(“Jﬁ?}is abgorhed hy n ~lentron 4= ahonrhel
by a8 eteetran at rest and two photons of Tour momenta

9 (“ﬂd;ﬁﬁl)and ﬂHL(Luﬂjzﬁa)are emitted in this order
along the Feynman path, the final electron havine momentum

L 1 - = 4
: f the shiiTe MAaEliX
h&( E;J Fﬁ) . The c¢alculation o

aleament would of course involve a1l permutations of the

ahove sequence. Fap our nrasent ournose, it is snffiecient



91
to consider this particular -sequence only,
A, Pigld thegretic formalism
The matrix element in Tield theory for this thirﬁ
order orocess is
- 3. Mgz Hez Hol ‘

(Be —E)(Es—Ex)
where jﬁ and ( vrefer to finsl and initial states res-
pectively and the summation is over all intermediste states

II and I ,

Lf?]I v ( Jﬁ ) P{Uﬂt é&[) “te ..
Humt % Ffr Wy Y 1F ﬁbliaj{ 4

whers TV and ‘? are the electron and photon [iesld operztors

and

respectively.

We now evaluate M3 for each of the M' zdiagrams.
The other half is just am exact connterpart witﬁﬂall positive
energy intermediate states replaced by negative energies and

vice versa. Thus corresponding to diaeram (i) we have

My ;= 2 Hpr Wamr Heg
(TY'T""LAJ—EIJI.}%}(“"!_}‘UJHLMI"EE-;&_I_CL‘,JB
= ég‘;]:} L'I-.r-. b’]a__l_l,}(aﬂ_lunﬁ-} -LJ\@ }(@_‘[ L-.-..}_ ! J'j
(TW+4M_ 'h4¢b\(1TF%uJ—JM,— E¢E4_$i) i T.

where bf) ig *he ereatlon operator of the electron with
]

momentum F;f{%rﬁ~) . The photon field operators are all

smitted in what follows sinece they always commute ard are




(IiY

Field theoretic

9
B "
lf ’,q1
q A R
(i)

2 /!
/ Eq (i)

dmg'rnfns for a™ opder



d 3

hence not relevant for oar arruments, We shall slso omit
numerical factors for convenience. Conservation of energy

implies

Yy = E% ..]..-u,jl '**LD-:L. .

and the energy den ominators in { 9 ) correspond to diagram
(1). Bepanding [, i —38, inserting the photon operators
and integratineg over the snace variables Kﬁ--axa- leads
ultimately to an oversll function whieh implies momentum
conservation. Thus the electron operators in the numferator

Fa)

of { 41 ) reduce to

S LT EDE BN R, [uarudy,

all g, endsces

where the |5-4 are the annihilation operators for electrons.

bb j_l,> = E‘;(,b 13)

and the over all 5§ funetion resulting from the space inte-

Makin=s unse of

qrationjthemf 9 ) becomes

*"13 |' = an [:L"“ abﬁ 19,3 1 [: 1lk.ﬂh+ﬁ]u 5"“1

- -

| 2 - ~
(ﬂw%du bﬁ”p} v WD —ld _¢:#g+%i>

(11) Similarly for the diagram (ii) we have

MbJ ¥ f‘/?fdj’ “‘]:.m‘ {11_'>\(3:- ( H Hmﬂ Sl:r><@1r“m)m[

(1 +w —Ep vq.) ( W)~ Ep +q,— Ep, +f;z>

/
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and the numerstor

= T WA (B B, W [T witifuy,

. +
where 4 -and dh’  are the ahniRilation ahd ereation

operators of the positron; this is now rearranged as

o T + 4 T T o
—3{Be|b (dd) {6K)b] 'J'EL!-.E_'*-":?:,FW UMJME

0 that we can now =um apply (/2 ) and we have

= by [VVigaq, J [0 W] U,

I||‘\’llr;,."-Jll = F
(;1 Fud - E%_,,> Gl = — = n
) LM Pt 9 b3+'$1>
(1ii) In the ecase of diazram (iii) which differs from (ii)
in that the vertex at which Wy is emitted i1s 'below' the
vertex at whieh W', is absorbed, the energy denominators
gre obvionsly differant.ile have
= o | -f_ % + 1_ 1_ ey L e T
1L"|_;IJ-“I = 2 (;ij.;f.__.[ Y (h H('tci;” e |.}1>u1.aign_,a[ﬂ: MUJU'}’J
! —E ondg = B e /txl =i — E 3
: ( =) ]a?.r Qi j \ i Ij] i CLI '“"j-_\a_?_ q’,l) "
: "h. Aarr: : a— a7 v
the numerator when arrangeé is {i@ﬂipﬁhfdc{*}{]}Ef}hktjhji( )
and azain e
_ 7 WEVEV] 0 : A
Mo = = Bral YW sa [ Bhag I Uh
-_ e
f e = T

=

Tt is interestine to note that the numerators in (A and (19

are identical though the denominators are different so that

they are equivalent to a sinsle Feynman dlacram,




PR
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B, Feynman formalism.

The Feynman matrix alements Sor a given type of diagram

can be immediately written down with +he use of the decomposed

propazator ( 3 ). Thus we have for the Feynman dilagram egui-

valent to the first
e @y, [(nia)+m[ERe)+m] Up
(o= E g ) (e ~Ehiy)

and eorresponding to the other Feynman diagram equivalent to

L Ao

¢ i) and ( M ) we have

= Y pZ
O (% 1 b [ D S KT

k (Fa*w%*{ﬂﬁ“m)(“q+““5h+ﬁj

€. Eguivalence
that ( 19) and (17 ) together

We now have to show

reduces to ( 2\ ).

1) It is seen that the expression ( 3g) is the same

B 7 ( e
a2 i = e HS,l = T W [ Simespgﬁhu"r‘a*’-ia:{u;%z)m i
2) To show J
1'_‘
H'}Jj.[“'ﬁ?ﬁjl'll'l = H3.=L

Prom ( 171) and € 17
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% [ / o |
N+ W — E G = o
. Py 9 Eg o tbﬂ"‘%‘?}

N/

— (1 A = El:.l-\-ﬂbj ( Ea"}’w‘& + E+§L+0{/3> aa.

an i Sinw

— e e y
Sjbrr-EL Jl"g"ﬁ.-zJ - ggﬂ.h 1’{,_5 IL‘__E (f‘-’qi-c&fa)

2 ! ( p;;_{ij +wj 23
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We shal%ﬁuw egtablish the equivalence for the fourth
order process when three photons j,{ma ﬁf}\ ) Tg“(“ﬁiﬁﬁlj
and | 4 (Lha f}%ﬁ are emitted in this order along the Feynman
path, the final electron havine momentum (9 (ilg,_ﬁ;]. Lgain
we concern onrselves only with the particular sequence since
we are not interested 1in thae evaluation of the entire matrix

element,

4, Tilgld theoretic formalism

(1) The matrix element in field theory for the

diazram (i) i.e.
My =2 1{_'._'_ Uy g Het
( i __tlll" T l""j} { W =Suaes E?’-‘l"- ‘-L.I'JIL-I')(E%' Ay — IT:I -if_{_.‘)

o8 A SOTRN o B . e 7 o z
— \E“[‘? “1_,1 B A ,.,,_:‘. ;::1—151 !'-lL‘r'I]"r. Zﬁ‘:'I 1}_71-> <a:11_ J “1.|- .Fl:‘h_i_.l' f:L.EI'}{\d_'I‘l He. -f{? | !}1" \

G R T - 5
Urabin- gy, ) bwao =y o o Y Eg i, — A o
- 17 I-:fl J

The numerator zs befores ean be reduced % as

2 LT () (P | B e @ s va Y,
el e, u‘ |
erclits —= — .
= Up, L“Tﬂ*WYLXF!- 't - quup $J -
§
PM? 2 thﬂ1¢ﬁ} PH}[L[“ L]{“{ubirjdf
(v | E i’
AR I L P V[ i ) Nl Bk - = Ei":a.*"h'i) I

where we have made use nf the energy conservation i.e,

=iy = F;a.y_{wlr-q Wy 4 (0 2§
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(11) Similarly For diagram (ii) we have
!\-iir |1| = <\a_—;i il*'-'"'l':', : ?Ji‘: > T|'T = '|| FJIII‘ ‘j; (f[. H‘hﬂr"'i‘&{':-l“_ﬁ

ql_-— ( ‘{i | I-Il'r'\(f‘ ‘.
oy TV (L s e ‘ =

(8 | 1FR TV —[1; _|'_‘ ';-"J.-'_! i) [ :._1‘:'
and the numerator I) t G d ( (" h*WJir' Eﬁiﬁ

=2 <@ 1T Y Tb |y T vy

o = = bl dlndi g @bl W,

(o - g ) wﬂHu—Eb?ﬁJ(wthb”ngﬁfm> :

(11i) TIn the case of diasram (iii) which differs

from (ii) in that the vertex at which (s is emitted is

'below'! the wvertex at which aur ls emitted, the energy deno-

minators are obviously different, We have
# L i 4 = Tme— sini R
My i = 2 CEELEL TTETE 1! ] [TV B, [ VW i Ty,
S i i B T §
C_] il il ’} (L-‘-'r—l‘ iUH -E.F_ 4, S LL:-!‘-_".-\( tide = "'J:_'l""-—p_'d:l”- E-é.u;?]

..-‘35".
and the numerator when rearranged 1s _/g ILFj A RN F

Ei‘*|b >g and azain

HQ it - - T..'|_.-,_? II.'_'x i Ll 1; LA by 4 %=l J [ 12 E{_}ﬁm] A h

Ui gy o8 | : ! 1 : i ; Yy ] ; s
(- e g ) (i Tl T [":*-"s-'-_.J("“ﬂ R tb;*bs) 33
We note that the numerators in M, and M ; are identieal
J 1

thoueh the denominators are different.
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(iv) In a similar way the vertex at which 1&3 is

emitted can be stlll further 'lowered! which eives rise to the
diagram, (iv) and it ean be easily verified that the numerator
1s the same as in the previous two cases. We thus have
S [ WU IV T ;
H"’JH’I B [j' i___i'__]j-!’b-:“J J-LI ub”'rf T J[ Rz hm—?] L{b; 34

— B, =ty = F ; : A LY £ =
(Bt Bhats Meor o Phea Thiga .\«{'Lﬁ‘ti’r}ffﬁ‘bTE’%Q

The diggrams (1i), (i1ii) and (iv) form a group which will later

be shown to he equivalent to one Teynman diagram,

(v) A groun of Alasrams can now he ohtained by having
the second Teynman Intermediate state of neesative eneregy while
the first and third have positive energies, The procedure for
the reduction of the numerator is quite simllar to the previous
ones and in future we shall merely write down the matrix element

with the annropriate enerey denominators, e have for diasram(v)

My o= = by }:i,P:_*iﬁf’L [ g, ] Up -
(et - B Yo+t - (2 = B = r,.4f e r-p)éﬁ*“% t54ﬁ9
(vi) This Aiacram can be ohtained from (v) by 2

lowering the last vertex below the second (on the time axis}

and we have

: Ao P I
Pu”ul i f: \{L L4 by h Vv ry?_ﬁqjl ti{ﬁ*ﬁ I {u
e = e T e v : = .
(W T L ,J s III { W A= led =l —= 7 -LI_ IFL’ I_ [._bﬁ } E}? i.‘ \(rl..‘, —I_-\er "r]:' “'r
(vil) TIn this the second vertex in (v} becomes the 3¢

first and wvice versa so that
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= —u = f]\‘.uku .'r_'il'| 15 j -II_ } \“:br'f'%'“%'{] I & Irlbﬂrci’j D'blr
=)

{m 1=K — L) o E .
==l e Shusa = o
9 54 2 Y I"_ﬂ 'i'qr ‘ﬁf) (-'—Eh'!-’-?.-—"?;! oS E’%-FQ’E )(E—;_f Luj-E;s‘:}.: T

(viii) Here aeain the last vertex of (vii) becomes

the third and

M, vii = jﬂhbjm{”qr%ajz-UQhrﬁp qwjlztz}ﬁfﬁ;]F“bj

1 2P -

=] e [-I "F_ II ‘1 — 1 Sl = LA 1-
[ LR A i o ST 1 XT‘ B S i +~1,3>(Lj-_51.,13/
(ix) The last dlagram of the class (Vv oo viii) 'Wrﬂ

Mo, vi

is got hy making the secnnd vertex in (viii) the third and vice

versa so Lhat

H;-f}:f}( ==, ]: l'J-a'l i ':_,3:||L"v "-_E v 9 J Z I"lrﬁ-f;.—.l-‘h T‘E-i ,}-‘3]
e —
(Ft!-'ﬁ_.«t.'”“"a‘F‘hma)ﬁj Cprg - Su Wa=Fa {6y = Ebivg~ Epag-g, )

This exhausts all such possible dizgrams and the

39

five diagrams can he shown to he equivalent to a single Feynman
diagraa,
Another class of diagrams will he with the first
Peynman intermediate state of positive eneregy and the other
two of negative energy, It is easily seen that we have three
such diaszram ( x .... xii) which can he shown to be equivalent
to one Feynman diseram. We have

i o Fivy 1) v T e .
HL{‘ by = [ "I \ Fyd4= Jf I"Vﬁ\,il‘r_..—hq“\‘,/ 7 _U,J?Jq s J T}'ﬁ!

W

("h"n.-“-- by = E byt L} (a-._' -l h

S T = |
> g ILJH"L-BL"“'!":#.-W%T Shig)
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th
feynman disgrams for 47 order
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HL‘_ o = l:‘d,l;._ ( "vf'-lljf_-,: +EL'_"—I(] V;};r_i.r : %1] [Hﬂb+q j Et

Ly
(_-,5 =g = ( g/ —F
=y lb) s =R - f‘ﬁ*hx =By i S
HI;'#IH = ]I' j\.lj}]nijjjllll‘\’hq-%r %1] I L}lﬁbﬁ'fi,-_‘ll'"h’ {'
o x.
E —F-,_ - =5 [t Y ey =
(6 - Pavs Y-Ea-ws L*u"EFI*‘E,-"M)(‘LW_EE-H-E-:: Lﬁ;*ﬁ)
B, [Feynman formalism
The Feynman matrix elements for a given type of
dlazram can he immediately written down with the use of the
decomnosed propagator ( 3 ) and we have Tor the four
eqguivalent diaeresms in the order discussed in 3ection A
the following ¢
F b | T
M.{UJ = \113 l( [ 1)+ ][(” ._?}‘J_J_ ][{M/rv}—f—'}flj u{.}_-,
S f“'_ ta
MF
v = el (s +%>+m]ffr )] [ mva
by
(E -l-UJq -+ L__ ;|+°L; \(}"HJ"LL.: UJ ﬁ;"'ﬂ,‘%) Wi-l—Lﬂ“Eﬁ_'_TJ
E = “For —_
Mis = “ba (B2 )+ ] [(b o 79) +*“"‘] (B )+]u,
Ly
Eﬂ‘ "!I—'L1:}3.I _FIJSJ._LCLQ:B(’P“ AL = l'i'[.-l_-‘ -#—‘1'—-'1‘ }(‘ﬂ"l-—}-—'l.d E]: \)

(E ']-L*-aﬁ -+ 1_+11J. e {Tﬁ-q—-r.,._ =Sl T
s Enuivalégle h+@ui?§(h1 bfk%)

It now remains to be shown that the sum of the individual
exnressions in Section & for a given tyne of diagram reduces

to the corresponding exnression in (B},
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Tea th'l = Mif as is seen from ( 2% ) and ( L3. ).
sne Ty, = [dgay4m] ek

Sl
2. To show =&

_ | ¢
Ma, it + My T Mugy = Mg

Now from ( 2% ) and ( 34 )

MH ML Ay = "\/
3 3 J — = —F
! (ot~ pcn i) Cre P9, ‘%,
‘ Wi o e
L T+ w=Ehiag Eg oy +Ep+q :I

3 /(~m5~-_ Epl 9=y ’:I"a T %,3§ (ﬁw’ = Ei:. 4-::{!)(1534-"%4'%@
Lil

And

M, . 0 o —+M, =« /
4,11 4 i = N !
J J LL:"-V /{’l'ﬁ"lJuUJ Ft}i-}-ﬂ/])( "‘E-a‘—_-jjll—lcb r'Ll! ’bi_.l,q;s')

= L
M+L”_WITE|I:1*_EL/_%H Ea-_i_w3+Eb;_+c{)3]
= —Nffmss-Ep g, ) = -
PI_P:LJ_, ‘:fn+l.u.i—-h~}l.|-* [ R +E )
Since - = Hffg_ hﬂ*ﬂwj( 23 Jlah"?f o
J
4 mI:V“ +9y %._n:{'& U_g (hyta) = ﬁ”iﬂ%‘va) +“‘""‘]

3, We now demonstrate
1_'_'
My v+ M+ My i 00 v Mgy = Yy 3
The numerators can similarly be shown to be the same as

that of ( LS )
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d= My v+ Fypi=N j/(jﬂ HWUTEL 4 )(Eﬁ“'a ‘Ebawﬁ)(”‘{h”?f o35,

A,

F. = Hr_f Vit i F !\J/(:—-L'J-g = Fb."ri.f I Eﬁhwlg(ug"' = _E-Tgﬁj)(w"h E’?ﬁ/
g )

N/ =
¥ :Ht,_w h A Mq = A 'I o : th+"[;‘in>{m _3__} F—.;_Lfﬁg"f %3‘) (LU&’
Therefore “—E;."’""JS fEﬁﬁ,‘?)gl

I.f
AEINE SN s s ) (=g ('“"*Jr%ﬁ‘ééh*‘b‘?)

. "NI/<E3"‘-'_LL""£FFEI_-__._-}%3>(hﬂ+.“} _El'?ﬁﬂu\ éﬂ-i—wvwrPEhH,-“ID
=M s

4, Similarly

=
My x +HL+_I11+ My i = MH;L}

'H}x -+ M = N (LLJ\ = ]"|J' :'L_il“ Eh‘w‘_’()(_%r‘w% ‘_EEI_F%‘?!)EM*rLdﬂE]}I%
€a.

and
Nty =N i 7
Mﬁ"'w‘-ﬁﬁ_ b /f[;a-r{ui—k L—#.j_-L-t 5 “}}-‘HLLJ U)(E+m -Lh,l:u
fll"'brf"';f

$5




107
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S

We have thus demonstrated that with the use of the decomposed
nropazator the equlvalence hetween Tevnman and the fiseld

theory can he established in a simple and straiehtforward
manner,




APPLICATION O STOCHASTIC.MITHODS TO QUANTIM MECHINICS,

In this chapter, we shall establish the correspondence

between the Teynman and Tleld theosretic formalisams from a view

point based on stochastic thenry.

The essential festure nf this wethnd is that we move the

wave functions along with the oneratars and redefine the inter-

aetion Hamiltaonian as

! S SRR e

o) >3 B b Al Bub + T,
where the creatisn operator >3 always ocecurs to the left
2° either €1+_ or b s unlike the ordering obtained from

ﬂf “WW . At any vertex ane of the four fundamental processes
¢an nccur and the onerators should sceur in pairs but not
necessarily in the order wsreserihed by 'QITF . \ unique pres-
crintion ean bhe given *or the chpice of the correct srder
based on the "sllowing arzuments.

The nrocess 5T pair annihilatinn at 't ronrasants the
transitinn of a positive enersy electran Ht'f to a2 nezative
ener-y state at £+ 4  the perturbatinsn acting in the interval

A 2nd hence the electron destruction operatars should
be nlaced to the richt o7 the nositron destruetion operatar.
In the ease o° nair creatisn in the interval hetween +—
and 't' y We trace the nezative snersy state of the electron

at 14 A hack to a pasitive enerzy state at f: so that in
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this case

s +
é}ﬁf shonld be placed to the left of C{'F
Tor electron and positron scattering the creation operators

will be to the left of the annihilation operators., Thus the
interaction Hamiltonian reads as ( V. ),

Having postulated the inter=ction Hamiltonian in the
above form we now nroceed to derive the matrix element for < -th
order scatterine of a single electron. The inteerand will be =iven
by .
L4 I0nade o0l - - LD
where [:ﬂ:] is now given by ( T

If we mw use this interaction term at each vertex,

we can ienore the commutation relations of operators corresnondine

to dif*erent time points. We know that this commutation relation

was used only when we were moving the vpositron operators in the
previous method, Ignoring the commutation relations correspondineg
to different times amounts to viewlng the process abinitioc in
the Feynman senuence, Thus for a typicsl realisation, we move
the entire hracket [ Q] containing an leﬂ to the left of
Cli;\> (ives)
o

= ) - ; =~ = | _I1-\
er\[-1w]- <ol ) TR --[inRJlﬁlh/D
(Z.Lb)
The rearranegement 1s identical to that in method Iﬁin th®z case

+
when the omerator attached to ClFﬂ in jﬁ?] 0 T o 7 (T i

on the other hand it is a |5 W

47}

place the br=ckev [Tﬂ]

B <%
with T, <trf_{ containing MP’ to the left of [ k]

(ioe,)
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e | n] o [RAT [k=1] == D T[] oo 1T ] [T}

b
so that we have iith@r a i I .
[& ||L"r {.ﬂr'r'ﬁ} L'!_":_:"I'! '}[ F"‘, #j'l (FH IA};(R)J a ||Ij}>ﬂ =
or ;
- AT . N A i
(" (- - :
[, al om]] byt &y ] @p> .
Thus in shiftinsz the operator kfFJQHT) to the left of iﬁpjh)
we rEgequire a nezative sien i.e.
Pl “A\‘]' L . 1
- (vwy) 5 ff_’l'ﬂ_.x ) “U> :
b;' {3' bl s
or
A -U‘.rlr
- b ‘ﬂ)b Ht = g:r 5 g v—.glfm} "Lf UZ} +-TL»L f‘m ..u fuﬂ' é""w
bl t h f P 8.

gnd we cah straiehtaway identify

U

R O
T TR g e oy

fl

with the nezative enersy nart of the Teynman kernel.

It 1is to he noted that the reesative sign in Method I
comes from the switehine of adjacent operators in two successive
brackets while in the present method we obtain the negative sign
by commutlne the cperators within a sinzle bracket.

The choice netween the two proceduresis therefore a
matter of taste, 1t ig claimed that fthe above cnnﬁ;iﬁutms a

rieorous proof of the Peynman and field theoretic formalisms as
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complete as those siven in previous treatments., The simplieity
of our approach is essentially due to two factors:!
(1) We have taken the "slements" of the field operator,
(2) We have moved the terms within a bracket together,
IT we have moved the kermx with aperators senara‘ely
tweir partners in the hracletz =zet "lost! and their "recovery'
demands comnliecated alzebralic onerations.
Thus in the Teynman point of view the interactlion takes
place at Y. space-time vertices whiech connect the initial
and Tinal states in a sequonce preseribed by the following rule :
IT 3 particle makes a transition to a positive energy
state it is “ollowed to the next vertex at a later time when it
makes a Turther transition. If on the other hand it makes a tran-
sition to a newative enersy state this state is considered to be
the result of anpthsar transition made esrlier in time and we
tpsece the neegative ensrzy nartiele back to that time moint.
Tn the lanzuaze of *he hole theory this is easily understandable.
A narticle can male 3 trensition to a nezative energy stalte only
if there is a hnle in the nesative enerzy 'sea' and we then ask
itijhen was the hole created"? Since the equation of the hole is
the same as that nf the nezative energv varticle, tracine the
hole back to the origin is the same as tra¢eting the negative
gnergy elesctron. The interactions in space and time may be
diaeramatically ren-aesented in A twg-dimensional diagram. One of
the axes referrinez %o space and the ather to time and the arrows
indicatinz the nath ta he Tellowed in a Ffeynaan sequence. Taking
153! sich interactions the matrix element is obtalned by an

intersration over =il space and time from —CQ w0, This diagram
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with the same sense of the arrowvs can be nsed even sfter

=

inteerstion nrovided we do not attach any snace time ecoordinates
to the vertices but merelwv erdinal numbrers to indieate the

Feynman sequence in which they are connected, It is this that

is usually termed the Teynman discsram. By external line is

meant a line which terminates nnly at one vertex and represents
a particle either in the initial or final state with energy and
momentum correspondine to a real particle. A& line which conneects
two vertices is cslled an internal line or 3 nropagator charac-

AL e -
terised by a Tour momentum P such that bHiﬁl k‘ =T .
It is customary to call states with such four momenta, wiriusl
intermediate states thoush more sccurately they should he ealled
the transform of a oronacator corresvonding to virtusl momesnta.

The intermediate states here are therefore not atiribnted
to any nartiecular time hut to the intermediate position in the
feynman seauence, 17 howsver we wish to retain tima ordeiing Lo
Ia gtrict sense ineludingz even the intermediate states, we have
to do the snace intesration first and time dinteraction subiequeniliy
In this case, only the time axls has a definite meaning whils
the other axis is necessary only for diagramatic renresentzdlon
and hﬂﬁhﬂ significance a$ 2 snace axis, If we further split the
time intesration into two parts correspondinz to the inservals

O te =0 and —o0 to O respectively we obtzin

1 A

Ju — = Fis =
two marts ( A7 and § } of pronacator corresnondinz Go ra

and ve enerey virtuoal intermediste stal

23
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s e 1
HE = =

R L+ 3
g tp 4~Eﬁ,+ Eﬁ+%
Thus the vertex (say) at the 4 th time point '7, can be above
or helow the 41 —|Mvertex (i.e.) tij:>1711,r corresponding
to the part ﬁ;4_ or oy € To_y corresponding to the part
A~ . Hence for sn Yl -th order nrocess there are m-|
Teynman proonasators and since each pronazator splits into two
carresponding to + ve and — ve enerzy intermediate states
we have ;iq_' "patterns". A pattern is characterised by
the vposition of a vertex Fii. ralative to the nrevious one
H£L=f in the Teynman senuence.
The nicture of intermediate states in field theory
is Aifferent. In this case we have real states only at { - —ep
and =+ A and st any finite time 1 we have &
systemjthe momentam of which is identiecal with that of the
initial and final states while the enersy corresponding to this
mammntum is not the same as in Initial er {inal energy. The se-
quence of events of an intersction diasram ig obhtained by ver-
forminz the integration in a Time srdared way so that the posi-
tion of each vertex r-lative to all others xis significant.
Thus Tor an ¥, th order process we have on the whole 77 l
diarrams corresnoniinT to all possible time srdering. The
gnergy of these intermediates st stes do not correspond to those
af the intermediate states of the Q'ﬂﬂﬁ patterns of the

Feynman diagram,

h
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We know that i we want a matrix element we should

be able to exnress it with s sequence of pronazators ;ELA_
23—y

i

or ‘as a sum of *Tf terms involvine enersy denominators
representing the deviation of the energy of the intermediszte
states from that of the initial state. This though true is not
easy to establish explicitly in the eeneral case YL
It is more interesting and instructive to compare the matrix
élement corresnondine fo one »f the ﬂ:n__l‘patternsT. In
any one of the Q:n_4 'vatterns! the order ‘waﬂ wlth resnect
to hfh_,* only should be nreserved while in “ield theory,
the order of the entire sequence should he nreserved, It is
interesting that the overall sign is ss should be =nd the nu-
merators of the “ield theoretic dissrams corresponding to a
gingle "pattern" are the same,

We shall now make some renarks ahout the meaning of

the kernel.

It 15 a sum pver the three momenta of free narticile

wave Tunctlons or an indesral with-a weisght factor J i.es
2EL
. wu —‘{'P'(& _?{
el T A p =710 5
k@) = | g, Yp U e ol®ph, ot

- e L _A'_ d
- 5 U ¢ b bt
Boually well it can he treated as a sum over all particles with

—-H 1_ . L-'Jh‘l‘ F __L___ - -
fanr moments ijh ; b with the weizht factor Ff-—TVﬁ‘kenEPgY

momentum relation does not hold for f: ). Thus we can

say that the amplitude for the creation and annihilation of a

R L8

particle of fonr 'mmentaf}is il e 2 If"?'}‘l). This
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interpretation is not possible if we are not summing over all

the momenta.

e Have now comole®ely estahlished correspondence
between the Tevnman and ®ield theoretie formalism in the case

when we have only nne electron in the initial state. There can

exist of course a bhoson but while this form s part of field
theory it dAoes not in Teynman, If we have more than one eleectron
in the initial state in field theory we will have more than one

craation pnerator onerating on the vacuum, Buot in Feynman since

we are Tollowinz *the track of an electron, what should we do

17 we have more than one? Teynman postulated we should 'ise anti-
aymmetric kernel for twn partiecles; the antisymnetrisation
necessitated by the Pauli nrineiple. Aetually if we used two
particle initial states and rearranged - — - - — -

the terms in the intezrand of the field theoretfic matrix elemnent,
we should have got the antisymmetrie “ernel in the nlace of ki4w .
The narticular form of K . with the negative sign atfached

to the newative nmnerey kernel and the form for the antisymmetrised
wernel for two partieles; both resnlt from the anticommutation
relatisng which expresses the Pauli orineiple in fileld theory,
Phus it is mst wossible to derive the Paull nrincinle Just by

the use of Ky -+ fora sinesle electrpn as was attemnted

S
faynman,

by
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Symmetry oneratisns on field wvariasbles

We have tillnow attempted to glve the motivation for
a Tield theoretiec formalism. From what has hsen hitherto deg-

eribed its advantases are threefold:

1} The descrintion of initial and final states is

simplified by renresentine than throueh a series of ereation

and annihilation zExamksgmy operators oneratine on the wvacuum

resnectively,

2)

The interaction term is charscteristic anly of the
process and not of the initial and finsl states,

Were these the only advantazes, field theorv would just
be re=arded as s convenient formalism and we ean dispense with
it especislly if we are working only upto a few orders in the
perfurhation exnansion and the nossible states can be enumerated.
In fact, many of the fundamental formulae in qlantum electro-
dynamics like the Bethe-Heitler and Klein-Nishina crasﬁ-sectians_
wers derivmﬂ*&g?wave mechanies ngi? ﬂaiﬁﬁ?gtgg by ?eynmanfizrtﬁilng
1949, 1In short, it day look as if we have nnt travelled far
since the initial formulation of wave and matrix mechanics hy
Schrodinger and Heisenberg and the relativistic wave equation
by Dirac; we have only devised a more elesant and nerhans a
more sophisticated faormalfsm, than the q -number theory.

This seems so i the only operations we perforam with
?ield onerators are integrations over space and time and vroper
Lorentz transformations. With the discovery of new particles,
the presence or ahsence of interactinn between various particles

fad to be explained. The interaction that has been postulated
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merely eives the amplitude far the annihilation and ecreatioen
of particles and is therelore proportisnal to their wave Tunc-
tions. Bat this doses not =xnlain why the particles should
interact at all, i.e. we have naot ziven any pnrescription which
determines the tvnes of particles that should interact beyond
the well-known conservation laws.

With the discovery of the new particles three new
gnerations had to he defined.

(1) Space-inversion or the narity operation ( P ) :

(2) Time reversal ( T ) %,

(3) Particle-antinarticle conjugation (C).

The simplest internretation that we can zive to I

is that the nosition vector 1? in the wave function should

he renlaced by “;;a . dn interesting feature of the probabilistic
interpretation of a wnve function in thet internretation oceurs

if we attach a phase factor of modulus unity to the wave fune-
tion, We may therefore postulate that the wave funetion in

the 'inverted! world is not obtained just by replacing X

by — 2 but hy attachine an arbitrary phase factanh;But this

ig not lozical in the csse of srdinary wave Tunctions since

the only freedom we have is in OhaﬂEiﬂ%EfD _ X% . But we may

on the nther hand nostulate a generalised wave function

l_,/, t*‘j_ } = -'_* {J‘ |
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in one "wprld" and

il

e ( x')
where ' = — X

in the inverted 'world", This difficulty will not arise where

we worle with overators. It has become customary to define

the parity opersation on a3 one-narticle state as

5 3
Palyy) =Paly PTpy =g el

: (:{LE{,M‘L;“J . m
Eiﬁn thaneh }fh ds ﬁeﬂiﬁ:g Ehrouzh
21 5 R T = - rey :

=

This freedom we have in ohtaininz phase fTactnrs in onerators
is a zreat advantage over the wave function formalism,

The introduction of these phase factors is nf trivaal
consenuence in the ahsence of iInteraction. This is not so if
interaction exists since the vhase factors aay be diffe-ent
for the various warticles created or dastroved in an inter-
action and the sunernosition of these vhases, becomes conse-
quential and lesds to 'selaction' rules of fundamental
importance, Simila~ considerations amnly to onerstors like
S and T .

Interactions involving bound states

It is to be noted that in collision processes deseribed
till now, at any time + we have only a system of free
narticles and the interactiosn changes the azzreegate when
particles are destroyed and created at any particular vertex.

o puhete
IT we are not interested in a partiecular tyneﬁ say
gL partiele and assume does noat evist in the initdsl or final
state but is only created and annihilated in the eollision
process defined by the amplitude 4= FEJ'@ y Lt 15 obvious

+ I :
% 1 £yt

\
]



that we can d efine Jky'éf as an integral over
more than one space-time vertex involvineg w & i¢5
where agerezate ¢ and & do not contain narticles af
tyn54j¢@ may then regard the nrocess as a "non-local" inter-
action (l.e. hoth in space and time) defined in terms of ;F;@;
or as a 'local’ interaction in terms of E&P. In fact
from this point of view any collision process can he treated
a8 non-local space-time interaction hetween initial and final
states.

As an example of [ . we can have a non-local inter-
action between twn fermisns counosed of two loeal interactions
each involving two Termions and an intermediate boson. In
some cases, assumine some nf the narticles?have infinite ‘mass,
the non-locality hecomes nurely spatial and in sich 3 case
we speak of "form factosrs" and "ootentials"., If we do not
wish to include the marticles of infinite mass in the des-
cription, then we have a system interacting with an "zxternal®
potential "due to thnse particles of infinite mass'".

IT we are only envisaging intersction through
creation or annihilation of particles, as already stated,
by the energy of the system is me=nt the energy of the eners:
of the free parficle but the moment we exclude parts of
infinite mass and supnress one type of particle by introducing
an external potential tesethewm, enercy and momentum will he
conserved thouzh this is nnt true when the notential is

excluded since the system can impart or draw energy from

the potentlal. In the case oT an external notential, thare
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1s an extra freedom in that the wave functions need not

be those of free varticles,(i.e.) they may he "bound!

such that only for the systeam of narticles plus the noten-
tial, the total enerey is conserved, This amounts to
saying that the system o narticles can exist s an eisen
state of  H, + H + (where Ho includes the exter-
nal potentizl) from t:=—=xxto £ - 44— 9 . Thus with

an external notential concept of interaction enters in

two ways.
1. A4 system of free narticles at t- _ ~going pver
to &==—=24 ansther system of free parficles at t-=-+ @ ang

2. A system of narticles bound to the external
potentlial sueh that far 311 'ﬁ and this svstem exists
in an eigen state of H, + H 1+ « We can conceive of a
situation when the potential is not external but matnal
(i.2.) we are suonressinz one tyne of narticle without
assuming that some narticles have infinite mass. ‘e ean
stlill have a bound system under this potential but since B
It (f"x-'fﬁdrN\S of “aese pofewhals @i subizg b _num'mfrq-nﬂ el
creation due %o the change of momenta, the' situation
becones very comnlicated. This indeed is the case in
nuclear many hody problems, No one has ever dared to

eliminate potentials and annly local Tiesld theory by

introdneing suitable quanta in the nlace of the notentials,
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The structure is nerhans simpler in cnllision
nrocesses since the initial system from physiecal consi-
derations, ecan never consist of anre than two narticles.
is lone as we assume A anﬁﬁtﬁ he small in Ead-ﬁ

!
we can use nerturbation annroaches in resard to the crea-
tion and annihilatinon of some partieles and nhenomeno-
logical potentials 17 we wish to suppnress particles for
which nmerturbatinon concents fail. Calculations using
Chew's theory is one example af this anoroach.

Cur descrintion of the collision bproacess

theraefore amounts to a mere rearrangement of momenta
and enerszy among the varions tynes of narticles con-
sistent only with fthe over gll conservatisn of momentum
and enerey. This led many theoretical physicists to
believe that it is masﬁihlé tn study the matrix elements

withount any reference to the detsils of interactilons
v

as envissged by the '"hapnenings" at the vertices.,




CHAPTER VI

|
PHOTNN-ELTCTRON CORRELATIONS IN DOUBLE COMPTON SCAT"ERING.

1, Introductorv Remarks

Recently considerable interest has been evinced in the
theoretical asnect of douhle Compton scattering since it seems
possible to 7et acrurate experimental verification of this
pheromemon, We her s nrngent svstenatie ealculations for the
difrerential eross-sectisn when two circularly polarised photons
af eiven enerev are nrodinced in the collision hetween & pola-
rised electron at Test and a circularly pola~lised photon,

It i3 well known that the cross-sectldn for double scattering
inereases with energy (unlike in the case of single scattering)
snd aslso that there is a marked nreference for small angle
spatterineg at hiegher energies. The exact exnression for the

* matrix element taking the nhotons to be circularly polarised
can he calenlated nsing the Tamiliar Teynman methods, For a
particular direction of nolarisation of the initial electron,
there srr eight possible combinations of nhoton polarisations
(i.e.) four -+complex conjugate) so that when the final

spin states of the electron are summed over, we have sixteen
matrir elements on the whole. Taking +the special case when
the photons are emitted in the near-Corward direction, 1t is.
found that due to the pronerty of the 7Y matrices, four of
the above matrix elements vanish, Tt should he pointed out

that this is not a conseguence nf interference hefween the

r) ‘FEIEF.;:H\;J. i Ix. W\.Mjﬂ ; ek Feuw. F']L.JS,I.; j;_,l‘- So Ir’f._-”U
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Feynman diagram for double  Comptan
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six possible Feynman diaecrams since the matrix elements
for each of them vanishes indenendently.

2., Calculation o the matrix element

Denoting the matrix element for the ovrocess by M=U,NU,

(where lgand U, are the spinors for the initial and final
- . = % o
electron states of four momenta }?}(jn1jﬂj and l‘$ (Eﬁ iz )

respectively) we have

MNo= Ifé ‘ g
2 —— Ao / /f:-i'/b' /é +
t él

P
.

/'T’;Fu ’bi,m

+ )? L? ﬂ3|—r
Po—8, = A==
- |~ 3

corresnonding to the six nnssihle “eynman disgrams. The

f; E 2 £ incide in
four momen®a ¢, , g and %, TErer to the 1n§hien#“fad
two ontgoilne vhotons with polarisation vectors € , 2, and

o

E; resnactively, Makinz use of the relations

/F'J F"l| = F¥y 'L.JI ) and f.'_ft_.l:CI z:h"nrﬁ A};: "/E’,‘{\— —|~§_C{;b t“{C

N can be conveniently written as

et Sl o /
N = ) a%aﬁg—'r Lfdb‘*i 2 .*C—'_'I_'fru + 4”@/@{&@1&] i

pi qr'i e{ P;'Gir’:l.
e — %1/{- &k = ¢ 'é1'é .
b I f — éu_ﬁ_%_ﬁrj s

i hoLLé o Lo
m[t?*‘%fi B é’ié&f%/w*



ha L peq Po -9
+ | —%Ge T 4. e VAR
Ml ] b Al
. _.}:ﬁ_ E)S_ b { ctj Jt_ ,é !
A, 4., ¢

=il i) 9% € b T A ii‘ ’ér 'éé.“ffrq *Aé,%a'ér é:}i."fﬁ

+ B -6 53 b4 4,6 ¢ +ﬁ3i:T é-/é'L;_*‘;; + R, é té;_é&

b

where f’_] ete,

= [
C b ayhae9)
Taking the Trame of reference in which the initial
electron is at rest and the inecident nhoton moves along
the +Z direction, the azimuth ansles for the two out-

going photons are ( &, , @, =0 ) snd ( Gq #ﬁtj'

From the conservation laws we have

¢ v £
;féa = ﬁpi-' 4’ i r"L'L.I —p{_,a
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where
/

*":..-"}] = ﬂ?]“ljf__

Aﬂ_ — Eq.ll( ﬂii_& —_21/1)

A = 9 (e - ¥ 86~ Yo cose) ’

By = g (Y=o oo BaC08G, ~W,50nB B, ~ Yyl
whiech ylelds the relation

vﬂ(m_m,—mt) = r,.L.?L\_h(J.._f_ﬂ}'iBr)"lr ldm&(f-—ﬂ{ﬂ@}u} _—

— u..'l,[dg( |— AN &, %ﬁgaiﬁ*ﬁq)g o ({’ﬂ@ﬂﬂj%) L

When the photong are taken to be circularly polarised, we

have for rieht ecireular polarigation

B = g Ly e
;f_'f - ﬁ}rﬁf’ycu—zal1}’2?”“9,4—{3"5] :/éi-i-

/éa_ =

v_;.:-["}”l (mﬁ ngfx-qa&—igwcpi)_f_ Lvd Gﬁ% o A i{’\

-"f;r_f‘.)a.-}':_&li] = e .
while the complex conjuesate exwressions refer fto left
cireular nolarization é_._. ér gnd -é&_ respectively,

Substituting the ahove wvalues for € ,éb !/%q ete,
we have (for a narticular combination of nolarisation say,

C, €, €9 _ the followine terms
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where
l‘I -
Irl::jr _ |"r':"¥"f__
4 = Wit -7s)
){EI - -'-'.}‘ (\B‘I{t — Tl. -ia“r’ﬁ&;__.“r'z {'_'D-ﬂfg*_') !1
s W (Y — Vi o B2 C05Py —~ Sn By Bmnip,
which ylelds the relation

(W=t =) = W) (I —os®) ) + Wy (1— 3B ) —

= r'ufluﬁ-[ |— 4wn g, %'WQJLUS'@& i ﬁd@_,[ﬂjéfj) 5
When the photons are taken to be circularly polarised, we

have for visht eircular polarization
f = JI Y — é
X = i LT'lF.] =
5, [ . Ul -+
/ il o, . £
¢ = ?il_ﬁ/yfc*m,h“a’ze‘.twﬂ,—!ﬂt‘a"éj:[ = R
B Al f et B Crkd, — L0 : ' fis " ]
/é;l - ﬁ_[ﬁ’l[{aj oSy Lmq:g_>+ L‘/HLUTM{ZL#LC&FPL thf\‘
-—-'TLEJ--TLC:;_] = Fa 8
while the complex conjuzate exvressions refer to left
cirecular =olarization e ; é; and ’é&__ respectively.

Suhstitutine the ahove values for ¢ 'éb ,’{Lf ate,
we have (for a particular combination of polarisation say,

@, €, @_ the followlng terms
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/C\f UJ;UJ'&_‘IS-(L iz fl’_-\fl [6{’1‘1@* &Ln& (Qﬁ@awwﬁpi Lmj¢ )Q ]+.
+(hff5 +‘Y3)Uf — 383 ) B + AsinBge (Pij Sk
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Aguw
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+ LR (||+- thﬁ&é{}fi‘tﬁlﬂ (-{f_ __Yl nS {-—“r:‘-fT"j ":’2_ — LYwa'Yt)j

("r’ H g+ Y+ W’f [B[’f—fcﬂfﬁ)—ﬁ &'%f-‘?r:)Jr

-+ -fz '—'“‘f; S ,_J t—r-t jYJ{Y)[ ﬁ(f-l—iﬂjgfj Emﬂ'@Jf
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This expressmis exact., Similar expressiom for N for
other combination may he caleulated., The differential crogs-
ggction is given by d s all « \%Iﬁ hJTM iliﬂﬂhsitf of
states ( D ) / normalization factors (%) , where D is

the density of states, for the three particle final state and

D J = gy W L.Ur‘._-f';iul"qj i

= il CJ_'-._]_.M
" - (_:J_I:!é ﬁr; |

D ! (2,26, 20212 maj*' ?

L
V- W —cod 3:'—'1} —w (y ~CohQ 3By — E:L'?‘IE-JEL‘}"IGE{__”.:;I¢2J

To evaluate the cross-section, we shall assume that the two

nhotons are produced in the near forward directianlj i,

. . i
¢ and &y are small so that (A28 5|Jg_> may he neglected).
From enerzy sonservation ( b)) 1t follows fhat fL}—Jur-UJﬁM
2
= E,—m ~ EQI a9 . Similarly from momentum conser=-
’ =3 i
vation, it is seen that ||b;_] -—\.S—[ﬁ‘ and ['DZM '5‘J 9
and P“ ~~ B o t.e. since the nomentum transfer is very
J.I':uf JE'L
small, it is a "grazing collision" and the r ecoil electron
moves nearly at rizht ansles to the incident nhoton direction.

w 9
The values for > LUEPIHJ for varions polarisation
Spimsa

combinations are listed below.
It is interestinsz to note that the cross-sections

for €y € and €-E!—-Ea, gre found to be zero

I+ f'”-'l‘i'
under this annrovimation trrespective of the snin of the

electron.

1) Mandl, F., and T.9.R,Skyrme: Proc. Roy, Soc. Lond.
215, 497 (1952), Howeyer nofe that we cannot set
Ly = (o) —fan. =0 (ss has heen stated in fthe above
paper (since this would imply that | _~4n =0 (from
enersy conservation). 2
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CHAPTER _ T.

%
on THE Y  RESONANCE,

Introductory reqsrks

The experimental discovery of the theoretically
nredicted f' resonance, a two plon system in the Tb:{ij;]
sta“e, was the first indication that the dispersion theoretic
aporoach could lead to results directly susceptibls to experi-
mental tests. Sinee then wvarions resonant states of strongly
interaction particles have heen r]ir;.ﬂ::ﬂt.?ereél,.l:I and have pro-
vided one of the main sources of aporoximations necessary
in solving sinegle variable disnersion relatlons, It was shmu*tzl:I

tn the TN nroblem that an effective range analysis of

partial wave amnlitudes led rather clegantly to the orisinal

1) Attempts have been made tn ponsider these resonant states
themselves as 'elementary' and agznciate Tields with them.
(see for example J.J.S3akurai, Annals af Physics, 10 )
However according to Feynman tHe ecorrect theory should be
such that it does not allow one to gay whiech narticles are

nelementary" and this has been 1nteﬂpreted by Chew to
mean that the sinsularities of the E;—matrix corresponding
to elementary varticle states, bound states snd resonant

states should all have a cOomMmMaD and equivalent hasis.

(see G.F.Chew,smt UCRL Report a701)

o . Gl 1L G'&Td&rc'kﬂe't- FE oW e Voo NMecwoky
Phosgs R ey Lok 3% 1982)
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pesults of the static theory. The essentlal soirit of the
spnroximation is that since the xkrange of force is inversly
proportional to the distance from the prigin in the comnlex
momentim plane of the associated sinsularity, seattering in
the centrifuesally evcluded hirgher arbital wovess should be
dominated only by the nearhy sinsularities. For low angular
momentum states where short-range interaction comes into nlay,
tha effect of anltiparticle conTisirations ig app oximated
by arbitrary parameters to ne fitted by exmeriment, It is in
this resnect that the data on resonant states have been most
useful,
Tn this chapter we wish to extend this procedure

to nion-hyneron scatterine. "la set up two parameter effective
range Tormulae for ATl and 77 scattering amplitudes for
both even and odd ELF\ velative parities, These are evaluated
assumineg the mass of the recently ohserved \yr and “f;#
resonances (see table 1 ). Alock et. al. tentatively
conclude that the resonance has total anzular momentum

J= 1/2 and odd narity. The spin and parity of the“y

resonances are not yeb known, Hanee we set un effective

ranze formulae “or AT and ST scattering amplit ‘des in

the resonance channels with 4ifferent spina and Dparity
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assignments, A4 point o7 special interest in the ATT scattering
is the role o the relative 72_/\ parity which determines the
sizn and maznitude of th-e residues o the noles, This enables
one to lnvestieate the nossibility of ATl rTesonance in dif-
ferent martial wave amplitudes. Rurther it is possible to rive
an order of masnitude estimate of the renormalized >
counline constant "rom a knowled-e of the width of the reséﬁnce.
Though a direct experimental verification of the scat-

terine cross-sectinsns may look impossihle, 1

ot

¥ igs interesting
to note that inforamation onﬁhis scatterine may be obtained from

an analysis of the exnerimentally=m observed reaction
Y+ N — Y + N4

by the extranolation method suzzested by Chew and Low. The
residue at the (77 ) pole in this reaction is the nroduct of
+he meson nucleon counline constant and the AT scattering
eross-sectinsn with all mesons on the magss-shell, This will be
Aisrussed in detail in chanters T .

Thus in sectisn ( ;L_} we derive an effective range
formulae assumineg the ?’“ regonance to he in the .f:—@, T};lf?

state and evaluate the total crasg-sections Tor different

counlinz constants and nresent the conclusions in section
(2Db) . In Section (3 a y we develon analogous ef"ective
ranze formulae for ATl scat-ering for the T - 3/2 and

Y= 5/2 channels in the f — 1, 2 and 3 states and present
the conclisions in section (3 b ).
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2e Partial wave analysis for 1 HSeatbering.,

e B o S wave seattering.

We shall illustrate the derivation of the effective
range formula for odd J. A parity. The derivation in the
other casesis similar, ILet Ft and :bf denote the four-
vector momenta of the ineident N and v and Fh, and

e those of the outgoing N and T
The 77

regpectively,

—matrix for the reaction can as uzual be written as
! | . .
T o= — A+ ¢ r'{T{'*cle 81 &
2
where the superccripts denote the isotopic spin of the

channel* , a notation which we shall use throughout the

chapter,

The 5 pole contributions to A and B Tfor sdd
2 I\ parity arc then found to be

e 8 i
A e - P 0 =) Ty .
Jsnm }_.____EF_ T e AT s i
g e X
2
& = & = | e i
B = 0 zam ﬁ;:g t dson P <8

where ﬂﬁrfﬁ denotes the reflormalized I AT coupling constant,

™My 84 o denote the masses of A and $  and
2=

A =bir )= N G,
5 "(ff;“fzz)L: “j‘hl('“—{“"ﬁ@) L

These superszcripts are really not necesscry for AW
scatiering since only one isotopic spin channel is
available in this case. For T case we have to use
this notetion.

————
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In being the total centre of mass energy, R  and & the
centire ol mess momentum and scattering angle

correspornding
respectively.
ollowing Fragzer and Fulco, we define the partial wave

amplitude as g _
hg+ ° ifﬂ { - B ds
—— s & J{""J
K
Joe ."I'},E-f'-]
‘Fk" T [1£+' LHW+W}‘)B£+!
E.:_,E-F-‘l J_}

4

Aoy _1_0_\_{.._*.""\ } 4
; E‘

SO
% f P
where )
- i rj ':la':'.] =
=
and &y, 1o the phase shift for T = £+ Ve s
Por § waves; (L ) becomes
= i
ﬁ {[.Nr'l) = —I—l_' ;ﬂl\. - (IIIUJ—"F'I."'hJ fi_] -1 (l: = *.h) [Hﬁi_ .’.(L{'FWH)_E-_ ]f
Gt pd B2
where Eﬁiku iz related to the § —wave phase-shift through ¥
: i
Lol §
'Lﬁ-“’»’] == M € i r‘fﬂM 5.-_14- r?'
- E ""%I',h !? »
ihe effeetive range formula, we shall

L

In developing

completely negléct the cuts
ly the 3 -pole assceiated with the crossed
consistent

oy

gimiler

uts associated with the crossed

processes.
seattering will also be neglected, This 1
with the spirit of the effective range gpproximation which
In the Chew-Low

AT

retains only the nearest singularities,
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formula, the "crossed" nucleon pole gives rise to
branch cuts inthe Lf -plane feor the partial weve ampli-

tudes of which the part lying in the region

_ b AL le
M= L = W < LWN'I';.)
N
is retalned snd becomes the staliec pele of this thenry.l}

The analogous region in our case is

o e |
™z
Estimates show that the contribution from this cut is small

[~

N = (s‘wn?_* 2 — Thjlj

compared to the contribution from the "direct" S -pole and
hence is neglected. With these approximations, the theory
requires only single variable dispersion *elations. For odd

2 A -parity the part of £, (N) arising from the latter

reads ¢
=1 N 2.
Jg bty = o P A
T e
Thus we may write for £c1(LgJ with the pion mass set egual
to unitkg
{t{w) e Jb(-L‘J’_J' o f CJ'N' J*’Hh ‘W' ) 13
T+ oW - W
where we have ss yet made no subtractions., The ﬂ&} solution
of equation ( '2°) with two subtractions for D reads
7 (
dEsY ) E—#—"T‘--"}hjh -5 | N~y iy
& W Pl W“’“MN
‘W}LH =g (f‘”‘j

1) Ghew Goldberger, Low and Nambu, Phys.Rev. 106, 1337 (19573 '
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where QJ;\ ig a subtraction constant, We have normalized

D such that fﬂ(?g_}:} . This implies the definition

of the renormalized < Al coupling constant by an analosue

of the Lepore-Watson convention for the =N couplinz cons-
tz=11'11:.1“?fj In a stathc aporeximation, ( 'Y ) becomes
]
d sAm R . Gl = . N Z P. .= —]
==— 7 1) w2 = S AT T3
4T b wo

Similarly one derives the corresponding formula for even

ZA narity s

, 2 ) . o
_‘ él_iiﬂ_ﬂ_ __’}E___ _ Qot L= == = mz [ “':_t“,f“ + f
41 T 4 W @ &, 3

“ﬁA ig fi-ad bf the renunirement that 3- ="hfat resonance,.
This gives

W = " 8877

The formulas for =-/ scatterine in the resonance channel

can now he written down, Tl have

2 : B
= v = 1 [ ™ A
BAT R EoF T Ji= W A i j," o= -—a'j I
’ T ’rﬂﬂl A= i"u" & MJE
an 2
— T ZAY ) Cf\_i_t' P — b — = = =
e i 05 (— oy L a’iﬂ_,;.fj .'
with

Wy = L2076
where btha vagiahlﬁs now are those of £ 77 =meattering,
tla give helow curves showine the waristion of %he
S -wave cross-section with the centre-of-mass momentum
in natural anifts for various values of ﬁ %Uqﬂﬁiwfor hoth

A_T~ and - -7 scattering. 'fe also give the nlots of

Aol d k. &‘.E‘*F . a |

1) ‘tlatson and Levore, Phys, Rev., 76, 1187 (1243),
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AT knﬁfﬂr.a‘ P::.!. =% 1

Foll 5:11.1L=H.|15‘ P‘.I:ﬂ."' = |
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resoectively as given by the equations ( ¥ ),

(GO S = A £ TR T 7 T )

QI}.SnnclusiGn

From the evnerimental results on the widths of

- *
the .""/'J and

, Tesonances, 1t 1s possible to deduce

the value of § =AW . Thus taking the half-width of
X 4T 1) q2
}ﬂ resonance to he 25 Mev ', we find giinﬁ'fﬂ 0,074

. 7

for rE]f“’ and 2an v | for the ]3¢\:_+[ . The

the

former zives a >i}ﬁ. resonance with a half-width of ahout
5 Mev and the latter with a half-width of abont 10,3 Mev .
Clear-cut data on the half-width of )g* can thus prove or
disnrove the thenry, esnmecially since the theory predicts
that the >L#L resonance should he much narrower than

the 3j&-resmnqnce. Presenﬁa avidenee suegzrests a half-
width of ahont 10 Mev which fits in with the theory with
even > A woarity.

3 a. BEffective rance Formulae for hisher orbital

aneular momentum states.

In the nrevious sectlon, we have investizated the

possibility that the recently ohserved A= regonance is

an J; -wave resonance usine the static model and the efifec-

tive Tange annroximation. Since there seems to bhe some

W 2)
7 having UJE.%E_, we shall

LN
A= )

gxnerimental svidence for

here develop analogous =f%cetive ranse formulse for

1) - Dalitz and Miller, Phys. Rev. Letters, 6, 562 (1961)

2) Introdtctory talk by M.G.K.Menon at the Cosmic Ray
Symposium, Madras (ZFx 1961),

3) B K anpalwiihmaw | 7ok Kodrs, R-ﬂwqu oo AP Boide chaver.

Mo G (I962) (e hress)
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scattering for the J= 3/2 and J — 5/2 channels in

the orbital ansular momentum states { = 2 and 3 . The
possibility of J = 3/2 JJF;.l has slso heen the subject
of extensive investizations by other workers in the context
gf the eglocbal symmatry mmﬁellj. for orbital anzular momen-
tum stafes other than e 0 we know that the direct pole

does rnot contribute and hence we have to take the residue

of the crossed pole only. In the static limit for Fs, =+ |

p O f i A e = 1; Z :
--J..I'I_IJr — E‘E}EE !, "r-}-t—'(ln. M) f_ﬁ!l, -?‘—(E ”;'ﬂ> (ﬂ_ _iiz—r-(kk-'—-rr"‘,\)@,l)
. K
= dEATL A fl@l%—%?m%JQTuﬁ] 5
e (b §+1h ﬁaﬁj
where we have used the values
iR R 2; 2
AJ_'-' gf’ﬁ‘ﬁ‘( A E.)(/S /51>
2 2
Eaj = {3 AT CXE% tﬁ/&ﬂ j
)
o I e ol 4_, 3 3L
ﬂl' 0 S AT C A wggkér ?@3
:
2 o R y P, . "
Bg s — d zam ;-"-;_— / .ﬁ) X3
and . ; |
L= M — =T 2 1 R4

= B4 4l ( in the statie 1imit with P =l )

1) alston et. al., Phys. Rev. Letters,6, BEY (1060)
Peree et, al., Phys. Rev, Letters, 6, 557 (1961)
Block et, al.,, Phys,-Rew,-Letiersy Nuovo Cimento,
20, 724 (1961).
Dahl et, al,, Phys. Rev. Letters, 6 , 142 (1961)
Alston and ‘eno-Luzzi, Rev. HMod. Phys.,33, 415 (1961)



147

2
L - s k= @.(Ltﬁl—-\) ol W= N_"ﬁ"lj\ s
it foliows that fx,H_ gatisfies the approximate dispersion
relation «J \
T IV ST ORT B
F-f" l+ _ﬁ- "r';'llﬁ-|-| f,\j‘—w

{_;1 being given by ( M ) . This may bte solved by the N/_’ﬂ

method and the seclution in the one meson approximation reads

o =y
ﬁ TN [_?:I FERRI o U"'::J B E’ j(ﬁ-ﬁ g-!l
Lyl {q-‘;‘ f '-hw)a [_gu+_=?) T T 2
. ™ o B ! r,n.i'
VR Tﬁ ‘(MGJLUI ﬁ::{,l. ‘f,_ 2 g-lhEw +HI100 _I? IR 1"’212”)

T W ) Y (W)
where we have chosen ths subtraction point such that re- i

noruslised T AT coupling constant gets defined by an ana-
logue of the Lepore-Vatson convention for the coupling

constant ama U (b "') ig the usucl cut-off function. As

in the Chew-Low theory we may now approximately write

9 3Ai [3 2+ hEw+ ew” | ¢ R Seut Siy = 11— lp ¥ ag.
L,'T (_L t‘_'{'_btlﬁ-f]] ru-‘-ﬂ DIJ}.—

where the constent Wy.. is pogitive. The right hand side

of eguation ( &8¢ ) now shows the possibility of a resonsnce
inths system corresponding to the vanishing of wt S B

for an appropriate value of Wy . A similar caleculation
yields for even 3 A parity for J= 3/2 and =2 ’

E};r\‘ﬁ‘[-n?zp?Emwe'i.uwlj_1_{__ {

k /2. =
L_-?_.._i (e - = 2o 1(1 e
/& CS’ R o | ‘--‘-.:J o P : J ot ‘\‘1,_. '~, —b—“"-J_"___,‘_E‘_

by

3%



148

which can also give risc to a resonance for a suitzble W4 ,
The results for J= 5/2 and even = A parity are

e S = LTS AT 5,
3 Adf) [-‘—"—'—-——-—-r L Ho ! 2 q“”_. (1) 2

H (Er E--I"linj."* l.”riL-—FE}. Crfb'g.h:'_ﬂ‘l‘— Illf.ﬂ_}:tﬁ_‘?‘_.l_a_
. LT' 30
i T s 1 N | v
ﬂfii[:—-afr_.:i_.'{-)bj—- .L|LUJ ._.1.} % = ’+ rﬁw '.F"h':}_'
| L (85 -l-H—_I.u)[* {'L‘._Lg-} T 3
i where we have used
| 3
) . i 7 & 3
Ny = — D5 rav (ﬂ"" rm?') (_37;- 4 /:.1“‘) 3%
) ql iy L% 33,
5= Gapm ( 3e

For odd 2 A parity, the corresponding formulaﬁ are

ey ||"3"~‘-—”EL;J s mr.g loto+5-&
= AT [ ?( ) = [+ o—

L (-.; ':+|Lw) )+ 3 3,
ﬁgm. [l+ 4mr eanl] (W~ 1)%L el S il S
G (8 +fbu E h%% &L~ i
33
(W [38+72w = 4ovid| ¢ ()2 st = =16l

LFTT_ (f ATy ”:U.") e & -n‘-? _-_TC':T N

g VYT y |
éE’i' [1“'“ o «. 0 ”_/ __Q__Lu*ﬂj/iwf;g S0 LT i'rLN—i—E'-s

G- i‘f T )l» Lo+ § 2

i
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In all these !~y denotes an aporooriate positive constant,
We have also written down the i wave, J = 3/2 effective
ranze formula for odd 2 A narity in eguation ( 3u).

3 b, Conclusions

Fquations (35 ) and ( 3! ) now indirate that within
the scane of our aooroximations a J= §6/2 resonance is
forbidden far aven =2 /A parity. Similarly we find that if
the = /\ parity is odd there can be no [’ -wave resonance
with J= 3/2 or | wave resonance with J= 5/2. However,
a P ora D wave resonance with J= 3/2 1is possible for
even = A parity while ) wave resonance with J= 3/2 or 5/2
ig possibla for odd Z 4\ parity.

We zive below curves showing the variation of the
scatterine eross-section in the J= 3/2 ,-4?:1 2 channel
with the centre-of-mass energy for various values for the

S AT eounline eonstant and for hoth even and odd =
parities,
(

The curves show that we can preproduce the observed

half=gidth of 25 liev for the AN pesonance with

J:Aﬂ ~ g for odd Z N parity. However for even Z A parity
i g P

LI
i

has to he of the nrder of 100 iT we are to obtaln

et BT

c:_l'"' e
tha 25 Mey half-width for the Y . .




250

A-TI Scattering,

EAN=+] .
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The very large value of the coupling constant required
to obtain a ) wave T = 3/2, §H-¥ resonance with the
observed width for even = /\ parity indicates that such a
resonance is precluded within the scone of our model, It is
worthwhile noticing that the one-meson approximation which
we have made implies that we have completely neglected the
nresence of the Liﬁfchannel and its influence on the
seatterine, If it should subsequently turn out that the
regonance has the parameters ] — 372 and 4?:.2 and the

parityv is even it may well be an indiration that this resonance

can be understnad only if we aporoximately take into account

the kfF¢ intermediate states,
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CHAPTER  TI.

PHXOTO PRODUGTION 07 PIONS ON /N HYPERONS,

1, Introductorv Remarks

In this chanter we extend our orevious results on A
scattering to include photovnroduction nf pions from /\ hynerons.
Since the nrocess Y+/N\— A+ T is related by the unitarity
condition to the NTelastic seatterine amplitnde, a solution
is nossihle in terms o7 the nhase shifts of the corresponding
scatterine amplitudes. The nain departure from the nroblem
of photo-production on nucléans =riss dne to the following
Teasons:

(1) Since A is unchanged, amplitudes generated by
the chahee @ are zero and the only non-vanishing amplitudes
are due to the marnetic moment.

(ii) sinece the single particle rsal intermediate state
is that of a 5 particle, it 15 the X A transition maznetic
moment that is involved.

(1ii) 3ince the mass ﬁifperence’?ﬂz._wwukdces not vanish
anlike in the nucleon case when +he nole occurs at the nuacleon
mags itsel®, we have contributions frém terms nroportional
to wsz__wqqh .

(iv) The Telative 3 f\ parity not heing exnarimentally
girzet Tixed, we glve amplitudes for both even and odd parities.

It is to be noted that thoueh this process cannot be
directly ohserved exnerimentslly it would be of importance in
the study of reactions like v+ W — Kk + A+ T and also
in the study of hyneron form fTactors.

1) Alladi Ramakrishnan, T.K.%adha, R,Thunga and 4.P.Balachand-
ran, Letter to Nuovo Clmento (in nress).
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2. The calculation

Let ?% and k; denote the four-vector momenta of

the incomine /4 and Y and and G{ those of the out-

zolng fﬂ and JT  and € the nolarization vector of the nhoton.

Then with Chew, Goldberser, Low and Hambul) we write the

transition matrix for the nrocess in the form

—_—

= J / L
T= My~ + M&J:>+MCC +Mb_“)
where
P’IA: L ¥ Wie . K ¥
My = 20 ¥ [ PrE g K—PK Q€] 3
]
] \Yl --’ - A r LI
i = ]_T (2 ¥ H@,e]
My = 23, | % €P Kk -2 K P,e—w'lﬁ_@’ff?a’f@ 5.
Here P: ﬂ»’lEF,ﬁ— 'Dz.] and 23 1 S denotes the mass of

A\
the /\ . as in ref.(1) , we may also introdiuce am matrix

related to the Ai~ferential eross-section in the centre-of-mass

svstem through

AR Sy g
a5 R,
where %f and N~ denote the magnétide of the centre-of-mass

three-vedtor momenta of the incident HJ and outgoing TT* and

the matrix element of 3‘ iz to he taken between initial and

final Pauli sninors. F— may be written as

1) Chew, Goldberzer, Low snd Ifambhu, Phys.Rev.,108, 1345 (1957).
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—_ ) = = = —)

. - e
= Loie 3 ¢ 0190 (RxE) 3 steh kg6 3
_ %k

A |I' .

-~

r{?/ 2

_L' o —
where the 67 's are Paull matrices and %_ and é} are the meson

and photon three-momenta. The :i' 's are related to t@ansltions

involvineg multinole radiations through

ﬂj— G | — T gt 'é? jf‘ + £ 'Pr(fu}
P e e J i (o &) +£ il {“J 150
=0 ¥
g S (ley N, M, 0 Pj(fnf?)
%= s, ¢ TR B 7

+
3
L ¥
7, - [ My, = Ep =My = Efj P,f € erd)

Here & 1s the scattering angle in the centre-of-mass system and
My, and E j 4 refer to fransitions initiated by magnetic and
electric Tﬁdiﬂtihﬂ resnectively leadinz to final states of orblital

angiilar moaerntum £ and totsl angular momentum ] _ ,f:tji:
“Iith thess nreliminaries which are to he fpund in ref,
and whizh we have reprdduced for comnleteness, let us ﬁraceed
to the ealeulatinn of the matrix elements for our process. We
shall illustrate the nrocedure f{irst for odd3 /A parity, In
a static approvimaftion for odd =\ relative narity, we find
wa can conveniently ienore the contributions arising from fthe

enerzy varisbles ol the crossed channels since in this case,

_ T [ By M )P Caoa)+ e, M, TP (e

le

It
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these only modify the scattering amplitude by corrections

/
of the order of ?;h compared to the terms which are retained.

Thus if‘#fL- denotes the 2 A  transition maznetic moment*,

the nole terms ®n A » B3 C and D for oddZ N parity read
B Y 4+
R
—
== 8

B =
eB o il i
I)% = _‘ﬁgf/"ﬁ-':.fl__,_/ﬂ = C

2.
] Hera /"S :'_‘—(P| =+ k) ) Jﬂl;-:_._

and E} 1s the renormalized > /T] counling constant, A straight-

5

denotes the mass of the = hyperon

forward calculation then reveals the contributions of (1a- 15)

to the individusl multipole amplitudes to bBe

13
EQ-+ = /E;E a9
258 M—-Tﬂé I
B
HH—- = = _q_/_ fb\-g, Mumx/\
SATE I W+ -
B 4 E
H,_’g = L U g WZTy
E. =0

* It is interesting to note that in global symmetry even
thouzh /'s and M_o are approximately zero, thes A transi-
tion masnetie momént is equal to the minus neutron magnetic
moment ~ 1.9, 349, Tt is to be noted that accordinz to
Sakural's symmefry model, the transition moment would vanish
within the limit that{ﬁlwih}mss difference is zero,

fi

o



i 156

whereas 1n the rest of the calculation, we retain ohly those
multipole amplitudes lsadinz to final states withA= 0 or 1 .
In equations (I-19), we have denoted the total centre-of-mass

energy by h/ . Ve notice that in a static anproximation, the

leadinz Rorn term is = the others being of the order

(G5 3
of iﬁﬂﬁ compared to it. Therefore, keeninz only E&qﬂ , We
A ]

may write = _
i i CJ df _g—m EG+(MJ;J
s = E = " e
ta_p O T m( 4 i)
where J= 5J'-V”ﬂ and we have gsef the pion mass enual to
I.ul'
unity. -jTr3*Eﬁh# can as usnal be calenlated using the
unitarity conditisn ingwhich only the /-1 intermediate state
is retained. We “ird, in a static aporoximation
_x .
dm EgpCey = Ne = oeausis Eoy () i

where we have evplicitly assumed that the ATl interaction
proceeds dominantly through S -wave and denoted the S -wave
scatterine nhase shift by S;F, Bguation ( 3¢ ) now reduces
to the Tamiliar mapning problem discussed by Gmnés 2) whnose

snlotion resds

NN [ o g = Ty +2 ex bl ()] x

27 W —dm

)/ﬂ sinbgawt) explrent)] o effgt‘ﬂ)

2 (.'\.]——E]"m}(/ .:_:_j"; ILI.J) 22,

1) R. Omnes, Nuovo Ciments, 8 , 316 (195R),
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where

W) =
e by ] R

(Luf—tu}

e
Here 57“1* Wﬂé: S and twhi has also been replaced

by its static form.

Tor even Z A relative parity, it is found that the
contribution from the erossed channel are of the same order of
magnitude as that from the direct channel: Bearine in mind that
under erossing A —-A; C > ¢ and P _5 D , the Born

terns for the multipole in the static approximation turn out to be

i3 " .
E{J = = rll_____g Lo i
s 27
E’ = may ay
I+
B
Pﬁr} ST )&ﬂ? k ?f, =11
8 67T w+5’m
5

MJ_ "f&q

I T

Il

aY
w—l—E‘wv‘ﬁ

Since we are retaining only the S -wave AT scattering
amplitude in the unitarity condition, it is easy to see that
the 4ifferent mnltipole amplitudes do not =zet coupled by it so
that for each of them we have a relation of the form ( 2/ ) .,
Finglly the solntions of the disversion integrals for these

amplitudes rerad
£ ()= [ kﬂi ) brjgfmﬂ—klﬂ Q&ﬁnfpfmlji

o+
d @f A Mérwf)wpff"'“ﬂ du}] ceia)
| (e
/

~w) A8
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MF+['mj: i [—/'__-_F Ry m?{m}rf_w_ﬁ.—x))[ﬁw)]x
T

"ST La —!—rj_"'fﬂ

IS
K@jlé/%a_ )\fz EIM(B([U}E’Y l?{m*‘)] S j 5@1)
J

[} ’/ua”+5w) (Lu_m)

Hr__([.u‘j - —-—] f.ll_;}.. "—f—__' O g(&"ﬁ}_}_-%‘]_- é}(})[?f@j\}}i

Iy b

. (Ir\ fﬂu' J'MB A g(w’) E:Kl) [F(Nj)l_o{ “}j Eféfbdj

| Im Wil e (B

wihers fFew) is agaln ziven by [ 233.),
3. Cpnclusion.
We have calculated the multinole amplitudes for the procass

g = A+ for low values of ’E in terms of the AT scat-
tering vphase shifts on the assumntion that the /\ IT scattering
is dominated by S _—wave interaction. Since we have slready
nresented efffective range Tormulae for § -wave /]| scattering
and we can ®EXX easily caleculate the actual values of the appro-
priate cross-sections from these formulae. The influence of the
process ¥ _. /A /A4 T on processes like e e = At K4 1T
on the basis of nur effective range theory can he studied again
by the extravolation methed of Chew and Lo which will be dis-

cussed in ke mext nhapteriy

E_P(bd‘_‘}:n:} a9,

3



CHAPTER ITI,

DISPRRSION W -Iv3IS.OF & PRODUCPION TN

l. Introductoary remarks

With the recent laboratory production of e particlas
in Izﬁj cnllisiﬂnsl} it seens worthwhile to make a dispersim
theoretie analysis of the nroccss

N =5 =i
In snite of the complications involved in solvineg the dis-
nersion relations Tor nraduction processes one major sim-
plification arises due to the existence of crassing symmetry.
We here show that simple solutions may be obtained under
éartﬁin reasonable qnnrﬂximatiﬁns?J

In section (), the kinematies o® the oroblenm is
dis~ussed, In sectiosn (B) sinzle variable partial wave dis-
nersinn Telatisns ara sot un “ar the L=0 and I:f
channels seonarately and the solutions are given assuming the
possible resonances to dominate. The effret of anomalous
threshalds arc alss taken into aceount. In section (4)
granhs are given for the differential cross-sections in the
gase »f relative narity -PCEN):"H' and P(“x" K==

Let ?ﬁ and fb, denste the four nmomenta of the

—

ineident K and N and %; and }%L those of the asut-
z

going K and =  resmectively. The invariant square of

the enersy and momentim transfer wvariables of the nrocess

Ls: ToW, Adlwerasz ety als TICRL (9943).
A Rana ks o, -‘_ﬁ}-_'rlwn.-_'}t*, Tilg Radha  Gr. Dhan~atiy Guel § Tocdamari;

Pl - F’i‘wd.i : (LL Fff.ﬂ:] qu't'l_.l
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Ep-l'”‘—?! = +Kg |-

are
| : = =
8 = Q‘J&ﬁ“)" = <EE‘ +EN) = W a
== 2 0 2 18
H = (PI#%Q) = "TV}N o = =s QE—MEH_Qé{‘brOﬁQ%
t = 3
= (Pha) = B B+ BRI e
— Z il 2%
w ith A+ X+t = amy + my + M= 3

——

= —= :
where [ , C[ﬁ are the initial and final centre of mass
momenta and & the scatterine angle, The centre of mass
enercies and momenta of the nartieles are siven in terns of

4 by

K- = B-frnrmod] s -ty ] fus
3> = B LA el

— = s o LIS B Wl__m =18
Ey= ST J E -2 w _q__"“’k)
E?. ‘l,.f /5- Orh]. u‘-{\;‘
= L =
E_, = A+4+m_ Mg o g
Pl | % f-{_ o ""S — 1\'} _‘_:_ -'-'}"n; )

2N A
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The [ matrix is eiven by

- (Y Y9 B .
= e F
where r}f or }q; denending upon the combination of the

—

intrinsie par’ty of the - and ‘7’ which we will discuss

peesently, A satlsfles the followlng one dimensional integra-

tion
=)
R = | el ol I ﬂﬁ(:ﬁxt) ol
At o St S ele Gl fwaam)
Tﬂ}’ e S tT‘n".n+|’)'-’— &’5#(3)

(1) 5-3)
where (& and C%; are the absorptive narts (i.e.lm A)
when A , ;E and f: are in the ohysical regions of the
processes |

I

N
and A .

respectively, [ and ]Qk are the residues at the poles
in the direct and crossed processes respectively. B also
has a similar one dimensional dispersion renresentation.
There are no poles in the 1: variable which renresents the
(energg)g variahle for the nrocess
= W e

sines there is neither a single narticle state nor a reso-
nance with strangeness =4 and haryon number N=.

It is interestins to note that we have crossing sym-

metry which 1s unusmnal in oproductlion processes so that
A(A 3.t) - A(S,4L)
(%Ei’) = —FB(;‘:’:_, féj‘t) .
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am the esrresnanding relations far Gbl and ﬂqL enn be
deducad. Since neither the = N nar the }fnf ralative
narity has been fixed the Born terms of 1 and B for

different combinations ofar vnarity are ziven below,

case (1) # P(EN) =z 41 § PeYN)= 4] (T=]
B_ g J o o
B g‘:’w{ gyﬂj{['}ﬂ\}f,jﬁ ':w;-_z
5 M_ +m
AT ey dynn | 2T L Tty
354 g iy 7 [
4
where we have already included erassing synaetry by writing Eﬂ R!
Case (I1) @ = _ . "
P(—N\}* =) 3 P(/NO:-H' o f: BJE-‘
2
AP _ g _ [T”nr‘-"”: *m_] / g
- g;\f}( ?B‘Nf{ > = Y m)"l"ﬁ-"_%;-,z
A e

Case (1ii) P(:N)— -—J _P(}r:'u’)a— — 5 =

m_-.r-
‘ﬂ'g"g =YK §>’N#f<[ ’m*‘i “"WFJLW 4+m .40
J

gw-{ yww[m;’—_,a 'm?— ]

Case (iv):

?(EN)-'-'- calne ?(\/’szmf 4 |'_='1/5—

and #pe flasgomg ne dn pasp (439

B _ — _m i r
i %}EV’*‘E’W{”—#* ] [758"]
3

B devw 9 S
T — —
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3. Partial wave analysis

2
‘ollowing “razer and Talco y We define the amplitude

4
e /4
h-E-F( j +_ I'J) (E +'1"I".I.._j ﬂ(;) F__

Wl + (W= (mm-*-fmu)
( T (K[}f L [_g ‘](E§DI I3
+Cz —m=)(En=m) |~ Hex W '% =) By
0 Sy (R 2+ T (e (’?)Q

ffﬁ:.t = T Ay, [/ (k)% It |

where the phase shift E; is compler since we are congi-

4!

dering a oroduction process, It is therefore important to
note that we cannot obtain the simple relation
|
7 Jiz = =¥ RY
Q,{ and Eﬁ{ in equation (3 ) are ohtained by orojecting
the E,”rnartial wave amnlitude from 4 and B by
(At Byl = ( [h; B ] Pless) o’ 5

We: have so far cun51ﬁer@d only the nole contribu-
tions.The singularities in the form of branch cuts start
t b ) € (g ) ey
However it is well known that the cross-sections for yﬁ—

==
nroductions are very small comnared to the scattering cross-

A
sections, low we make the reasonable assumption that only
nearby sicgularities dominate and hence take into sccount
only the poles and the \,/T'l-‘ and _k:N cuts, Further simplifi-

cation is achieved by writine the disnersion relaticns

2, W.R.Frazer and J, Tilco, Phys. Rev., 117 , 1609(1960).
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separately for the T - O and I =| channels, Thus the contribu-
tions from the /A 2and E poles get senavated as they occur

in different isotopic spin channels., In view of the existence
of the well-established \>f* Tesonance we assume that the
amolitude (YT { KN tnthe T=% L=ty Tz,
channel is dominated by the j/_% resonance and that it gives
nerlizible contribution in all other channels. In such a case
1t is found that the intesral equation reduces to one for which
the Omdes snlutinn can he immediately written down. ‘e first
zive helow the intezral equation satisfied by the different
nartial wave amplitudes in the T-¢ and I —| channels taking
into acenunt the nossibility of anomalous threshaldsaTII in the
case of ST intermediate states, It is found that there is mo
anomalons threshold for any of the other two particle inter=~

mediate states. Thus we have for

_J.'i_U J“: }SL {_L.*.,.-'..C:] I—_--C'

A NEg
ol Gt

=i f fé(h{) o
Ll ! Re,We ™ and G

W s

(s +0)->"

* The soin and parity of the /% resonance are not yet
fixed thonzh it is known that the suin"r o 3/2 .We
here assume J = 3/2 ,

2) R, Karolus, C.M,Sommerfeld snd E.Iichﬂann Phys.Hev.,
114, 376 (1959).
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2 S 7 2
and lk = 'THN {—mk‘-—fﬂ”\h

whera ﬁLiﬁiﬁdf) renresents the nroduction amnlitude for the
nrocess (1) in a channel with isotopic soin I s orbital
anziular momentum _u and ftotal angular momentum E ﬂ,lf o G

is the unknown snhtraetion constant which will renresent high
enerey contributions and *tas to bhe determined from experimental

n e e T=0, T =% Chownad

data. 5;*1 igs the KRQ scatfering nhase sh:LtRand we have

renresented ng £L4i(bg) in the ﬁntegral by

L&f T
" ERIRNCRN] END = ’Mr(w

i i {f
S’w.f_{{_r

using the unitarity eondition. A is the quantity to be
subtracted from the lower limit due to the effect of anomalous

threshold znd is ®ound to he

e (W--qﬂ)-ﬂ \/(”‘ +1) ogexaw&wﬁ_ = [May

I8
L0 ] J_:/E’EL ane] T = |
(W e , B4 W 4 ~n_~
Aoy W) 1= skdrns L "y
s K= EyE...
| =0 | ! L ufpftﬂfij | B
_{Fﬁ: ,K,_,L_f_(f-\!_)c? /&MPU(L“UD;"
N,
(™) i i
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o L 20.
Y+ 1= N
(4) L=1,T=) and T =
[
R E T
Tl L% EmeE
el N_ﬂ—“l’*ag_”;ﬂ:_:___mlyj
G
b
| ! E.é. {'M) =
P e (i ==t
‘H"J AW’ A ) e W%{N)
li:rraﬁ'-l) NF‘—W e
) L=1,7 ?ﬁé apwa I =
L:I #
f\,'__f_{ = ~E|-[—| (T:.Maﬁl'(h”\ [W.{_wu-—“z“ﬂzﬁm




167
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Aetnd e m Ty
The #irst integral renresents the process proceeding

throneh ‘)/‘H_' intermediate state and in view of the exlistence

1)

of the 7/ resonance can be yritten as

ay res
Alsg) To Jrﬁ il i
= /L@ = ) + T s ’5:)

i B
where ,ﬁb and r_ re"n?'ese*wt trm mass and half width of the
7/*_ resonance and cj“(g,g) a slowly varyine function of A ,
Thius the ahove equations ( Y1 to 23 ) can be written

in the form Lg{uﬁ})
EV(_‘LJ) = JF(CAJJ —+ { ’E"'{“’JQ Lﬂng) !
1 W' —w as
where () - W—-’ﬂq;\ or Nﬂ-tﬂﬁi —;Jl) as the case may be for

. 2)
which the Omnes solution can he immediately written.

E._,[Lb yie= D—fu y (c% g(u)) + ‘—_Ul. ex b j’(tuj d.’)' (uu 15{_31‘;@) exp. j{wj_aﬁ!
W — u})

x E-?.f: £ (W)

2

Sy = W p gﬂml! ! 2y

1Y A. Kasnazawa, Phys, Rev., 123 , 998 (1961)
2)R Omnes, Nuoveo Cimento, 8 ,; 316 (1958).
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4, Numerical results for differential cross-gection

for case (i¥).

The differential cross-section can he obtained in form

dﬁ" s f v Tﬂ‘_‘ i X E: i L
- e e LTHJ*M&{@'”@}
| W R ¢ fov PEN )t "
As— ) A= mthrn..
dip. = GIr _‘R;rz:' f 4’1 + {il + ARe(f, :;.1)(08}
when the | -matrix is exnrcsspd as oy Pl= W= e
T =

{‘3 [ fﬁ 4~ {:r.r:;:;:j,- {;J N> 1{-@, P(E-MJ:H
abwmf] : <f CE:,EL.fJ I _:ij fF;;l PJ:> f%rr ( iwv 3 31

45, and "18:3” turn sui' G B

f1 C;Mdpm ;::1 X[ﬁ ‘("’”mn«g

27T
=i :fa (o3&

]‘f.;i_, = ___{F N VY E “’r'“f'\'“l
5 §WﬂN f) Emﬁﬁmm £¥$%£
f f +Ew~ h_(wwwzﬂg}

33_
o P(ZN )=+
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b (B (Fagme Vet ) Joetiess i

J
8

*4; = E oy £V
RN A= E — +"Wz

)=+ (W e e

3s
Assuming that only the nearby singularities dominate we can write
Q and .B as
A =P i dEeples =Lk
= T ¢ ) / F 2 =
o R T
3 -
B =B 5 /3@&5“ o ____D_rf__:gi -
e E-3)[(5-2)% Iy |
AN e < ; ':"\(
ST S
R 3 :
where B ~— and B correspond to the F@f& terms 'and tne

integral renresents the contribution of the * resonance
which is assuned to dominate the integral terms of the doubls
dispersion renresentation of A and (5 . Li(’ﬁfgfj and
/ re slowly varying functions of and
ﬁ(f@) a y varying f £ A [
is the half width of the }; rpannanﬂe Substituting thass

gxpressions of ﬂ and 5 in .£; and '{}b- wa find that
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i dw/dR im mb
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1 = ipi-r @, (A 0)T( 5, 85,70 )
ifl: i# + QJL(’{’J S) I(éj éc?:?rﬂ) -)me’ FP(EN) =

where P(}" N) = -/ 2

Tt Bid1)

ot *ﬁ:) ( )@ o]

E.}‘ﬂ

a (4,8) = E”+m) (‘E M=
2m,,
L2

a (A;E) B <£M ey )’jp( E-+ %_){;L(-—-L)fqﬂ +[h‘ _f_lj:(mzﬂmﬂjﬁi
Lmy Im. (E=tm_ |

2 L3

) 954[‘/‘“‘("”‘* = ﬂp

E 4-‘!7?”1

Siailar exoressiosns can he arrived at when the »arity P(E N)
f
is even. Graphs havae been siven fop ddﬁ

Qﬁagﬂinst (o &
for' odd wvarity of f(= N’) assuning the established half width

= . +
(25 Mev) and tho spin J=3) 3/2 ( €=/ o the Y

FESONANTCE,
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EXTRAPOLATION METHODS

1. Introductory remarks

In the previons chapters, we have used @ispersion
theoretic methods to calculate the cross-sections for the
c¢ollision hetween two stronzly interactinz particles result-
ine in a two narticle final states, In some cases,; a direct
axperimental study of such nrocesses is not feasible. For
instance, AT scattering cannot he nhserved directly slnce
neither vlonsmr /\-4 are available as targets at nresent.
However sinece hyperons are nroduced in a bubble chamber with

say a proton as the target, the reaction that one mizht =

axpect to ohgerve is
Y+h— Y+ N+T

1t is naturally to be expected that any information recarding
the nartial nrocess A T - A+T or N+ —SN+T
will be useful in the study of the asbove reaction. Or con-
versely experiments with 'complex' tarcets can he nsed to
ohtain the cross-sections of tarcet constituents,

4 general method for the anal vsis of two narticle
collisions leadingz to three mnarticle final state has heen

1)
nroposed by Thew and Low,. The hasie vrincinle involved

is the aralytical continuation of the scattering amplitude

for the process to a nole, the existence of which 1s

conjectured from field theory. The connection of the residue

v F.Chew awd F E, Low PLUS Kev. 112 b I6Lo (V%Eﬁj
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Diagram for E+IV —=— A+N+T

N




)

[l

at this vole to nhysisally measurable quantities is based on
nlansihility arcumants whieY sre intuitive rather than ricorous.
1t is assumed that one of the nartiecles in the initial state is
'‘unstable! i.e, it is eomnosed of two ronstituents of which only
one interacts while the other rrrains g 'snectator'!, The ampli-
tude for the mrocess iz stundied ss a Tunctien of ﬁxi y the in-
variant square o7 the fonr-~momentnm transfer hetwesn the incident
and the sovectator sarticles, It is conjectured that the smpli-
tude is dominated by the contribution from a mole which Decurs

when Zhl‘ is equal tn the square of the mass of s sinele particle

=
[
ct
o
L

the same quantum numbers as the Tinal state. That this

ias outside the nhysiecal region is nothine more than

I_,_I

pole
a stahility eriterion for the initial target. Under thesze
condidions, the 4ifferentisl cross-section for the entire
region can be related to the total cross-section for the partial
process in the physical region,

With these preliminary rTemarks, we shallnow study the

-~ &
nrocess 2 —+tj—f§ N+ F}+1T'- with the > as a composite
particle. Qur analysis has a two-fold ohjective;
(a) “We ineinde the af®ect of final state intersctions,

the importance of which will ha emnhasized presently, and

(P) ™We stndy the cases when "Y is either a 5 or a A

with a view tp deternining the rselative 2 /% parity.
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1)
2 a. Caleulations with final Y [ interaction

In general the interactisn hetween pairs of partieles
gmitted in a3 reaction is called the final state interaction.
This imprecisely de®ined sevarstion of the interaection of two
particles with each other from the =zeneral nroduction is justi-
fied by dits ntility and is useful only if sieniflcant features
of the whole process can he interoreted simply in terms of the
Interaction of two varticles with each other, This situation
is likely to accur if two narficles gan be emitted with relétive
momenta such that a resonance scatterinez takes place or, in
other words, an isobar is formed. '"le now emphasise that thils
ig not merely possihle in our ease hut very nprohahle gince
hoth T_P and 2 T resonances oceur very close to the threshold
of ( A ) ani hence final state interactions can by no means be
nexlected, The dﬂ_P interaction can be taken imto aceount by
feedinz the total cross-section for T P scattering at
resonance. 'fe shall assume that the Adominant 2 I  resonance
is in the T = 1 and J = 1/2 state and incorvorate this yﬁ
resonance by constructinz the nrojection onerator i%l which
picks out the final T =1 J=1/2 state.
From the 7eynman diagram we see that the pole would
0 o 2
ocenr dne to the exchange of a sinzle plon at 2 :'<T:Lf"FE°)T_”%
and the branch ents start at the square of the masses of all
multiparticle states, the nearest one in this case heinz the
d, MMstate. Takine only the contribntion from the nole, the

residue is the propinet of the » 2 [] couplineg constant and the

U G Bhamaty, 5 Tvdwmdlu, 7.k Redha and K Tﬂuwgi,
Nuove Civmmente (i press)
|
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plon-nueclenn scattering amplitude with 311 particles on

the mass shell. Experimentally we can of course never

reach the pole, but the dominance could make itself felt

1n the low ;iu -récoll reglon., Also, in our reaction,the
composite narticle > =  is the incident particle and the
proton is the tareet at rest so that in the absence of

final state interactions, the differentisl eross-section for

( A) is ziven by

0o [}d, __
o Sl ]

'
Tl el WNE- M= )
= lMg_ =
= = f.xv w)
217 A A S i b )
where %J is the total enerey in the barycentric system
of T and fb .
A is the momentum transfer hetween S~ and S °
) the total enerey of the tarset and the internediate pion
and F‘:“ is the square of the 237 vertex in the
Born apnrpoximatiohn.
Then 4 )1
- = = q.
Mo <M§ 2
= “leb
go that the recoll kinetic enargy of ﬁiﬂ in the :i.-
rest system at the nole is
Bl = = "}".’]._ KMP--__ )J
: L = = —fINa 3

2 Mg~
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which thoush unvhysieal is small ehoush to admit extrapolation

into the physical r-gion
- 2 " o
I 7 E.E, r‘. a :J"Pg-ibzu °r E\)‘EJ by,
Sa=
where Mg - — Mga 6

=

= SR
The graph (p-1"8 ) shows the variation of A ‘+'7rWT) RS

for warinus recoil kinetic eneregies. ‘TEfﬂﬂab for eiven

T
recnil aneles assuming ‘d S |

To include the Tinal state }fﬁw interaction we may

write

do ~ P Prpss [M] Ps- Mp>l = R =

omitting const -nts and the over-all 5 function, where

R o= Ra = (S-L)RJRm

Flv indicates the matrix element uncorrected for final
state interaction. Tor the production of particles in the
states 3“1#; 172 (where T - P is used) the outgoing
particles are renresented by plane waves, In the remaining
state the factor §  takes into account the distortion
of the nion wave function by the hyperon., It is npossible
to estimate S from a knowledze of pion-hyperon phase
ghifts in Ji=1/2 ; T =1 state.

e now evaluate the three terms in
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\LHMH}\a = lq[tm}f (S-) I L] P, Me e
2 Re ol) B TR Ml S LE MUY

T
: B
(1) The nrojection onerator I is given by
o ! |
B = ,;:3 = b el g MR g
i (27) o é

and

e
#
= [ S T (7 ‘-_-_'(-* o (3 "
[Py My = Z Vo By o™ 2 N, g G gy

IIJ'..a
2 o
where for convenience we work in the c.m. sysfem of the
resonanting vartiecles § T their momentum helng GV . THE
\J5_+§ are two component spinors of 2. in the spin scates
o and
B { el 25 ("H}
_fL_Ca\E.,:;;]JM;fLMJP’P Io
Thus we have
P b ﬁ:‘ Koy > S iy rﬁj\ Mo b I
(gl B Mali>t = Kby 2 [y z mac_ v* (ol
H hr I|'-|- _.ll
i st sl =B i
> C \?; {JJ L— r—ﬁ F'||_:,; r)q,{t:"'l'?-f-r'l_j
,rﬁf'f e H-f : 3 ——
i dkrTF_

]
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7 2 =
= Kiwy o, /"D—}é}mi L:"‘I_E = EE*EE.:J
: g Ms "

(11) The term

iy £ P
fj?c'jﬂ_ '}H_}qJ}l‘

A S n!
‘,-\’pnl“‘]';:’{!‘"‘iﬁ\) = K(b-i_} 2 E_—; L;'-';&’JH C';-g ™ K_fﬂ.v;yf.#fhj

iy [ ‘H?"h
TRV fm L Eghtgcwkﬁ--pg“fﬁ};
2 MNs
= Ky [ bk . (e — siive 64P)
Mg t PE ]ﬂé ( 3 e J 2

(111) Tinally the term

L5 (sl L [4w'= £905ms) + niri) ]

A T 2 AT - {f!_",]'
: 5 lw___‘\t.___lj; — H;ﬂ ( (ﬁlq“mz)’"ﬁnh
i
§ [ 2495, ] .
= UG
-:LT < r\-v“aT—)
Thus the differential cross-section at the pole when
there is a :f¥ resonance in the final state is
. .- (b
j {Cos® —3 e
K(w)i% 2y | M -B-E )+ Al 7
s = E %
&I

The corrected cross-sectinn cannnt be nlotted since the

?fTT' phase shifts are not known.
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2 b The J A relative parity

We shall now consider

¥ =L B= sz’\\* I =
Depending on whether the final state has a > ora A

the comnlex system is taken to he comnosed of either Z°JT

P

or a AT . For the latter, the differential cross-

gectinn is nhtained from ( | ) by renlacing P%uby Fﬁ,\

“le now determine the ratin of the cross-sections for the
Zz

the experimental cross-section for the charze exchance

L

and A~ oroduction. Tor this we make use of

seattering of T |[p for a particnlar value of incident
pion enerzy which Tixes the value of 2 ., Let this be
say W, for the 3 ° ovroduction. Then the value of W
which iz most feasible for extranolation is «iven by the
relation

. 2 e 2
W= N+ Mg = s e — Jiz® =
’ ze Tt [ Wt (i)

I

This Fixes the valus of the incident 3 = energy and

with this value of ( N ) we find the corresponding

value of 427, for the case when A’ 1s the snectator,
The matrix element [ for the first vertex

denends on the ralative narities of the enmposite particle

and spectator and their copunling constants. When S~ 1s the




snectator, the narity is Exzmmxiz necessarily even while

in the case of TAN it can bhe either even or nodd., If we

assume S A and =35 counlings to he of the same order
2
i

L
of masnitide we ean Tind the L 4 for both even

20N

and ®xe odd = A nvarities at the pole. It has heen shown
2

by Muraskin that the ratio of | for even ¥ A parity to

L. 1
odd is of the order of73ag5 ., The ratio of the differential

-~

ernss-sectisns for and (\ oroduction are seen to be

Fal

g8 Tollows:

Tn: -rﬁ“ TS Sy ) e
210 Mev 148 Mev 88.5 42,5 0,59
124 Mev 157.1 Mev 39,6 4,2 0.52

It is interestineg to note that the values of the
ratio ohtained Tor even o A parity is close to the experi-
mental value obtained in the hydrogen huohble chamber which
ig 0.5. It seems plausihle to assnme thaf the ratlo remains
the same when the differential cross-sectlons are extrapolated
intp the physic a1 region, This elearly indicates even 3 A
paTity.

Procesding in a similar way Tor the capture of
by a dueteron and treating the deuteron as the comnosite
narticle, we find that the value of the ratio for the S
and A\ production decreases to abaut 0,25, althouegh

we Tind that this is not sufficient to exnlain the latest

axnerimental value =m of 0,43, However the experimental



value seems to be fluctuatin-z since the original value
riven by Hortwitz, Miller et. al., is about '0.14,
Perhans in this case, the ‘( -meson intersctions »nlay
a cnnsiderable nart of the final state interactions

have to he taken into accnunt since two nucleons are

gvallahle in the final state.
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CHAPTER I 186

|
ON_THE POSSIBLE RESONANCES IN (=) -b COLLISIONS )

1. Introductory remarks

It seems very wnrohable that cascade particles may
be nroduced in larce numbers in the lahoratory 1n the
near fatnre, the mnst llkely Treaction heing the T(HN
eollisions resultine in the nroduction of =J along
with a K partiele. The threshold Tor this resction
issMev while the E: beams now available have an
energy of Mev , It therefore seems worthwhile to
investigate the possible resctions of =) particles
of which the most relevant from an e vperimental point
of view would be the ='p and T m  reactions which
may he studied in the hydrogen and deuterium bubble

chambers resnectivaly.

In this chanter, we study cascade-nucleon
reactions resultine in three partiecle final states under
the assumntion of charze indenendence. The main emphasis
in our discussion is on the possibilltv of resonances
in the final state. Besides the now WEll—EStﬂblishEﬂ')f%
resonance, it has heen susezested that a }fﬁ;'rﬁsonance

with stranzeness S= —| and a Y'Y resonance with S= -y,

f) o Ramwekrishvow. . 7- .f{lﬁdf\p Kanel T, quqqu Nl PL"‘!E 33 s Uﬂﬁ?fl
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may also Efiﬁt-l It is suezested that a study
af the =N reactions can throw lizht on all these
resonances, In order to zet information re=arding the
spin and narity of these resonances, we give an analysis
of the ancular distribution of the meson produced in the
regctions,

This chanter is thus sub-divided into two sections,

3eetinn 1 contains an isotople spin analysis of the re-

actlons
S AN > = N+ :
== il g,
e W ¢ .

on the basis of charze independence with a discussion

on the nossible resonances in. the final state. In Section
2, we mlve the angular distribution for the omitted

plon in ( P<4C) . For comnleteness each section is preceded
by an sccount of the mathematical preliminaries and kaxe
pasiec nhysical concents necessary for our analysis. A
critical discussion of the implicatlons of the assumptions

nade are nresented at the end of egch sactlon,

1) R.H.Dalitz, Lectures delivered at the Summer School

for Theoretical Physies at Bangalore (1961).
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=2« Isotopic Spin Analxydis

a) Preliminary comments

The introduction of isotoplc spin to nucleons was
stimulated by the ernerimentatly observed é&gi of charge
indevendence of nuclean forces; i.e. if the electromag-
netlc and weak interactions are switched off, the neutron
and nroton would be indistineuishahle., This situation was
reco=nised to he similar to that of ardinary spin in a
magnetic field and the isotopic spin formalksm is bhased
on this analozy. It is also well-known that the assienment
of isotopic spln and stranzeness quantum numbers to parti-
cles resulted in the “amous Gell-Mann-~Nishijima scheme
for the elassi®ication of baryons and mesons., The relation
between charcze (o 3 isosnin T and strangeness § is ziven by

=Ty Et%;i I

where L, 1s the third comvonent of 7~ and N 1is the
haryon numher, According to this scheme the T and 2
are lsotopie trinlets with =0 andS=-| respectively and

N {hn) K¢z )and Z(Z7 =) are isotopic doublets with

S0y -land -2 respectively, so that by analogy
with snin, their isospin wave Ffunctions can be immediately
ennstructed.,

b) Iso spin wave functions for two and three
particle =systems

The addition of two or more isospins follows the

same fules ss in the case of ordinary angular momenta,
2 = 3 —y
The eigen Tunction JI_‘_[1> of T 2T +I, with T,
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as third component of L ean be written as a product of

the eigen functions ' fa, uIm) and Wity po s )ﬂf-
. =5 e A e
o 5 and T _ l.8.
s ,
| TTz) = > € (\I' Ty Yz lay l R | ILJLP {_I,Iﬁqu(:%_
Lo, ;u)
where
. ok 5. T i
CillLijizirzzliuiﬁ_iLIz)

are the usual Clebsh-Gordon coefficients, In the case of
rhree narticle systems, three distinct modes of coupling

batween the individnal isospins would naturally arise.
—35
Thus for a final isospin I resulting from L, :Ea_ and
—

1. we may have

e

— — =y = == —
Il, —'I—T_:L '.._I__ ) e -F—-_I?] _':.I
or
- — — —
o f Rz 2
RE - — =) = =y F2
I"L +I‘-‘. == —{- 4 1 “I—Ir — -__I|_

Out of these three combinations the one that is most
suitable will he chosen from the nature of the problem at hand.

o) Charpe Indenendence

With the introduction of the isomultiplet struciure
for elementary narticles the concept of charge inden endance
when extended to the other particles would imply conservation
of izpspin in strongz interactions. Here explieitly, whan

rie
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extendad to the sther partieles would imply conservatien
of igespis in strsng interaections, llore explicitly, when
electromagnetic and weak interactions are nesglected a
physiral situation does not depend on a choice of coordinates
in 1isogpin space or in other words the interaction has to
be 3 scalar in isospin space. Thus charze independence se-
#E%EE%% that all nhysical nrocesses should bhe invariant
under rotations in isosvin space, This leads us to relation-
shins between the cross-sections for the different channels
in a siven process. In fact this can he achieved by using
charge wave Tunctions only even withont the knowledge of
the exact matrlix element. This method of apnroach is parti-
eularly useful in the study of strong interactions where
there is no ronsistent theory for the evaluation of matrix
alements.

3., EGaleulations

We now present a systematic analysis of the following

processes under the assumption of charee indenendence,

F+h — SN [ Hew ) la
=52 2 SRR (970 ) (h)
= N (155 ) ()
== 2t e (&g = (d)
— 3 ;AT Usew ©
T e T @

: 1)
The threshold for these nrocesses are given within brackets.

1) A detailed discussion on thresholds 1s given in
Chapter IM , Part IIT .
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We now illustrate the procedure for one of the reactions
(i.e. 2 a ) in detail, We feel that this is of particular
importance since if for the moment we take the global sym-
netry hypothesis for granted so that the TN, 7Y
and TT = dinteractions are identical, we should naturally
expect to find a =77 resonance in the J=3/2 , T-~-3/2
state in analozy with the TI-N resonance. Aven if
global symmetry were not valid, we should expect such a
resnmance on the assumption that pionic interactions of
haryons ara similar (thouzh not 1dentieal), In fact it 1s
felt that such a =T  resonance would be aesthetically
satis?ving, particilarly since the YT resonance is now
well-established.

Sinee our object is to study the effects of a =5 1T
resonance in tha final state, the choice of the iso-spin
coupling to he emnloyed 1s antomatically fixed, Thus we

couple T _ = 1/2 with I_= 1 to give __‘?:I: 5;.*"’“* ):L which

[=S

ig then coupled to T, = %L to =zive the final T .
conservatiorn of isospin, this should be equal to the initial
I of the =7 P system, Thus taking a typical example

e . (i

= tp—= 2 b+ T

we have for the matrix element
M= (1% %k (%1 i)n|3ji(i-{f'll+'£r‘9
+lelin % %5yl s )H”]C{/l y o +ke)



+ff(iﬁﬂu,% xS{(%l{j+¥C)ﬂwj (é_ s ;ﬁ)

The {-§ are the usual Clebéh—ﬂnrdon coefficients, The
Pirst two cosfficients arise since we are dealing with three
narticle states while the last one is due to the nossibility
of two Aistinct iso-spin walues for the ipitial svstem, The
A_ e are the amplitudes for the nrocess 1l.e. f.,
denotes the matrix element for the transition from an initial
T - ¢ state to a flnal state in which the =% and T are in
an T'- 1/2 state. If on the other hand we had considered an
initial =°p system with T, =] , then the T-o initial

state is forhidden so thaft we would have had the amplitudes

A, =nd Ay only. Mhus we have for ( 3 )

i) A g
= / : —||'- ¥2d
M ST iu A QAF— % b
and the cross-section for the process 13
i £ — || f — __l__ JL _j_.. :I L
IM[ = st ghe Ay — gL |

We thus evaluste the total ecrpss-gsection for all possible
channels of ( @) for both the]ﬂ_I? and}ELwJ initial systems.
If we now assume that there is 3 dominant resonance in the

= 77 final system in the T'=3/2 state, we may set B
and A |, amplitudes to he zero and the resulting eross-
sections are evaluated. There develop interesting equalities
and in equaﬁi&%’amanq the erTnss-sections in the various

channels which lend themselves to easy axperimental veri-

fication.
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Similar caleunlations are carried out for the reaction
(h) and 'e) and we first envisage the nossibllitv of a ‘YFJ
respnancae. The ampliftaodes in this case are denoted by |
_I_i:f I,where Y 1is either » or A and T d/e ez
a/s for ¥ and I =1/2 for A . It is obvious that
the results wonld be identieal with that in (a) since the
VN system is similar to fhe =, M system as far as the
igotopie snin i3 concerned, but of course the amplitude
wotild he d4i®Psrent, The cross-sectlons for the possible
reactions with and without resonances in the final state
are tabulated in table ( | ) . The triangular inequalities
that follow are ey b?|ﬂLQ ~the 'tCLb!ﬁ
The Tahle (IIE) contains the results with and without
5 Ei}d rosonance in the Final state of reactions ( b )
and ( (;;} . For this, the coupling scheme is chosen to be
j:I::]:#‘# Eif and the amaplitudes are denoted hy’?ﬁﬁﬁr;
whare If:: 1 or O, In the absence of any resonance,
the trianenlar inegualities are the same as in ( | ) since
fhe nracesses are the same, However at resonance, they are
raturally diferent.

An  §--2 resonance with baryon number N = 2 may
also he stndied from these reactions. For this we consider
the reactians (4), {?} and () and the table ( 3 ) gives

Trl LLelT OF 0 YT
a 1ist of @ il Tesonance, on these reactions is also

1isted in table ( L4 ). In this c ase each of the two hyperons

can he senarately coupled to the pion which leads to two
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different resonances in the same process when the hyperons
are not identiecal, 'Te fxxsx find from the above table

H..
that when x},‘f’ (an I =1 resonance with § =0) 1s not

allowed most of the eross-sections vanish which, iT experi-
o %

mentally verified, will confirm the absence of | .
At resonance we also Tind that the cross-sections reduce to
the eorresnonding ones in (L ). However it is interesting
to note that the multinlicitles are different in the two
casAs as 1s seen from the columns in table ( 3 ) .

Till now we have rest-lcted ourselves to a purely
igsotopic spin analysis withont specifyines anything about
the ‘actugl matric elements. It is to e pointed out that
the crnss-sectisns may be caleulated by the Chew-Low extra-
polation method as was disenssed in Part II, In this case,
we may for example have di=eram ( ® ) with the pion pole
for reaction (2 3 ) and Aisgram ( @ ) with the KK pole
for the other reactions, where the ,=. 1s considered as
a )fizh system, The extrapolation enerszies in the t wo cases
will be —EY-5 Mev and —7-5 Mev respectively.

4., Ancular distribution

a) Preliminary comments

One of the most fruitfol annlication of the theory
5¢ anrular momenta is the study Af angular distributions
and cnrrelatians%}The amount of information that can be
obtained with a few nerfecfly ressonahle assumptions is in

fact quite remarkable. This approach has heen of particular

1) See for example, "Glementary theory of Angular Momentum"
by M.E.Rose, John Wiley & Sons (1957).
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importance in the study of nuclear reactlions and has also
ween extended tn reactions involving elementary particles.
For instance, the radiation emittei from an oriented nucleus
with aneular momentum 3’ will not be isaﬁ;niﬂ gsince in an
oriented nuecleus, the ng.fﬁ substates are not equally
populated, The situation 1s quite similar when a spin zero
particle is emitted in a reaction involving particles with
spin,

The hasic assumption that is senerally made 1s in
restrietinz the orbital angular mamenta to low values vwhich
15 walid fTor small walues of ipneident enersies. This res-
triction, when made on a palr of tidentical' particles,
fermions (in a ziven spin state) or bhosons belonzing to
the same char=ze multiplet leads to a corresponding raetttecingn
on the iso-snin state of the sysfem in accordance with the
zeneralized Panli orineciple. This requires that the total
dave FPunctiosn - the vroduct of orbital, spin and isospin
wave functions - bhe symnetric in the case of bosong and
antisymmetric in the case of fermions, TLet us now consider
an initlal system of two narticles with a relative angilar
momentum E_ and smins ,51 and %{: rpsulting in a thren
narticle final state, let us further assume tha®t two of
these helone to the same miltinlet while the third is spinless,.
Then in analory with the procedure adonted in niuclear physics,

we may denote the two Fermion state as beinz characterdsar

hy a total ansular momentud :Té_ and the boson by the
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relative ganenlar momentym L_'{ so that the total T:J_&—irj:
Since "T_.L is ohtained hy enunlineg the relative angular
momentum of the fermions and their spins, we can naturally
hafe two schemes, 1.e. (a) the a 3 coupling where the

individnal K -% and 4_-A4 are first coupled to give the

individual j-% which are then coupled to give the final J
and (b) the #__‘E; coupling scheme where the total L and5
are found by the addition of individual ¥.2£ and 4-% and the
final J computed from L. and S .

The ansular distributieon in the latter scheme is

ziven by

t“?)“v'i.] B Ealla @) P, (@59) ;

wherea
TJ,;;

2 =@ () 0 (4504
and Ll T 3

[ =@'+’)‘;‘ (TL{::HJL s

F:r ix‘L:_}._'JT_L;,_TIfI = (=~ I_) ]_:L_' _(;,'L 4F l) (Q L_&—H) C Ly L:.&_"‘}J]I a’)ﬁ
'T:U_ i JLU;) 9

and “( ig the Wigner r']’j symbol. The need for this 15
intutively clesr since the situation is similar to that of

compound nucleus formation in nuclear reactions - 1l.e.
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in aur case the system of two fermions. The W-jand E—%
are the Racah and the Clebhsch-Gordon coefficients respectively.

b) Calculastions

With the ahove basid oreliminaries we now turn to
the nrohlem of the anegular distribution for reaction ( ¢ )
or f ) . We shall first enumerate the allowed final states
Por the initiial system with a specific angular momentum.
Tor this wa need additional information resgardine the narity
of the initial svstem. Sinee narity is a zood guantum
numher in stron=z intersctions, the allowed Tinal states
would denend on the initial parity - i.e. the relative =1 N
paritv. Since there is no exvperimental evidence to favoar
either o514 or even ] N parity, we shall consider both
possibilities.

Let us restrict ourselves to inltial S waves say
in the sinslet spin state i.e. Isfl state, The final system
necessarily has J=( which ecan result from either l=ri=10
and Jy =G or Lg= |  and j@ﬂ:i . Here J, is the total
anzular momentum of the F S  system, The 1sotopic spin
states of this svstem can be either symmetric ( T-¢) or
antisymmetric ( I ) . We shall further restrict the relative
orbital angnlar momentum hetween the two Ffermions to 5 waves
only 5o that their orbital wave Tunction has even narity
(‘4)ﬂ —| . Since the narticles belong tn the same charge

multinlet, their intrinsie relative narity is necessarily

sven. And since the pion is a pseudoscalar with resmect to



203

the nueleon, it should be in a P state with L&:-JFDTFF¥;r¥;‘P;

gnd in an Eﬂ state: with Lﬂ.;t? for P ] o Thus in the

=N
Fnrme“ case jé_h_ﬁ and in the latter :Ei () since the final

S L_o

Thus for P—=pn = 4|4 since Jg =| Tor the 5 3
system, so that they are in a symmetric triplet spin state,
the isospin wave funetion should he antisymmetrie. Thus only
the 7 - | state is allowed and the symmetric T - () state is
°

forbidden. Similarly for gince .ja =0 ythe T=-0C

=n> =
state 1s allowed while the T-| 'state is forbidden, Similar
arguments can he apnlied for various Initial states, i.e.

BISI g FFJ : 3 >, ete. and the allowed final states
are listed in table ( & ) .

In each rase the angular distribution is caleulsted
with the help of ( 7 ) . For initial § waves the distri-
bution is naturally iscirorxple. In the case of P waves
however, we should naturally exnect a £ dependence in the

digtribution ( 2 being the angde of emission of the pion),

Thus for example for the transition
il r
|| —> ‘.:l.". p,
wa have
=i i S e N e )
= f;m i {'_|| J_ ..frf{J £ ,ﬁ ’ Ji’ {,J _.J—J J ‘-}_51_“0

dag oF =1 ik =3 Gneld

and Wills) ~ 5/ — (48
-';I .
The distributiors in each case are given in table ( & )

within hrackeis.
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"rom the table we may draw the followingz conclusions,
IT the initisl state is 1n an ES state, the distributions
are isotropic for either narity. In case we allow initial

F: wave also we Tind that for FﬁEﬂV — 4| the distribution
is always isotropic while for ’PE?rﬁ = __J it is of the form

Cl-+i}(SﬂzEé for all states except the t}SJ-#E state, Thus
an lsotropie distribution automatically lmplies -?%E n==th

applees fo
We point out that the same ( P Y GG ¥ and) s )

also, Of coursey in ( & ) and ( o ) since the Panli principle
cannot he spolied, there is no restrietion on the allowed
states of the two Termion system. However for ( 5 )} though the
Pauli orinciple has to he applied the T -| state is not possible
so that from table ( § ) we find that the distinction between
even and ndd = N parity is more pronounced since isotropy is
imnossihle for Fj:z W= —/ for P waves. For ( €) however
the relative 2. /\ parity has to be tasken into account and also
there will be additional sta*tes possible since the restrictionz
o_f the Pauli orinciple 1s removed. The angular distributions
can he similarly ealeulated, It is felt that the study of these

anenlar Aistributions would be of importance in the determinati~

of the snin and narity of the resonances.
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CHAPTIR | II,
1)

-—

ON THE SPIN OF THE =

1., Introductory remarks

In the last chapier we have discussed the implications

of the assignment of even znd odd parity to the cascade parti-
cle with respect to the nucleon. In the entire discussions,

we have assumed that the cascade is a particle with spin 1/2.
However there is no cloar cut experimental evidence in support
of this and therefore the possibility of higher spins for the
= cannot be ruled out. We now wish to investigate some

of the cons quences if the .= were to be a spin 3/2 parti-
cle., Of course this assignment would immediztely imply that
the =} is not an 'elementery' particle which would be
congistent with Chew's view that the whole conception of
elementary par._cles may be meaningless for baryons and mesons
with all ‘particles' being bound states of one arother.
We now present some of the consequences of attributing

spin 3/2 for the =} 1in strong and weak intersctions.

In Section (2) we study the reaction ;3':+ b-—a A= A

snd in ( 3 ) the posaibility of the double hyperfragment

and the distribution of she decay pions. In section (4)

the reaction Ei-Pf3=——% I+ K ig studied and in(5)

the

Ta

the decay of cazcode grslysed,

1) Alladi Ramalrishnan, G,Bhamathi, SeIndumathi, T.K.
Radhs and R.Thunga, Nuovo Cimento, 234 goy, , (176])
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2. The strons interactions — T+ — A'i“/q_'t

The most probable reactions when a = particle

comes to rest and collides with a nucleon as a.he

=4+ b — A4 (1)
—> =+ p (2D
bl (&
The firgt reaction has heen analysed in great detail in
the ecase of snin 1/2 for the = particla.l) Tt 1s well-

known that the snins of the two /A particles have to be

correlated hecanse of the Paull nrineciple and the parity

of the A Aoes not nlay any role in the analysis since

twe A 's are nroduced, It is quite reasonable to assume

that the = is cavtured from S state since the inter-

action is suhsegquent tn the stopoine of the = in the

hydrogen buhhle chamber, We list helow the allowed and

forbidden transitions for spin 1/2 and 3/2 for the =
Bach of these final states 1s characterised by

g distinct patitern o7 onolarization of the A which will

be reflected in the /A . decay. If in the final state

we rule out all orbital angular momenta higher than £ =|

we find that in the case of even = M. parity and spin

3/2 the reaction cannot pecenr. Of course, the initial state

gshonld have Jr: @ and thus we see that the two body

= N hyper-fragment may he stable azainst decay via strong

1) L.B.Okun et.al. Jeth 7 , 862 (1959).
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interaction not only for L=1 put also for T —¢@ if the

= N parity is even and the =  has spin 2/2 . This

sugrests the nossibility of a bound system of = b corres-

pondinz to the deuteron in a metastable state since 1tf

has nn allowed final state into which it can decay. In

such a case the splitting of the(= +p) and(:‘—_”.;_hjlavels

which romes haslcally from the difference in masses of

= and = is small compared to the splitting of

the levels with I =| ‘E_E+L:”n>and L=0 (= p~ =)
and the = N  systems willqgé in a well defined stagg of
well defined isotople spin T .

It is important to note that the possibility of
a bound = N system ig greater with spin 3/2 for =
than with spin 1/2 since in the latter case for = N parity+|
the reasction can proceed thronsh the fso ‘state., De-
excitatlon through

= +p > A+ A+ Y )

will oecur ranidly but as in the case of Z° , it is
expnected that the fragment mieht live long enouzh to have
a resgasonahly well defined mass.

T he analysls of the masses of the = and —°
particles prodiuced does not ﬁﬂfinitely.indinate as to which
is the heavier particle between the two., This is of vital
interest since it plays an important role in the -GS b

hehavionr of the cross-section for the reaction ( | ) .

Tarious mrme theories have heen put forward to nredict
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sien of this mass difference in comparison with that of

nucleon mass differences,

Wa pnote that if Wl > bri__ then the charge

-

exchange reaction ( 3 ) will have a threshold while of course
the reaction ( 1 ) has no threshold. A ol in the cross-
gaection for a nartienlar process occocurs 3t enerelies corres-
nonding to the thresheld for a new channel. Thus it 1s natural
that Xk we must expect a «wisp in the A+ /) oroduction
eross-sectinn at the enersy Mevy corresponding to the

threshold for the charee exchanrce Tezction {assumine

It was shown by Baz and Gkung} that one can determine
Z/A  relative parity by measuring the tecdp- ' contributions
to the reaction TT_gpyg-—er g\-#f( CSJ
at +he threshold for Z K mroﬁuctimnﬁ). In our case then
the aneular distribution of the A/ system at = h threshold
should be very sensitive to the relative = A/ parity.

The final particles of reaction (3) for spin 1/2 and 3/2

are exnected to bhe in the § state sinece 1t has a threshold

and hence are the same as the initial states for odd and even

1) J.J.Sakurail, Phys. Rev,, 114 , 1152 (1959).
2) 4.N.Baz and L,B.Okun, Jetp , 8 , 526.
2) ®xperimental evidence for this «isp -1as reported

by Alston et. al. at the Hochester Uonference
(1960).,
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= N parity. The final states for reaction (1) have already
been listed in the table. To determine the exact hehaviour

of the cross-section we have to write the total S-matrix of
the channel T-¢0 ( AN system has 1-0)and JT=0(or1)

and for a ziven = NN parity in the form

SH SJ;} KA SJN
S = S:Lj : b

Sm’] b L o

where the matrix element at the intersection of the 1; th
column and J, th line is the trﬂnsiti?n from the ‘i th
channel into the d, th one. Here gsay 1 = | corresponds tc AA
1=@ 1o EPF‘ and "L.fB - =“7.ete., Then we have

THh oALA S HP2ETFD ZHPSE4n
S: ';—‘_JI_I}.‘__;E—_T_P ¥ k £ e

ZE b sty ! ; B G

and we would renuiﬂﬂ the form of the matrix slements for the
orocess (1), (2) an? (?) which of course is not known, However
if one looks at the anegular distribotion as a function of
energy one could hone to deduce =N parity from the apnea-
rance of the Lu&b_ in the {St} oT {LBFL ,LB;Jr ) state for
the case of spin 1/2 for = . It is lnteresting to

note that in the case of spin 2/2 the ¢¢ﬁj behaviour should

be mors marked. We find that a crlisp in the angular distributicn
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hm the PP state indicates odd = N parity and for even
parity it should he in the J,Dl state, Thus if it is experi-
mentally found tha®t there is a -:LLLP in the AN production

cross-section in = + P  raeactions st Mev then it automatically

fixes the sign of the mass difference "M_ ,— T™__ . Farther
pur consideratinns show that s ﬂ;&lﬂ in the JSD state
implies spin 1/2 for the =  and even ~= [\ marity while if

it is in the ’Dl state 1t clearly indicates that the spin

of the = 1is 3/2 and 'r.f;‘r\f = . However a e gh
in the 3P  state while fixing the = N parity as odd
|
cannot Alstinzuish between spin 1/2 or 3/2 for the = nparticle,

3., The double hyperfrasment analysis

e Tt i3 well-known that — capture in nucled

s

can lead to double hyperfraements, Assuming spin 1/2 for =

a detailed analysis of the bindinc enersies o douhle hyper-

o

fraements where the two /\ 's ferm a singlet S state, has
haan caleulated by Iwaolj. If however the = has spin 3/2
the Jﬁ s will bhe in a relative P or D state devending

on the odd or even = p relative parity. It is unlikely that
hound light hynernuclei nceur with R A in a D-state.

'le shalltherefore consider only the case of =N odd parity.

The - ig assiumed to he captured from rest and the excess ¢

enersy ef released in the process jfi}}}-% N+ A\ will be shared

by all the nuecleons nresent. Under these assumptions, the
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bindinz enerzies nf the donhle hynerfragments are given below
in the Tahle@)

As shonld he exnected there i3 a correlation between
the two charged pions arising from the decay of the two A 's.
To calculate this we need the density matrix in the combined
spin svace of the two A 's. Befora corstructing this density
matriv we ghall give a hrief descriptionof the method of
determining the joint Aistribution of the pions nsing the

1)
density natrix

9ince a wave Tuhetion Tf will always describe a
narticle completely volarised in some direction, a partially
nolarized beam has to he a statistical mixture of pure states.
If a basic set of stafes uimﬂis chosen so that we may
write .gg(: ?:ﬂt #24 the exnectation value of any observable

A is giwen hy

= o
7= = P (P AY) 3

where Pfﬂf} is the relative fregnency wlth which each

is renresented in the heam, or we have

L ) ~ ¥ G B % =
/jt_ E;?rc")(%‘? aaj )("J) A‘]ﬂj

= L
. * N
= 5> Pl an an A
— |’__ * L J LJ
(i 1

1) HR.H.Dalitz, Proec. Phys. Soc., 83 (K) , 175.
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where U 1is the matrix with elements UE.J' = f P‘r”()f;
From the nroverties of the probabilities (=) we have

T (u)=| . 2
411 information regarding the beam under consideration are
contained in the matrix |) . For example the matrix |/ for
5 linear heam of spin 1/2 particles is given by U = ?zl]-+}i;E?)
and the nols=ization F of the besm will be =iven by

E = Trace (o*- U) {

This U ig called the density matrix. In the spin space the

density matrix for the final sta®te is ziven by

o MuyTm iy N 1
My = ) A
where {jﬂ is the density matrix of the initial state and i

15 the transition onerator. The polarization after the colllsion

will be
—5 == ' T'
b(a ) = (o v, )= Trls T %
“(TUL‘TI),H
Since we have as=umed spin 23/2 for =  the basic matrices

are of order | 2. 3/24+ 1 ) x (2, 82+ 1)= 4X4 ad
we can conveniently choose the sixteen lineasly independent ¥
matrices as our base. The density matrix EJL will he then
given by
| = L
b, = CL{5/A>5# /
OS2 a2 g )
f
= = <S}A> E/Md 1

[

0]



where S{“ is the dirsct product S/g}{g-‘, 5[3
being the corresponding matrices for spin 372 and
resnectively,

The distribution in angle of the pion in the
is given by

— =D
= | o .
PCyda = (1+ee b )dan
where ©f 1s the mymmetry parameter and #5 the
in the direction of the decay nion in the f\ rast

the nresent case the joint distribation of the two

}D(ff N}dﬂ oo, (1, p)CH—ﬁ‘G‘J P,}dn. oA

where Gﬁ and G, reoresent the spihs of the two A's and

#ﬂ and Pl_ the momenta of the decay pions in the rest
system of the /\ 's, Then the distribution function in pion

anegles is given by

P(8,,8,) =

218

and g
142

A decay
unit vector

frame. In

plonsg is
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= g o '
4. ke pesction. = T P2 K £ K

"fith very enereetic beams of antiprotons that are
available now it should he posslble to nroduce cascade palrs
naturally throueh t?f reactions == s

}j_f.JD = L =
w hich Fequires at threshold 1.8 BeV andy protons in the
laboratory system, We are particularly interested in the process
b o> kT4 kY q

which appears as the third nrocess in the Mandekstam reoresenta-

1]

tion for the nrocess

K=+ p—> = & KT 2o

which we have slready considered in Chapter i pf Part-II.'

HETEhHYIJ has studied this nrocess assumineg spin 1/2 for the
— . Extending this to the case of snin 272, we find that
the anegular distribution of the final pair of hosons is sensi-

tive to the snin and marity of the = .
Thae final two narticles are ldentical bnsons and

we find by Pauli nrinciple since 1 = | y that odd orbital
sngular momentum is ruled out for the final state.Gince the
spin of the = is 3/2 , the initial system can have spin-

S—1or K— 2.1If A_|, the =@ state cannct oceur,
However if %:: 2  the ﬁ:-D state leads to the TJ= 2 state
which is allowed. Mith (= 1, 5 = 1 1leads to J=0 or 2

while -5;: 2 leads only to f;_ 2 ., The angular distributicn

for the transition say EIE_—a ID iz glven by
2

1) S. Rarshay, Phys. Rew., 120 ., 265 (1960).
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Pex) <SIEC L, 5, 7o) P.la)) =
_ s | e@ia)om) BRG] S

bed

"le 1ist in the table the allowed and forbidden transitions
‘with the corresponding ansular distributions of the final
two bosons.

s hefore if we restrict ocurselves to S waves only
in the initial state we find from Table I that the reaction
ocenrs only for odd narity and a final isotopic distribution
does not distinzuish between snin 172 and sdtn 3/2 .

Tneludine F waves also in the initial sta*e the
distribution when . y 3;} ’ SI} and EI} states

< 2 1"‘4
narticinate is Tound to have the same form but different

coefficients from that corresnondine to spin 172 (i.,e.)

FOx) = fbx+ L x? 1a
with . i .
Sf el 3T +6 V2 Re A B
kP = *

b' = SR~ 3]cl? —18y2 Re A" R az

T _he correspondine values for a and b 1in the case of spin
1/2 are ziven by

- -~ "
a = [ IAI%+ Ip)2 602 ReA ™ /3

— o

A
o ; i
b= B)BIX —ig/z ReA R d

where 3,8and B are the amplitudes describing the transi-

tions from the 3?% fﬁland 5#31_ states respectively.

* A detgiled discussion with spln has already heen glven
in the orevious chanter,
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When D waves are also ineluded the distribution 15 e

of The Fform

| b -
The X denendence in f"(X] for spin 3/2 arises

mainly becanse of tHe form Gj) ':3#(%L, reaction.

However if we consider the reaction

=0 h s et

since there is no restriction on the final state orbital
angiular momentom to he even from the aﬁgu1§r3ﬂi3trihutiahél
it is nossible to Aistineuish hetween spin 3/2 and 1/9
for —~  with initisl only S and P waves.

5. Decay of the — .,

T g wezl-knawn that the up-down asymmetry in the
decay nf oriented nuclel estahlished the non-conservation
of marity in weak interactions., For the ohservation of su@i
asymmetries even in the decays of stranee particles all thtj
is needed is that they should he volarized at the time of
nroduetion, This hannens to "e the case for ¥ and A

resulting from associated nroduction, An exhaustive study



of 31 decay seems to favour the vostulate of a universal 2;51
/— A thenry for weak interactions. Any additional infor
mation in this direetion should naturally stem from the
study of the — decay., It is further expected that ths
—  produaced in }{*_P rosctions will he partially polarized
in the plane of nroduction so that “he observation of an up-

down asvmmetry in the gubsequent decay
=y = =
=93 i A e B
is pnssible., The further decay of A into ﬁﬁﬁfﬁ would

~ive 5 measure of the spin of the A  and hence a determins-
tion of the deeay narametwrs of the = seems quite fessible.
We shall now analvse the decay distribution of the

=  agsumineg that its snin is 2/2 ., For the — decaying
from rest, the final states will be a linear comhinalion of
at most two states with spoesite parlty difering in orhital
anzular momentum by one ueit, If the spin of =  1is 3/2,
the sllowed final states are P and D waves only. Let us
ssgume that the =  1s coanletely polarized along the 477
direction and let F;ﬁ anad U'_{E be the spin part of the A
wave Tunction with spin up and spin down respectively, The
snace part of the /A  wave function is %;mf_'@ﬁi})wtere <
is the anele that /\ makes with the 7  direction and

the correspending nrojection, Thus the wave function of the

decayine system is

— .:_;___- | S| .r!;i‘
w—AbV yf_}—A_D(\.EV Y
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where the coef”iciants are the Elebsch-Gordon coefficients
for the combination of a spin 1/°2 {/\ ) and an angular
momentum 2 ( D waves) into a resultant spin 3/2 ( = )

Ll

And the sanare of the modulus of ( ) zives

2 gm0 [Ap1% [AL ' 2 Re Ap A penb]
= - 2.
¢ = Al At e L 4 m20 (s

The experimentally measured quantity

ke b~ Nan/ ey g
|Gf')_ = :

where
_‘({’:n.*?w {9+{gqm1.gbmaj:mﬂ{,q’9 ?/a,+b/
and b m 3 4- !
NI‘/‘J Cldn STU':E- 6 . 4
and hence Bo Ayl Ap
by = =3 @] L -
is the asvametry varameter, If initially the — 1is only

partially nelarised, then the ohserved quanfity will he
where P 1s the polarisation of the = .However, the f
emitted in this decay azain decays into a F: and ‘Tfﬂéﬂd a
measurement of the correlation between the directions of
motion of A  and the direction of motion of the proton,
each measured in the Test system of the narent nartiele
determines vd mh whersa -ﬁ; 15 the asymuetry narameter of
the A decay. A nopn-zero value for =<«

A
narity is non-conserved in hoth the deecays. The actual value

indiecates that

of this muantity wonuld also throw lieht on the nature of the

counlines hasidrs the snin of the cascade.
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: # \
ON SOME DECAY MODES OF THE K  RESONANGES

i In trod uctory remarks

One of the most important sources of information
regarding the recently discovered resonant states of elementary

particles is their decay modes. Besides the strong decay modes

()]

of these resonant states by which they are usually identified,
1% iz also possible that they have other modes of decay with
finite though smaell branching retios. A theoretical investiza-
tion of such possible modes Viz., a study of their decay rates
and the angular correlations and emergy spectra of the decay
products is expected to provide a better understanding of these
states, We have here made a systematic study of posszible two
and three porticle deeasy modes of the two k{ﬁr resonances -

& broad one at 880 Mev and width 60 HMev and a Very narrow

one at T30 MEv, =mt w The gpin and parlty assignments of these
have not been experimentally established but it is expected that
-J‘._.-

the former hes O7 and the latter | ™ . However we shall

conaider both possibilities — gealar and vector for the two
”.
K.

Y

[ )

‘.:I

aleulations

2 A . Two particle decay modes,

&
The dominant stronz decay mode of i is
*
K™ — K+
e : :
The decay rate for vector K 19 calculated from the inter-

aciion term

— e,

I To bE ﬁ‘uL’M-nF_‘fbacL o The MNuovo Cume*n‘fc
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(*t'”“(}# LPe— i E}}, Grr ) 3,,“ Lk
which yields for the matrix element in  »iowmentuma E}um_q

T =, - Va). - % 3,
where g and Y4 BTe th{momenta of the outgoing K

and || and i?/, the polarization 4-vector of the initial Kfe

Thusg e -—‘.u.; T ['k-l.j Aocle

dudi=1 ol e M- 2(m% 2
RKLJT)LH ___mf-_.;h_/..i‘)[ +;;n9._'_)_ 3%

L
where M = H}{* y Y = Ty and /-n = oy . In the tase
_"r .
of a scalar K the term is L?kj" @y clJﬂ_ and the decay rate
iz given by
/
CL . g% - 5 -] o PR ;-E'.- =
woo= o 3 L iRt aentepey v AT
Ln  8H M2
whane Y 15 e camsbasat of gf,-‘wwhm = waoys .
Besideg this dominant mode, the S may a2lso have the electro-
magnetic decay mode
-l{
T i Y (
=
which is of course possible only if K = has spin 1. A

posaible mechexism for this decay mode would be the decay
¥ )
of the K dinto a K and & vector meson V, presumably
a J or W (ar § if this iz |~ ) , followed by a direct
coupling of the Y meson with = photon. We shall assume this
to be the dominant mechanism. The V-Y coupling may be rela-
ted to the nucleon form factors, the dominant contributions' to
which gre expected to arise from such vector mesons \,/ « Ihe

K# K\l" coupling is unknown but is expected to play a role
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*

in other decay modes of the K which can be compared with

the mode \{\f — K4 Y

The matrix element for = is

Ev o oo @R b el e,
:})'KVKE’ Ap 7T A( V)[!M J“b‘ E-Ji::mﬁ(.,f_%_)
"—?’ ftem k. L

LF
where E}X“ oo is the antisymmetric 'I:Pnsm:' and the decay rate

Moo [ fr J[M J GE) )

76 x
e
= |0 Rev (Hd* ) ;
m-r 4, = S R
2=1, Three particle decay modes, & ':'Wa i

The possible decay modes with three perticle final state

considered here are

SR (e
— KT+ X (5) il
(a) is poseible only for the higher mass K™ and (b) will be
v
allowed for bolh the K. resonances,
- : ’ e R = S (- X
The phencomenological matrix eloment for a vector K
for (a) is iy
rlu— 3 ( - Ty
M = L}.Kp ve = 16K )(z/u, CV:‘].I ?Sf lo

where G o0 D and 1,5 are the four-momenta of K and the

two pions and the decay rate

& 1
[ e [dw dw, M
by L M’ [J W, T () 5

Lt ) {03y = ‘(.-:Juhj_ ci; rl.-; L
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It is found to be more convenient to evaluate the integral
raphicallyy and :i(u:j versus Ao, ias plotted and the
energy spectrum of the (£ meson or the pions may be found.
The diagram ghow the energy epeetra that would result (1) from
phage spare alone, (ii) with an effective point interaction,
A poseible nechanisrm fen- lie vecay could be with either a

f T'ey On s Aintermediate atote or with the lower i<#
as the intermediate state as seen in Pig, & ( £ Ya

It can be shown from a straight forward caleculation

tha

=

he energy spectrum from phase space is given by

gr
2w ag, et (M- aM®,

F-a 175 . - —---r [:l-—l-f'\l?': FL:»
5«.{ M‘___‘—1--—3MW1_ o "&k-an"'}m
b3
. %
where ™ is the mass of the K" , "™ that of K and
2] = =
L'%ﬁ “Jr) 1 \la R j and (<%3 ,Wa) are the momenta
end energies of the Ky and two pions respectively.
Agzin, the pion =nergy spectrum using a phenomenolo-
gical point interaction is given by
- Lat 4 L ¢ I
Ao @g _JF I3 23 : 3

%
which may be evaluated graphically. The resilts are shown

in figure ( n ).



2. Dirg

LAssuming the § intcrmediate state as 2 possible

mechanism, we find for the corresponding Feynman disgram, the

decay rate P&T“
[
~ = ; 2 2
Cep= () Yo dwy det, Y3 Awa g
T T - TS . a5
™ DAL ok _":‘HF 5 LA.J‘J
|

ind the pion ernergy zpectrum &y

The integral is evaluated graphicnlly and the results
plotted in fipure ( & ). In these caleulations, it has been
congidered worthwhile to focus our attention on energy spectra
and angular correlations rather than decay rates since the
couplings are unlmown in most cases.

The anguler correlation between the two pions is given by

L
0wl - LIF’J]- @-31 .|

AR T g T Lmﬁ-~jl L
|

o
P R M T
o

and is phown im fipure—{- -
Similar ecaleulations may he carried out with the lower
5 s : :
mass k(v, ag the intermedilste state. The corresponding

For the decay mode (b) we calculate the pkon and photon

Feynman diagram is given by interchanging f|ﬂ

ol s = : “ ¥
energy gpectrs and the |[] Y angular correlation. As before %n ke
&



. e
e 1L J d *#.c;p-\f _q!"_l-{_.____..
P Wy ; ( IR
o . o T i
in the ease of diagram (9+1) and -
; % oL AR :
bl = R ST gl
am 5
. : . . _ £
1is the maximum energy of the pion. Similarly 'm,‘/‘ig -

found and the results are plotted in figure ( ") « The

angular correlation iz given by

d'u n
. = O w 3w Ve "
U ey ) Wi (& 2b=twp) =
and : o
e o R G e
[iTELE: a-‘i“ﬁ ﬂp?’

This may be caleulated for specific values of e
u@'l_he calculatione cen be repented for a plon-intermediate -

state obtained by interchanging the T  and K . The‘_hfiijj
energy spectrum in this case has beéen shown inﬁigt;me ( :;g:_.;:;':,.-
While it ia true thet these are of no quantitatiﬁfg
significance, it is felt that the gqualitative feﬂiureazgf
curves will help in the understanding of the mechanism for

the decay modis of these regonant ztates.
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CHAPTIER TV

A NOTE ON BARYON-DARYON TNTERACTTCNH*
1) heve e
Dltun et. al. Zﬁozsidered = capture bya proton

leading to a A /N seystem. In this chapter we study the
processg of 2 (:g'ﬁq,) collision giving rise to hyperen systems,
the popsibility of a bound sfate in the finsl system being
s1s06 enviasged, The implicetion srising from the verious parity
agsiprments for the hyperons is discussed and the decay
distribution of the possible btound system is annlysed.

We ponsider in perticular the reactions. The threshold

energy for the reaction (2) of

= N = am (1)
w B YAt (2
> e G (4)

infgfh collisions iz given hy'edﬁating the invariasnt four
vector products in the laboratery ond centre-oi-mass system
of the =, and v» , Asguming the reaction to take place in
a hydrogen bubble chamber, we havg in the labokztory syoten
(Totel energy}z = litotad momentum]g
- 2 2

E= iy (P e el 2E= My

In the centre-—of-mass oystem of the final particles we have

at threshold

s

: 5
(Total energy)® - (total momentum)™

= (H= < )™ ‘

* (@.Bhamsthi, S,Indumeathi, T.K.Radka and R. Thungg,
Progress of Th. Physics, V. 25 , 870 (1961)

A
1) Ol ek, al., JETP , 7, 862 (1958).




Thus we have the threshold kinetie energy of the = gilven by

== 3.5 Mey
Similarly the threshnlds for processes (3 ) and ( & ) are given
by e s I3y Mew , respectively. The branchinz ratios
cannot bhe directly calenlated but on assumine charge independence,
and the Sakata model for the final state vparticles the ratios

for the nrocesses ( A) and ( 3 ) are found to be

s A A T T g

2 + AY

We' assume the (E 'Tb) system is scattered froam the
S -state, the (= v ) relative parity is even and the inci—

dant svystem has j.: A= f.

£ ( A" AY ) 4s assumed to be in the S -state, this
state is fga according to Pauli's exelusion onrineiple,
hence both ancular momentum and parity cannot be conserved
when the final [ is in the § -state with respeet to the
centre of mass of the ( AAY ) system.

However conssrvation of parity and angular momentum
is possible when P wave I 1s emitted with resvect to the
centre of mass of the ( AU AP ) system.

We ghall now consider the possibility of S and 5T
in (4 ) formine a bound state. The ennservation of i spin
1~ads to the 7T =1 atate for the ( ETHE;J ) system which is

antisymmetric, Thus the nroduet of the space and snin wave

functions should he symmetric., i.e. for f =0 it is in the




red
/ N o

triplet snin state. This system is analogous to a deuteron andziiﬁ
since thee 5 !'s form a mialtinlet *he forece hetween them can
be due £o the exchanze of a single pilon.
fssumine the values for the depth of the nhenomenologi~al

potential used in the deuteron theory, ise. Lh:=25 Mev , we
obtain the bindinz energy of the ( Z:Fﬁfj} system to be 4.66 Mev.

Tt is expected that the (1" L) eollision leads to the
honnd system of ( Ef*éfoj . Due to charge indenendence theé5'+éfﬂ)
and ( = 59 ) systems will have the same enerzies and other
parameters, However the distribution of the decay nlons of the
twn systems will be entirely Aifference since S T has a decay
ande, the ( P ﬁiﬂ} whinh exhibits maximal asyametry while the
( TLH*'} mode of §:+' and the ( T?ﬁ__) mode of the = = have no
asymmetry.

Fol bk W atens C 2 20 gudl 3 o0 ) ithe Y vAEE
decay instantaneously inte A+ and the nions arising from
the decay of the A" and the charzed > will be correlated.
Incidentally it wonld be of interest to determine the energy of
the ¥ oauanta arisinz from the 57 decay since it wonld provide
an estimate of the hinding energy of the Efféfc system, In the
case of the decay of the A particle the distribution of the
decay pion is ziven by
Pl e W v

—3

—
where o~ 1s the nolarisation of the A . f’ the unit vector

along the direction of the pion momentum in the rest system of
the /\ and ©f the asymmetry narameter which 1s lnown to be
}Eif S 0,7 for both the neutral and charged modes, In the case

o a (2 59 ) system the decay mode ( Pv 7 ) exhibifs no

feyang Matines the Inins Aintribantion of tha WO noints: yhich

. /ASSSSSSSaSa.—._._._..
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is egiven by
!

= S T R
Plo; gl ) AL = (14 el o) rb.') (1+ NEWﬁ'bﬂ)dﬂﬂdﬂl
3,

raduces: to
—

- =3 , —
P(o) ol ) dn, da,= (I+ 27 p,) dada,

since the asymmeatry narameter "ﬂfrl for the 7V T decay mode

or 2 is zero. If is aohvious that the distribution of the

-

— E

pions of the ( & T2 system for the ( 77 +} mode of Z+

7 . = == = e o

is the gsame as that of the ( £ < ) system., Por the PHG
e =

>

mode of the decay the distribution is =iven by ( & ) .

The jaint Aistribution function dj can ha evaluated

- — —3
by constructing the s=nin space density matrix -;“ {':‘;_.}:5‘-;‘ ) and

e = T f’D P("m; ’ﬁ;)] T

wf —_—— —

1)

S © gecay is given by

The volarization of /|  aricinz from 2

L, <oy = (Koo W)™

where 1L ds the unit wvector a]cmr’ the direction of /\ momentum
in the EL} rest sygstem, Thus the Al and z+will have spins
oriented in the onnosite Ajrectinsng. Since the density mateix for
the [S state is —
: 2= el fa,

the distribution Tunetion of the decay nions is

fﬁ > df— = Cfl_Fi'?;; ) '3

Thiszs also enahles the determination of the relative signs of

=, and oy .

1) R. Batto, Phvs, Rev., 109 , 510 (1958).
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A Nots on the Theory of Geomaznetic Ef%ects

Tt 15 well-known that the guestion o calculating
the intensity 57 cosmie rays at any point on the surface
o the earth can he redncaed after suitsble modifications to
that nf “ndine the directions in which particles of given
enarey cominz from in®Inity can reach that polnt. Taking
the conventional notatior inthis field Tor sranted, the

exnrassion Tor the kinetic enersy of a narticle is
¥

K E— = Q.. = (\—-(L“.SZLU} = jlz:l 12
where b
2y <\
A w = =g &3
L /“}rrj_*ﬁ;\ S5
and A is = in 7tormer units snd so denends on the energy.

£y

Thus Tor a narticls of

value ﬁm(FB .

nomaentum }? - A 1s assigned a

Now since (0% W ean lie only hetween —| and +|

the two hynerholse
{55 :+]
and = = = =§gi . — w8 )
= /L CTSA %

)

for a -iven latitude A 4 divide the ijEj plane into
recions of nositive and nezative enerzsy, the latter being
forbidden.

4y trajectory of a particle in the meridional nlane
is characterised by the co-ordinates A and )‘ corresnonding

——

I F-Ihuﬁjq tind T k. Rodhe wavwlwgz q e Cos e
ij Euwphgum4m+ﬁhvfﬂgﬁﬁg 15 bty
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to a given § and is revresented in the h"ja'nlane by a
line varallel to the 'L axis., In order that a trajectory
of a particle with momentum ri? may reach a3 pmint<}h;}ci>
on the surface of the earth, it must assume values from b

to ?.""a

it will lie within the earth and will be forbidden by the sha-

. If i1t were to assume values less than }lu ’

i

Aow affect o7 tha =arth. Ignoring this for the moment, the
followine sepmetrical fogturcs of the ecwrves serve to define
the Stomer and the main eones,

& o ..1.-';’;. 2 3 -1 g =] i
(i) j o ﬁ - 3T x 1sa line tangential

b
to the curve (o8 w = +| at ﬁ\ _ (Qg“,A and cuts the
S
: . i, B
curve Cof L - _| at A ;QJJ:—i}Lﬂﬂ A+ The aaximum
of hoth %‘ and A is unity and ocours for N=0 .
}' I,’\

We shall eonsider the trajectory of a particle of momentum Fﬁb
to ke shsolutely forbidden 17 any nart of it (}L>.ﬁgu) lies
in the “arbidden rezion, Birnca we do not restrict the %
values of the trajectory, we Teqguire ﬁ\E,I to ensure that
the trajectory o a partiele with momentum -}; sueh that /
,ﬁﬁ‘i J cuts the “orbidden region whatever he the value of

X . Hence Cesw  varies from | to a value

cos W (X, )= L ce8As
. '}iﬁf{?&!\‘ﬁ jLﬂl

so that all directisns in a cone with angle (o are absolutely

S
forbidden and this defines the Stormer Cone.
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(ii) Trajectoris s withih\; hu corresponding

to partiecles with momentam F such that Ay < Eﬂfjﬁ')c

= . = 340 _
ars forbidden 1if 3 b e A, since such trajectories

always pass throuorh the orbidden region. The eritical

angle Lo, tor Uc O e f}_h ig given by

&

:f .
AU TEY Sy — s e a3
I ..fl:'_c }2;,

which defines the main cone within which all directions
(i.e.) as W vyaries from 11 to “J. ) are allowed
g all X < i .

The only condition that we have t£ill how 1imposed
in determinineg the zllowed dirsctions is fthat the kinetie
enerzsy should never be oepgative, But f? 8 particle were
to be subjected to a nesgative aceceleration it will execute
oseillations and may cut the surface of the earth before
reaching the ohservation noint. This shadow effect of the
carth gives rise to the so-called simple shadow cone and
a0
ox

it is interesting to study the eruve in the fL-Ej plane.

nenumbra. Since the curve e i3 analytieally known,

It is =iven by the relation B

Cef N
1

&ﬁ = h =b
and the plot for a =iven A 1is as seen in the figure,
The arruments of the nrovipus carve can agaln be anplied

and the basic features of the simple shadow cone may be

qualitatively ewnlained.
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(i) The two hranches corrcsnond to ["v"-m.i
and 'Pa.,-.u-,-,l alene which % = and the region

between them renrescnts a reszion of negative aceeleration.
Thp tangential value of J iz .8774 c::-sjgh and 1s

henece always lass than J'}, Thus n"ﬂr'.pgr';iclns_ with

)
momentum b sach that /A&, ¢ r{r‘é}ia. the cone with

g

9 £ 4B cas 7 N for ¥k trajectories with X & )\,
a1l directions will certsinly be allowed., The eritical
value of td I8 given by

o
5% - SN -‘ﬁ%"ﬁn‘f (3 d

(el b (’{Lﬁ — T J‘F}_,_,ﬁ

(11) The (3 value at any poipt en this curve
e
is

Lo . Tor /Lo values hetween [CC ’

ot No

COTY et ﬁ/ﬁ; is egreater than (<GSO y the value on
the tangent of the curve ¢ = 4. But for /ty walues
between A and B N / s Zluy ke Lhus we
farther define the cone (e = ,r;_ﬂ {m&}‘ which is either
more or less rastrictive than the Jain econe, denending

upon the energy of the n.-:.r-.ticl-ag,'-;'






