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Abstract

In this review we study cosmological perturbation theory. The theory aims
to model the physical universe by perturbing about a background Friedmann-
Robertson-Walker cosmological model. Two approaches are highlighted, the
gauge-invariant formalism and the gauge fixed(conformal newtonian gauge) ap-
proach. Boltzmann equations for all the matter components of the universe are
studied. We get a set of linear differential equations. The initial conditions and
the origin of fluctuations lead us to the study of scalar field inflation. Future
directions include quantum gravity corrections, alternative inflationary and non-
inflationary models and the study of inhomogeneity and isotropy in concordance
with current day observations.
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Chapter 1

Introduction

1.1 The Standard Model of Cosmology

The current well accepted model of cosmology is called the Standard Model of cosmology.

The model is based on the Friedman-Robertson-Walker [FRW] metric [5]. There are two

important aspects for the metric ansatz, homogeneity and isotropy. That the universe is

homogeneous is assumed and the input of isotropy is observationally motivated [6]. This

is also called the Cosmological Principle. Isotropy is observed on large scales of current

cosmological interest which is around 100 - 200Mpc. These symmetry properties lead to a

diagonal metric in a convenient coordinate system. The metric has one unknown function

called the scale factor that describes the dynamics of the universe. This scale factor is a

function of time alone and its evolution is governed by the Einstein’s equation. Depending on

the equation of state for the system, the scale factor evolves in a certain way. The universe

is understood to have evolved through various epochs, with each epoch named after the

component that has a dominant contribution to the total energy density [7]. The following

figure (refer Fig.(1.1)) illustrates the evolution of the universe through the various epochs.

The standard model predicts that the universe has been expanding after the onset of the

‘big bang’ and is currently in a matter dominant state.
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Figure 1.1: A schematic diagram depicting the time-line of the evolution of the universe - [1]

There are three key observations which constitute the success of this model:

• The verification of the Hubble’s Law, a statement that the universe expands [8]. The

Hubble diagram is a linear plot of velocities of galaxies versus their distances.

• Light element abundances in accordance with the Big Bang Nucleosynthesis [9].

• The existence of relic radiation that had decoupled from matter, known as the Cosmic

Microwave Background Radiation (CMB) [10].

The metric for this model is setup in the comoving coordinate system. The symmetry

properties of the universe is observable to a certain class of observers called the isotropic

observers. These class of observers are comoving with respect to each other. To any observer
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who is moving with respect to these isotropic observers, will not see the universe to have

these symmetry properties. In this coordinate system, each point is associated a fixed spatial

coordinate and its time coordinate is decided by the clock at rest at that point. Then physical

distances are related to the comoving distances through the scale factor.

l(t)physical = a(t) lcomoving (1.1)

where, ‘l’ denotes distances and the comoving coordinate is a constant with time. The

comoving coordinates can be understood as points marked on a rubber sheet. Then as the

rubber sheet expands, the physical distances increase but the coordinate distances remain a

constant.

1.2 Inhomogeneities and Anisotropies

But on ‘smaller’ scales we see specific physical structure like galaxies, galaxy clusters and

other matter distributions. Due to the observational success of the standard model, we

expect that these inhomogeneities and anisotropies can be incorporated in a perturbation

theory with the dominant contribution being the FRW Model. We expect that these inho-

mogeneities have evolved from some primordial inhomogeneities. Therefore, we can attempt

a perturbation theory and expect the signatures to be verifiable from the observed matter

distributions and CMB data, for example. This raises several questions:

• How do these perturbations evolve? To address this, we need to setup and study a

cosmological perturbation theory i.e. a theory that gives the dynamics of the universe

which is perturbed from the background FRW universe.

• Initial conditions: The perturbation variables satisfy differential equations that are

evolution equations. When we take the fourier transform of the differential equations,

we find that each mode of the perturbation variable satisfies an ordinary differential

equation. We need to supply initial conditions to solve the equations.

• How do the initial fluctuations arise? It is believed that scales of current cosmological

importance were once small and hence affected by micro-physical processes in the early

phase of the universe. The origin of these perturbations is assumed to be seeded by

quantum fluctuations during the inflationary epoch which is the period of exponential

expansion of the scale factor [11, 12].
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• The statistical distribution of the initial conditions: This question is of important

because observations are also at the level of statistical distributions. One such ob-

servationally important quantity is the power spectrum. This is usually the fourier

transform of the relevant two point correlation functions averaged over all possible

configurations.

• On what observations can we expect the signatures of this theory? Inhomogeneities

in matter distributions manifest as anisotropies in the CMB analysis. CMB is also

sensitive to the tensor perturbations during inflation. In general relativity, tensor

perturbations of the metric about a flat background give rise to what are known as

gravity waves.

1.3 Perturbation Theory

The two sets of perturbations are matter and gravity perturbations. There are subtle issues

regarding the definition of a perturbation theory. Gravitation is a theory of general covari-

ance i.e. the theory is invariant under arbitrary coordinate transformations. The definition

of perturbation depends on the choice of coordinate system. Therefore we need to be able to

define quantities in a coordinate invariant way. Another possibility is to work in a particular

coordinate system throughout. This is in analogy to making a particular choice of gauge in

electromagnetic theory. This method has some disadvantages like unphysical modes which

are coordinate artifacts are present [13]. We will setup and work in a gauge invariant for-

malism of perturbation theory using fixed background functions which are invariant under

coordinate transformations. But it is also sometimes easier to perform certain calculations

in a specific coordinate system. For such a coordinate choice, the conformal gauge is very

convenient. We will illustrate this point later but the idea is that the metric perturbation

variables and the gauge invariant variables coincide in this particular coordinate system.

Thereby allowing an easy change from the gauge fixed to the gauge invariant variables.

There are two popular approaches for a gauge invariant formalism. Ellis et.al. have worked

on a covariant approach. The other formalism is the gauge invariant formalism introduced

by Bardeen [14, 15] and further developed by Brandenberger [16] et.al. The thesis is based

on this formalism.

The thesis is organised as follows: We will briefly describe the standard model of cosmology

in chapter 2. Then we will describe the gauge invariant formalism as developed by Bardeen
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et. al and discuss some simple examples in chapter 3. Then we will discuss how the physical

universe is modelled1. In chapter 4 we will use the Boltzmann equation for every compo-

nent and account for interactions to study the perturbations of the statistical phase space

distribution functions. We will work in a particular gauge for this treatment. Then we will

study what the initial conditions are for the perturbations variables. This will lead us to the

study of fluctuations during inflation as described in chapter 5. We will end with describing

parameters that are important for observational purposes.

1We will follow the approach as given in the textbook [17]
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Chapter 2

Friedmann-Robertson-Walker
Cosmological Model

As mentioned earlier, there are two important simplifications, homogeneity and isotropy

which go into determining the metric. Spatial homogeneity and isotropy implies that the

spatial metric is of constant curvature. This leads to the Riemann tensor having a certain

form [18]:

Rαβγδ = K(gαγgβδ − gαδgβγ) (2.1)

where, K is a real number. The Ricci tensor is got by contracting the Reimann tensor in the

following way,

Rβδ := gαγRαβγδ (2.2)

Then, we get,

Rαβ = 2Kgαβ (2.3)

The three dimensional spatial metric for a spherically symmetric space can be written in the

following way,

dσ2 = f(r)dr2 + r2dω2 where, (2.4)

dω2 = dθ2 + sin2 θdφ2 (2.5)

Using the above condition on the Ricci tensor, we can determine f(r), a function of the

magnitude of the radial coordiante alone.

f(r) =
1

1−Kr2
(2.6)
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Therefore, taking the time coordinate in the comoving system and introducing the scale

factor; the full FRW metric can be written as

ds2 = dt2 − a(t)2

(
dr2

1−Kr2
+ r2dω2

)
(2.7)

Here, a(t) is the scale factor which is determined from the Einsteins equation depending

on the kind of matter system we are interested in.

In conformal time coordinates, the metric can be written in the following form with,

ds2 = a(η)2

(
dη2 − dr2

1−Kr2
+ r2dω2

)
, with dη := dt/a (2.8)

Curvature Constant K: K can in general be any real number, but we can re-scale the

radial coordinate and can take the three possible values for K, K=0, +1 , -1. The three cases

are called flat, open and closed respective. The names come from the range of the radial

coordinate. This point can be seen easily if we make the following coordinate transformation.

Define,

χ =

∫
dr√

1−Kr2
=


sin−1 r (for k = +1)
r (for k = 0)
sinh−1 r (for k = −1)

(2.9)

Then the spatial part of the metric can be written as

ds2 = a2(dχ2 + fk(χ)(dω2)), dω2 = dθ2 + sin2 θdφ2 (2.10)

Where,

fk(χ) =


sinχ (for k = +1)
χ (for k = 0)
sinhχ (for k = −1)

(2.11)

The K = 0 is the familiar spatially flat case. The K = +1 case is called a closed universe.

This can be seen through the following points. The range of the coordinate χ is bounded.

Hence the volume of the full spatial region is bounded. Also a two sphere in this space has a

bounded surface area. This is in contrast to the K = −1 space which is hyperboloidal. Here,

the range of χ is unbounded leading to an unbounded spatial volume. Also a two sphere

in this space has a monotonically increasing surface area with the coordinate χ. Hence the

name, open and closed for the corresponding cases.
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The coordinate system (2.7) is also called the comoving coordinate system This is because

(xα = constant) are geodesics. The physical distances will be the coordinate distance mul-

tiplied by the scale factor, as can be seen from the metric. The scale factor at present is

increasing with time.

In (2.7), the spatial part of the metric is given in polar coordinates. An alternate coordinate

system is the same metric with the spatial part now described by the cartesian coordinate

system. This can be realised by the performing the following change to the radial coordinate.

r =
r

1 + Kr2

4

(2.12)

Then, the metric becomes, (dropping the bar on the new radial coordinate),

ds2 = dt2 − a(t)2

1 +Kr2/4
(dr2 + r2dω2) (2.13)

We can see that the spatial part of the metric is conformal to the flat spatial metric. As

before in conformal time,

ds2 = a(η)2

(
dη2 − dx2 + dy2 + dz2

1 + Kr2

4

)
(2.14)

We then define γij as the metric on a constant time 3D surface as follows:

ds2 = a(η)2
(
dη2 − γijdx

idxj
)

(2.15)

From hence forth, we shall use the above metric and coordinate system unless otherwise

stated.

Einstein’s equations relates the energy momentum tensor to the geometry of the spacetime.

Therefore, the symmetry properties of homogeneity and isotropy apply to the energy mo-

mentum tensor as well. The form the energy momentum tensor then takes is the perfect

fluid form which will be discussed a little later. The physical system is then fully described

by the equation of state which needs to be accounted for in the energy momentum tensor.

Then the evolution of the scale factor is determined by the Einstein’s equation.

Finally, we end this brief summary with the equations of motion. The specific details can be

extracted by pluging in the choice of energy momentum tensor. Note: From here on, prime
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refers to the derivative taken with respect to the conformal time η. We set c = 1.

Starting from Einstein’s equation,

Gµ
ν := Rµ

ν − δµν
R

2
= 8πGT µν (2.16)

We have,

a′2 +Ka2 =
8

3
πGT 0

0 a
4 (2.17)

a′′ +Ka =
4

3
πGTa3, where T = T µµ (2.18)

dT 0
0 = −(4T 0

0 − T )d lna. (2.19)

The last of the above equations is the conservation of the energy momentum tensor. This

equation is not independant and can be got from manipulating the two Einstein’s equtions.

We list a few examples of how the scale factor evolves when the energy momentum tensor

describes a perfect fluid with the equation of state being a constant. Let w = p/ρ, where p

is the pressure and ρ is the energy density, be a constant. In that case, Einstein’s equations

reduce to the following,

a′2 +Ka2 =
8

3
πGT 0

0 a
4 =

8

3
πGρa4 (2.20)

a′′ +Ka =
4

3
πGTa3 =

4

3
πG(ρ− 3p)a3 (2.21)

ρ′ = −3(ρ+ p)
a′

a
(2.22)

Then we have the following evolution for a(t), the scale factor, as a function of both η and

t. We have also taken K = 0.

a ∼ η
2

1+3w (2.23)

∼ t
2

3(1+w) (2.24)
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Chapter 3

Beyond the Standard Model

We believe that the exact universe defers ‘slightly’ from the homogeneous model and that a

linear perturbation theory is feasible. In this section, we will introduce the gauge invariant

formalism of classical cosmological pertubation theory. Many advantages of this formalism

will be highlighted as the discussion proceeds.

3.1 Perturbations, gauge transformation and gauge in-

variance

Consider a physical manifold M which is understood to be ‘close’ to FRW metric in a certain

sense. Let there be a coordinate system on this manifold. To any tensor field Q, we associate

a background function Q0. The background functions are fixed functions of the coordinate

system. They are non geometrical quantities and transform as scalars with respect to a

coordinate transformation. The necessity for such a definition stems from the following.

From the definition of perturbation, we see that it is coordinate dependant, leading to an

ambiguous definition of perturbation. So we would like the perturbation to be invariant under

arbitrary coordinate transformations (diffeomorphisms). By associating to each tensor field

a background function, we in a sense are giving an absolute meaning to each point on the

manifold, thereby making perturbations in different coordinate systems comparable. We

make a note that all coordinate transformations are ‘infinitesimal’. Mathematically, the

above can be expressed in the following equations1,

Q(xα(p)) = Q0(xα(p)) + δQ(xα(p)) (3.1)

1This chapter presents the formalism developed by Bardeen and later by Brandenberger et. al. [16]
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where ‘p’ is a point in the manifold. Now consider a new coordinate system,

x̃α := xα + ξα (3.2)

where, ξα is understood as an infinitesimal vector. Then the background quantities by

definition do not change under this coordinate transformation.

Q0(xα(p)) = Q̃0(x̃α(p)) (3.3)

The tensor field changes in the following way,

Q̃(x̃α(p)) = Q̃0(x̃α(p)) + δQ̃(x̃α(p)) (3.4)

Then the change in the perturbation δQ is given by, using (3.3),

4δQ = δQ̃− δQ (3.5)

= Q̃(x̃α(p))−Q(xα(p)) = LξQ|p (3.6)

The above transformation for the perturbation δQ under infinitesimal coordinate transfor-

mation is called a gauge transformation. LξQ is the Lie derivative of Q with respect to

the vector field ξα. The example for the expression of the Lie derivative of a rank two tensor

is given as the following,

Ãµν − Aµν = LξA
µ
ν (3.7)

= ξσ∂σA
µ
ν − (∂σξ

µ)Aσν + (∂νξ
σ)Aµσ (3.8)

In this thesis, the background metric is the FRW metric and the background quanities

for both matter and geometry are those calculated in the comoving coordinate system as

described in the previous chapter.

Now going back to equation (3.6), we can apply the above expansion and calculate the

change in the perturbation variables. The most important tensor for which we would like to

calculate the change in perturbation variables is the metric tensor. We will give more details

regarding metric perturbations in the following sections.

Gauge Invariance:

Gauge invariant perturbations are those whose Lie derivative is zero with respect to the

above coordinate transformation (3.2). Such tensor fields can only be constant or can be
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taken to be zero. What we will do in the following section is that, we make a perturbation

to the metric. These perturbations will be characterised in a certain way. We know how the

metric will transform under a coordinate transformation (using the Lie derivative as given

above (3.6)). We will then accommodate the change in the metric into these variables. Then

from these perturbation variables, we can construct gauge invariant quantities. All the above

statements will be explained in mathematical terms in the following sections.

3.2 Metric perturbation

Consider the FRW metric in cartesian coordinates in conformal time.

(0)gµν = a2

 1 0

0 δij
1

(1+Kr2/4)2

 = a2

 1 0

0 γij

 (3.9)

Let the perturbation be characterised in general by the following,

δgµν = a2

 A Bi

Bi Cij

 (3.10)

where, A is a scalar, Bi a vector and Cij a symmetric tensor. The quantities (A,B,C)

transform as a scalar, vector or tensor under 3D spatial transformations respectively.

3.2.1 Scalar, Vector and Tensor decomposition

We can further decompose the variables B,C [19]. We will state the theorems regarding the

general decomposition of vectors and tensors.

• Any covariant tensor of rank 1 can be written as the sum of two vectors. The first being

the gradient of a scalar and the second a vector whose divergence is zero. Bi = ∂iφ+Ki

where the divergence of Ki is zero. In a general background, the gradient or divergence

should be replaced with the 3D covariant derivative.

• Similarly a symmetric traceless tensor can be decomposed into the following:

Tαβ = 4αβψ + 2D(αBβ) +W αβ, (3.11)

where,

4αβ := DαDβ −
1

3
γαβ4l (3.12)
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Here, D is the covariant derivative, B is a divergence free vector, 4l is the laplacian

and W is a tracefree transverse tensor. To this tensor we can add the trace by the

following way

Tγij (3.13)

Here all covariant derivatives are with respect to the spatial background metric γij.

We can collect and characterise the perturbations variables according to their behaviour

under 3D spatial diffeomorphisms. Therefore, scalar, vector and tensor perturbations are

characterised in the following way.

δgµν = a2

(
φ −B;i + Si

−B;i + Si 2(ψγij − E;ij)− (Fi;j + Fj;i)− hij

)
(3.14)

where B, φ, ψ,E are scalars, S, F are divergence free vectors and h is a symmetric, divergence

free, traceless tensor. Hence, the decomposition can be done easily as shown below.

δg(s) = a(η)2

(
2φ −B;i

−B;i 2(ψγij − E;ij)

)
(3.15)

δg(v) = −a(η)2

(
0 −Si
−Si (Fi;j + Fj;i)

)
(3.16)

δg(t) = −a(η)2

(
0 0
0 hij

)
(3.17)

Then,

gµν = g(0)
µν + δgµν (3.18)

Let us do some counting. In the scalar decomposition there were four functions (φ, ψ,B,E).

In the vector decomposition, there are two divergence free vectors (S, F ). Hence four more

independent variables. The final tensor perturbation (hij) is a symmetric, trace-free, diver-

gence free 3D tensor. So it has 2 free components. The total is 10 variables which then

characterises a general metric perturbation. The reason for characterising the metric per-

turbation in this way is important for two reasons. The decomposition is unique and the

decomposition operation commutes with taking derivatives. For this, consider Einstein’s

tensor. It is constructed from the metric and its derivatives. The above statement says that

we can consider each type of perturbation and study its evolution independently of the other

classes of perturbation. That is, we can consider only scalar, vector or tensor perturba-

tions independently as they do not couple to each other. The decomposition leads to better

physical realization of the perturbation theory and makes the calculation a bit easier.
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3.2.2 Gauge Transformation

We will now define a general gauge transformation and see how the perturbation variables

transform under the coordinate transformation. A general infinitesimal coordinate transfor-

mation can be written as the following.

x̃α := xα + ξα (3.19)

We will decompose the spatial part of the vector ξα in to the gradient of a scalar and a diver-

gence less vector. Taking ξα = (ξ0, γijξ;j+ξ
i), where ξi is taken to be a divergence zero vector.

The symbol (;) denotes covariant derivative. So while considering scalar transformations,

we will consider only the scalar part of the coordinate transformation i.e. ξα = (ξ0, γijξ;j).

When we take vector perturbations, we will consider only the vector part of the coordinate

transformation i.e. ξα = (0, ξi) . To study any such transformation of the metric, we will

use the lie derivative definition (3.6). Then we accommodate the change of the metric in

terms of the perturbation variables. The following equations bring out this point.

• Scalar transformations - The coordinate transformation is given by the following:

η̃ = η + ξ0 (3.20)

x̃i = xi + γijξ;j (3.21)

The the metric variables undergo the following transformations:

φ̃ = φ− a′

a
ξ0 − ξ0′

(3.22)

ψ̃ = ψ +
a′

a
(3.23)

B̃ = B + ξ0 − ξ′ (3.24)

Ẽ = E − ξ (3.25)

• Vector transformations - The coordinate transformation is given by the following:

η̃ = η (3.26)

x̃i = xi + ξi (3.27)

The the metric variables undergo the following transformations:

S̃i = Si + ξ′i (3.28)

F̃i = Fi − ξi (3.29)
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The prime denotes derivative with respect to the conformal time η. It can be shown that

the tensor perturbation hij is invariant under each of the two classes of transformation,

the scalar and vector transformations as given above. We mention again that the

quantites are scalars, vectors or tensors depending on their behaviour under three

dimensional spatial diffeomorphisms.

3.2.3 Gauge Invariant Variables

From the above we can construct gauge invariant vairables for the two types of transforma-

tions. In the scalar case, we have two functions (ξ and ξ0), which we can use to get two

gauge invariant variables. The two gauge invariant variables will be denoted by Φ,Ψ. In the

vector case, we have a divergence free vector which we can use to define a gauge invariant

vector. As mentioned before, the tensor part is already gauge invariant under each subclass

of transformations.

• For scalar transformations, the two variables are,

Φ := φ+
[(B − E ′)a]′

a
(3.30)

Ψ := ψ − a′(B − E ′)

a
(3.31)

• For vector transformations, we have

χα := Sα − F ′
α (3.32)

Two popular gauges:

Even though we have described the gauge invariant formalism in the previous sections, it is

however convenient to choose a suitable coordinate system to simplify and perform certain

calculations. This coordinate choice corresponds to applying conditions on the gauge variant

quantities. This is in analogy to the gauge fixing procedure in electromagnetic theory. In this

theory, a gauge choice corresponds to choosing a constraint on the vector potentials. For the

metric perturbations, we will describe gauge choices in the context of scalar perturbations i.e.

we set the vector and tensor perturbations to zero. Therefore, a gauge choice corresponds to

conditions imposed on the scalar variables φ, ψ,B,E. We have four perturbation variables

and two free parameters ξ0 and ξ that can be used to impose constraints on two of the four

perturbation variables. There are two popular choices for gauges in scalar perturbations, the

synchronous gauge and the conformal gauge. The table below illustrates these gauges.
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Synchronous Gauge Longitudinal Gauge or Conformal
Gauge

1) φ = 0 , B =0 B = E = 0

2) In this gauge, there is a further resid-
ual freedom allowed in the transfor-
mation leading to the appearance of
unphysical degrees of freedom which
makes the physical interpretation dif-
ficult

Φ,Ψ coincide with the metric pertur-
bations φ, ψ leading to easier physical
interpretation. It is also easier to get
the equation of motion for the gauge
invariant variables. Also, all quantities
are uniquely fixed and there is no resid-
ual degrees of freedom.

The longitudinal gauge is convenient in the following sense. In this coordinate system we

can calculate the equations of motion ψ, φ and replace the variable by the gauge invariant

ones, Ψ,Φ . We will use the second gauge, also called the conformal Newtonian gauge, when

studying perturbations in more detail.

3.3 Einstein’s Equation for Scalar Perturbations

The next step is to calculate Einstein’s equation to linear order in the metric variables. We

are looking for the following:

Gµν = 8πGTµν (3.33)

G0
µν + δGµν = 8πG(T 0

µν + δTµν) (3.34)

G0
µν = 8πGT 0

µν (3.35)

⇒ δGµν = 8πGδTµν (3.36)

The left hand side is determined by the metric perturbation and the right hand side is de-

termined from the matter perturbation. The metric perturbation part can be calculated in

a straight forward way. We are interested in finding out how these perturbation transform

and then rewrite the perturbed Einstein’s equation completely in terms of gauge invariant

variables. For this purpose we only need the background quantities and then study its lie

derivative. The background FRW Gµν is given by the following:
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G0
0 = 3a−2(H2 +K) (3.37)

G0
i = 0 (3.38)

Gi
j = a−2(2H ′ +H2 +K)δij (3.39)

In the above set of equations, H is called the Hubble parameter which depends on time.

H :=
ȧ

a
(3.40)

Using the equation,

δG(x′)− δG(x) = LξG, (3.41)

we can write down how the perturbations transform.

δḠµ
ν − δGµ

ν = L
(0)
ξ Gµ

ν (3.42)

δḠ0
0 − δG0

0 = −((0)G0
0)

′ξ0 (3.43)

δḠ0
i − δG0

i = −((0)G0
0 −

1

3
(0)Gk

k) ξ
0
|i (3.44)

δḠi
j − δGi

j = −((0)Gi
j)

′ ξ0 (3.45)

By inspection, we can immediately write down the gauge invariant form of the above equa-

tions.

˜δG0
0 = δG0

0 + ((0)G0
0)

′(B − E ′) (3.46)

˜δG0
i = δG0

i + ((0)G0
0 −

1

3
(0)Gk

k)(B − E ′)|i (3.47)

˜δGi
j = δGi

j + ((0)Gi
j)

′(B − E ′) (3.48)

The (∼) tilde symbol on top the tensors in the above equations denote gauge invariant

variables. The above can be checked from the known transformation properties for each

of the quantities involved. We note that the energy momentum tensor is proportional to

the Einstein tensor. So the above construction just carries over for the energy momentum

tensor. All we need to do is to write down the perturbations for the energy momentum

tensor depending on the physical system we are dealing with. This information will go into

the right hand side of the perturbed Einstein’s equation. Another point to note is that, if

the spatial part of the perturbed energy momentum tensor is proportional to identity, then

we have just one independent variable to describe scalar perturbations. This last point will
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be mentioned explicitly in the next section when we encounter the example of a perfect fluid.

Below we have listed the full perturbed Einstein’s equation which will be used to study some

physical examples. We will study all examples from hence forth in the K = 0 or spatially

flat case. This is because at present, the observational evidence seems to be clearly pointing

out that the universe is flat.

−3H(HΦ + Ψ′) +∇2Ψ = 4πGa2 ˜δT 0
0 (3.49)

(HΦ + Ψ′),i = 4πGa2 ˜δT 0
i (3.50)

[(2H ′ +H2)Φ +HΦ′ + Ψ′′ + 2HΨ′ +
1

2
∇2D]δij −

1

2
γikD,kj = −4πGa2 ˜δT ij (3.51)

where D = Φ − Ψ and H = a′/a. Also γik in the last equation (3.51) is the background

metric in 3D as given in equation (3.9). The above equations are written in conformal time.

The (′) prime symbol denotes derivatives with respect to conformal time.

The above equations are the starting point for the analysis of interest to us. We make

a couple of points here. We will be concerned only with scalar perturbations for most part of

the thesis. We will briefly touch upon tensor perturbations in the context of inflation later.

3.4 Matter Perturbation

We will describe as to how to specialise these equations to two systems: a perfect fluid and

a scalar field. The case of the scalar field will be discussed in detail in a later chapter.

3.4.1 Perfect Fluid

The symmetry properties have to be satisfied by the energy momentum tensor as well since

it enters Einstein’s equation on the RHS. This implies that the energy momentum tensor

is of the perfect fluid form. Then we will consider perturbations to the energy momentum

tensor, write down the Einstein’s equation and study some simple solutions. A more detailed

approach will follow in the subsequent chapters. For the latter, we will show how a particular

coordinate system can also be used to describe perturbations.

The energy momentum tensor of a perfect fluid has the form

T µν = (ρ+ p)uµuν − pδµν , (3.52)
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where, uµ is the fluid velocity normalised to 1. It follows that uµ is an eigenvector of T µν

with ‘eigenvalue’ ρ. p, ρ are the pressure and energy density respectively. The equation of

state that relates the pressure and energy density will characterise the physical system we

have. For example,

p = 0, is for non relativistic matter also called pressureless dust (3.53)

p =
1

3
ρ, is for relativistic matter also called radiation. (3.54)

Then we can characterise the perturbations in terms of δp, δρ, δui. We get the following

equations in terms of gauge invariant functions in conformal time.

δ̃T
0

0 = δρ̃ (3.55)

δ̃T
i

j = δ̃pδij (3.56)

δ̃T
0

i = ˜δuia
−1(ρ0 + p0) (3.57)

We note that the spatial part of the energy momentum tensor is a multiple of identity. This

has an important consequence, it reduces the number of scalar perturbation variables to just

one, either Φ or Ψ. This fact can be seen from the equation (3.51).

[(2H ′ +H2)Φ +HΦ′ + Ψ′′ + 2HΨ′ +
1

2
∇2D]δij −

1

2
γikD,kj = −4πGa2δT ij

(gi)
(3.58)

We can go to the fourier space of this equation. The term D,kj will then become −kkkjD.

Note that the other terms in this equation are proportional to the identity matrix. Therefore

we can apply the operator

kik
j − 1

3
k2δji (3.59)

on this equation. The terms proportional to identity matrix drop out and we getD = Φ−Ψ =

0 implying Φ = Ψ. Therefore, when the spatial components of the energy momentum tensor

is proportional to the diagonal matrix, we have

Φ = Ψ (3.60)

From thermodynamics of a fluid, we have the following relation,

δp = c2sδρ+ τδS (3.61)

where

c2s =
ṗ0

ρ̇0

(3.62)
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is the speed of sound and τ is another parameter of the system. The subscript zero denotes

background quantities. We can then add the corresponding parts of the energy momentum

tensor and write it in terms of δS, the entropy perturbation. Then we will have to similarly

introduce the velocity of sound on the LHS of the (0-0) component of the perturbed Einstein’s

equation. We get the following final gauge invariant equation.

Φ′′ + 3H(1 + c2s)Φ
′ − c2s∇2Φ + [2H ′ + (1 + 3c2s)(H

2)]Φ = 4πGa2τδS. (3.63)

Setting δS = 0 is what is called adiabatic perturbations. We have taken K = 0. We will

make a change of variables and write down all the corresponding equations. First we define

the variables z, θ

Φ := 4πG(ρ0 + p0)
−1/2z = (4πG)−1/2[(H2 −H ′)a−2]1/2z (3.64)

θ :=
H

a
[
2

3
(H2 −H ′)]−1/2 (3.65)

Then the differential equation (3.63) becomes

z′′ − c2s∇2z − θ′′

θ
z = 0 (3.66)

The gauge invariant equation for density perturbation is,

−3H(HΦ + Ψ′) +∇2Ψ = 4πGa2 ˜δT 0
0 (3.67)

The background energy density can be written as,

ρ =
3H2

8πG
(3.68)

We then divide the gauge invariant density perturbation by the background energy density.

But for the perfect fluid we have Φ = Ψ as described in equation (3.60). Combining the two

equations, give,

δρ(gi)

ρ0

= 2[3H2]−1[∇2Φ− 3HΦ′ − 3H2Φ] (3.69)

So we will first solve for z using equation (3.66) and then obtain Φ from equation (3.64).

Finally we get the density perturbations, using equation (3.69) corresponding to adiabatic

perturbations.

29



Solutions in simple cases, K=0:

We will work in the fourier space of all the vairables. Then we observe that we get a second

order ordinary equation for z and Φ. Since the equations are linear, we get solutions for

each fourier mode of all the variables. This will help in comparing the wavelength of the

perturbations with respect to the Hubble radius. We will give two simple examples of dust

and radiation in their respective dominant epochs [20].

For dust: Here we are considering a non relativistic pressure-less dust. Therefore, cs = 0.

Let r = kη. The differential equation (3.66) reduces to

z′′ − θ′′

θ
z = 0 (3.70)

Then the solution can be written as

u(x, η) = A θ(η) +B θ(η)

∫
dη′

θ2
(3.71)

For this dust case, we can calculate θ from its definition in equation (3.65) . Then the

solution of Φ is

Φ(x, η) = C(x) +D(x)η−5 (3.72)

Then in the fourier space, the solution for δρ is,

r >> 1 Sub-horizon,
δρ

ρ
∼ r2 (3.73)

r � 1 Super-horizon,
δρ

ρ
∼ constant (3.74)

where we have neglected terms that are decaying with η.

For radiation: In this case, c2s = 1/3 and r = cskη. The following is the analysis of the

differential equation (3.63) in the various limits. Again, we obtain θ from its definition and

then get the differential equation for z.

z′′ +

(
k2

3
− 2

η2

)
z = 0 (3.75)

Then using the definition for r, it reduces to,

r2z′′ + (r2 − 2)z = 0 (3.76)
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The solution for the above equation can be written as

z(r) = A

(
sin x

x
− cosx

)
+B

(cosx

x
− sin x

)
(3.77)

After obtaining Φ, we get the following for density perturbations,

r � 1 (Sub−Horizon) r � 1 (Super −Horizon)

Φ ∼ cos(r) Φ ∼ constant (3.78)

δρ

ρ
∼ sin(r)

δρ

ρ
∼ constant (3.79)
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Chapter 4

Detailed Physical Analysis

In the previous chapter, we described the gauge invariant formalism and applied it to some

simple cases and found how the perturbations evolve in the long and short wavelength limit.

Now we wish to actually study the physical universe by accounting for the various compo-

nents of the universe and studying the initial conditions necessary to solve the evolution

equations. For this approach we will adopt a different strategy [17].

Each component contributing to the energy density is made up of particles which are either

relativistic or non-relativistic. The energy momentum tensor of each component is described

statistically in terms of the four momenta of the particles and the phase space distribution

function f(~x, ~p, t). The particles are assumed to travel along geodesics. The background

functions are the equilibrium Bose-Einstein or Fermi-Dirac distribution functions at the cor-

responding temperature. These distribution functions are independent of position and are

isotropic. But when we include perturbations, the particles are assumed to be travel along

the perturbed geodesics in between consecutive collisions. Here, the perturbation variables

satisfy two types of equations, the Boltzmann equation and the Einsteins equation.

The Boltzmann equation gives an evolution equation for the perturbed distribution func-

tions in terms of the metric perturbation variables. Therefore, each Boltzmann equation will

introduce a new perturbation variable. So we further need two more equations to account for

the two scalar metric perturbation variables. The final two equations for the scalar pertur-

bation variables can be obtained from Einstein’s equation. This then completes the full set

of equations. When we go to the fourier space of these equations, we see that the equations

are ordinary differential equations. Therefore, each mode is decoupled. Finally, we need to

look for initial conditions to solve these equations.
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This chapter is presented as follows. First, we will setup the Boltzmann equation for each

component of the universe. The photons and neutrinos constitute the radiation component

of the energy density. Baryons (collectively include both protons and electrons) and dark

matter constitute the matter part of the energy density. We will not consider dark energy in

this thesis. We will then reduce the Boltzmann equations to obtain differential equations for

the perturbation variables. The perturbation variables are defined in a convenient manner

depending on whether the component is matter or radiation. These differential equations are

obtained in the fourier space. Then we obtain two differential equations from the Einstein’s

equation. For this we need the perturbed energy momentum tensor obtanined by performing

integrals over perturbed distribution functions. After all the equations are setup, we will

consider a certain limit to study the initial conditions. We will see that all the variables will

then depend just on one variable for the initial condition. The origin of these fluctuations and

the physically important quantities like power spectrum will be discussed in the next chapter.

All physically relevant quantities are integrals over functions defined on the phase space.

We wish to account for perturbations to these distribution functions coming from geometry

perturbations of the spacetime. So now the distribution functions will also depend on the

direction of the momentum and also on the configuration space variables. To study the evo-

lution of these distribution functions in the presence of interaction with other components

and accounting for the perturbed geometry, we will work with the Boltzmann equation. The

Figure.(4.1) provides the percentage of contribution of each component to the total energy

density today. This diagram would have been different when we consider earlier epochs since

the energy density scales as a function of the scale factor.
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Figure 4.1: Cosmic Inventory at present [2]

Firstly, the energy momentum tensor of every statistically distributed component of the

universe in the radiation epoch is given by the following:

T µν(~x, t)|i := g̃

∫
dP1dP2dP3

(2π)3

1√
|g|
P µPν
P 0

f(~x, ~p, t)|i (4.1)

P µ = (P 0, P 1, P 2, P 3) is the four momentum of the particle and g̃ is the degeneracy of the

phase space cell. The subscript ‘i’ is a label for every component we are considering. The

above energy momentum tensor is the full general relativistic expression for each compo-

nent. Therefore it holds in the case of the perturbed metric also. We will show that the

components of the energy momentum tensor reduces to the familiar quantities even in the

presence of perturbations. The metric we will consider is,(
−(1 + 2ψ) 0

0 a2δij(1 + 2φ)

)
(4.2)

As an example, we consider the (0-0) component of the energy momentum tensor for radia-

tion. Now, starting from equation (4.1),

T 0
0(~x, t) := g̃

∫
dP1dP2dP3

(2π)3

1√
|g|
P 0P0

P 0
f(~x, ~p, t) (4.3)
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The determinant is given by,

−(1 + 2ψ)[a2(1 + 2φ)]3 = −a6(1 + 2ψ + 6φ) (4.4)

Using P 2 = 0, we get,

P 0 = p(1− ψ) (4.5)

where

p2 := gijPiPj (4.6)

Similarly,

P i =
pi

a
(1− φ) (4.7)

Note, that the phase space integral is over momenta with lower indices. Inserting all the

above expressions into equation (4.1), we get,

T 0
0(~x, t) = −g̃

∫
d3p

(2π)3
E f(~x, ~p, t) (4.8)

The RHS of the above equation is equal to the negative of the energy density of radiation.

So now, the perturbation to the above quantity will come only from the perturbation of the

distribution function ‘f ’.

4.1 Boltzmann equation

As mentioned before, the Boltzmann equation [21] gives us a way to compute the evolution

of the perturbation of the phase space distribution functions. The equation will relate how

the distribution functions fi of each component evolves with time taking into account the

interaction with the other species. Therefore, by accounting for all the components, we will

get a set of coupled differential equations. The Boltzmann equation will also incorporate

metric perturbations.
df

dt
= C[f ] (4.9)

where C[f ] accounts for interaction with the other components of the universe. Consider

the LHS of the above equation. It can be expanded as the following,

df

dt
=
∂f

∂t
+
∂f

∂xi
∂xi

∂t
+
∂f

∂p

∂p

∂t
+
∂f

∂p̂i

∂p̂i

∂t
(4.10)

The terms
∂xi

∂t
and

∂p

∂t
(4.11)
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will take into account the metric perturbation. This is because these two terms are calculated

from the geodesic equation. The term

∂f

∂p̂i

∂p̂i

∂t
(4.12)

can be neglected because each term in itself is a first order term, thereby making the term

second order. Now we will setup and study the Boltzmann equation for each component.

4.1.1 Boltzmann Equation for Photons

The perturbation to the distribution function for radiation is most conveniently charactersied

in the following way.

f = exp

(
p

T (1 + Θ(xi, p̂i, t))
− 1

)−1

(4.13)

where, Θ = δT
T

is the temperature perturbation which depends on position and T is the

temperature. Here we note that Θ is not a funtion of the magnitude of the three momen-

tum because to zero order in Compton scattering, the photon’s momentum changes only

in direction and not in magnitude. p̂i is the unit vector for the spatial part of the momen-

tum vector. Then the distribution function can be expanded using Taylor series to first order,

f(p) = f 0(p)− p
∂f 0

∂p
Θ (4.14)

For photons, the most important interaction term is the Compton scattering by electrons.

e−(~q) + γ(~p) ↔ e−(~q′) + γ(~p′) (4.15)

The interaction term C[f] can now be written as,

C[f(p)] =
1

p

∫ {
d3q

(2π)32E(q)

d3q′

(2π)32E(q′)

d3p′

(2π)32E(p′)
|M |2 (4.16)

× (2π)4δ4(p+ q − p′ − q′) [fe(~q′)f(~p′)− fe(~q)f(~p)]
}

(4.17)

We can substitute for the energy, the following expressions:

Eγ(p) = p; Ee(q) = me +
q2

2me

(4.18)
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Here we have considered the electrons to be non-relativistic. The RHS of the equation (4.10)

gives the LHS of the full Boltzmann equation given below.

Θ̇ + ikµΘ + φ̇+ ikµψ = −neσTa
(

Θ0 −Θ + µvb −
1

2
P2(µ)Θ2

)
(4.19)

The RHS of the full Boltzmann equation is got by computing the interaction term C[f]. The

equation is written in terms of the fourier modes and we have not explicitly put any notation

to say that all the terms are in the momentum space i.e. any term in the equation, say Θ,

is actually Θ̃. Here, one assumption is made, that the electron’s velocity is in the direction

of the temperature gradient i.e. vib is along ki. The equation is written in conformal time

coordinate. This gives the term a multiplying the RHS. σT is the Thompson scattering cross

section. ne is the number density of the electrons. µ is defined as the following,

µ =
~k.p̂

k
(4.20)

Then the velocity of the electrons can be written in terms of µ.

~vb.p̂ = vbµ (4.21)

In the above equation, P2(µ) corresponds to the Legendre polynomial of degree 2 with

argument µ. We also define the lth moment of Θ as the following, (it appears in the above

differential equation for Θ).

Θl =
1

(−i)l

∫ 1

−1

Pl(µ)Θµ
dµ

2
(4.22)

where, P ′
l s are the Legendre polynomials. We have summed all possible particle spins and

polarisation. Also in the above derivation, the scattering amplitude was taken to be a

constant.

|M |2 = 8πσT m2
e (4.23)

Though the Compton scattering amplitude has an angular dependence, we neglect it since

it makes the calculation easier. Also accounting for the angular dependence has a negligible

contribution.

4.1.2 Boltzmann equation for Neutrinos

This follows directly from photon analysis. We just need to drop all interaction terms

because neutrinos are weakly interacting and we will also not consider polarisation terms.
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The temperature perturbation is written as N , the equivalent of Θ. Using the equation

(4.19), we can write down,

Ṅ + ikµN + φ̇+ ikµψ = 0 (4.24)

Now we will go over to the matter sector.

4.1.3 Boltzmann Equation for Baryons

The important difference in this sector is that there are a couple of modifications to the

approach we followed for radiation. Firstly, the RHS of the equation (4.10) will involve

quantities that are appropriate for a massive particle. Hence, the magnitude of the three

momentum will be replaced by the energy which is defined as
√
p2 +M2. Also, it is more

convenient to describe perturbations through different quantities. Here we will define and

study density and velocity perturbations. Baryons refer to both electrons and protons. We

will assume that the Coulomb scattering which strongly couples the electron and the proton

makes their bulk properties common, i.e.,

δe = δp = δb (4.25)

~ve = ~vp = ~vb (4.26)

Then the Boltzmann equation (4.9) can be written for both the electron and the proton.

dfe
dt

= [eγ] + [ep] (4.27)

dfp
dt

= [ep] (4.28)

The square bracket is a short form denoting the interacting terms. Then the LHS of the

Boltzmann equation will be written in terms of the distribution function f(~x, ~p, t and its

derivatives. We then perform the necessary phase space integration of the differential equa-

tions to get equations in density and velocity perturbation defined as follows. The number

density is defined as the following:

n =

∫
d3p

(2π)3
f (4.29)

Then the perturbation in the number density is defined as the following,

n = n(0)(1 + δb) (4.30)
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Here, the number density and energy density perturbation definition coincide and is δb. The

velocity perturbation is defined as:

vi =
1

nb

∫
d3p

(2π)3
f
pp̂i
E

(4.31)

Then by following the procedure as in the photon case and taking moments to get all the

equations, we get,

δ̇b + ikvb + 3φ̇ = 0 (4.32)

v̇b +
ȧ

a
vb + ikψ =

−neσTa
R

(vb + 3iΘ1) (4.33)

where, R is defined as the following

1

R
=

4ρ0

3ρ0
b

(4.34)

The RHS in equation (4.33) is due to the Coulomb scattering. The quantity R is related to

the sound speed in this medium.

4.1.4 Boltzmann Equation for Cold Dark Matter (CDM)

CDM is an important component for studying structure formation. We will assume two

properties of CDM which is motivated from observations. The first property is that it is

non-relativistic and secondly it is non-interacting. So the RHS of the Boltzmann equation

(4.9) is zero. It is more convenient to describe perturbations in terms of density perturbations

and velocity perturbations. Since CDM is massive, we will take the distribution function to

be a function of energy in place of the magnitude of the three momentum in the previous

section (4.10). In a similar way, following the procedure used above for the baryons, and

taking moments of the equation, we get equations for density and velocity perturbations.

Also in the analysis, we will neglect terms of order (p/E)2 and higher. We first define the

number density.

n =

∫
d3p

(2π)3
f (4.35)
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Then the velocity and density perturbations are defined in the following way as before,

n = n(0)(1 + δDM) (4.36)

vi =
1

nDM

∫
d3p

(2π)3
f
pp̂i
E

(4.37)

(4.38)

Then using the above definitions in the Boltzmann equation gives

˙δDM + ikv + 3φ̇ = 0 (4.39)

v̇ +
ȧ

a
v + ikψ = 0 (4.40)

Again, we make the note that the equation is written in terms of a particular fourier mode

of each variable and in conformal time η. The equations are identical to the ones describing

the baryons with the difference being there are no interaction terms.

4.2 Perturbed Einstein’s equation

Using the metric given in equation (4.2), we can calculate Einstein’s equation to first order

in the perturbation variables. The perturbed energy momentum tensor can be calculated

from the definition of energy momentum tensor in equation (4.1).

The first equation is the time-time component of the Einstein’s equation. We had shown

earlier that the definition of (0-0) component of the energy momentum tensor as the negative

of the energy density holds true even if we consider perturbations to the metric. Therefore,

as an example we have for photons,

T 0
0(~x, t) = −2

∫
d3p

(2π)3
p

{
f 0 − p

∂f 0

∂p
Θ

}
(4.41)

After performing the integral using the background Bose-Einstein distribution in the above

equation, we get,

T 0
0 = −ρ(1 + 4Θ0) (4.42)

This will go into the RHS of Einsteins equation. A similar contribution will come from

neutrinos as well. For the matter parts, we will just write it in terms of the energy densities

directly. The full equation is then,

k2φ+ 3
ȧ

a

(
φ̇− ψ

ȧ

a

)
= 4πGa2[ρmδm + 4ρrΘr,0] (4.43)
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where, subscript m refers to both the baryonic and dark matter components and r = 1, 2

refers to photons and neutrinos respectively.

The second equation is the tracefree longitudinal part of the spatial part of the Einstein’s

equation. To get the longitudinal traceless part, we act on the Einstein’s equation the

following operator ,

k̂ik̂j −
1

3
δij (4.44)

We then get the following equation after calculating the perturbed energy momentum tensor

in a similar way to the previous calculation.

k2(φ+ ψ) = −32πGa2ρrΘr,2 (4.45)

Again, r = 1, 2 and stands for photons or neutrinos. The subscript m stands for matter com-

ponents which are dark matter and baryons. We note that only radiation terms contribute

to the the anisotropic stress part of the energy momentum tensor. The other components of

Einstein’s equations are redundant.

The first of the Einstein’s equations gives an important insight (4.43). Consider first two

terms involving φ.

k2φ+ 3
ȧ

a
φ̇ (4.46)

The first term in real space will be the laplacian acting on the potential φ. This is the

familiar term occurring in Newtonian gravitation in the Poisson equation. The second term

accounts for the expansion of the universe. The second term becomes significant when the

wavelength is of order Hubble radius or more. So we see that, when wavelengths are greater

that the Hubble radius (H−1), a general relativistic approach is necessary. This is the case

in cosmology as most scales of physical interest were in the past outside the Hubble radius.

4.2.1 Summary of the perturbation equations

We will now put together all the equations, those obtained from Boltzmann equation and

those from Einstein’s equation.

Θ̇ + ikµΘ + φ̇+ ikµψ = neσTa

(
Θ0 −Θ + µvb −

1

2
P2(µ)Θ2

)
(4.47)

˙δDM + ikv + 3φ̇ = 0 (4.48)

v̇ +
ȧ

a
v + ikψ = 0 (4.49)
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δ̇b+ikvb + 3φ̇ = 0 (4.50)

v̇b +
ȧ

a
vb + ikψ =

−ne σT a
R

(vb + 3iΘ1) (4.51)

Ṅ + ikµN + φ̇+ ikµψ = 0 (4.52)

k2φ+ 3
ȧ

a

(
φ̇− ψ

ȧ

a

)
= 4πGa2[ρmδm + 4ρrΘr,0] (4.53)

k2(φ+ ψ) = −32πGa2ρrΘr,2 (4.54)

So now we have setup eight equations in eight variables and would like to study their

evolution. This leads us to a two important questions. What are the scales of physical

interest and how to study them? What are the initial conditions for these equations? Both

these questions will lead us to the study of inflation. These issues will be addressed in the

following sections.

4.2.2 Importance of relevant scales

There is one important length scale in cosmology, the comoving Hubble radius (aH)−1. The

perturbations are expressed in terms of the fourier components in a sense to compare with this

length scale. The Hubble radius changes with time. There is one very important puzzling

problem that observations throw up. We notice that photons from causally disconnected

regions have the same temperature. This is also called the horizon problem. Another way

to look at it is the following.

Consider perturbations whose length scales are greater than the Hubble radius through

the period of photon decoupling. Refer Fig.(4.2.2). Only length scales smaller than the Hub-

ble radius can be affected by micro physical processes. Therefore, the perturbations on such

large scales cannot be evened out to the give the isotropy of the CMB to a certain degree.

We also see that length of cosmological importance i.e. for scales of 102−103MPc, have only

recently entered the Hubble radius, long after the decoupling of photons from matter. A way

to quantify scales smaller than the Hubble radius is kη << 1. The inequality is understood

as the following. We go to a sufficiently early time that η is very small and also consider

wavelengths that are very large. The inequality is the statement that the comoving horizon

is much smaller than the comoving wavelength.

Inflation is a plausible solution to the above problems. It is modelled in such way that

scales that are causally disconnected were once small enough to be affected by physical pro-

cesses. These scales then leave the Hubble radius, a time at which the initial conditions
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Figure 4.2: Comparison of length scales with the Hubble radius. Note that scales very early
on were inside the Hubble radius. Then the scales left the Hubble radius during inflation
and reentered in the radiation era - [3]

are set up. Then when they reenter the Hubble radius, they are affected by the physical

processes and evolve to lead to the current structure.

4.3 Initial Conditions

We will first study the initial conditions of the differential equations provided in the summary

and then study its connection to inflation [22]. Let us study the equations in the beginning of

the radiation dominant epoch. In this epoch, we can simplify the equations for the following

condition, kη << 1. Also during this time we can neglect higher order moments of the

Θ variables. Under these approximations, we can reduce and impose constraints on the

differential equations and reduce it to the dependence on one variable φ. Therefore, we

neglect terms that are proportional to k. This says that we are dropping scales that will not

be affected by the causal physics.
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First we will consider the following:

Θ̇ + ikµΘ + φ̇+ ikµψ = neσTa

(
Θ0 −Θ + µvb −

1

2
P2(µ)Θ2

)
(4.55)

˙δDM + ikv + 3φ̇ = 0 (4.56)

δ̇b+ikvb + 3φ̇ = 0 (4.57)

Ṅ + ikµN + φ̇+ ikµψ = 0 (4.58)

Neglecting higher moments and terms proportional to k, we get:

Θ̇0 = −φ̇ (4.59)

˙δDM = −3φ̇ (4.60)

δ̇b = −3φ̇ (4.61)

Ṅ0 = −φ̇ (4.62)

We note that all the variables are dependant only on one metric perturbation variable. Let

us now consider one of the Einstein’s equation,

k2(φ+ ψ) = −32πGa2ρrΘr,2 (4.63)

Neglecting higher moments of Θ, N , we get

φ = −ψ (4.64)

We can now consider the other Einstein’s equation.

k2φ+ 3
ȧ

a

(
φ̇− ψ

ȧ

a

)
= 4πGa2[ρmδm + 4ρrΘr,0] (4.65)

The matter terms can be left out since we are in the radiation era. Using φ = ψ, we get,

3
ȧ

a

(
φ̇− φ

ȧ

a

)
= 4πGa2[4ργΘγ,0 + 4ρνΘν,0] (4.66)

where we have dropped the term proportional to k2. During radiation, a ∼ η. So the

equation becomes, (
φ̇

η
− φ

η2

)
=

16

3
πGa2[ργΘγ,0 + ρνΘν,0] (4.67)

We multiply and divide by the total background energy density on the RHS. We get,(
φ̇

η
− φ

η2

)
=

16

3
πGa2ρ[

ργ
ρ

Θγ,0 +
ρν
ρ

Θν,0] (4.68)
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Using the background FRW equation, we get,

1

η2
=

8

3
πGa2ρ (4.69)

Defining

f =
ργ
ρ

(4.70)

We then get,

φ̇η + φ = 2(fΘ0 + (1− f)N0) (4.71)

But we can eliminate the zero moments of Θ and N from the first set of initial conditions in

equation (4.62). Then we get a differential equation in φ.

φ̈η + 4φ̇ = 0 (4.72)

The solution to the above equation is φ ∼ ηx where x =0, -3. Neglecting the decaying mode,

we get that φ is constant. Then from equation (4.71) we get,

φ = 2(fΘ0 + (1− f)N0) (4.73)

We also make the assumption that at such times, the photons and neutrinos exhibit identical

behaviour and

Θ0(k, ηi) = N0(k, ηi) (4.74)

where, ηi is some initial time. Then the initial condition on Θ0 is,

φ(k, ηi) = 2Θ0(k, ηi) (4.75)

Now we will obtain the initial condition for the density perturbations for the matter com-

ponents. We observe that both dark matter and baryons satisfy identical equations when

considering initial conditions.

˙δDM = −3φ̇ (4.76)

δ̇b = −3φ̇ (4.77)

But we also have,

Θ̇0 = −φ̇ (4.78)

Ṅ0 = −φ̇ (4.79)
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So we can write down,

δb/DM = 3Θ0 + constant (4.80)

In the next section we will describe what the consequences are for the constant to be zero

or non-zero.

We will also be needing the initial condition for Θ1 when we study origin of perturbations.

Though we have neglected these moments for the above calculations, we will need the initial

condition on Θ1 when studying the spectrum of the perturbation variables that will be taken

up in the next chapter. We will start from the following equations:

v̇ +
ȧ

a
v + ikψ = 0 (4.81)

v̇b +
ȧ

a
vb + ikψ =

−ne σT a
R

(vb + 3iΘ1) (4.82)

The term ne σT in the last equation is very high during the early phase of the universe. So

for this equation to remain meaningful, we have initially

vb/DM + 3iΘ1 = 0 (4.83)

So now we will need to determine the initial condition on Θ1. This will be done by considering

a gauge invariant variable in the fourier space,

v := ikB +
k̂iT 0

i

(ρ+ P )a
(4.84)

This variable reduces the velocity we have been using in the conformal gauge, i.e. setting

B = 0 in the above equation. We can substitute for T 0
i the term G0

i from Einstein’s equation.

We can also substitute for ρ+ P from the background equations. Then we get,

v =
−2ik[φ̇+ aHφ]

−4ȧ2/a2
(4.85)

This can be simplified since we are interested in the case when φ = constant. We get,

v =
ikφ

4(aH)
(4.86)

Then we get the initial condition on Θ1 using equation (4.83).

Θ1 =
−kφ
6aH

(4.87)

We have setup the initial conditions. There are two classes of initial conditions that will be

studied in the next section. The issue of the origin of these perturbations will be studied in

the next chapter.
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4.3.1 Adiabatic and Isocurvature initial conditions:

We made a mention of adiabatic initial conditions in the early part of this thesis. Here we

give a more explicit way to understand these. We begin with the equation for δ from above,

δ = 3Θ0 + constant (4.88)

The solution now falls into classes, those for which the constant is zero (adiabatic) and those

for which it is non-zero (isocurvature). Isocurvature perturbations are not so important in

terms of the physical quantities we are interested in and have only negligible contribution.

That the constant is zero has a certain interpretation. It implies that adiabatic conditions

are those for which there is a constant matter to photon ratio everywhere. The ratio is a

constant both in space and time. The following equations are identical for both dark matter

and baryonic matter. Consider,

nDM
nγ

=

(
n

(0)
DM

n
(0)
γ

)(
1 + δDM
1 + 3Θ0

)
. (4.89)

The ratio of the background number densities is a constant because they both scale the same

way. Therefore, the first fraction is a constant. This implies that the second fraction should

be a constant. Writing to first order, we get

δ = 3Θ0 (4.90)

In the early part of the thesis, adiabatic conditions were defined as those for which δS = 0

in equation (3.63). This is an equivalent way of stating that matter and photons have a

constant ratio of the number densities. This can be seen in the following way. The equations

again hold for both baryon and dark matter. Consider the entropy per baryon,

S

Nb

=
S

nba3
=

s

nb
(4.91)

where ‘S’ is the total entropy and ‘s’ is the entropy density.

s

nb
∼ T 3

nb
∼ ρ

3/4
r

ρm
(4.92)

since, the energy density in radiation scales T 4 and the number density of baryons is propor-

tional to the energy density. We have not considered the perturbation of entropy per photon
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because it does not contribute to the entropy perturbation as both ‘s’ and nγ will scale the

same way. Therefore we have,
δρm
ρm

=
3

4

δρr
ρr

(4.93)

We note that when we use the condition that δ = 3Θ0 and perform the phase space integrals

to calculate energy density perturbations, we get the above condition. This shows that we

can consider adiabatic initial conditions as either constant matter to photon number density

ratio or a constant energy density perturbation as in the last equation above.
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Chapter 5

Inflation

Though the standard model has explained the observations to a remarkable accuracy, there

are certain problems with the model. We briefly discuss some of these problems:

• Horizon problem: We observe as isotropy in the CMB temperature to a certain degree.

This leads to a problem. We see that photons that reached us from causally disconnectd

regions have the same temperature.

• Flatness problem: We observe that the universe at present has curvature constant

K = 0 to a very high accuracy i.e.
ρ

ρcr
' 1

where

ρcr :=
3H2

8πG

So if we consider this ratio at early times at T ∼ 1015GeV , say, it is find tuned to the

order of 10−57 [23]. The problem is that we need to understand as to why the initial

condition is really small.

• Monopole problem: Certain Grand unified theories (GUT) predict the production of

magnetic monopoles. But they are not observed.

• Cosmological constant problem [24]: Let us take that the dark energy contributes to

70% of the total energy today and that the component is described by the cosmological

constant. Then the ratio of energy density of this component to its critical density is

fine tuned to the order of 10−128 at the Planck scale.

• Matter-antimatter asymmetry: Let us assume that there were equal number of matter

and anti-matter particles initially. But today we see only matter around us and no anti-
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matter distributions. So there is some kind of asymmetry which we need to account

for.

Inflation is considered a plausible model because it has been able to solve the first two of

the problems [23, 25, 26]. Inflation is an accelerated state of expansion of the universe. We

wish to have an inflationary model that has the following properties:

• Firstly, as mentioned before, the scale factor undergoes an accelerated expansion. This

is just the statement that that the comoving hubble radius should decrease during the

early phase of the universe. As the comoving hubble radius decreases, particles initially

in causal contact are pushed apart to such large distances that they will not be able to

communicate in the future. This is generally setup by taking H is almost a constant

during inflation, i.e. inflation is characterised by an exponential expansion of the scale

factor. This also says that the energy density is a constant as can be seen from the

FRW equations.

• To solve for the horizon problem and the flatness problem, the scale factor should

increase by a factor of atleast 1028 ([23]). This requires that inflation lasts for a time

when the scale factor grows by at least 67 e-folds since 1028 ∼ e67.

• Such a model has p < −ρ
3
. This implies negative pressure as can be seen from the FRW

equations. This is unlike any familiar matter or radiation components of the universe.

Any model that can account for these properties is a viable inflation model. The simplest

model is that of a scalar field initially in a false vacuum and slowly rolling towards the true

vacuum [27, 28, 29]. Refer Fig.(5). In this case, we can arrange for the potential to be

greater than kinetic energy, which will be an identification of a negative pressure state. A

further advantage of inflation is that it predicts a certain form of the spectrum for gravity

waves when it is studied in the context of inflation. If detected, it could give a peak into

physics at the scale of 1015 GeV[30], many orders of magnitude greater that the current

particle accelerators. The description of inflation through a scalar field is described in the

next section.

5.1 Scalar field Inflation

It is well accepted that inflation is driven by a scalar field. So we will need to write an energy

momentum tensor for the scalar field and study its properties.
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Figure 5.1: A description of the potential for the scalar field - [4]

The action for a scalar field is

S =

∫
[
1

2
φ;µφ;µ − V (φ)]

√
|g|d4x (5.1)

The the energy momentum tensor is given by,

T µν = φ;µφ;ν − [
1

2
φ;µφ;µ − V (φ)]δ;µ

ν ] (5.2)

Immediately, we can write out the energy density and the pressure of the scalar field by

calculating the (0-0) and (i-j) components of the energy momentum tensor. We get,

ρ =
1

2

(
∂φ0

∂t

)2

+ V (φ0) (5.3)

P =
1

2

(
∂φ0

∂t

)2

− V (φ0) (5.4)

The equation of motion in conformal time can be written as the following,

φ̈(0) + 2aHφ̇(0) + a2V ′ = 0 (5.5)

where V ′ is the derivative with respect the field. There are two quantities called slow roll

parameters which describe the scalar field potential and its properties.

εsl =
d

dt

(
1

H

)
=

(
−Ḣ
aH2

)
(5.6)

δsl =
1

H

d2φ/dt2

dφ/dt
=

−1

aH ˙φ(0)
[3aHφ̇(0) + a2V ′] (5.7)
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Also we can calculate the perturbed equation of motion for the scalar field. Taking

φ(~x, t) = φ(0)(t) + δφ(~x, t) (5.8)

We can neglect the term proportional to V ′′ since it is a slow varying field. Then we get the

following equation,

δφ̈+ 2aH(t)δφ̇+ k2δφ = 0 (5.9)

We will analyse this equation after the next section.

5.2 Gravity Waves in inflation

In this section we will consider tensor perturbations of the metric in the context of inflation.

The perturbed metric for tensor perturbations can be written in the following way,
0 0 0 0
0 h+ h− 0
0 h− h+ 0
0 0 0 1

 (5.10)

The spatial part of the metric is divergence free and traceless. When we plug this into

Einstein’s eqaution, we get identical equations for both the scalar functions h+ and h− in

the metric,

ḧ+
2ȧ

a
ḣ+ k2h = 0 (5.11)

Then we can raise these functions to operators and use our knowledge of the quantum har-

monic oscillator in to work out its properties. We will be interested in a certain quantity

called the power spectrum.

The power spectrum is the fourier transform of the auto-correlation function. It can

be written in the following way:∫
dx 〈f(x)f(x+ h)〉 eik.hdh = G(k) (5.12)

All integrals above are 3D integrals. The averaging over x is not explicitly given. We will

explain the equation in the context of the discussion to gravity waves in the subsequent

section. For our example, let us take the first to be f*(x). The equation can be rewritten in

the following way,∫
dx dk′ dk′′ 〈g̃∗(k′) g̃(k′′)〉 eik′.x e−ik

′′.x e−ik
′′.h dh = G(k) (5.13)
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Now all the integrals give delta functions. Now we need to input as to how to evaluate the

two point function in the fourier space. For the metric perturbation variable h, for which we

will calculate an expression similar to the above, we will assume that the averaging is done

by describing h as a field. Then we can quantise each mode in terms of ladder operators

i.e. each mode is described quantum mechanically like a quantum harmonic oscillator. We

notice that the field h satisfies a free massless scalar field in an expanding background.

ḧ+
ȧ

a
ḣ−52h = 0 (5.14)

The first and third term is the free field equation of motion with the second term accounting

for an expanding background. We can go over to the fourier space. Then we get the following

equation:

ḧ ~K +
2ȧ

a
ḣ ~K + k2h ~K = 0 (5.15)

We now make a change of variables,

h̃ ~K =
ah ~K√
16πG

(5.16)

Then the equation of motion becomes,

¨̃h ~K +

(
k2 − ä

a

)
h̃ ~K = 0 (5.17)

Then we expand each mode in terms of the ladder operators,

ˆ̃h ~K(k, η) = v(k, η)â ~K + v∗(k, η)â†~K (5.18)

Then substituting in the eq. (5.17), we get

v̈ +

(
k2 − ä

a

)
v = 0 (5.19)

To solve the above equation, we need the relation between a and η during inflation. For

convenience, we will shift the origin of η to the end of inflation. This implies that η is

negative during inflation. So we have

η ∼ − 1

aH
(5.20)

Then we get:

ȧ = a2H ∼ −a
η

(5.21)

ä

a
∼ 2

η2
(5.22)
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Then the solution to the above equation is

v =
eikη√
2k

[
1− i

kη

]
(5.23)

Then the two point function defined by the following equation gives,

〈ˆ̃h ~K
ˆ̃h ~K′〉 = |v|2(2π)3δ3( ~K − ~K ′) (5.24)

〈ĥ†
~K
ĥ ~K′〉 = (2π)3Ph(k)δ

3( ~K − ~K ′) (5.25)

where we have defined the power spectrum Ph as the following

Ph = 16πG
|v|2

a2
(5.26)

Then for the above case, we know the solution for v. So we get

Ph(k) =
16πG

a2

1

2k3η2
(5.27)

So using, equation (5.20) from above, the power spectrum can be reduced to

Ph(k) =
8πGH2

k3
(5.28)

The function Ph(k) is called the power spectrum of gravitational waves. It is called gravity

waves because the equation of motion is the wave equation with a damping term. This leads

to an important point. The function h exists only when the wavelength is greater than the

hubble radius. When it enters the hubble radius, it gets damped. Therefore, only those

wavelengths which are greater than the hubble radius at the time of photon decoupling, will

have a signature in the CMB analysis.

Now, we can make a comment about the power spectrum of the perturbed scalar field.

If we look at its equation of motion, it is identical to the equation (5.11). So we can follow

the same procedure, without doing a change of variable. Therefore, the power spectrum for

the scalar field is,

Pδφ =
H2

2k3
(5.29)

5.3 Relating scalar field perturbation to metric pertur-

bation

We have given a brief description of the initial fluctuations in the scalar field. We would

like to connect it to the spectrum of scalar perturbation variable φ which will then be the
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seed for initial conditions necessary for studying the radiation epoch. Consider the following

conserved variable on super-horizon scales. This will link the two important variables [31, 32].

ζ :=
ikiδT

0
iH

k2(ρ+ P )
− ψ (5.30)

ζ defined above is gauge-invariant i.e. it can be written in terms of gauge invariant variables

as given below:

ζ =
2

3

H−1Φ̇ + Φ

1 + w
+ Φ (5.31)

This variable is also conserved when the wavelength of the fourier mode is greater than the

hubble radius i.e.

ζ̇ = 0 (5.32)

We can evaluate the variable at horizon crossing and then post inflation and into the radiation

epoch. Horizon crossing is characterised by aH = k. At horizon crossing during inflation,

the first term in equation (5.30) is dominant, therefore the second term can be neglected.

ζ|h.c. = −aH δφ

φ̇0

(5.33)

where the input of pressure and energy density have been taken from the background energy

momentum tensor. After inflation,

ikiδT
0
iH

k2(ρ+ P )
=

4akρrΘ1

k2(4ρ/3)
(5.34)

⇒ ζpost inflation =
−aHΘ1

k
− ψ (5.35)

=
−3

2
ψ (5.36)

For the last equation, we have used the initial condition for Θ1 as mentioned in the section

on initial conditions. But

ψ =
2

3
aH

δφ

φ̇0

(5.37)

from eq.(5.33). Therefore, the power spectra of the scalar perturbation δφ can be related to

the power spectra of the metric perturbation φ,

Pψ = Pφ =
8πGH2

9k3ε
|aH=k (5.38)

The last equation gives the primordial power spectrum of both the variables φ, ψ.
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5.4 Summary of results and spectral indices

So after setting up the differential equations, we sought for their initial conditions. Then

we wrote down the power spectrum of the various variables after quantising the variables.

There are some more points to be made regarding the power spectrum.

A scale free power spectrum is one in which k3P is a constant. Spectral indices charac-

terise primordial deviations from the scale free spectrum. We can rewrite the power spectra

in the following way

Pφ =
8πH2

9k3εm2
planck

|aH=k =
50π2

9k3

(
k

H0

)n−1

(δ2
H)

(
Ωm

D1(a = 1)

)2

(5.39)

Ph =
8πH2

k3m2
planck

|aH=k = ATk
nT −3 (5.40)

AT and δh are amplitudes, D1 is called the growth function. The important quantities are

n, nT . These are called the spectral indices. They characterise deviations from the scale free

spectrum. n = 1 and nT = 0 are the indices for a scale free spectrum. There is a relation

between the spectral indices and the slow roll parameters. so spectral indices give an idea

about the potential of the scalar inflaton. The next two equations can be got from taking

the logarithmic derivative of the power spectrum with respect to log k of equation (5.40).

We get,

nT = −2ε (5.41)

n = 1− 4ε− 2δ (5.42)

The above two quantities are evaluated at the time of horizon crossing.

We will give an outline of how the relation between the spectral indices and the slow roll

parameters is calculated.

5.4.1 Equation for nT

Let us start from the definition of the spectral indices.

Ph =
8πH2

k3m2
planck

|aH=k = ATk
nT −3 (5.43)

Then we have,

ln(Ph) = lnC + 2lnH − 3lnk = lnAT + (nT − 3)lnk (5.44)
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We have collected all the constant into the term C. We can now differentiate with respect

to (ln k). We get,
d2lnH

dlnk
− 3 = nT − 3 (5.45)

Since the derivatives should be evaluated at horizon crossing i.e. at aH = k. So we have,

dlnH

dlnk
=
dlnH

dη

dη

dlnk
(5.46)

During inflation,

η ∼ −1

aH
(5.47)

Therefore,

dη

dlnk
= k

dη

dk
(5.48)

=
1

k2
(5.49)

From the definition of ε ,

ε = − Ḣ

aH2
(5.50)

Then we substitute the above and get,

dlnH

dlnk
=
dlnH

dη

dη

dlnk
(5.51)

=
dH

Hdη

kdη

dk
(5.52)

=
k

H

1

k2
(−aH2ε) (5.53)

= −ε (5.54)

Therefore,

nT = −2ε (5.55)

5.4.2 Equation for n

Again we start from the power spectrum.

Pφ =
8πH2

9k3εm2
planck

|aH=k =
50π2

9k3

(
k

H0

)n−1

(δ2
H)

(
Ωm

D1(a = 1)

)2

(5.56)

This can be reduced in the following way after taking the log on both sides,

2lnH − lnε = lnC + (n− 1)lnK (5.57)
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All the constants have been collected in C above. We can now differential with respect to

lnK. We get,
d[2lnH − lnε]

dlnk
= n− 1 (5.58)

The first term was evaluated when calculating the equation for nT . So carrying that over,

we get,

−2ε − kε̇
dη

dk
= n− 1 (5.59)

−2ε − ε̇

εk2
= n− 1 (5.60)

Now,

ε =
−Ḣ
aH2

(5.61)

We can evaluate this using the background FRW equations for a scalar field and get,

ε =
4πGφ̇2

a2H2
:=

αφ̇2

a2H2
(5.62)

Also

d(ah)−1

dη
= − Ḣ

aH2
+
−ȧ
a2H

(5.63)

= ε− 1 (5.64)

Then

ε̇ =
2αφ̇φ̈

a2H2
+

2αφ̇2(ε− 1)

aH
(5.65)

From the definition of δ,

δ =
1

H

d2φ/dt2

dφ/dt
=

φ̈

aφ̇H
− 1 (5.66)

Substituting all of the above equation into the following equation gives,

−2ε− ε̇

εk2
= n− 1 (5.67)

−2ε− 2(δ + ε) = n− 1 (5.68)

Therefore, we get the equation

n = 1− 4ε− 2δ (5.69)
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Chapter 6

Summary

Classical perturbation theory was applied to the FRW cosmological model under the frame-

work of general relativity. We described the motivation for studying such a theory and then

the formalism. The formalism began with the definition of perturbation. The gauge invari-

ant approach was highlighted. This approach required the definition of gauge transformation

and gauge invariance.

Then the perturbation of the geometry was studied with respect to metric perturbations.

Here the decomposition of the perturbation into three classes, scalar, vector and tensor was

discussed. The quantities were named depending on how the perturbation quantities be-

haved under 3D spatial transformations. Then the perturbation to the energy momentum

tensor was discussed. Finally the perturbed Einstein’s equation were written completely in

terms of gauge-invariant quantities. Some simple solutions were discussed. The important

class of perturbations necessary to study the types of perturbations we were interested in

was the scalar perturbations

To model the actual universe, a more detailed approach was necessary. It was convenient

at this point to introduce the conformal gauge and work in this particular coordinate sys-

tem. The matter was described to be made up of particles that are statistically distributed

according to phase space distribution function. The distribution functions in the presence

of metric perturbations and interactions with other components was described by the Boltz-

mann equation. The equation is an evolution equation. It was studied for all the components

in terms of their Fourier modes. Apart from the Boltzmann equation, we also have the per-

turbed Einstein’ equations.
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Once all the differential equations were obtained for the perturbation variables, we needed

initial conditions. We took large wavelength and early time limit to study the initial condi-

tions. We then obtained constraints among all the variables. We were then lead to a natural

question as to how these perturbations originated?

The source for the origin of the fluctuations lead to the study of inflation. The power

spectrum was calculated for the initial conditions by assuming that two point functions are

calculated quantum mechanically.

Finally, the relation between the power spectrum of the scalar field fluctuations to that

of the metric perturbations was described. We also mentioned important quantities called

spectral indices that quantify the deviations of the power spectrum about the scale-free

spectrum.

Issues not addressed: In this thesis we have not addressed the following points: evolution

of the differential equations and relation to current matter structure, anisotropies in the

CMB, alternative inflationary models [33, 34, 35, 36], quantum to classical transition of

fluctuations and corrections from quantum gravity theories in the trans-planckian region.

Quantum Gravity Corrections[37, 38, 39]

Inflationary Models Future Directionsoo

OO

��

// Large Scale Structure

CMB Anisotropies[40]

62



Bibliography

[1] Taken from http://conferences.fnal.gov/lp2003/forthepublic/cosmology/index.html.

[2] Taken from http://www.fas.org/irp/imint/docs/rst/Sect20/A9.html.

[3] Taken from http://en.wikipedia.org/wiki/Cosmic inflation.

[4] Taken from http://www.fas.org/irp/imint/docs/rst/Sect20/A10.html.

[5] James Cramer Anderson. The Friedmann Equations, Report in General Relativity,

Cosmology and Classical Gauge Theories. 1999.

[6] S.Shechtman et al. Strip-mining the southern sky: Skratching the surface. CFA preprint

No. 3385, 1992.

[7] ER Harrison. Standard Model of the Early Universe. Annual Reviews in Astronomy

and Astrophysics, 11(1):155–186, 1973.

[8] Neal Jackson. The hubble constant. Living Reviews in Relativity, 2007.

[9] K.A. Olive, G. Steigman, and T.P. Walker. Primordial Nucleosynthesis: Theory and

Observations. Journal reference: Phys. Rept, 333:389–407, 2000.

[10] A.W.Jones and A.N.Lasenby. The cosmic microwave background. Living Reviews in

Relativity, 1998.

[11] R.H. Brandenberger. Quantum fluctuations as the source of classical gravitational per-

turbations in inflationary universe models. Nuclear Physics B, 245:328–342, 1984.

[12] R. Brandenberger, R. Kahn, and W.H. Press. Cosmological perturbations in the early

universe. Physical Review D, 28(8):1809–1821, 1983.

[13] B. Bednarz. Difficulties in synchronous-gauge density fluctuations. Physical Review D,

31(10):2674–2676, 1985.

63



[14] J.M. Bardeen. Gauge-invariant cosmological perturbations. Physical Review D,

22(8):1882–1905, 1980.

[15] H. Kodama and M. Sasaki. Cosmological Perturbation Theory. Progress of Theoretical

Physics Supplement, 78:1, 1984.

[16] VF Mukhanov, HA Feldman, and RH Brandenberger. Theory of cosmological pertur-

bations. Physics Reports, 215(5-6):203–333, 1992.

[17] Scott Dodelson. Modern Cosmology. Academic Press, 2003.

[18] T.Padhmanabhan. Theoretical Astrophysics Vol.3. Cambridge, 2002.

[19] JM Stewart. Perturbations of Friedmann-Robertson-Walker cosmological models. Clas-

sical and Quantum Gravity, 7:1169–1180, 1990.

[20] R. Durrer. Cosmological perturbation theory. Arxiv preprint astro-ph/0402129, 2004.

[21] Micheal S.Turner and Edward Kolb. The Early Universe. Westview Press, 1994.

[22] H.Feldman R.Brandenberger, V.Mukhanov. Classical and quantum theory of perturba-

tions in inflationary universe models.

[23] A.H. Guth. Inflationary universe: A possible solution to the horizon and flatness prob-

lems. Physical Review D, 23(2):347–356, 1981.

[24] Sean M. Carroll. The cosmological constant. Living Reviews in Relativity, 2001.

[25] AD Linde. Chaotic inflation. Physics Letters B, 129(3-4):177–181, 1983.

[26] R.H. Brandenberger, H.A. Feldman, and J.H. MacGibbon. Thermal fluctuations in new

inflation. Physical Review D, 37(8):2071–2077, 1988.

[27] R.H. Brandenberger. Some key issues confronting inflationary cosmology. Arxiv preprint

astro-ph/9609045.

[28] A.H. Guth and S.Y. Pi. Quantum mechanics of the scalar field in the new inflationary

universe. Physical Review D, 32(8):1899–1920, 1985.

[29] R.H. Brandenberger. Quantum field theory methods and inflationary universe models.

Reviews of Modern Physics, 57(1):1–60, 1985.

64



[30] A. Albrecht, P.J. Steinhardt, M.S. Turner, and F. Wilczek. Reheating an Inflationary

Universe. Physical Review Letters, 48(20):1437–1440, 1982.

[31] Robert Brandenberger and Ronald Kahn. Cosmological perturbations in inflationary-

universe models. Phys. Rev. D, 29(10):2172–2190, May 1984.

[32] P. Steinhardt J. Bardeen and M. Turner. Spontaneous creation of almost scale-free

density perturbations in an inflationary universe. Phys. Rev. D28, 1983.

[33] Patrick Peter Jerome Martin, Martin Lemoine, editor. Inflationary Cosmology. Springer,

2008.

[34] A.H. Guth. Inflation and Eternal Inflation. Arxiv preprint astro-ph/0002156, 2000.

[35] PJE Peebles. Open Problems in Cosmology. Arxiv preprint astro-ph/0311435, 2003.

[36] S. Hollands and R.M. Wald. Essay: An Alternative to Inflation. General Relativity and

Gravitation, 34(12):2043–2055, 2002.

[37] Dragan Huterer Joshua A.Frieman, Micheal S.Turner. Dark energy and the accelerating

universe. Arxiv preprint astro-ph/0803.0982v1, 2008.

[38] R. Brandenberger. Topics in Cosmology. Arxiv preprint hep-th/0701157, 2007.

[39] GW Gibbons. Cosmological Evolution of the Rolling Tachyon. Arxiv preprint hep-

th/0204008, 2002.

[40] Ruth Durrer. Theory of cmb anisotropies. Technical report, University of Geneva, 2002.

65


