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Abstract

The non-perturbative aspects of QCD, the gauge theory of strong interactions are

studied. The phenomenon of confinement of quarks and the dynamical chiral sym-

metry breaking are examined. The phenomenological linear confining potential is

consistent with quantum gauge Yang-Mills theory. Such a potential emanates from

14 propagator for gluons in the infrared region. The dynamical chiral symmetryq

breaking in the above region studied using Schwinger-Dyson equation in the ladder

approximation. We exhibit dynamical chiral symmetry breaking. The parameters in

the analysis are determined by evaluating the quark condensate and comparing with

its recent values. The numerical value of M(O) for quark is found to be 0.63 GeV in

agreement with lattice QCD estimates. With this, we predict the dual gluon mass to

be 980 MeV which is in reasonable agreement with earlier estimate of 848 MeV.



.@6lnL ~UJ Z!....6TT6TT$16ln6\) UJrr!!:>!Dw ~6ln6)Ja;6!fl6irr .@6lnLQ6)J 6!flffi® ~!!>~ urrffi.$lw
1

.@®ut516irr, $1a;w 6)Jrrti.JULj6Tr6TT~. ~~~® $16ln6\)UJrr!!:>!Dw q4 Qj)6ln!DuSlw, Lj!D



ACKNOWLEDGEMENT



Contents

List of Figures

1.1 Chiral Symmetry and its Spontaneous Breaking

1.2 Outline of Dissertation .

2 NON-ABELIAN GAUGE QUANTUM FIELD THEORY:A THE-

ORETICAL PERSPECTIVE 5

2.2 Observables in Quantum Yang-Mills Theory

2.3 Confining Potential and Cluster Property.

3 SCHWINGER-DYSON EQUATION



4 CONCLUSION

REFERENCES

35

37



List of Tables



List of Figures

2.1 Feynman diagram for Quark-quark Scattering ..

3.1 Variation of Mass function with Momentum scale

3.2 Variation of Mass function with Momentum scale



Chapter 1

INTRODUCTION

All hadrons (mesons and baryons) are made of quarks and gluons and they interact

among themselves via strong interactions. Quarks have three types of color charges

and come in six flavours (u,d,s,c,t,b). Unlike photon which is chargeless and the

force mediator between electrons, gluons are the force mediator between quarks and

have color charges. Hence gluons can interact with gluons which is the source of

the non-Abelian nature of the force [1]. Due to this non-Abelian nature, the strong

coupling constant which is scale-dependent is low at high energy scale (i.e. less than

one). At high energy-scale (short distance-scale) the coupling constant tends to zero

and the quarks and gluons start moving freely inside the hadrons. This phenomena

is called" Asymptotic Freedom". Owing to small coupling constant in high-energy

zone, the perturbative method calculation is satisfactory [2]. The property of QCD

that led directly to its discovery as a candidate of the strong interaction is asymp-

totic freedom. Thus color (chromo) force provides a mechanism for binding quarks

together into hadrons, and the dynamics of this interactions is governed by Quantum

Chromo dynamics (QCD). The position of QCD as the candidate theory of strong

interactions was strengthened still further in 1974 when Gross and Wilczek went on

to prove mathematically that only non-Abelian gauge field theories can give rise to

asymptotically free behaviour [2] .

"QCD is an non-Abelian gauge theory (an example of Yang-Mills Theory) of



Quarks and gluons are non-interacting at short distances, but have never been

observed as free (asymptotic) particles. This fact had lead to the conjecture that

colored particles never appear in asymptotic states. This is called confinement of

quarks and gluons confinement should be derivable from the QCD Lagrangian. In

fact, if we pull the quarks apart, the energy that would be put in, in order to seperate

them is used to create new hadrons between the seperated particles. This process is

called hadronisation.

In general, if the potential between two quarks is proportional to the distance

between them, then two quarks can never be seperated. So phenomenologically,

confinement implies V(r) rv CJr where CJ is a constant (GeV Ifm). If we try to seperate

the quarks by force, then the restoring force of the linear potential between them

grows sufficiently rapidly to prevent them from being seperated. Thus they can never

be seperated if they are bound by a linear potential. Similarly, if the quark potential

asymptotically becomes a constant or decreases with distance, then the potential is

not sufficient to confine the quarks.

One of the aspects studied here is a possible explanation of linear potential from

quantum field theory point of view. A related feature of the non-perturbative aspect

of QCD is 'Chiral Symmetry Breaking', which is signalled by quarks acquiring mass,

is studied using Schwinger-Dyson equation.

1.1 Chiral Symmetry and its Spontaneous Break-
.lng



Under this transformation 1j;(x) = 1j;t (x),o will transform as

1j;(x)
- -,1j;(x) --t 1j; (x)

so, 1j;(x)1j;(x) would transform as

1j;'(x)1j;'(x)

1j;t (x),o

(ei(h51j; (x) ) t1'0

1j;t (x) e-iO'Y51'0

1j;t (x ),oe+iO'Y5

{1'51'0 + 1'01'5 = O}
1j;(x )e+i0'Y5

1j;(x) eiO'Y5eiO'Y51j;(x)

1j;(x) ei20'Y51j;(x)

This means a mass term 1j;(x)1j;(x) in QCD Lagrangian for quarks is not invariant

under global chiral transformation [3] [4]. So, in the chirallimit (quark mass goes to

zero)
1 -Lcl = -4F:vFJ1-va + 1j;1'J1-(i0J1-+ gA~ta)1j; (1.4)

is invariant under global chiral transformation. If mass of the quark is introduced at

the Lagrangian itself, the chiral symmetry is broken explicitly. If we start with quark

mass as zero initially in the Lagrangian, the quantum correction generates mass for

quark and the global chiral symmetry get broken, this is called spontaneous chiral

Symmetry Breaking. This is studied here using Schwinger-Dyson equation.

In chapter 2, the theoretical aspects of QCD as quantum gauge field theory are given

to motivate that a linear potential between quarks is compatible with relativistic



quantum field theory. Consequently, the gluon propagator in the infrared (confining)

region is (g/-LV - (1-~)k%~v) ;:. In chapter 3, we analyse Schwinger-Dyson equation for

quarks without bare mass in the above gluon background in the ladder approximation.

We explicitly demonstrate chiral symmetry breaking using 14 propagator. The quarkq

condensate < 'ljnp > is evaluated and numerical results are presented, by fitting the

parameters with quark condensate.



Chapter 2

NON-ABELIAN GAUGE
QUANTUM FIELD THEORY:A
THEORETICAL PERSPECTIVE

Gauge quantum field theories are the only quantum field theories relevant to elemen-

tary particle physics. So it will be of physical importance to analyze the structure

of these theories, without relying on perturbation theory. This is particularly useful

to address the issue of confinement of quarks and gluons in QCD as the confining

regime is in the infrared region where the QCD coupling is large so that perturbative

methods cannot be reliably employed. The first assumption we make here is, in the

confining region, the QCD coupling (large) is a constant, g(q)=g(O). This assumption

has been suggested by Gribov [5].

Gauge quantum field theories have different properties from standard quantum

field theories. An example is the Abelian field theory in which the indefinite metric

in the definition of scalar product plays crucial role. Further, in non-Abelian gauge

quantum field theories, the cluster property does not necessarily hold, although such

a property holds good for Abelian gauge quantum field theory. So non-Abelian gauge

quantum field theory has two important features, indefinite metric structure and

failure of cluster property when the gauge group is not broken.



The definition of physical space "V;hys C vtotal such that the norm "V;hY~ is positive

semi-definite i.e. (cP, cP) ~ 0; cP E "V;hys is another distinguishing property of gauge

quantum field theory. As the matrix elements between two physical states cPl' cP2 E

"V;hys do not change by adding to cPl and/or to cP2' states X E "V;hys with vanishing norm

< X,X >= 0, as these are also orthogonal to cPl,cP2 (l(cP,x)l:::; l(cP,cPW/2(X,XW/2

by Schwarz inequality and as (X, X) = 0, it follows (cP, X) = 0), it is convenient to

characterize the physical state corresponding to cP by the equivalence class [cP] . The

quotient "V;hys = "V;hys/VO, Va = {X E "V;hys; (X, X) = O} will be called the space of

physical states and the scalar product is positive-definite, in "V;hys/Va.

Another distinguishing feature of non-Abelian gauge quantum field theory is re-

lated to Wightman functions. In the standard QFT, with positive metric, the pos-

itivity property ensures that quantized fields can always be constructed once vac-

uum expectation values are the given set of Wightman functions. In the case of the

indefinite- metric case, this is not possible in general. However, using "V;hys this can

be circumvented. The translation invariance of the Wightman functions requires the

space-time translation operators U(a) are unitary, now with respect to the indefinite

product, i.e. U(a)trjU(a) = rj. This means, the Fourier transform of the two point

function need not be a measure. We now consider observability condition in gen-

eral. In a local gauge quantum field theory, with local symmetry group G unbroken,

its generators Qi commute with all the observables. A necessary condition for an

operator A to describe an observable is < cPl [Qi, A] IcP >= O. Consequently, in the

Abelian gauge theory, Q corresponds to electric charge and so ('1!Ji, Qi'l/Ji) = qi('l/Ji, 'l/Ji)

an observable. For QCD, [Qa, Qb] = ijUbcQc and so color charges cannot be observed.

A deeper issue is whether a non-Abelian gauge quantum field theory has asymptotic

particle-like states with non-vanishing colour. Such non-perturbative characteristic

questions can be addressed now. The non-observability of quarks means that quarks

are associated with a basic set of fields 'l/Ji(X) but no particle like aymptotic states

exist with quark quantum numbers. The validity of the cluster property becomes

important in the existence of the asymptotic limit of a field operator. The failure

of the cluster property for the quark fields 'l/Ji is strictly related to the fact that the

states 'l/JilO > do not have an asymtotic limit belonging to "V;hys. (In 2-d QED, the



cluster property fails and one views the dipole states as bound states of electrons

intracting through a potential increasing at infinity). So the question of a mechanism

of confinement is the cluster property of gauge quantum field theory [6].

2.1 Quantum Yang-Mills Theory

QeD is an SU(3)c unbroken gauge theory whose classical Lagrangian density is

1 -£cl = -"4F;vFJ1.va + 'ljyyJ1.(i8J1.+ gA:ta)'IjJ (2.1)

with Fa = a Aa - a Aa + gfabcAb ACJ1.V J1.v VJ1. J1.V

and ta,s are hermitian generators of SU(3). The classical equation of motion is

D~b FJ1.vb= -gfa ; D~b = oJ1.Jab+ grcb A~. It is to be noted that the current jva is

covariently conserved i.e.

jva is ordinarily conserved , i.e. ovJva = O. Jva contains a piece facb A~FJ1.vb, a

contribution from the gauge fields. In quantising the theory, we need to fix the

gauge, as the momentum canonically conjugate to AD vanishes. In fixing the gauge,

we encounter the Gribov ambiguity [7], that is, we cannot fix the gauge uniquely. This

is an inherent problem which is not yet solved. evertheless we fix a gauge as Lorentz

gauge and use Faddeev-Popov [3] method of writing the quantum Lagrangian. This

is a standard procedure and so we do not give the details.

The equation of motion from the quantum YM theory is

DJ1.abFiv = ovBa - gj~ - ig(ovC x c)a = ovBa - gj~ - igrbCovCbCc (2.4)

where c's are the anti-commuting FP ghost fields and Ba,s are the Lagrange multipliar

fields in £CF and satisfy



Having fixed the gauge, the Lagrangian has no local gauge symmetry. However it

has global symmetries, called BRS symmetry [8]. The BRS transformations leaving

the quantum Lagrangian invariant, are

[iQB, AJ-La]
(D~bCb)
[iQB, ?jP]

igca(Ta)~7./J(3

[iQB, Ba]
o

[iQB, ca]
_!lCbcc

2

[iQB, ca]

-ig rcd F~vCd

igrdCCdF~v

ig(C x FJ-Lv)af 0



J; rbcAvbF~jL + j; + rbcA~Bc - irbCCb(D~dCd) + irbC(OjLCb)CC

j; + rbc Avb F~jL- {QB, rbc A~Cc} + irbC(OjLCb)Cc.

The total state vector space V in a covariant formulation of gauge theory necessarily

contians negative norm states i.e. V has an indefinite metric. The impossivility of

covariantly quantising electromagnetic field AjL in the positive-metric Hilbert space

has been demonstrated by Mathews, Seetharaman and Simon [10]. Since the posi-

tivity of the metric is vital to the probabilistic interpretation of the quantum theory,

we need to define a suitable subspace of V in such a way that the physical S-matrix,

defined by restricting the total S-matrix to the physical subspace, is unitary.

In non-Abelian gauge theory, the physical subspace ~hys C V is specified by the

subsidiary condition

This is due to Kugo and Ojima [11], also by Curci and Ferrari [12]. As QB

generates BRS transformations which are infinitesimal local gauge transformation,

the above condition essentially expresses the gauge invariance of the physical states

belonging to ~hYs. The vacuum is taken to be annihilated by QB, QBIO >= 0 and

so /0) C VPhys. Unphysical particles violating norm positivity are 'confined' in the

sense they appear in ~hys only in the zero norm combinations. In defining a physical

S-matrix between physical states with positive norm, we have to have



H being the generator of time translation. This is assured using [H, QB] = 0, as let

Hlphys >= 1'ljJ >. Then

QBHlphys>

HQBlphys>

o.

Since QB annihilates 1'ljJ >, (2.13) is assured.

and (3) positive-semi definiteness,

2.2 Observables in Quantum Yang-Mills Theory

The physical space ~hYs contains states with zero norm. Let us introduce a Hilbert

space of physical states as ~hys/Va where va is a space of zero-norm states. Any

zero norm state Ix) in va is orthogonal to states in ~hys. The transition probability

between physical states

T(¢11¢2) = I < ¢11¢2 > 1
2 has the property

T(¢11¢2) = T(¢l + xll¢2 + X2) = 1 < ¢11¢2 > 1
2.

Besides transition probability, physical quantities to be measured such as 4-momentum

Ptt etc, must be such that any state E Va should make no physical effect in the mea-

surement. To ensure this, if a zero norm state Ix >E Va were transformed by a

physical quantity R into Ix' >= Rlx >, such that < 'ljJlx' >=< 'ljJIRlx >=1= 0 for some

I¢ > c ~hys,

then the measurement of R could not be described consistantly. So, we require

the physical quantity to satisfy



T(1/JI¢) = I < 1/J1¢> 12 =< ¢11/J>< 1/J1¢>= E(P1j;I¢) (2.16)

Now returning to YM theory, every observable R which is self-adjoint, admits spectral

decomposition i.e. R = L:n anP<pn = L:n anl¢n >< ¢nl with RI¢m >= aml¢m >.
Then the expectation value of R in I¢ > is

< ¢IRI¢ >
Lan < ¢I¢n >< ¢nl¢ >

(Also < xlRlx >= 0, since if Rlx >= lx' >c Vo, then < xix' >= o. If Rlx >=
I¢ >~ Va but E ~hys, then < xl¢ >= 0).



( As an example, let us find whether PJ-L is observable or not. Since QB IS a

translationally invariant scalar

[QB,PJ-L] = 0

SO, PJ-LI¢ >= 11/J>(say). I¢ > c ~hys;QBI¢ >= o. QBI1/J >= QBPJ-LI¢ >=

PJ-L(QBI¢ » = O. So 11/J>c ~hys' Since Ix> C Va is orthogonal to I¢ > C ~hys and

since 11/J> C ~hys, it follows that

So, PJ-Lis an observable.)

In summary, we can say if an operator 6 commutes with QB then 6 is an observ-

able.

In the case Abelian gauge theory, Stroocchi and Wightman [13] introduced four

notions of the gauge invariance for operators

1. gauge independance : < ¢1 + xIIRI¢2 + X2 >=< ¢IIRI¢2 > for all I¢ >E ~hys
and Ix >E Va;

Following Nakanishi and Ojima [14], for non-Abelian gauge quantum theory it is seen

that, (1) implies (3) and (2). In non-Abelian gauge quantum theory, the physical

subspace is characterized by QBI¢ >= 0 : I¢ >E ~hys; Q1 = o.
If an operator R satisfies (1), then < ¢IRlx >= 0 for I¢ >E ~hYs; Ix >E Va·

Let If >E V. Then for any I¢ >E Vphys, consider < fIQBRI¢ >. This is zero, as

QBlf >E Va (since, QBlf >= In >:< nln >=< flQ11f >= 0). So, < fIQBRI¢ >=

O.This implies QBRI¢ >= 0 and therefore RI¢ >E ~hys, which is (3). Next, from

(1), < ¢IRlx >= 0, let Rlx >= 17f>. If 17f>E ~hys, then < ¢17f>= 0, which means

there can be no transition between two physical states. This is not possible as 17f>



is arbitrarily but E~hys. So, the only possibility is 11r>E Va. So RVa C Va which is

(2).

QBR~hys = 0

RQB~hYs = 0

RI¢ >= I¢' >E ~hy

QBRI¢ >= QBI¢' >= 0

RQBI¢ >= 0

( The converse is true. If [QB, R] = 0, RI¢ >= I¢' >; I¢ > E Vphys. QBRI¢ >=
QBI<t/ >= RQBI¢ >. SO I¢' >E ~hys.SO R~hys C ~hys. If [QB, R]+ = 0, let RI¢ >=
I¢' >; I¢ >E ~hys. Then QBRI¢ >= QBI¢' >= -RQBI¢ >= 0 =} I¢' >E ~hys or

R~hys C Vphys. )

2.3 Confining Potential and Cluster Property

In describing the potential for quarks, we need a potential not decreasing at infin-

ity to confine quarks. This implies a failure of the cluster property for the vacuum

expectation value of two point function. This cluster property is

Araki, Hepp and Ruelle [15] proved that the cluster property should hold in a

Lorentz covariant local field theory with unique vacuum. In this case, the potential



cannot be linearly rising. So, there appears a contrdiction between linear (confin-

ing) potential and gauge quantum theory. However, in a non-Abelian gauge theory,

the possible failure of cluster property has been pointed out by Strocchi [16] . To

understand this, we use the inequality derived by Araki, Hepp and Ruelle, on the

assumption of covariance under translation, local commutativities, uniqueness of vac-

uum and spectral condition that

when there is mass gap or no mass gap. ~ = Xl - X2 and N is a non-negative integer

depending upon ¢/s.

We first consider Abelian gauge theory (QED) where there is no mass gap, then

1< OI<PI(xd<P2(X2)IO > - < 01<PI(XI)!O >< OI<P2(X210 > I :S C/[~t2[~FN(1 + 'f~')
The role of QB in QED is played by B(x)= -oJl- AJl-(x).

Using [AJl-(x), Av(Y)] = -iTJJl-vD(x - y)

[oJl-Av(x) , 0>' A>. (y)] = -ioJl-o>'TJv>.D(x - y)

[OVAJl-(x), 0>' A>.(y)] = -iovo>'TJJl->.D(x - y) and so

< OIFJl-v(x)Fp<T(Y)10 >= -{TJJl-povO<T - TJvpoJl-O<T- TJJl-pOVop+ TJV<T0Jl-0p}F(x - y).

Let F(f)= J d4XFJl-v(X)jJl-V(x)



where jJiV(x) is some function in R4•

Then the state F(J)IO > will be in Y';hys since FJiV(x) is an observable. Therefore

This implies the Fourier transform of < 0 IFJiV (x) Fpa (y) 10 > is a measure. So N

=0. Thus F(x - y) -t [x - y]-2, which -t 0 as Ix - yl -t 00. Therefore the cluster

property holds good and the potential also -t 0 as Ix - yl -t 00.

For QCD, which is a non-Abelian gauge quantum field theory, there is no mass

gap. In here, we have

[iQ Fa] = ijabcCb FC
B, JiV JiV

and therefore F:v is not an observable ( in contrast to FJiv of Abelian theory). Con-

sequently, the state

F(J)IO >= J d4xF:vrJiV(x) 10 >

will not be in Y';hys. This implies that the Fourier transform of < 0 IF:v (x) F:a (y) 10 >
will not be a measure and so #0. The cluster property fails. Thus, the possibility

of linear confining potential (not vanishing at spatial infinity) and quantum field the-

ory are compatible. Also reasoning from a quark-antiquark confining linear potential,

it has been realised that most suggestions of confinement mechanism imply a gluon

propagator diverging faster than q12 as q2 -t 0, and typically as ' ql/. In describing

confinement in QCD as dual Meissner effect [17], the dual gluon propagator is q2!m2

where m2 is related to monopole effect. Then the gluon propagator will go as r;)4
2
.

Let us consider quark-quark scattering.



p = (m,p)

p' = (m,i')
k = (m,k)

k' = (m,12)

,;n; [ ~: ] , etc.

ut(p')u(p) ~ 2m(t~

[since utu = 2Ep~t~]

For i'

Therefore, they can be neglected compared to u(p')ry°u(p) in the nonrelativistic limit.

Thus we have
. 2

iM ~ 29 (2m(t~)p(2m(t~h900_(p' _ p)4
. 2

~9 (2m(t ~)p(2m(t ~h
_(p' _ p)4

This amplitute should be compared with the Born approximation to the scattering

amplitute in nonrelitivistic Quantum Mechanics, written in terms potential function

V(r):
< p'liTlp >= -iV(q)(27f)<5(Epl - Ep) (if= i' - p)



2 2
V(q) = g m

q4

If I = I~ooeiaxdx satisfy the following:

(1) f(z) is analytic in upper half plane except for a finite no. of poles;

then I = I~ooeiaxdx = 21ri(sum of residues in upper half plane) [18].Therefore,



The validity of the cluster property plays a crucial role in the existence of asymp-

totic limit of the field operator. The failure of the cluster property is thus related to

the fact quark and gluon states donot have asymptotic limit, tJ- "V;hys.

Now, we illustrate how quark fields are not asymptotic. A quark field with color

index a, satisfies

from which it follows QBla >1- 0 and so la >tJ- VPhys. Since the S-matrix is

defined for physical states, la > cannot be an asymptotic. On the other hand, the

color singlet combination will be seen to be asymptotic. We find

EQf3'Y{(6'1/P)'l/Jf3'l/J'Y + 'l/JQ(6'l/Jf3)'l/J'Y + 'l/JQ'l/Jf3(6'l/J'Y)}

gCaEQf3'Y {( Ta)~'l/J0'l/Jf3'l/J 'Y + 'l/JQ( Ta)~ 'l/J0'l/J'Y + 'l/JQ'l/Jf3(Ta H'l/J°}

By explicitly computing this for a=l to 8 with Gell-Mann SU(3) matrices we notice
6BRSTEQf3'Y'l/JQ'l/Jf3'l/J'Y = 0 which implies

Consequently, the operator EQf3'Y'l/JQ'l/Jf3'l/J'Yis an observable which is hadron. Also,

the state EQf3'Y'l/JQ'l/Jf3'l/J'YIO > has the proper'ty of being annihilated by QB and so E "V;hys.

So it is an asymptotic state.



Chapter 3

SCHWINGER-DYSON
EQUATION

Schwinger-Dyson equations provide a nonperturbative approach to solve quantum

field theory [19]. The best known DSE is the simplest 'gap equation' which describes

how the propagation of a fermion is modified by its interactions with the medium

being traversed.

Full quark propagator;

Dressed - gluon propagator;

Dressed - quark - gluon vertex;

A - dependent current quark bare mass;

Quark - gluon - vertex renormalisation constant;

Quark Wave junction renormalisation constant;

In applying the above to QeD in the infrared region, we invoke the following assump-

tions.



1. In the infrared region, the strong coupling constant g is taken as constant fol-

lowing the Girbov [5] i.e. g=g(O). So it can be taken out of the integral.

2. Under rainbow approximation,

r~= 'Yv>..b /2.

S-l(p) = Sr;l(p) + g2 J (~:~4'YJ1.S(p - qhvDJ1.V(q) (3.2)

One of the form of the solution of SDE can be in terms of unknown functions A(p2)
and M(p2) to be determined, as

1
i pA(p2) + M(p2)
i pC(p2) + D(p2)

2 _A(p2)
C(p ) = p2 A2(p2) + M2(p2)

2 M(p2)
D (p ) = p2 A 2 (p2) + M2 (p2)

Now from above equations, we have



We are interested in spontaneous breaking of chiral symmetry. So we set mb = 0 here

after. Substituting S(p) from equation (3.3), and taking A(p2) = 1.

Now taking trace over "( matrices and using the fact the trace odd no. of"( matrices

vanish, we obtain

- D(p2)tr(I)
_p2C2(P2) _ D2(p2)

D(p2)
p2C2(P2) + D2(p2)

l J (~:~4tr bJl."(V) DJl.v (q)D((p - q)2)

[tr( "(Jl.f) = 4gJl.V]

g2 J (~:~4D~(q)D((P - q)2)

Again, multiplying both sides of equation (3.6) with "(>.. and taking the trace over

gamma matrices and using the fact that terms with odd no. of gamma matrices

would not contribute, we have

"(>..{ iPJl."(Jl.C(p2) - D(p2)}
_p2C2(p2) _ D2(p2)

upon taking trace

4ig>"Jl.C(p2)pJl.
_p2C2(p2) _ D2(p2)

Contracting both sides with P>..
4ip2C(p2)

_p2C2(p2) _ D2(p2)

i"(>""(Jl.pJl.+l J (~:~4"(>""(Jl.{i(P- IJ)C((p - q)2)

+D( (p - q)2)},,(v DJl.v(q)

4iPJl.lJl. + g2 J (~:~4i(p - q)ptrb>""(Jl."(P"(V)

C((p - q)2)DJl:v(q)
using trb>""(Jl."(Pf) = 4{g>"Jl.gPV _ g>"PgJl.V+ g>"vgJl.P

J d4q
4ipJl.g>"Jl.+ g2 (27r)4 i(p - q)pC((p - q)2)4{g>"Jl.gpv

_g>"PgJl.V+ g>"vgJl.P}DJl.v(q)

4ip2 + 4ig2 J (~:~4C((p - q)2){pJl.(p - qt

_pP(p _ q)pgJl.V + pV(p - q)Jl.}DJl.v(q)



p
2
C(p2) _ 2 2 J d

4
q C(( )2){2 /1-( )// ( ) /1-//}D ()_p2C2(p2) _ D2(p2) - P + 9 (27f)4 P - q P P - q - p. p - q 9 /1-// q

(3.8)
The consideration in Ch.2 have resulted in the --\ behaviour for the gluon propagatorq

in the infrared region of QCD and including the tensorial structure we take the gluon

propagator in Feynman gauge as in [4].

2

D~~(q) = - m4 (g/1-//)6ab
q

D(p2)
p2C2(p2) + D2(p2)

p2C(p2)
_p2C2(p2) _ D2(p2)



D(p2)
p2C2(p2) + D2(p2)

2 2 J d4
q D(k2

)
-4m 9 (21f )4 ((p - k)2)2

2 2 J dk 3 D(k2)
-4m 9 (21f)4 k dDk (p2 _ 2p.k + k2)2

2 2 J dk 3 . 2 D(k2)
-4m 9 (21f) (21f)4k Sm (w)Cos(O)dOdw (p2 _ 2p.k + k2)2

2 2 2 J 3 dk [ 1 ] 1
-4m 9 (1f) k (21f)4 2lpllkl(p2 + k2 - 2IpllkICos(O)) -1

2 2( )2 J 3 dk D(k
2

) ( )
-8m 9 1f k (21f)4 (p2 _ k2)2 3.12

We shall take D(k2) as analytic function and use its Cauchy-Riemann representation

[20]

1
ab

Dij jerentiating w.r.t. a
1
a2b
So,

11dx 1 _
o (xa + (1 - x)b)2

11dx 2_x _
o (xa + (1 - X)b)3

11dx 2_x _
o [k2 - Xp2 - (1 - x) a P



D(p2)
p2C2(p2) + D2(p2)

100 k3
dk-------

o [k2-xp2-(1-x)a]3
let us put k2 - Xp2 - (1 - x)a = z

=} k2 = Z + Xp2 + (1 - x)a

=} kdk = dz
2~100

dz [z + Xp2 +}1 - x)a]
2 -xpL(1-x)a Z~100

dz [~ + Xp2 + (~- x)a]
2 -xpL(1-x)a Z Z

~ [_ ~ _ Xp2 + (1 - x) a] 00

2 z 2z2 -xpL(1-x)a

1 [1 Xp2 + (1 - x )a ]
"2 -Xp2 - (1 - x)a + 2( -Xp2 - (1 - x)a)2

1 [ -Xp2 - (1 - x)a ]
2 2( -Xp2 - (1 - x)a)2

~ [ - Xp2 - ~1- x) a ]

1 -
2 2 21

00

d 1d 2xD(a)-8m 9 7fax---------
-00 0 4(27f)4( -Xp2 - (1 - x)a)

16m2g27f21°O - 11 x--- daD(a) dx----- (3.18)
4(27f)4 -00 0 Xp2 + (1 - x)a



D(p2)
p2C2(p2) + D2(p2)

16m2g2joo _ 1 11 (p2 - a)x + a - a-- daD(a)-- dx------
641f2 -00 p2 - a 0 (p2 - a)x + a

16m2g2joo - 1 11
[ a]-- daD(a)-- dx 1- -----

641f2 -00 p2 - a 0 (p2 - a)x + a

m2g2joo D(a) m2g2joo D(a) 11 a-- da--- - -- da-- -----
41f2 -00 (p2 - a) 41f2 -00 p2 - a 0 (p2 - a)x + a

- 1
m2g2 2 m2g2joo D(a)a [ a]
-4 2 D(p ) - -4 2 da( 2 )2 log(x + 2 )

1f 1f -00 P - a P - a 0

m2g2 D(p2) _ m2g2joo da D(a)a log [1+ p-2~-a]
41f2 41f2 (p2 _ a)2 _a_

-00 p2_a

m2g2 2 m2g2joo D(a)a (p2)
-4 2 D(p ) - --2 da( 2 )2Iog-

1f 41f -00 P - a a

joo D(a)a 2

1= -00 da (p2 _ a)2 (logp - loga)

We assume D(a) is a smooth function of a. Then a = p2 is a double pole.(a = 0 is

a singularity which will not contribute).

D(p2)
p2C2(p2) + D2(p2)

1
p2C2(p2) + D2(p2)

2 2
m g D(p2)
21f2

m2g2

21f2



We examine the effect of introducing an ultra-violet cut-off to the q-integration in

(3.2). This results in,

D(p2)
p2C2 (p2) + D2 (p2)

___ 1 = t dx 2_x _
(k2 - p2)2(k2 - a) io (k2 - Xp2 + (1 - x)a)3



rA
dk k_3

_

Jo [K2 - p2X - (1 - x)ap
putting k2 - p2X - (1 - x)a = z ~ 2kdk = dz

when k = 0, z = _(p2X + (1 - x)a);

when k = A, z = A2
- (p2 X + (1 - x) a) ;1jA2

-(P2X+(1-X)Q) z + p2X + (1 - x)a
- dz-------
2 -(p2x+(1-x)Q) z31jA2

-(P2X+(1-X)Q) [ 1 p2X + (1 - x)a]
- dz-+-----
2 -(p2x+(1-x)Q) Z2 Z3

~ [_ ~ _ ~ p2x + (1 - x )a] A
2
-(p2X+(1-x)Q)

2 z 2 Z2 -(p2x+(1-x)Q)

1 [1 1
2 A2 - p2X - (1 - x) a p2x + (1 - x) a

___ p2_x_+_(1_-_x_)_a__ + _p_2X_+_(_1_-_x_)a_]
2(A2 - p2X - (1 - x)a)2 2(p2X + (1 - x)a)2

1 [1 1 ( 2A2
- p2X - (1 - x)a )]

2 2(p2X + (1 - x)a) A2 - p2X - (1 - x)a 2(A2 - p2X - (1 - x)a)

1 [ 1 2A2
- p2X - (1 - x)a ]

-4 (p2X + (1 - x)a) + (A2 - p2X --.: (1 - x)a)2

D(p2)
p2C2(p2) + D2(p2)

m2g2 [jOO - 11
X--2 daD(a) dx 2 ( )4n -00 0 p x + 1 - x a

JOO _ 11 x(2A2 - p2X - (1 - x)a)]
+ daD(a) dx (A2 2 ( ))2

-00 0 - p x-I - x a

r1
dx x _

J0 p2 X + (1 - x) a
1 t d (p2 - a)x + a - a

p2 _ a J0 x (p2 - a)x + a

[ ]

11 a a
2 1- 2 log(x + 2 )

P -a P -a P -a 0

1 [ a p2]
2 1- 2 log( -)p-a p-a a



11 x(2A2 - p2X - (1 - x)o:)
dx---------

o (A2 - p2X - (1 - X)0:)2

11dx x _
o A 2 - p2 X - (1 - x) 0:

1 11 X (p2 - 0:) + 0: - A 2 - (0: - A 2)--- dx-----------
p2 - 0: 0 X (p2 - 0:) + 0: - A 2

1 [ 0: - A
2 (p2 - A

2
)]--- 1- --log ---

p2 _ 0: p2 - 0: 0: - A 2

and

11 XA2
dx--------

o (A2 - p2X - (1 - X)0:)2
A 2 11 (p2 - 0:)X + 0: - A 2 - (0: - A2)-- dx-----------

p2 _ 0: 0 (A2 - p2 X - (1 - x) 0:) 2

A2 11
[ 1 (0: - A2)A2 1 ]

p2 _ 0: 0 dx A2 - p2 X - (1 - x) 0: - p2 - 0: (A2 - p2 X - (1 - x) 0:)2

A2 [1 (0:-A2
) (0:-A

2
)A

2
( 1 )]1logx+ - -

p2 - 0: p2 - 0: p2 - 0: (p2 - 0:)2 X + ~ 0

A 2 [1 p2 - A2 (0: - A 2) A 2 (p2 - 0: p2 - 0: ) ]-- --log--- + ---- --- - ---
p2 _ 0: p2 - 0: 0: - A 2 (p2 - 0:)2 p2 - A2 0: - A 2

A2 (p2 _ A2) A2---log --- - ------
(p2 _ 0:)2 0: - A2 (p2 - 0:)(p2 - A2)



D(p2)
p2C2(p2) + D2(p2)

D(p2)
p2C2(p2) + D2(p2)

From equation (3.5)

m
2
g
2

( A
2

)p2 + M2(p2) __
= 21r2 A2 _ p2

It is clear that when A tends to 00 equation (3.22) would become equation (3.20)

and so
2 2

M(O) = (C)! = m 9 =1= 0
21r2

As we have restricated to infrared region, the relation is not valid for all momentum

region. In the zero momentum limit, mass term M(p2) is nonzero, which means the

global chiral symmetry is broken spontaneously in the infrared region. Since we have

used the propagator for gluon in the S-D equation which is corresponds to confining



potential that is taken linear potential, it is a manifestation of the believed fact that

both infrared phenomena : chiral symmetry breaking and confinement are related.
2 2

The above relation involves an unknown parameter C (= ~1l"~ ). In order to estimate

a value for C we consider quark condensate. Let us hence use the relation between

chiral condensate parameter and mass term M(p2) [21].

- 27f~A2 J xdx{(A2
- x)(CA2

- A2x + X
2
)}1/2 (3.28)

where p2 = x



Using the lattice estimate [22].

< uu >=< dd >= -(250MeV)3

12 lC

-167[2C 0 dxxJC - x
puttingC - x = z =} dx = -dz

12 r
-167[2C Jc dz(C - z)JZ

_ 12 [~Cz~ _ ~z~] C
167[2C 3 5 0

_ 12 [2C C~ _ ~C~]
167[2C 3 5

-~JC [2C c-~c]
167[2 3 5
C~
57[2

C~
57[2

(C)1/2GeV = O.917GeV

This is plotted in Figure (3.1). The value M(O) ~ O.917GeV is large when compared

with lattice estimation. So we use (3.28).

-(220MeV)3 = -O.0107GeV3 and Nc = 3



>
Q)

C)
N~0.5
a.

:f
0.4

0.5
P (GeV)



A(GeV) C(GeV2
) Value of Integration

3 0.6 0.131571
3 0.65 0.148908
3 0.63 0.14188
3 0.62 0.138412
3 0.628 0.141184
3 0.625 0.140836
3 0.627 0.140836
3 0.4 0.0704602
3 0.399 0.07019
3 0.3995 0.070325
3 0.3998 0.0704061
3 0.39979 0.0704034***

After performing numerical integration for different values of C and A for equation

(3.30) we the following data:

The choice of C = 0.39979GeV2, A = 3GeV. (as indicated by three stars in the

above data table) gives the correct lattice value of < qq >. Then

vc = (0.39979)~ = 0.63228949GeV

{C (A2~ p2 ) - p2 } I

This is plotted in Figure (3.2). The value M(0)=0.63 GeV is in reasonable agreement

with lattice calculation [23]. m is the dual gluon mass. In order to estimate its value,

we need to know g2 at low momentum (non-perturbative). These are not known.

However using g2 = 8.05 [20], we find the dual gluon mass f'V 980 MeV which is in

due agreement with 848 MeV prediction by [20].



> 0.4
Q)

CJ
N
8
~ 0.3



Chapter 4

CONCLUSION

In this thesis, we have considered the Yang-Mills theory with unbroken colour SU(3)

symmetry, namely QCD, in the non-perturbative infrared regime. After a brief in-

troduction, the formal aspects of a quantum Yang-Mills theory is analysed with the

specific motivation of reconciling the linear confining potential with relativistic quan-

tum field theory. This is possible mainly due to the unobservability of quarks and

gluons. Using a criterian for unobservability, namely, the nonvanishing of the com-

mutator of the BRST charge and the field in physical space, the difficulty of having

a linearly rising potential is avoided. This has been utilised to exhibit how coloured

quarks do not exit as asymptotic states while colour singlet hadrons exit as asymptotic

states. Such a linear potential arises from l.r propagator for gluons in the infraredq

region. This propagator follows from a dual Meissner effect decription of QCD with

infrared region. Using static configuration, we demonstrate how the linear potential

comes about. This involves one parameter, the dual gluon mass, which has been

determined subsequently.

We have then considered the phenomenon of spontaneous chiral symmetry us-

ing Schwinger-Dyson equation. The input here is the q14 propagator for the gluons

and the Gribov's conjecture of QCD coupling being a constant at the near infrared

region. Usually Schwinger-Dyson equation is very difficult to solve exactly. So we

use ladder approximation. A solution of the Schwinger-Dyson equation is taken as



parametrised by D(q2) and the Chauchy-Riemann representation for D(q2) is used.

Then Feynman's parametrization of the integral is employed. A very useful relation

p2 + M2(p2) = ~:%2
is derived with in the approximation, where M(p2) is the momentum dependent

quark current mass, m is the dual gluon mass and g is the QCD coupling in the

infrared region. An improvement of this relation is obtained by introducing on cut-

off A as

The parameter above are determined by evaluating < qq > condensate as rv

-(250MeV)3. Using the relation A (or A ---+ (0), the quantum correction to the

quark mass is found to be M(0)=0.9 GeV. Which is large compared to the lattice

QCD estimate of rvO.6 GeV. So, we have used the second relation and find for A=3

Gev, M(O) is found to be 0.63 GeV. The variation of M(p2) with p is plotted. The

result that M(O) =j:. 0, shows spontaneous chiral symmetry breaking. Since q\ be-

haviour of the propagator for gluon results in confinement via linear potential, we

show confinement implies chiral symmetry breaking.

As a prediction, we have found the dual gluon mass M=980 MeV which is in good

agreement with the earliar prediction of 848 MeV by Baker and his collaborators.
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