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Abstract

One of the central problems in theoretical physics today is combining the principle

of quantum mechanics and general relativity into a quantum theory of gravity. It

is believed that quantum gravity can address many problems in physics, especially

Black Hole (BH) entropy and classical singularities.

There is no clear consensus on what a quantum theory of gravity should be, except

that it should at least address the two problems mentioned above. At present there

are two main candidates - String Theory and Loop Quantum Gravity (LQG).

In String theory, the quantum modifications arise from stringy corrections due to

genus expansion as well as the 0/ corrections from sigma model description of first

quantized strings. In the cosmological context of LQG, the quantum modifications

have a non-perturbative as well as perturbative component in terms of the Immirizi

parameter ,2. The non-perturbative effects are responsible for singularity avoidance

as well as bounded growth of curvature near classical singularity.

In both approaches one is able to reproduce the Bekenstein-Hawking entropy

formula from microstate counting, implying a statistical mechanical cause of BH

radiation, i.e. the entropy measures the number of microstates and they are quantum

mechanical in nature. Another area where the quantum effects of gravity are expected

to show up is in the modification in the behaviour of the universe near big bang

singulari ty.

Given the very different premises and frameworks used in String Theory and LQG,

a comparison of their implication even in the highly simplified context of homogeneous

and isotropic cosmology is quite non trivial. At present a possible comparison between

these two theories is conceivable only at perturbative level in the large volume (in



Planck units) limit. As a first attempt we look at the simplest context of homogeneous

isotropic cosmology models and concentrate only on the perturbative modifications

of the gravity sector alone. This is done only in the spirit of comparison between the

two theories and not with an effort to relate to observations, because homogeneity

and isotropy are themselves approximations to the real world. We look at the second

order term in 0/ coming from string theory and ,2 coming from LQC and compare

the two theories in terms of effective classical equations of motion of the underlying

theory. Prima facie the equations appear to be very different. However the solutions

to both sets of equations predict that at least to the first order in perturbation theory

the Minkowski geometry is stable.
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Chapter 1

INTRODUCTION

1.1 Why a Quantum Theory of Gravity

General Theory of Relativity and Quantum Mechanics are the two principles on which

modern physics is based. These two theories have profoundly changed the way we

look at nature. Quantum Mechanics has put paid to the determinism of Newton's

Equations of Motion and has replaced it by probabilities consistent with Heisenberg's

Uncertainty Principle at the observational level. The concept of unchanging (static)

background space and time has been replaced in the General Theory of Relativity by

a spacetime geometry which is dynamic. However we are still some way away from

finding a satisfactory physical theory that would combine both these fundamental

principles in a consistent way to give a theory of Quantum Gravity.

There are reasons why we need a quantum theory of gravity.

• Classical Einstein's equations predict spacetime singularities, I.e. points at

which the theory itself breaks down. A theory which predicts its own breakdown

cannot be a complete theory and hence needs to be extended.

• There is a view that if we keep the geometry classical while matter fields are

quantum it leads to inconsistencies. Hence the gravitational field must be quan-
tized as well.



we can incorporate gravity. This is because the quantum theory of gravitation

will have an inbuilt length scale, the Planck length (l; rv Gn) which will provide

the short distance cut-off.

• From Black Hole (BH) physics we can see that the laws of Black Hole mechanics

can formally be mapped to laws of thermodynamics. The Bekenstein proposal

of identifying area with entropy (Bekenstein, 1973) and the demonstration by

Hawking of BH radiation (Hawking, 1975) takes this analogy to a deeper level.

This implies that there is a micro structure to the event horizon which is sought

to be understood as a manifestation of quantum gravity.

1.2 Approaches to Quantum Gravity

There is no clear consensus as what exactly is meant by a quantum theory of gravity.

Intuitively, it is supposed to incorporate the ideas of the "fluctuating spacetimes"

and "sum over spacetime metrics". While there have been several approaches at

constructing a quantum theory of gravity, the two most developed ones are String

Theory and Loop quantum Gravity.

String Theory treats the gravitational field on the same footing as the other funda-

mental interactions namely the electromagnetic, the weak and the strong and tries to

incorporate all four into one fundamental unified theory. Gravitational interaction is

sought to be understood as exchange of gravitons in analogy with other interactions.

The spacetime metric is split into two parts,a background metric and a fluctuating

one. Usually one chooses the background to be a flat Minkowskian metric 'T//.w. Then

gJlV = 'T/JlV + GhJlv where hJlV is the dynamical variable with Newton's constant G

acting as the coupling constant. The field hJ.Lv is then quantized on the 'T/J.LV back-

ground and the perturbative machinery of QFT is applied to the Einstein-Hilbert

action. Since the background enters manifestly, the background independence is to

be obtained by summing over all possible backgrounds. Since the notion of graviton

is a perturbative one, this approach is perturbative in nature with non-perturbative

effects sought subsequently.



String Theory is the only known consistent perturbative approach to quantum

gravity. In this theory the point particles are replaced by one-dimensional extended

objects which sweep out two-dimensional world sheets embedded in aD-dimensional

manifold which represents the spacetime of the physical world. Matter and the medi-

ators of the various interactions are all thought of as excitation modes of the strings.

The other approach is a relativist's approach viewing gravitational interactions

as manifestations of curvature of a dynamical spacetime. In this view the metric

plays the dual role of a mathematical object that defines spacetime geometry and

encodes the physical gravitational field as well. Hence background independence lies

at the heart of this approach. If we are going to quantize the gravitational field,

i.e. the metric itself, it would make sense if the scheme does not explicitly depend on

some background metric. Minkowski metric is not an externally prescribed eternal

background structure but only one possible example. In this formalism the ordinary

Quantum Field Theory(QFT) approach is no longer possible because it is defined

when the background metric is fixed and hence it cannot handle variations of the

background metric. New mathematical techniques have to be invented to go beyond
the framework of perturbation theory and QFT.

Loop quantum gravity (LQG) is an attempt to construct a mathematically rig-

orous, non-perturbative, background independent formulation of quantum General

Relativity in terms of Sen-Ashtekar connection variables. General Relativity is re-

formulated in terms of the connection variables and its dynamics is treated in a

canonical framework. In a canonical framework, spacetime is viewed as an evolution

of a 3 dimensional geometry. The 4 dimensional diffeomorphism of general relativity

is manifest as spatial diffeomorphism on the 3 dimensional slice together with the
Hamiltonian constraint generating time evolution.

1.3 Possible method of comparison

A priori the two approaches are very different and it is reasonable to ask whether

they can be compared. For comparison we need to look at cases where the quantum

effects should playa role (e.g. BH Entropy). Another important factor in making such



comparison is that there must be areas where both the theories have made enough

progress to have made some definitive predictions.

Comparison between these two theories can be made in the sector of Black Hole

Entropy. String theory reproduces the Bekenstein-Hawking entropy formula for the

so called "(near) extremal" black holes (Strominger and Vafa, 1996). LQG reproduces

the entropy formula for "generic" black holes (including the astrophysical ones) mod-

ulo the Barbero-Immirizi parameter (Ashtekar et al., 1998a). In recent years the

progress made in the cosmology sector of LQG has increased the scope of comparing

the results in the cosmological context. In this thesis we will attempt to make a

comparison of the results obtained from both the theories in cosmology.

In cosmological models, all but a finite number of degrees of freedom are frozen

by imposing spatial homogeneity and isotropy. As a result of these mathematical

simplifications it becomes tractable to compare the predictions of these two candidates

of the quantum theory of gravity. Moreover cosmology is physically relevant and is

perhaps the only area where experimental tests can even be thought of as of now. It

must be noted though, homogeneity and isotropy themselves are approximations of

the physical world. So such a comparison may not directly translate into results that

can be confronted with observations, it will at least serve as a test whether and how

these two theories differ.

Loop Quantum Cosmology (LQC) has both perturbative as well as non-perturbative

features. The non-perturbative features are those which are related to avoidance of

classical singularities (Bojowald and Morales- Tecotl, 2003). These non-perturbative

effects ensure there is no breakdown of the evolution equation or there is no unbounded

growth in curvature. Such non-perturbative results are not generically available in

string theory context. In this thesis we will therefore look only at the perturbative

corrections that are available in the two approaches. We will focus on the compar-

ison of ex' corrections in string theory and "(2 corrections in LQC in the context of

Friedmann-Robertson-Walker (FRW) metric.

Since both approaches, to leading order, must reproduce equations which match

with those obtained in classical general relativity, we recall these equations. Gravity

coupled with a massless scaler field is described by Einstein-Klein-Gordon equation.



The homogeneity and isotropy implies that the scaler be spatially constant and that

the metric take the form

ds2 = -dt2 + a2(t) [ dr
2

+ r2d02 + r2Sin20d12]
1- kr2

Then the field equations ( with the cosmological constant set to zero ) are ordinary,

coupled nonlinear differential equations:

3ii ·2
0 (Raychaudhuri equation) (1.2)- + "'1a

.. 310,
0 (Klein-Gordon equation) (1.3)1+- a

3k + 30,2 _ '5'-¢? 0 (Friedmann equation) (1.4)
a2 a2 2

Differences, if any, will occur at the higher orders. We will focus on trying to compare

the leading corrections coming from both the theories. The comparison between

string theory and the LQC approach can be done at the level of the effective action

or at the level of the equations of motion. Here we shall compare the equations of

motion because these are more easily obtainable in both of these theories. To begin

with, in this thesis we will focus only on the gravitational sector. Note that in the

absence of matter and without the cosmological constant, k can only take values 0

and -1. However k = -1 cannot be handled in a Hamiltonian formalism. So for the

sake of comparison with LQC equations we shall restrict ourselves to k = o. Then

the above equations reduce to Minkowskian geometry in the absence of matter with

cosmological constant set to zero. Hence our calculations will basically show whether

the Minkowskian geometry is stable under string and LQC corrections.

The thesis is organized as follows. In Chapter 2 we give a brief review of bosonic

string theory. We discuss the sigma model approach to string theory and what the 13
functions mean in that context. This formalism has a parameter a' with dimensions

of square of length. The perturbation corrections are organized in terms of this

parameter. Then specializing to the FRW metric we measure what are the corrections

to Einstein's equation upto 2nd order in a' of the corresponding field theory. We limit

ourselves to bosonic strings for simplicity and to facilitate easier comparison of the

results.



In Chapter 3 we discuss both LQG and its restriction to Loop Quantum Cosmology

(LQC) and look at the Hamiltonian constraint equation in the context of isotropic

models (FRW metric). Here the perturbation series is obtained in terms of a constant

"( which is known as Barbero-Immirizi parameter. We obtain the corrections to the

Einstein's equations in the large volume limit upto leading order in "(2 in the constraint

equation as well as in the equations of motion.

As a consistency check we verify that the "tree-level" equations of motions ob-

tained from both the theories with (1.2, 1.4). Once the equations have been obtained

in terms of the scale factor (a) and its derivatives from both the theories we compare

them in Chapter 4 and discuss the similarities and differences in the two sets of equa-

tions obtained. We briefly mention further directions in extending the comparison.



Chapter 2

STRING THEORY
CALCULATION

In String Theory we assume that the basic entities are not point particles but one

dimensional extended objects called strings. A point particle will sweep out a world

line as it moves in spacetime. The simplest Poincare invariant action, that does not

depend on paramatrization, that can be written for it will be proportional to the

proper time along the world line.

Similarly a I-dimensional object will sweep out a world-sheet embedded in a D-

dimensional target space with coordinates XM which can be described in terms of

the embedding functions X M (a, T) where (a, T) paramatrize the world sheet. Again

the simplest Poincare invariant action that does not depend on paramatrization of

the world sheet will depend on the area of the world sheet. That action known as

Nambu-Goto action is given by

SNG = __1_ jdadT[-(XX)(X'X') _ (XX')2]1/2
21fcx'



where X = 8JrM and X' = 8JaM for M = 0 to d. The constant a' must have dimensions

of length squared from dimensional considerations (Po1chinski, 1998). Denoting the

induced metric hab = OaXMObXM, we can write the Nambu-Goto action as

Here a,b takes the values a and r .

This action can be put into a more convenient form by introducing the world sheet

metric 'Yab(ar). This is commonly known as the Polyakov action.

where TJMN is the standard Minkowski metric, diag (- + + ... ). This action has the

following symmetries:

xM (a, r)

i'ab(a, r)

A';fXN (a, r) + aM

'Yab(a, r)

XM(a,r)

i'ab(a, r)

XM(a, r)

exp(2w(a, r)hab(a, r)

The Weyl symmetry is a new symmetry which is not present in Nambu-Goto action. It

implies that the Polyakov action remains the same under a local resealing of the world

sheet metric. Diffeomorphism and Weyl invariance is together known as Conformal

invariance. Note the Poincare group is the group of isometries for Minkowskian

spacetime only. For a different target space this symmetry will be absent.



One way in which the Weyl symmetry manifests itself is in the vanishing of the

energy-momentum tensor Tab. In infinitesimal form the Weyl symmetry can be ex-

pressed as:

ab 55 55
'5,ab 5¢

ow Weyl invariance of the action implies that

ab 55 - 0=*, 5,ab-

or, ,abTab = O.

where Tab = -27T( _,)-1/2(55/5,ab) It can be easily seen from (2.3) that the Weyl

invariance holds for the Polyakov action, at least in the c1assicallevel. If the symmetry

holds even in the quantum level (i.e. the symmetry is not anomalous) first quantized

string theory can be considered to be a conformally invariant field theory (CFT) in

2-dimensions.

It turns out that to ensure Weyl invariance at the quantum level, the dimension

of the target space D must be 26. To get back the 4 dimensional picture there are

compactification schemes (e.g. Kaluza-Klein compactification) which compactify the

extra dimensions and reduce it to the observed 4 dimensions along with a set of

massless scalars and vectors, etc.

The spectrum of the above string theory contains tachyon. Also one of its massless

modes is spin two state which is identified to be the graviton whose interactions at

low energy reduce to general relativity. Thus we see the emergence of quantum

theory of gravity with gravity being treated on the same footing as other excitations.

To incorporate fermionic matter one has to consider fermionic strings, in particular

superstrings. In superstring theory, the critical dimension turns out to be 10 and the

spectrum is free of tachyon. In this thesis we will be concerned only with bosonic

string theory.



2.2 Sigma Model Approach

The above theory of strings propagating in a non trivial d-dimensional spacetime M

with an arbitrary metric GM N may also be formulated as a 2-dimensional non-linear

CT-modelwith M as its target space. The conditions of conformal invariance of the CT-

model puts restrictions on the target space background fields. In general a non-linear

CT-modelaction has the form

S = J dCTdTfMN(XM)y'-r rabOaxMobXN

The Polyakov action (2.3) corresponds to rab being rab and fMN being 'T/MN. To

consider more general target space background metrics we can write the Polyakov

action as

where GM N is any arbitrary metric. However from dimensional point of view it is not

the only action that can be written respecting the diffeomorphism symmetry (Callan

and L.Thorlacius, 1989). We can have an antisymmetric tensor field which will have

the following action:

SAS = __1_ J dCTdTEaboaXMobXN BMN(X) (2.6)
47fo'

where, cab is the 2-D antisymmetric tensor density i.e. cab/.JY transforms as a tensor.

Another term we can incorporate is the massless scaler field:

SD = ~ J dCTdTy'-rR(2)¢(X) (2.7)
87f

where ¢ is a massless scalar (dilaton), R(2) is the Ricci scalar corresponding to the

world sheet metric. Since ¢(X) is dimensionless we do not need the factor of 0' in

the normalization of its action. Also note that (2.7) is not Weyl invariant. However

if we were to do perturbation series expansion in 0' this term would enter at the first

loop level rather than the classical level. Hence this term may be used to cancel the

Weyl anomalous terms arising from quantum corrections in (2.3) and from (2.6). We

can have one more such term.



This will describe coupling to a background tachyon field. The coupling functions

G J.LV (X), B J.LV (X) and ¢(X) are all dimensionless and correspond to the massless

states of closed bosonic string theory: graviton, antisymmetric tensor and dilaton.

However for simplicity as a first step we will neglect the antisymmetric tensor field

and the tachyon. The sigma model that we will consider will involve (2.3) and (2.7):

Sx = _1_ J dcrdr{ V_"abOaXMobXNGMN + o/V-,R(2)¢(X)} (2.9)
47fa'

(Tseytlin, 1987)

There are two ways in which we can think of a perturbation series expansion in

string theory. We can consider a' to be the perturbation parameter and do pertur-

bation theory in the cr model level on a fixed world sheet topology. Else we can

consider different world sheet topologies by constructing a genus expansion. In 2-D

any compact topological surface can be characterized by a single constant known as

Euler number(x). The Euler number of compact, connected, oriented or un oriented

surfaces is given by (Polchinski, 1998):

where g = number of handles(genus); b = number of boundaries; c = number of

crosscaps. If we add a term Ax to the action, in the path integral formalism it will

contribute a factor e-Ax which will affect only the relative weighing of different world-

sheet topologies. Now the world-sheet topology can be interpreted in terms of string

interactions. Considering higher order of interactions of strings is equivalent to adding

handles or boundaries to the topology i.e. making a genus expansion. Higher order

of interactions are therefore suppressed by factors of

Axgstring rv e

This provides another parameter for perturbation expansion. To consider "stringy"

corrections we need to do perturbation theory in gstring' In this thesis we will consider

only sigma model (i.e. a') corrections with the world-sheet topology of a sphere.

These corrections lead to the perturbative modifications of the target space back-

ground fields.



2.3 Weyl Invariance and f3 function

In this section we will summarize the properties of a perturbatively renormalizable

bosonic a model (2.9) defined on a 2-D world-sheet with spherical topology. As we

have seen earlier in equation (2.4), to ensure Weyl invariance is maintained T: must

be equal to 0 (Weyl invariance condition). It can be shown that the Weyl invariance

condition and the Renormalization group /3 function are same up to a total derivative

(Tseytlin, 1989). We shall denote the RG beta functions by !3 and the Weyl anomaly

coefficients by /3. Let us define the partition function of the sigma model action (2.9)

z = J [DX]e-sX

For any field theory with a coupling constant). the renormalization group beta func-

tions are defined to be - a).
/3=--a (lnJ-L)

where J-L is the renormalization scale. For the 2-D non-linear sigma model upto the

2nd order:

!3MN + 20/\7 M\7 NcP

!3¢ + ex' (\7 McP)(\7M cP)

(2.10)

(2.11)

Again the RG beta functions upto 2nd order are given by (Tseytlin, 1987)

a'RMN + ( a~2) RltJK RN1JK

D-26 ,(1\72,.1, (a'2)RM1JKR
6 - a 2 'I-' + 16 MIJK

Putting these together we have, the Weyl anomaly equation for bosonic sigma model

without matter fields is:

/3MN = a'RMN + (a~2) RltJKRNIJK + O(a'3) = 0



The Weyl anomaly function equation for bosonic sigma model with a scalar matter

field is

These are the equations that must be satisfied to have a conform ally invariant field

theory. We can see that at the one loop level in the absence of matter fields

Hence in the first approximation, string theory also predicts that the metric must sat-

isfy Einstein's equation. The higher order terms to the (2.14) will give the corrections

to Einstein's equation.

We would like to get our results in 4 dimensions while (2.15, 2.16) shows clearly

that D = 26. To get 4 dimensional equations of motion from the 26 dimensional

string theory we had two approaches open before us.

We need not have taken the "/3 function approach". We could have assumed

that the target space metric GMN = 'T]MN for M, N = 0,1, ... ,25. Then we could

have taken the field theory limit, calculated the effective action from string scattering

amplitudes. The higher order terms in the scattering amplitude would be weighed

by powers of 9string. The effective action in 26 dimensions could be reduced to 4

dimensions using Kaluza-Klein reduction. This could then have been specialized to

FRW metric. However this would give us stringy corrections in terms of 9string.

We are interested in 0/ corrections. Hence we will follow a different strategy. We

assume that the target space metric was some arbitrary GM N to begin with. There

we obtained the Weyl anomaly equations using the 2-D renormalizable (]"model. Now

we will specialize to a metric which is of the following form:



a = 4,5, ,26

a, b = 4,5, ,26 a oj:. b

In this metric we will specialize the gJ.LV to be the FRW metric. The Weyl invariance

conditions then give equations of motion which are in 4 dimensions. Henceforth we

will concentrate only on these 4 dimensional equations of motion. The other Weyl

invariance conditions f3ab = a = f30a are identically satisfied. Since we are concerned

only with the gravity sector, we will set the dilaton field to be equal to zero. We will
therefore be using equation 2.14 only.

2.4 Equations of Motion in the FRW Metric

Recall that the FRW metric is given by (1.1):

where k = a or ±1. For comparison with the LQC results we will restrict ourselves

to k = a and 1 only because only those values of k can be handled in LQC context.
Consequently:

-1 a a a
a a2(t) a a

gJ.LV = (1-kr2)

a a a2(t)r2 a
a a a a2(t)r2sin2B

And the inverse metric is:

-1 a a a
a (1-kr2) a agJ.Lv = aw-
a a 1 aa2(t)r2

a a a 1
a2(t)r2sin2(i

aa
RlO01 = (1 _ kr2)



R2OO2 ao'rr2

R3OO3 ao'r2sin2e
R2121

a2r2(O,2 + k)
(1 - kr2)

R3131
a2r2sin2e(O,2 + k)

(1 - kr2)
R2323 a2r4sin2e(O,2 + k)

a
2k + 20,2 + ao'

(1 - kr2)

2kr2 + 2r2O,2 + r2ao'

R = 6 (k + 0,2 + ao')
a2

Then the f3 function equations (2.14) can be written as :

-30, 0/ 0,
-(1 + --) = 0

a 2 a
I

(2(k + 0,2) + ao') + ~ [2((k + 0,2)2) + (aO,)2] = 0

These equations to the 0(0/°) should reproduce the known classical equations from

standard cosmology. As these equations occur in a perturbation series of 0/, the higher

order terms will vanish when cYo' goes to O. Hence these equations can be considered

order by order and even when we are considering higher order terms we can be sure

that the classical level the equations remain the same. To the first order 0(0/°) the
equations of motion can be written in the form



These are the same equations that we get from general relativity (1.2, 1.4) with the

matter stress-energy tensor set to zero. To summarize, in this chapter we looked at

the basic formalism of string theory and have obtained the modifications to the (1.2,

1.4) predicted by string theory In the next chapter we will discuss how we get the

LQC equations and try to match the variables using the same classical equations to

compare the tree level predictions.



Chapter 3

LQG CALCULATION

The approach of LQG is completely different to that of string theory. The central idea

here is that of background independence. We do not begin with a background metric

and try to incorporate quantum effects of gravity perturbatively. Here we begin with

a differentiable manifold structure with no specified background metric or any other

background physical field. In that sense it is attempt to describe spacetime in a

background independent (non-perturbative) manner. The mathematical techniques

used are new and somewhat unfamiliar. The quantization route followed is that of

canonical quantization.
The first attempt in this direction was the ADM Formalism (Arnowitt et al.,

1962). General Relativity can for formulated as a constrained Hamiltonian theory

(Wald, 1984) beginning with the Einstein-Hilbert action

S = ~ r d4X( _G)1/2 R
2K, JM

where K, is 87rG. The basic variables are 9ij and Kij which are symmetric tensor fields

on a three manifold:E. From the spacetime perspective :E is a spatial slice of M and 9ij

is the induced metric on :E while Kij is the extrinsic curvature of :E. This is a highly

complicated constrained Hamiltonian system with infinite degrees of freedom. To

gain some insight Wheeler and De-Witt (De-Witt, 1967) looked at highly symmetric



class of spacetimes, did the symmetry reduction classically and quantized the finite

number of degrees of freedom left over. The evolution equation obtained (Wheeler-De

Witt equation) gives the correct classical limit for large values of the scale factor (a).
However when the scale factor vanishes, the inverse scale factor and curvatures blow

up resulting in persistence of classical singularities. However despite years of efforts

a well-defined quantum formulation based on the ADM variables is not yet available

Loop Quantum Gravity is another (and more successful attempt) in canonical

quantization. Here the basic variables chosen are the Ashtekar variables (Ashtekar,

1987). Classical general relativity can be formulated as a gauge theory in phase space

form. At each point on a three dimensional compact manifold M we define a smooth

real gauge potential (i.e. covariant vector field) with the SU(2) gauge group and call

it A~(x). Again at each point we can define a set of triad vectors {et}. Here a, b

... =1, 2, 3 refer to spatial indices while i, j ... =1, 2, 3 refer to the internal labeling

of the triad axes. Then we form a set of densitized triad {Ej(x)} = {ldet(e~)lei(x)}.
The SU(2) connections are related to the ADM variables by:

A~(x) = r~(x) - IK~(x)

where r~is the spin connection associated to the triad, K~ is the extrinsic curvature

while 1is a constant known as Barbero-Immirizi parameter. A~ is called the Sen-

Ashtekar-Immirizi-Barbero connection. The symplectic structure satisfied by these

variables is:

{Ef(x), EJ(y)}

{A~(y), Ef(x)}

{Ef(x), Kg (y)}

{K~(x),Kg(y)} = 0
1,,"61:6f 6(X, y) which imply

,,"61: 6f 6 (x, y)

The theory is invariant under local SU(2) gauge transformations, three dimensional

diffeomorphism of the manifold, as well as under time translation generated by Hamil-

tonian constraint. It can be shown (Thiemann, 2001) that the dynamical content of

general relativity is captured by 3 constraints, Gauss, Diffeomorphism, and Hamilto-

nian that generate these invariances. These are respectively

G[Ai
] = 1d3xAi(8 Ea + f k Aj Ea)a t tJ a k

u



1d3xNa F~bEf (3.4)

1d3xN(det(e~))-~(Eij kEfEJF:b - 2(1 + 'l)E~EJ]K~Kt) (3.5)

where F~b = oaAt - obA~ + EijkA~A~ is the curvature of the Ashtekar connection, N
is the lapse function and Na is the shift vector.

The 6 functions in the Poisson brackets (3.2) actually imply that one should use 3-

dimensional smeared fields and this is the place where background dependence sneaks

in, in the measure of the integral. Since the connection is a I-form and the triad is a

dual of a 2-form, these can be smeared naturally without introducing the background

structure. These smearing leads to "holonomies" and "fluxes" defined below.

Holonomies can be formed as functions of connections for all curves e : [0,1] ---+ ~,

where ea is the tangent vector to the curve e and Ti = -iCJd2 are the generators ofthe

gauge group SU(2) in terms of Pauli matrices. The symbol P denotes path ordering

which means that the non commuting su(2) elements in the exponential are ordered

along the curve. Similarly, given a surface S : [0,1] x [0, 1] ---+ ~ we can form a flux

as a function of triads,

where na is the co-normal to the surface S defined as na = ~EabcEde(oxb/oyd) (OXc/oye).
The holonomies and fluxes are used as the basic variables in this formulation of gravity.

Note that these are labelled by curves and surfaces. Their Poisson bracket structure

is bit complicated (Ashtekar et al., 1998b). In a quantum theory these variables are

promoted to operators on a suitable kinematic Hilbert space with Poisson bracket

structure going into the commutator relations. The fi along with the r>, present in the

symplectic structure will lead to the appearance of Planck length (fir>, = l~) in the

relations.



3.2 Quantum Cosmology

Loop Quantum Cosmology (LQC) is obtained from LQG by a process called "sym-

metry reduction". This means restricting the basic variables to those consistent with

the symmetry of the system. In cosmological context, the symmetry is homogeneity

and isotropy. In terms of the metric variables this leads to the FRW metric.

Spatial homogeneity implies invariance under the group of translations acting on

the spatial manifold. When the action is simply transitive (i.e. there exists an unique

element connecting two distinct point) we can identify the spatial manifold with the

group manifold. All such 3 dimensional groups are classified into the so-called Bianchi
I-IX groups.

In connection variables homogeneity leads to A and E having the form (Bojowald
et al., 2003)

A~(x, t) = <I>Ht)w~(x), Ef(t, x) = p/ (t)Xf(x)

where Wi are left invariant I-forms and Xi are corresponding densitized invariant dual

vector fields; f"2:, Wi Xj = 5;. Here a b ... = 1, 2, 3 refer to spatial indices while i j ... = 1,

2,3 refer to the internal SU(2) indices while I J ... =1,2,3 refer to the indices of the

Lie algebra of the Bianchi group. They satisfy the Poisson bracket relation

Now if in addition to homogeneity we also have isotropy, an additional SO(3) action,

these variables are further simplified into

<I>Ht) = c(t)A}, p/ (t) = p(t)A{

where A~ forms an orthonormal triad on which the SO(3) group of isotropy acts.

With this form of connection and triad the diffeomorphism and Gauss constraints are

automatically satisfied and we are only left with the Hamiltonian constraint. The

Poisson bracket relation satisfied by c, pare

1
{c,p} = "31'J);



This is the classical symmetry reduction. ote that p coming from the definition of

the triad is related to the scale factor as p = a2. For the quantum system the Poisson

bracket relation (3.11) becomes

in
-"(K,
3
il~"(

3

As in (3.1) c can be written as r - "(K. Putting this in(3.12) we have

il~"(

3
l2
P

3
K,n 0
3i op

(3.13)

(3.14)

Quantization in the traditional way leads to a Hilbert space of square integrable

functions with the usual Lebesgue measure. This is what is used in the Wheeler De-

Witt quantization. Loop quantization proceeds in a different way. Since the Hilbert

space of the full theory was based on connections, the Hilbert space here turns out to

be made of square integrable functions of c with respect to the SU(2) Haar measure.

We can use the eigenfunctions of the flux operators to obtain an explicit basis for

the Hilbert space.

fJl. (c) = exp( ifJc/2)
V2sin(c/2)

h~'()1 - (lfJ+1>+lfJ-1» 2 .(lfJ+1>+!fJ-1»
~ c fJ >- 2 + T~ 2i



Holonomies can therefore be used as creation annihilation operators. All states we

get by acting with hi(c) on the ground state will be functions of c.

Note that unlike in Wheeler De-Witt quantization c is not a well defined operator.

Here the basic operators are h(c) which are functions of exp(c). Now we have a

quantum theory of cosmology which is different from the old Wheeler De-Witt theory

especially when the system approaches classical singularities. LQC manages to avoid

these. However for large values of scale factor it should give back the results of

classical general relativity in tree level. In the next section we shall verify that and

find ou~ the leading order corrections in LQC.

3.3 LQC Predictions for FRW Metric

Hamiltonian formalism of General Relativity can only be carried out for the so-called

Bianchi Class A models which in the homogeneous isotropic case allow only k = 0

or 1 (Ashtekar and Samuel, 1991). For FRW cosmology the dynamical law can be

written as a difference equation (Bojowald and Vandersloot, 2003)

Ok 2 2(VIl+5 - VIl+3)e1 'l/JIlH(¢) - (2 + I k )(VIl+1 - VIl-d'I/JIl(¢)

+(VIl-3 - VIl_5)eik'I/JIl_4(¢) = -~lK,l;Hmatter(f-l)'l/JIl(¢)

where the volume eigenvalues VII = bl~If-lI/6)3/2

It can be easily seen that for both values of k the phase part drop out and we are left

with a difference equation in {;w Let t: = (VIl+1 - VIl-1){;1l Writing VIl+5 - VIl+3 as

VIl+1+4 - VIl-1H and so on, the difference equation (3.18) can be written as:



(3.20)

(3.21)

Now we want to obtain the continuum description. For that we need to make the con-

tinuum approximation and replace the difference equation with a differential equation.

For that we introduce a continuous variables p(f.-L) and a function T(p) such that

T(p(f.-L + m))
1
6,l~f.-L

T(p(f.-L + m))
8T ~T ~T ~T

T(p) + 8p 5p + 8p2 (5p)2 + 8p3 (5p)3 + 8p4 (5p)4

Now from the definition of p(f.-L)

1 2 1 2 1 2
6,lp(f.-L + m) = 6,lpf.-L + 6,lpm

p(f.-L)+ 5p

Using this we can write the difference equation (3.18) as a differential equation:

3pl/2 (~l4 T" - k2T + ----±-"V2l8 T"") = - 2KH T9 p 243 I P matter



We shall determine the properties of the wave function using WKB Approxima-

tion to take the semi-classical limit. The conditions for the validity of the WKB

approximation is that the quantum corrections must be small compared to the clas-

sical solution. In the following derivation we will begin with explicit factors of n.
However at the end we will obtain the answers in terms of l~ and then we can go
back to n = 1 units.

Consider a quantum mechanical system satisfying [X, P] = ian.Therefore

P
[X, -] = in

a

Then we will have Pja = V2mE.
In WKB approximation we make the ansatz

iB7/J = AeT

Putting in the time independent Schroedinger equation and looking at the real part
we have

[
[}2A 1 (aB) 2 2mE]

A aX2 - n2 ax + ~ = 0

~(aB)2
n2 ax

2mE
n2

Coming back to our system which satisfies the commutation relation given by (3.13).
It is clear that for our system:

X ---+ p

P ---+ K

a ---+ ~j3



So if we use the WKB approximation with the same ansatz in our system we would

be able to directly replace
1 (8B)2 9K2
li2 8p -+ K,2li2

For this we need to prove that when the WKB ansatz is put into our differential

equation(3.26), in the limit Ii -+ 0 we will have only terms of the form (8Bj8x)n.

Looking at the structure of initial difference equation (3.18) and at the way in

which we derived the differential equation (3.26) it is clear that to all orders

• even derivatives of T will be present multiplied by the corresponding power of
l2p

Let us try to derive a recursion relation between the coefficients of the real part of

the WKB expansion:

The real part of Tk+2 is:

[
82A _ ~ 8B 8Bk _ Bk 82B _ A (8B)2 _ ~ 8B 8Bk]

8p2 Ii 8p 8p Ii 8p2 li2 8p Ii 8p 8p

From this we see that in the limit Ii -+ 0 the most dominant term in every even

derivative of T will be of the form:

_~(8B)2n
li2n 8p

Now we are free to make the following replacements in the differential equation

9K2 9K2

T" -+ K,2li2 l~ (3.32)

81K4

Till! -+ (3.33)
l~



Making these replacements in (3.26) we get our Hamiltonian constraint equation

3 1/2 4
p (2 2 2 4]--[- 4K + k ) + -, K = -Hmatter2~ 3

Again, as we did in string theory, as a first step we will set the matter Hamiltonian

to be zero and look only at the gravity sector. The equations of motion coming from
this constraint are:

~ oH _ 1 1/2[ K 16 2K3]-- - -p -8 +-,3 oK 2 3
~ oH _ 1 -1/2[( K2 k2) 4 2K4]--- - -p 4 + - -,
3 op 4 3

Putting p as a2 into (3.35) we get K = (-1/2)a for the leading order i.e. , --t O.

When these variables are put in the equations (3.34, 3.36) in the limit, --t 0 we get
the following :

These are the same equations as obtained from classical gravity (1.2, 1.3, 1.4) when

the matter field is set to zero. SO LQC gives the classical results in the leading
approximation as expected.

To summarize, LQC implied the equation system of three equations (3.34, 3.35,

3.36 ) of which the equation of motion involving p gives the value of K as a function

of a and a. The constraint equation is the "Friedmann equation" while the equation

of motion of k is the "Raychaudhuri equation". In the next chapter we will attempt

to compare the corrections to the gravitational sector as predicted by string theory
and LQC.



Chapter 4

COMPARISON OF RESULTS
AND CONCLUSIONS

4.1 Problems and comparison

It is very difficult to compare two theories which are formulated differently. Even

when some common ground is found it is a hard task to match conventions and

variables so as to make a reasonable comparison.

Consider the string equations (2.22, 2.23)
-30, 0/ a
-a-(l + 2~)+ = 0

I

(2(k + a2
) + aa) + ~ [2((k + a2)2) + (aa)2] = 0 (4.2)

(4.3)

The LQC equations on the other hand are (3.34, 3.35, 3.36)
3 l~ 4
-P-[-(4K2 + k2) + _,2K4] = 02~ 3
. = :5:. oH = ~ 1/2[_8K 16 2K3]
P 3oK 2P + 3'

k = _:5:. oH = ~p-l/2[(4K2 + k2) _ i,2K4]
3 op 4 3

At the outset, we can see that the LQC equations are not even in terms of a and

its derivatives. p is identified as a2 at the kinematical level itself i.e. it is not changed



by the dynamics. However the expression of K as a function of a is dependent on the

dynamics and has to be obtained from these equations.

The most important thing we have to keep in mind is that the equations must

be treated as perturbation expansions and not as ordinary algebraic equations. To

illustrate the difference we give a small example below. Consider the equation

C
EX2 + bx + c = Q ::::} x = - b' when E = 0

-b ± Jb2 - 4EC
X ------ 2E

1

_~ ± ~ (1- 4EC) 2
2E 2E b

- :E (1 =f (1 + 2~C))
- :E (1 =f 1=f 2~C)

As E -+ 0 none of the solutions produce -c/b.

We can also solve it as perturbation series: x = (xo + Exd upto O(E)

E(x6 + 2EXoxd + bxo + bEXl + c = 0
c

bxo + c = 0 ::::} Xo = - b
EX6 + bEXl = 0

x6 c2

Xl =-- =--
b b3

Here we get back the original value of x as the perturbation parameter goes to zero.

Any algebraic manipulation of the equations must be done in this spirit.

Keeping this in mind we expand K = Ko +,2 Kl. Using this in equation 4.5 and

keeping terms upto 0(,2) only we have



ow the equation (4.6) vanishes automatically because it is a multiple of the Hamil-

tonian constraint which is O. Hence the two equations coming from LQC are the

H = 0 equation and the K = 0 equation. Again solving them perturbatively using

the value of K we have found, we get:

Now we have put both the string and the LQC corrections in terms of the scale

factor a and its derivatives. The equations still look different. LQC equations are in

the form of a constraint equation (i.e. equation independent of second derivatives)

and an evolution equation in terms of the second derivatives. By contrast both the

string equations involve first and second derivatives. We will now try to see what the

solutions of these equations imply. Again in the spirit of perturbation theory we will

look for solutions of a of the form

where E will be 0/ in case of string theory and 12 in case of LQC. Using this we can

see from both sets of equations (4.1, 4.2) and (4.8, 4.9) the solutions imply that if ao

is not zero

ao = 0

0,0 = 0

~a=O
~a=O

(4.11)

(4.12)

Thus we have the same implication from both the theories. In both the theories

Minkowskian metric remains stable at least up to first order in perturbation theory.

Whether this is a generic feature present to all orders in perturbation theory is a

question we are working on. Another question we are addressing at the moment is

whether inclusion of matter changes these predictions. However incorporating matter

involves additional complications.

For example when incorporating matter an important point that must be kept

in mind is that the Weyl anomaly coefficients that we calculated in Chapter 2 are



actually done in what is called String Frame. There the string theory effective action

has the form:

.
To compare with equations of motion obtained from the classical (_g)1/2R actions

we need to make a field redefinition and go to what is known as "Einstein frame".

For that we need to make a spacetime Weyl transformation on our metric:

s = ~ J dD X( _6)1/2[_ 2(D ~ 26) e4¢/(D-2) + Ii
21'\, 3a'

- D ~ 20Jl¢[)Jl¢ + O(ci')]

In this action the tildes indicate that the raising of indices is done with GJlv.

To do that we would have had to change our metric from

dS,2 = -D2dt2 + a2D2ds~

where D is e</>. Even then note that in General Relativity we usually write the action

1( 1/2S rv ;, -g) R - 0Jl¢oJl¢

Com paring this with the relative coefficients of the string theory effective action (4.15)

at D=4 we see that to get the correct classical equations of motion:



In this work we have taken the first step to compare the two candidates of the theory

of quantum gravity in the cosmological context. We have highlighted where and to

what extent a comparison is possible. The Weyl anomaly results in string theory

giving corrections to Einstein's equations are already available and we just had to

specify the metric (FRW) and find the equations of motion. In the LQC context

we had to derive the effective classical Hamiltonian from the quantum theory in the

continuous approximation combined with the WKB ansatz. However general semi

classical limit in terms of physical states is an open problem in LQG.

We have found that in cosmology without matter and with the cosmological con-

stant zero, both the theories imply that the Minkowskian metric is stable to the

leading order. However more work needs to be done before this can be confirmed as

a generic result. Also matter in some form needs to be incorporated. We are working

on these issues at present.
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