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Abstract

The non-perturbative aspects of QCD, the gauge theory of strong interactions are
studied. The phenomenon of confinement of quarks and the dynamical chiral sym-
metry breaking are examined. The phenomenological linear confining potential is
P consistent with quantum gauge Yang-Mills theory. Such a potential emanates from
q% propagator for gluons in the infrared region. The dynamical chiral symmetry
breaking in the above region studied using Schwinger-Dyson equation in the ladder
approximation. We exhibit dynamical chiral symmetry breaking. The parameters in
‘ the analysis are determined by evaluating the quark condensate and comparing with

| its recent values. The numerical value of M(0) for quark is found to be 0.63 GeV in

agreement with lattice QCD estimates. With this, we predict the dual gluon mass to

I‘ be 980 MeV which is in reasonable agreement with earlier estimate of 848 MeV.
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Chapter 1 N

INTRODUCTION

All hadrons (mesons and baryons) are made of quarks and gluons and they interact
among themselves via strong interactions. Quarks have three types of color charges
and come in six flavours (u,d,s,c,t,b). Unlike photon which is chargeless and the
force mediator between electrons, gluons are the force mediator between quarks and
have color charges. Hence gluons can interact with gluons which is the source of
the non-Abelian nature of the force [1]. Due to this non-Abelian nature, the strong
coupling constant which is scale-dependent is low at high energy scale (i.e. less than
one). At high energy-scale (short distance-scale) the coupling constant tends to zero
and the quarks and gluons start moving freely inside the hadrons. This phenomena
is called ” Asymptotic Freedom”. Owing to small coupling constant in high-energy
zone, the perturbative method calculation is satisfactory [2]. The property of QCD
that led directly to its discovery as a candidate of the strong interaction is asymp-
totic freedom. Thus color (chromo) force provides a mechanism for binding quarks
together into hadrons, and the dynamics of this interactions is governed by Quantum
Chromodynamics (QCD). The position of QCD as the candidate theory of strong
interactions was strengthened still further in 1974 when Gross and Wilczek went on
to prove mathematically that only non-Abelian gauge field theories can give rise to

asymptotically free behaviour [2] .

”QCD is an non-Abelian gauge theory (an example of Yang-Mills Theory) of



strong interactions among quarks and gluons inside the hadrons.”

Quarks and gluons are non-interacting at short distances, but have never been
observed as free (asymptotic) particles. This fact had lead to the conjecture that
colored particles never appear in asymptotic states. This is called confinement of
quarks and gluons confinement should be derivable from the QCD Lagrangian. In
fact, if we pull the quarks apart, the energy that would be put in, in order to seperate
them is used to create new hadrons between the seperated particles. This process is

called hadronisation.

In general, if the potential between two quarks is proportional to the distance
between them, then two quarks can never be seperated. So phenomenologically,
confinement implies V' (r) ~ or where o is a constant (GeV/fm). If we try to seperate
the quarks by force, then the restoring force of the linear potential between them
grows sufficiently rapidly to prevent them from being seperated. Thus they can never
be seperated if they are bound by a linear potential. Similarly, if the quark potential
asymptotically becomes a constant or decreases with distance, then the potential is

not sufficient to confine the quarks.

One of the aspects studied here is a possible explanation of linear potential from
quantum field theory point of view. A related feature of the non-perturbative aspect
of QCD is 'Chiral Symmetry Breaking’, which is signalled by quarks acquiring mass,

is studied using Schwinger-Dyson equation.

1.1 Chiral Symmetry and its Spontaneous Break-
ing

Let us consider the chiral transformation of quark field ¢(z) as

Y(z) = ¢ (z) = e P(z) (1.1)

where 6 is independent of x i.e. # € R and is a constant.



Under this transformation v (z) = 91(z)7, will transform as

P(a) = YM(z)
d(@) =Y (z) = (€7%(x)
= Yl(z)e ™y
= i (z)ypet
{757 + Y075 = 0}
= Y(z)e™” (1.2)

s0, ¥(z)¥(x) would transform as

=

¥ (@)Y (z) = P(z)e?e®5y(z)
= ¢(z)e”"y(z) (1.3)

This means a mass term () (z) in QCD Lagrangian for quarks is not invariant
under global chiral transformation [3] [4]. So, in the chiral limit (quark mass goes to
Zero)

Lag= —iFﬁuF“”“ + hy*(i0,, + gAY (1.4)
is invariant under global chiral transformation. If mass of the quark is introduced at
the Lagrangian itself, the chiral symmetry is broken explicitly. If we start with quark
mass as zero initially in the Lagrangian, the quantum correction generates mass for
quark and the global chiral symmetry get broken, this is called spontaneous chiral

Symmetry Breaking. This is studied here using Schwinger-Dyson equation.

1.2 OQOutline of Dissertation

In chapter 2, the theoretical aspects of QCD as quantum gauge field theory are given

to motivate that a linear potential between quarks is compatible with relativistic




quantum field theory. Consequently, the gluon propagator in the infrared (confining)

region is (g, —(1—¢&) k“f")',’;—:. In chapter 3, we analyse Schwinger-Dyson equation for

quarks without bare mass in the above gluon background in the ladder approximation.
We explicitly demonstrate chiral symmetry breaking using qi,, propagator. The quark
condensate < 1) > is evaluated and numerical results are presented, by fitting the

parameters with quark condensate.




Chapter 2

NON-ABELIAN GAUGE
QUANTUM FIELD THEORY:A
THEORETICAL PERSPECTIVE

Gauge quantum field theories are the only quantum field theories relevant to elemen-
tary particle physics. So it will be of physical importance to analyze the structure
of these theories, without relying on perturbation theory. This is particularly useful
to address the issue of confinement of quarks and gluons in QCD as the confining
regime is in the infrared region where the QCD coupling is large so that perturbative
methods cannot be reliably employed. The first assumption we make here is, in the
confining region, the QCD coupling (large) is a constant, g(q)=g(0). This assumption
has been suggested by Gribov [5].

Gauge quantum field theories have different properties from standard quantum
field theories. An example is the Abelian field theory in which the indefinite metric
in the definition of scalar product plays crucial role. Further, in non-Abelian gauge
quantum field theories, the cluster property does not necessarily hold, although such
a property holds good for Abelian gauge quantum field theory. So non-Abelian gauge
quantum field theory has two important features, indefinite metric structure and

failure of cluster property when the gauge group is not broken.




The definition of physical space Vppys C Vipra such that the norm V},hyg is positive
semi-definite i.e. (@, ¢) > 0;¢ € Vppys is another distinguishing property of gauge
quantum field theory. As the matrix elements between two physical states ¢, ¢o €
Vphys do not change by adding to ¢; and/or to ¢, states x € Vppys with vanishing norm
< x,x >= 0, as these are also orthogonal to ¢1,¢s (|(¢,X)| < |(,0)[*%(x, x)|"/?
by Schwarz inequality and as (x, x) = 0, it follows (¢, x) = 0), it is convenient to
characterize the physical state corresponding to ¢ by the equivalence class [¢] . The
quotient Viuys = Vonys/Vo, Vo = {X € Vpnys; (X, x) = 0} will be called the space of

physical states and the scalar product is positive-definite, in Vpuys/ V5.

Another distinguishing feature of non-Abelian gauge quantum field theory is re-
lated to Wightman functions. In the standard QFT, with positive metric, the pos-
itivity property ensures that quantized fields can always be constructed once vac-
uum expectation values are the given set of Wightman functions. In the case of the
indefinite- metric case, this is not possible in general. However, using Vpp,s this can
be circumvented. The translation invariance of the Wightman functions requires the
space-time translation operators U(a) are unitary, now with respect to the indefinite
product, i.e. U(a)'nU(a) = n. This means, the Fourier transform of the two point
function need not be a measure. We now consider observability condition in gen-
eral. In a local gauge quantum field theory, with local symmetry group G unbroken,
its generators Q' commute with all the observables. A necessary condition for an
operator A to describe an observable is < ¢|[Q, A]|¢ >= 0. Consequently, in the
Abelian gauge theory, Q corresponds to electric charge and so (1;, Q;) = q* (s, ;)
an observable. For QCD, [Q¢%, Q%] = if*°Q° and so color charges cannot be observed.
A deeper issue is whether a non-Abelian gauge quantum field theory has asymptotic
particle-like states with non-vanishing colour. Such non-perturbative characteristic
questions can be addressed now. The non-observability of quarks means that quarks
are associated with a basic set of fields ;(x) but no particle like aymptotic states
exist with quark quantum numbers. The validity of the cluster property becomes
important in the existence of the asymptotic limit of a field operator. The failure
of the cluster property for the quark fields v; is strictly related to the fact that the
states 1;|0 > do not have an asymtotic limit belonging to Vppys. ( In 2-d QED, the




cluster property fails and one views the dipole states as bound states of electrons
intracting through a potential increasing at infinity). So the question of a mechanism

of confinement is the cluster property of gauge quantum field theory [6].

2.1 Quantum Yang-Mills Theory

QCD is an SU(3). unbroken gauge theory whose classical Lagrangian density is
1 a va s ' aja
Log= —ZFWF" + Py*(i0, + g At )Y (2.1)
with F¢, = 0,A% — 3,A% + gf* AL AS
and t*’s are hermitian generators of SU(3). The classical equation of motion is
D@ Fwb = —gjva s D& = 9,6% + gf*?A¢. It is to be noted that the current j“* is

covariently conserved i.e.
D = 0. (2.2)

By rewriting the classical equation of motion as
auF/.wa _ _g{jua + fachZF;wb} = _gJua (23)

7% is ordinarily conserved , i.e. 0,JY* = 0. J"* contains a piece f“CbAZF b
contribution from the gauge fields. In quantising the theory, we need to fix the
gauge, as the momentum canonically conjugate to A§ vanishes. In fixing the gauge,
we encounter the Gribov ambiguity [7], that is, we cannot fix the gauge uniquely. This
is an inherent problem which is not yet solved. Nevertheless we fix a gauge as Lorentz
gauge and use Faddeev-Popov [3] method of writing the quantum Lagrangian. This

is a standard procedure and so we do not give the details.
The equation of motion from the quantum YM theory is
ab b __ a -a - Val a __ a -a . abcq 70 e
D*°F,, = 0,B* — gj, —19(9,C x C)* = 9,B* — gj,, —igf**0,C C (2.4)

where c’s are the anti-commuting FP ghost fields and B®’s are the Lagrange multipliar

fields in L5 F and satisfy

DHb(9,B?) = igf*9,C".(D*4C) (2.5)




Having fixed the gauge, the Lagrangian has no local gauge symmetry. However it

has global symmetries, called BRS symmetry [8]. The BRS transformations leaving

the quantum Lagrangian invariant, are

\

0A% = [iQp, A"
= (DpcY
o = [iQp, ¥
= igC*(r*)gy”
dB* = [iQp, B
5 4
iC* = [iQp,CY
— _%Cbcc
C" = [iQp,C"|
= iB® )

where the BRS-charge is given by

Qp = / d*2{B*(D§'C") — B*C" +1i5 f*T°C°C°} = Qs

It is easy to show
d d
oF,, = gf*“'F,,C

Now writing, 0F};, = [iQp, F};, ],

[@s, Fj)) = —igf*F;,C?
— igfachdF,f,,
= 19(C x Fu)*#0

The quantum equation of motion can be written as

OFo, = —gJ¢ + {Qp, DIT"}

(2.6)

(2.7)

(2.8)

(2.10)



Je = fabcAubF,fﬂ e ]Z 58 fabcAZBc o ifabcab(Dzdcd) en ifabc(auéb)cc
= jo+ fHAPFL, — {Qp, fAT"} +if(9,C)C".

and
@B, Jl‘j] = —i@”f”bCCiju (2.11)

The total state vector space V in a covariant formulation of gauge theory necessarily
contians negative norm states i.e. V has an indefinite metric. The impossivility of
covariantly quantising electromagnetic field A, in the positive-metric Hilbert space
has been demonstrated by Mathews, Seetharaman and Simon [10]. Since the posi-
tivity of the metric is vital to the probabilistic interpretation of the quantum theory,
we need to define a suitable subspace of V in such a way that the physical S-matrix,

defined by restricting the total S-matrix to the physical subspace, is unitary.

In non-Abelian gauge theory, the physical subspace Vs C V is specified by the

subsidiary condition
QB |phys) = 0; Vonys = {|¢ >; @p[¢ >= 0} (2.12)

This is due to Kugo and Ojima [11], also by Curci and Ferrari [12]. As Qp
generates BRS transformations which are infinitesimal local gauge transformation,
the above condition essentially expresses the gauge invariance of the physical states
belonging to Vjnys. The vacuum is taken to be annihilated by @, @g|0 >= 0 and
so |0) C Vppys. Unphysical particles violating norm positivity are ’confined’ in the
sense they appear in Vs only in the zero norm combinations. In defining a physical

S-matrix between physical states with positive norm, we have to have

1. hermitian Hamiltonian ;

2. time invariance of physical subspace, i.e.

H‘/;)hys - vahys (213)
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H being the generator of time translation. This is assured using [H,Qp| = 0, as let
H|phys >= |¢) >. Then

@plY > = QpH|phys >
= HQgl|phys >
= 0.
Since @)p annihilates [¢) >, (2.13) is assured.

and (3) positive-semi definiteness,

% >C Vpnys =<l > >0 (2.14)

2.2 Observables in Quantum Yang-Mills Theory

The physical space Vs contains states with zero norm. Let us introduce a Hilbert
space of physical states as Vpuys/Vp where Vj is a space of zero-norm states. Any
zero norm state |x) in Vj is orthogonal to states in V. The transition probability

between physical states
T(¢1]¢2) = | < ¢1]|d2 > |* has the property
T(h1]¢2) = T(d1 + xald2 + x2) = | < ¢1]dh2 > |2

Besides transition probability, physical quantities to be measured such as 4-momentum
P, etc, must be such that any state € V{ should make no physical effect in the mea-
surement. To ensure this, if a zero norm state |y >€ V; were transformed by a
physical quantity R into |x’ >= R|x >, such that < ¥|x’ >=< ¥|R|x ># 0 for some
|6 > C Vihys,

then the measurement of R could not be described consistantly. So, we require

the physical quantity to satisfy

< P|R|x >=< x|R|¢p >=0V |¢p >E€ Vppys, V |[x >€ WV (2.15)

This can be understood by considering the situation in the usual quantum theory
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with positive definite inner product. In here

T(Wlo) = <vlp > [* =< gl >< ¥|¢ >= E(Py|¢) (2.16)
where the expectation value of an observable R in the state ¢ is defined to be
E(E|p) =< ¢|Rl¢ > (2.17)
so that

E(Py|¢) =< ¢|Pylo >=< ¢|tp >< Y|p > . (2.18)

Now returning to YM theory, every observable R which is self-adjoint, admits spectral
decomposition i.e. R = Y a,Ps, = Y., Gn|dn >< &,| With R|pm >= apm|dm >.
Then the expectation value of R in |¢ > is

E(R|p) = <¢|R|¢>

— Zan < Plon >< Pulp >

= > a.T(¢nl9) (2.19)

As adding a zero-norm state x is not to change this,
EQl¢ +x) = E(R|¢) for | >C Vonys; x C Vo (2.20)
and this implies

< x|R|¢ >=< ¢|R|x >=0. (2.21)

(Also < x|R|x >= 0, since if R|x >= |x' >C Vy, then < x|x’ >= 0. If R|x >=
|¢ >¢ Vi but € Vppys, then < x|¢ >=0).

These provide a definition for observable. An operator R is observable, if
< x|R|¢ >=0=< ¢|R[x >

Equivalently,

< ¢+ x|R|¢+ x >=< ¢|R|¢ >= E(R|9).
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( As an example, let us find whether P, is observable or not. Since Qg is a

translationally invariant scalar
[Q37 Pﬂ] =0

So, Pyl¢ >= |[¢ >(say). |¢ > C Vpryss@plo >= 0. @Bl >= QpPul¢ >=
P,(Qg|¢ >) =0. So |tp >C Vppys. Since [x > C Vj is orthogonal to [¢ > C Vs and
since 1) > C Vppys, it follows that

< x| >=<x|Pul¢ >=0
So, P, is an observable.)

In summary, we can say if an operator O commutes with Qp then O is an observ-
able.

In the case Abelian gauge theory, Stroocchi and Wightman [13] introduced four

notions of the gauge invariance for operators

1. gauge independance : < @1 + x1|R|P2 + X2 >=< ¢1|R|p2 > for all |¢ >€ Vypys
and |x >€ V;

2. weak gauge invariance : RVy C Vj ;

3. gauge invariance : RVprys C Vpnys;

4. strict gauge invariance : (3) with [R,0"F,, + ej,] = 0.

Following Nakanishi and Ojima [14], for non-Abelian gauge quantum theory it is seen
that, (1) implies (3) and (2). In non-Abelian gauge quantum theory, the physical
subspace is characterized by Qg|¢ >=0: |¢p >€ Vpuys; Q% = 0.

If an operator R satisfies (1), then < @|R|x >= 0 for |¢p >€ Vppys; |x >€ Vo
Let |f >€ V. Then for any [¢ >€ Vpuys, consider < f|QpR|¢ >. This is zero, as
Qslf >€ Vy (since, Qp|f >= |n >:< n|n >=< f|QF|f >=0). So, < f|QpR|¢ >=
0.This implies QpR|¢ >= 0 and therefore R|¢p >€ Vs, which is (3). Next, from
(1), < ¢|R|x >=0, let R|x >= |7 >. If |7 >€ Vppys, then < ¢|m >= 0, which means

there can be no transition between two physical states. This is not possible as |7 >
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is arbitrarily but €Vj,s. So, the only possibility is [T >€ V;. So RVy C V, which is
(2).

Now, the conditon (3) which implied by (1), gives,

RVphys C Vphys

QBRVphys =0

RQBVonys =0

Rlg >= ¢ >€ Von,

QpR[¢ >=Qpl¢' >=0

RQp|l¢p >=0

So

(@B, R+|Vphys >=0 (2.22)
or if R is an observable, then [iQp, R] = 0.

( The converse is true. If [Qp, R] = 0, R|¢p >= |¢' >;|¢p > € Vppys. QpR|p >=
QRB|¢ >= RQp|d >. So |¢' >€ Vprys.S0 RVphys C Vphys. If (@, R]+ = 0, let R|¢p >=
|¢" >;|¢p >€ Vpnys. Then QpR|p >= Qpl¢' >= —RQp|¢p >= 0 = |¢' >E€ Vppys or
RVohys C Vohys- )

2.3 Confining Potential and Cluster Property

In describing the potential for quarks, we need a potential not decreasing at infin-
ity to confine quarks.This implies a failure of the cluster property for the vacuum

expectation value of two point function.This cluster property is

< 0|¢1($1)¢2($2)|0 >—< Ol¢1(l‘1)|0 > O|¢2(.’L‘2)|O > as |.’I,'1 — 1172| — 00

Araki, Hepp and Ruelle [15] proved that the cluster property should hold in a

Lorentz covariant local field theory with unique vacuum. In this case, the potential
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cannot be linearly rising. So, there appears a contrdiction between linear (confin-
ing) potential and gauge quantum theory. However, in a non-Abelian gauge theory,
the possible failure of cluster property has been pointed out by Strocchi [16] . To
understand this, we use the inequality derived by Araki, Hepp and Ruelle, on the
assumption of covariance under translation, local commutativities, uniqueness of vac-

uum and spectral condition that

| < 0|61 (21)d2(22)]0 > — < 0[¢hs (21)|0 >< Olgha(2]0 > | < Cle] e ME[e]PV (1 + '%')
| < Ol61(a)ale2)]0 > — < Oléa(a)[0 >< Olgaleal0 > | < CTEI2EP (L + '—%‘)(223)

when there is mass gap or no mass gap. £ = x; — x2 and N is a non-negative integer

depending upon ¢'s.
We first consider Abelian gauge theory (QED) where there is no mass gap, then
| < 0161 (1) $a(22)[0 > — < 0]1(21)[0 >< Ol n(w2]0 > | < C'lE] €2V (1 + )
The role of @p in QED is played by B(x)= -0*A,(z).
Using [Ay(x), Av(y)] = —inw D(z — y)
We have
0,4 (2), 9* Ax(y)] = —i8,0*nuaD(z — )
[0,A,(z), 0" Ax\(y)] = —i8,0*nD(x — y) and so

[Flw(z), B(y)] = 0 (2.24)

so that F,,(z) in QED is an observable. Next, using

< 0]4,(2) 4, (4)[0 >= 1 F(z — y) + 0,00G(x — y)

where G is a gauge artifact,

we have

< 0|F 0 (2) Fp(y)|0 >= —{14p0,05 — M,p0u0s — Nup000p + Mo 0u0p} F(x — y).
Let F(f)=[ d*zF,, (z) f* ()
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where f#(z) is some function in R%.

Then the state F'(f)|0 > will be in Vp,s since F#*(z) is an observable. Therefore

< O|F'(f)F(f)I0>>0 (2.25)

This implies the Fourier transform of < 0|F),,(z)F,,(y)|0 > is a measure. So N
=0. Thus F(z — y) — [z — y]™2, which — 0 as |z — y| — oo. Therefore the cluster
property holds good and the potential also — 0 as |z — y| — o0.

For QCD, which is a non-Abelian gauge quantum field theory, there is no mass

gap. In here, we have
[iQB, Fg,] = if**CF, (2.26)

and therefore F;, is not an observable ( in contrast to F,, of Abelian theory). Con-

sequently, the state
F(f)|0 >= fd4:cFlj‘uf““"(w)|0 >

will not be in Vjpys. This implies that the Fourier transform of < 0|F%, (z) F2, (y)[0 >
will not be a measure and so N #0. The cluster property fails. Thus, the possibility
of linear confining potential (not vanishing at spatial infinity) and quantum field the-
ory are compatible. Also reasoning from a quark-antiquark confining linear potential,
it has been realised that most suggestions of confinement mechanism imply a gluon
propagator diverging faster than _; as ¢> — 0, and typically as ' q%/. In describing
confinement in QCD as dual Meissner effect [17], the dual gluon propagator is ﬁ

2 m2

where m* is related to monopole effect. Then the gluon propagator will go as S

Let us consider quark-quark scattering.

The Feynman amplitute for the Feynman diagrram (2.1)

—Zg U5ab_ .
(p,f—mw(k )y tu(k)

- — ! a U(sab —(1.] v
= ig*u(p')y*t U(p)(z‘f,“_—WU(k )y tu(k)

iM = (ig)*u(p')y*t*u(p)

To evaluate the amplitute in the nonrelativistic limit, we keep terms only to lowest
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p’ Kk’

Figure 2.1: Feynman diagram for Quark-quark Scattering

order in 3-momenta,

Using these expressions, we have

' —p) = —‘1;'—1312+O((ﬁ)4) : Us(p) = vVm ! g jl , etc.

So, in the nonrelativistic limit,

a0 ulp) = ul(P)ulp) ~ 2mee
[since ulu = 2E;€%¢]
Forp =5 =0
a(p)v'ulp) = 0

Therefore, they can be neglected compared to u(p’)y°u(p) in the nonrelativistic limit.

Thus we have

£ 2
LRSS ﬁ@mf*&)p(?mf’*&h%o
_ ig2 9 1t oame't
_ w( me't€),(2me"e),

This amplitute should be compared with the Born approximation to the scattering
amplitute in nonrelitivistic Quantum Mechanics, written in terms potential function
V(r):

o
/

< piTlp >= —iV(q)(27)6(E; — E5) (§=1p — P)
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So, apparently for linear potential

ei4-% d3q id.E
— >0
gm / (2m)? (@& —ie)?

) 1 2T ezqzcos&
= dq / d(cost / dp————
/ / L e
B / qu zqzcos& 1
47r igr | _; (¢? —i¢)?
2m zqz _ ,—tqx q2
a / (q% — ie)?

q ezq:c

47r iz J_o q(q — i€)?

dt
let gqr =t = dg=—
&

g'm? [ tdt - a'e”

2 /
= : —=cm———c @ >l ex>0; € >0
dn%ix J_o x x (8% + iex?)?

92m2x /OO " tezt
472 J_o (82 +i€')?

If I = [7 e"*dg satisfy the following:

(1) f(z) is analytic in upper half plane except for a finite no. of poles;
(2) Limit f(z)— 0 as |z| — oo

then I = [% e"dz = 2mi(sum of residues in upper half plane) [18]. Therefore,

2.2 it
g*m’x e
Ve = L52 / 4

[ pole of order three]

2 1 d2
- Lo (05)
4m?g 2! dt b 5

2 2
472 2

which is a linear potential.
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The validity of the cluster property plays a crucial role in the existence of asymp-
totic limit of the field operator. The failure of the cluster property is thus related to

the fact quark and gluon states donot have asymptotic limit, & Vppys.

Now, we illustrate how quark fields are not asymptotic. A quark field with color

index «, satisfies
(@, ¥°] = gC* ()59’
Since [@p, 1] # 0, ¥® is not an observable. Let
lo >= ¥*|0 >

from which it follows Qgla ># 0 and so |a >¢ VP"s. Since the S-matrix is
defined for physical states, |& > cannot be an asymptotic. On the other hand, the

color singlet combination will be seen to be asymptotic. We find

SprsTe? Y YPYT = P{(SY™)PPT + v (89P )Y + vy (97)}
= gC P {(r)FUIPPYT + Y (1) 40T + P ()34}
By explicitly computing this for a=1 to 8 with Gell-Mann SU(3) matrices we notice
dprsTe? 1)*P1)7 = 0 which implies
[Qg, P79 *pPy7] = 0.
Consequently, the operator e*?71)®%1)” is an observable which is hadron. Also,

the state €¥%7¢))%17|0 > has the property of being annihilated by Q5 and s0 € Vppys.

So it is an asymptotic state.




Chapter 3

SCHWINGER-DYSON
EQUATION

Schwinger-Dyson equations provide a nonperturbative approach to solve quantum
field theory [19]. The best known DSE is the simplest 'gap equation’ which describes
how the propagation of a fermion is modified by its interactions with the medium

being traversed.

d*q A N
(2704927”—5 (@) D (p — q) (3.1)

S™H(p) = Zy(iy.p + my) +Zl/ 5

where

S(p) : Full quark propagator;
D® . Dressed — gluon propagator;

I%(q;p) : Dressed — quark — gluon vertex;

my : A — dependent current quark bare mass;
Zy : Quark — gluon — vertex renormalisation constant;
Zy : Quark Wave function renormalisation constant;

In applying the above to QCD in the infrared region, we invoke the following assump-

tions.

19
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1. In the infrared region, the strong coupling constant g is taken as constant fol-

lowing the Girbov [5] i.e. g=g(0). So it can be taken out of the integral.

2. Under rainbow approximation,
2 =5,)b/2.

Using all the assumption in equation (3.1) we have

dtq Mo )b

S7(p) = S (p) + ¢ / (27)47#75@)7%1755(1? —q)

Dy = 6" D" (p - q)

4

5710) = S570)+ 0 [ S @nD* - 0)

- d* "
S70) = S0+ | s S(p — 90D (0) (32)
One of the form of the solution of SDE can be in terms of unknown functions A(p?)

and M (p?) to be determined, as

1
S0 = A+ M
= i pC(p*) + D(p?) (3.3)
where A
2y _ —Aap
) = e+ )
2\ _ M (P2)
PW) = p ) + 1) o
Now from above equations, we have
PC0) + D) = : (3.5)

- p2A%(p?) + M2(p?)
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We are interested in spontaneous breaking of chiral symmetry. So we set m;, = 0 here

after. Substituting S(p) from equation (3.3), and taking A(p?) = 1.

1 = 1)+92/ £y v{i(p— 4)C((p—q)*) + D((p—a)*)}
i pC(p?) + D(p?) (2m)
’YVDuV(Q) (3.6)

Now taking trace over v matrices and using the fact the trace odd no. of v matrices

vanish, we obtain

_pggf()ffl))tf%l(pz) = ¢ / %tr(v“v”)Duu(Q)D((p—qV)

[tr(v#7") = 49™]

2 4
soras — 7 [ o D@D -4 1)

Again, multiplying both sides of equation (3.6) with 4* and taking the trace over
gamma matrices and using the fact that terms with odd no. of gamma matrices
would not contribute, we have

Af; 2 2 4

YMipy*C(p*) — D(p*)} Ap z/dq st 2
= — — HC((p -
_p202(p2) o D2(p2) Z"/ 7 pp, +g (271_)47 7 {Z(lp /4) ((p q) )
+D((p ~ 9)*)}7" Dy (a)

upon taking trace

4igMC (p?)p, @ / dq . "
= 4 H —q).t Hom PV
—p2C2(p2) — D2(p2) Wug™ + 9 (27r)42(P Q) ptr (VYY)

C((p - 9)*) Dy (q)

using tr(y*y*v*y") = 4{g™g” — ™" + 9" g"*
. dq . v
= dip,g™ + ¢° / (—2#%(17 - 9),C((p — ¢)*)4{g™¢”

—9*g" + ¢ g"} D, (q)
Contracting both sides with py

4ip*C(p?)

—p?C%(p?) — D*(p?)

= i+ 4ig? [ SLC(- 00—

—’(p— @)pg"” +0"(p — 0)*} D (q)
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Using D,, = D,, and exchanging dummy indices

_pQCz,p(p%(pj)D?(p?) =p'+g’ / (;lﬁq)ﬁ((p )" {W" (- —p.(0— 99"} D (9)
(3.8)

The consideration in Ch.2 have resulted in the q% behaviour for the gluon propagator
in the infrared region of QCD and including the tensorial structure we take the gluon
propagator in Feynman gauge as in [4].

2

m a
DZ?/(‘Z) = _F(Qul’)‘s ’ (3.9)
Now from equation (3.9)
m2
Di(q) = *4q—4

and so (3.7) becomes

D(p2) _ 2 d4q N2 m_2
PIC2R) + DAY 7 | P 0

2.2 d4q D((p B C])2) (310)

Now from equation (3.8) and equation(3.9)

p*C(p’) _ 2 o [ dYd 2\ [90h(p — g} — _ e ™
e D) P /(2w)40((p—q) NP (v =) —p(p = 99"} 700

_ pz_ngz/(d4q C(lp—9)?)

{2p.(p—q) —4p.(p — q)}ql—4

o) ¢
= prontg [ SLAEZ D - g a1

Let us consider the equation (3.10) and euclideanize.

Substitute (p — q), = k.
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Then,
D(») .. [ d4 D®)
pPPC2(p%) + DX(p?) “”gfmmw@—mw

dk D(k?)
A2 | B 3
= ey / et S ok R

= —4m2g2(27r)/ (dk)4 Sin?*(w)Cos(#)dfdw 7 _12);'12 1_ k2)2
20%( 3 - 1

= —4mg%( /’“ [2|p||k|( 2+ k2 — 2|p||k|Cos(0)) ]| _,

o dk D(k?)

= —8mg*(m) /k (21t (p? — k2)2 (3-12)

We shall take D(k?) as analytic function and use its Cauchy-Riemann representation
[20]

D(?) = /_ - dag(_a)a (3.13)
Then,
D(p®) — —8m2a*n2 5 dk = o D(a)
s = T [P [ e 61

Using Feynmen parameterization

Lo / ' ! (3.15)
ab o x(xa + (1 —z)b)? '
Dif ferentiating w.r.t. a
1 ! 2%
— = 3.16
a2b /0 P T 1316}

56,

1 A 2z
(k2 —p22(k2—a) Adﬁm—mﬂ—u—wﬂs

Thus equation (3.14) can be expressed as

D(p?) (a)2zk?
P2C2(p?) + D2(p?) /‘“/“/ W—w—u—mgm
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Let us consider the integral

o0 k‘3
I= / M o — (1= 2)a]

let usput k2 —zp®> — (1 —2)a =2

Sk=z+zp’+ (1 - 1)

dz
= kdk = 35

F 1/_0" dz[z—l-xpz—i-(l—x)a]

2 zp?—(1—z)a 28

L[ [l emroa]
2 —zp?—(1—-2z)a z z
17 l_xp2+(1—x)a]°°
2| = 272 —ep?—(1-z)a
17 1 N p? + (1 — z)a
T 2|22 —(1-2)a  2(—zp?— (1 — 1)a)?
_ AT —gp—-(1—-7)a
2 [2(—2p? — (1 - 1)0)?
F=z :
4 [—zp? - (1 - 2)a
Therefore,
D(p*) _ m2g? 2/ da/ d:c 21‘5( )
p*C%(p?) + D*(p?) —zp? — (1 - z)a)

16m2g2m? T
_ W/_Oodap( )/O darmp2+(1_x)a (3.18)
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We carry out the x-integration

D 2 1 2 o
(p?) _ 16m?%g / 200}~ 1 / " P'—a)z+a—a
p2C?(p?) + D?(p?) 642 P’ -« (P? - o)z +a

16m?g? — 1 o
» doD(@)——— [ dz |1 - — &
6472 /_Oo @ (a)p2—a/ :c { (p2—oz)x+a]

_ m?g? D(a) mg/ D(a) /1 a
= i /_ood‘“< ) _ood“p2—a A s

ng a !
= - l
47r2 47T2 / {og(m—!— p?— a)]o
mQQ v
== l p—a
47r2 4 / p —a)? og[ Iﬁ }

3

2 2
= = g o / log E
47r2 472 p — a)? e

= D(a)a 2
I:/ daT‘é)Z(logp — loga)

o (P?

We assume D(a) is a smooth function of a.. Then o = p? is a double pole.(a = 0 is

Let us consider

a singularity which will not contribute).

= —-D(p?)
Therefore,
D(p? m2g?
2072 2(p)2 2y 2D(p2)

p*C*(p?) + D?(p?) 2m

2 2
! = i (3.19)

p*C*(p*) + D*(p?) 2m?

So, from equation (3.5)

2 L M2 (2 m?g’ 3.90

Mt 623
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We examine the effect of introducing an ultra-violet cut-off to the g-integration in
(3.2). This results in,

D(p*) —  _4m? 2/ dkk3/ D(k?)
p?’C%(p?) + D?(p?) * (0 + k2 — 2]p||k|cos)?
dkk? D(k?)
2 2 2
- 0
/ / dleosd) TR — aip|klcosh)?

dkk3

. 2 2 2

= —8mg°w /0 L (p - k2) (3.21)

As before, using D(k?) = f da 2@

kz—a

D(p?) _ —8m?g® A dk D(a)2zk?
p*C?(p?) + D*(p?) ~ (1672) / da/ dm/ 2 — gp? — (1— z)af?

using Feynman parametrization

1 ! o2r
wtqﬂ%W-ariAd%W—wW+u—xMP

So,

D(pQ) B m292 /A /oo o 3/1 x
72O o) - w )y, K PR e e A ay
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Now let us consider the integration

A k3
I = dk
/o [K? — p?z — (1 —2)af
putting k* — p’z — (1 — 2)a = z = 2kdk = dz

when k =0,z = —(p’z + (1 — z)a);
when k= A,z =A? — (p®z + (1 — 2)a);

7 1/’\2_(”2”(1_1)“) 5 +p*z+ (1 —2)a
2 J-(pot(-2)a) 2
B 1/A2—(p2;c+(1—z)a) o {l . PPz +(1— x)a]
2 J_p2ei(1-2)a) 22 23
1 |: 1 1p23: + (1 o x)a]A2_(p2x+(1—m)a)
2L = 2 # (e +(1-2)o)
B 1 1
- 2 {_A2—p2:c—(1—x)a P+ (1-12)a
P’z +(1—12) p’r+ (1 -2)a
2N —pr—(1—2)e)? 2%z + (1-— x)a)Q}
! 1 1 2A% — p?z — (1 — 7)a
~ 32 {_Q(p% +(1-2)a) A2—p2z—(1-2) (2(/\2 —p?r—(1- x)a))]
1 1 2A? — p’z — (1 — 1)
! [(p% T(—2)0)  WM—pr—(1- ﬂf)a)Q]
So,
D p2 m2g2 00 o 1 T
p2c2(p2)(+)D2(p2) = e [ / L (0‘)/0 T T (- v

N / ” daD(a) /0 1 dxx((ng i;21;2:i_(1(1—;):2;)]

—00

First Integral:

/1d T 1 /1dx(p2—a)x+a—a
T =
0o pPr+(l-z)o P —ay P?—-a)z+a




Second Integral:
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: /ldxx(ZAQ—pr—(l—x)a) _ /1d:1: i
T o (A?=plz—(1-2)a)? o AN-pr-(1-2)
1 A2
| [ e
‘l = II+IQ
l
| : ,
| L, = d
! /0 xAQ—pr—(l—x)a
_, 1 /1dmz(p2—oz)+a—A2—(a—A2)
P —a z(p? — ) + o — A?
1 l—a_A210 p? — A?
- P’ — I\ a—A?
d
an e
L, =
= ), G
— L /1dx(p2—a)x+a_A2_(a_A2)
p*—a o (A? —p?z — (1 - 2)a)?
N /1d 1 _(a=A)N° 1
opr—alf, ‘ A2 —p2r— (1 —2)a P-a (A2-plr—(1-1)a)?
1
N 1 o x+a—A2 _(a—A2)A2 1
T P2_alp-a g 2 —a (P2 — a)? x+z2-__1\02‘ )
K 1 lp2—A2 (o — A%)A? pz—a_pZ—a
P —a pQ—aOQa—A2 (p?2 —a)? \p2—A2 a-—A2
2 2 _ A2 AB
= d log oA -
(p? — )? a=-A)  (p®—a)(p®—A?)
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Finally, substituting the values of all integrals in equation

pQCQ(pl;)(Zf)lﬁ(pz) B nijrg; /_:da = [1_ —alos (17_2> -

o e
2

a p
_p2—alog(5>
2.2 o T 2 2 _ A2

= mgz/ dalja) —2A + = log ap — 4 )
A2 J_ o pPP—a| pP—-A%2 pX-a p?(a— A?)

m2g? A )
T 4p2 ( A2>D(p)

2 —
m2¢* [*  D(a o a(p? — A?
+ 92/ a3 : 2 log 2(1? 2)
dn? | o pP—a [P -« p?(a — A?)
D(p? m2a2 A2
2072 2(17) 2(02) 92 2 _ 2 D(p*)
p*C*(p?) + D*(p?) 2m® \A?—p
From equation (3.5)
2 2 2
2 2/, 2 m-g A
= 22
peare) = 22 () (322

It is clear that when A tends to co equation (3.22) would become equation (3.20)

We examine (3.20) first.

Pt = 2L =0
M@ = (C-p?s (3.23)
and so
MO) = (€)= ™% 4 (3.24)
272

As we have restricated to infrared region, the relation is not valid for all momentum
region. In the zero momentum limit, mass term M (p?) is nonzero, which means the
global chiral symmetry is broken spontaneously in the infrared region. Since we have

used the propagator for gluon in the S-D equation which is corresponds to confining
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potential that is taken linear potential, it is a manifestation of the believed fact that

both infrared phenomena : chiral symmetry breaking and confinement are related.

The above relation involves an unknown parameter C(= ) In order to estimate

211'2
a value for C we consider quark condensate. Let us hence use the relation between

chiral condensate parameter and mass term M (p?) [21].

<qq> = -— 12 /dp2(p2ﬂ (3.25)

1672 p? + M?(p?))
let p? =z
B 12 2x(C )2
= 16 / e
7 = )42 2
<qq > 1620/dpx (3.26)

In the case where a cut-off is issued, (3.22) gives

2.2 2
2 2,2y _ Mg A
p +M (p) - 27T2 (Az_pQ)

A2
- ¢ <A2 —pz)

M@p*) = (C (MA—ij) —p2) (3.27)

and we have

[NIE

- _ N 2 2 A2 2\11/2
£Tg> = 27TQCA2/a:dx{(A 2)(CA? — A2z + 22} (3.28)

where p* =z




Integrating equation (3.26)

= Cd VO -z
16720 J, “F ‘

puttingC — x = z = dxr = —dz
- 2 [ac-avz
BT =Tol Mt ¢
12 2
= T16mC [502
T

<qq> =

c

wlw

O D Ol DN ot b

ojo

| S|
o

I8

w

[V

" 1672C | 3
12
. @[Ec—

Q
oot
| I——

1672 3
C:
52

:

Using the lattice estimate [22].
< Tu >=< dd >= —(250MeV)?
we have
C:

- 5m?
M) = (C)Y/?GeV =0.917GeV

Il

<qq>

and so

M(p?) = {084-p’}>
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(3.29)

This is plotted in Figure (3.1). The value M(0) ~ 0.917GeV is large when compared

with lattice estimation. So we use (3.28).

let us choose
<qq> = —(220MeV)? = —0.0107GeV? and N, =3

and equation is

1

=3 / zdz {(A? - 2)(CA? — A%z +2%)}? = 0.07040

(3.30)




M(p?) = { .84 - p®}'?
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Figure 3.1: Variation of Mass function with Momentum scale
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Table 3.1: Data from Numerical Calculation

A(GeV) | C(GeV?) | Value of Integration
3 0.6 0.131571
3 0.65 0.148908
3 0.63 0.14188
3 0.62 0.138412
3 0.628 0.141184
3 0.625 0.140836
3 0.627 0.140836
3 0.4 0.0704602
3 0.399 0.07019
3 0.3995 0.070325
3 0.3998 0.0704061
3 0.39979 0.0704034***

After performing numerical integration for different values of C and A for equation

(3.30) we the following data:

The choice of C = 0.39979GeV?, A = 3GeV. (as indicated by three stars in the
above data table) gives the correct lattice value of < gg >. Then

M) = VC = (0.39979)7 = 0.63228949GeV

i - {o(is) -}

This is plotted in Figure (3.2). The value M(0)=0.63 GeV is in reasonable agreement
with lattice calculation [23]. m is the dual gluon mass. In order to estimate its value,
we need to know ¢? at low momentum (non-perturbative). These are not known.
However using g = 8.05 [20], we find the dual gluon mass ~ 980 MeV which is in
due agreement with 848 MeV prediction by [20].



2 2 2 2 2.1/2
M(p®) = {CA™/(A"-p”) - p°}
0.7 T T T T T T
0.6 h
0.5} - .
> 0.4 \\ .
5]
=g
=t
= o3} .
plot with C = 0.39979 GeV?2 & A = 3 GeV
0.2} .
\
01} \,\ i
\
O 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
p (GeV)
Figure 3.2: Variation of Mass function with Momentum scale




Chapter 4

CONCLUSION

In this thesis, we have considered the Yang-Mills theory with unbroken colour SU(3)
symmetry, namely QCD, in the non-perturbative infrared regime. After a brief in-
troduction, the formal aspects of a quantum Yang-Mills theory is analysed with the
specific motivation of reconciling the linear confining potential with relativistic quan-
tum field theory. This is possible mainly due to the unobservability of quarks and
gluons. Using a criterian for unobservability, namely, the nonvanishing of the com-
mutator of the BRST charge and the field in physical space, the difficulty of having
a linearly rising potential is avoided. This has been utilised to exhibit how coloured
quarks do not exit as asymptotic states while colour singlet hadrons exit as asymptotic
states. Such a linear potential arises from q% propagator for gluons in the infrared
region. This propagator follows from a dual Meissner effect decription of QCD with
infrared region. Using static configuration, we demonstrate how the linear potential
comes about. This involves one parameter, the dual gluon mass, which has been

determined subsequently.

We have then considered the phenomenon of spontaneous chiral symmetry us-
ing Schwinger-Dyson equation. The input here is the q% propagator for the gluons
and the Gribov’s conjecture of QCD coupling being a constant at the near infrared
region. Usually Schwinger-Dyson equation is very difficult to solve exactly. So we

use ladder approximation. A solution of the Schwinger-Dyson equation is taken as

35
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parametrised by D(q?) and the Chauchy-Riemann representation for D(g?) is used.

Then Feynman’s parametrization of the integral is employed. A very useful relation

PP+ M2(p?) = 5%

272
is derived with in the approximation, where M (p?) is the momentum dependent
quark current mass, m is the dual gluon mass and g is the QCD coupling in the

infrared region. An improvement of this relation is obtained by introducing on cut-

off A as

2.2 2
) = 5L ()

The parameter above are determined by evaluating < gg > condensate as ~
—(250MeV)3. Using the relation A (or A — o0), the quantum correction to the
quark mass is found to be M(0)=0.9 GeV. Which is large compared to the lattice
QCD estimate of ~0.6 GeV. So, we have used the second relation and find for A=3
Gev, M(0) is found to be 0.63 GeV. The variation of M (p?) with p is plotted. The
result that M(0) # 0, shows spontaneous chiral symmetry breaking. Since q% be-
haviour of the propagator for gluon results in confinement via linear potential, we

show confinement implies chiral symmetry breaking.

As a prediction, we have found the dual gluon mass M=980 MeV which is in good
agreement with the earliar prediction of 848 MeV by Baker and his collaborators.
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