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Abstra
tThis thesis has three parts. In the �rst part we take an irredu
ible 
urve C in
P

2. Then we use the Veronese map,(σ) to map it to P
5 and 
ompute the resolution of

σ(C).In the se
ond part we look at redu
ed interse
tion of two distin
t 
urves C and
C′ in P

2. And �nd the resolution of σ(C ∩ C′). In the third part we 
ompute expli
itDi�erential graded algebra for one of the resolutions 
omputed ealier.Part 1Let C be a smooth irredu
ible homogeneous 
urve in P
2. Then we know that C isgiven by zeros of an irredu
ible homogeneous polynomial in 3-variables, i.e., C =

Z(f(x0, x1, x2)), f ∈ K [x0, x1, x2] is an irredu
ible homogeneous polynomial.Consider the embedding on P
2 in P

5 via the Veronese embedding σ, where σ(x, y, z) =
(x2, xy, xz, y2, yz, z2), this also gives an embedding of C in P

5.In this part of the thesis, we look at S/Iσ(C), the homogeneous 
oordinate ring of
σ(C) in P

5 and expli
itly 
al
ulate the minimal graded free resolution of S/Iσ(C),where S is the homogeneous 
oordinate ring of P
5.Let the degree of C in P

2 be d,i.e, C be de�ned by an irredu
ible homogeneous poly-nomial, `f ' of degree d in K[x0, x1, x2]. Depending on the parity of d, we get thefollowing two results.Theorem 1: Let C be an irredu
ible 
urve of even degree say d = 2m, m ≥ 1.The homogeneous 
oordinate ring S/Iσ(C) of σ(C) in P
5 has the following minimalgraded free resolution:

0 →S(−m − 4)⊕3 α4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 α3→
α3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 α2→ S(−2)⊕6 ⊕ S(−m)

α1→ S → S/Iσ(C) → 0where αi's are matri
es of homogeneous polynomial entries with no non-zero s
alars[See Se
tion 2.1℄Theorem 2: Let C be an irredu
ible 
urve of odd degree say d = 2m − 1, for m ≥ 2.The homogeneous 
oordinate ring S/Iσ(C) of σ(C) in P
5 has the following minimalgraded free resolution:

0 →S(−m − 4)
β4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 β3→

β3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 β2→ S(−2)⊕6 ⊕ S⊕3(−m)
β1→ S → S/Iσ(C) → 0where βi's are matri
es of homogeneous polynomial entries with no non-zero s
alars[See Se
tion 2.2℄Corollary 1: Let C be a smooth, irredu
ible plane 
urve of degree d and L be theline bundle OC(2).(a)S/Iσ(C) is Gorenstein if `d' is odd and when `d' is even S/Iσ(C) is Cohen-Ma
ulaybut not Gorenstein.(b)(C, L) satis�es property N0 for all d ≥ 2.(
)(C, L) satis�es N1 i� d = 3, 4.Part 2Consider two distin
t irredu
ible plane proje
tive 
urves, C and C′ of degrees d and d′respe
tively. Then by Bezout's theorem we know that C and C′ interse
t at d.d′ points6




ounted with multipli
ity.In the se
ond problem, we expli
itly write down the minimal graded free resolution of
S/Iσ(C∩C′), where Iσ(C∩C′) is the ideal sheaf of σ(C ∩ C′). Depending on the paritiesof d and d′, we get the following three results.Theorem 3: Let C, C′ be two irredu
ible 
urves of even degree say d = 2m and
d′ = 2m′, m, m′ ≥ 1. The homogeneous 
oordinate ring S/Iσ(C∩C′) of σ(C ∩ C′) in P

5has the following minimal graded free resolution.
0 →S(−m − m′ − 4)⊕3 P5→ S(−m − 4)⊕3 ⊕ S(−m′ − 4)⊕3 ⊕ S(−m − m′ − 3)⊕8 P4→

P4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 ⊕ S(−m′ − 3)⊕8 ⊕ S(−m − m′ − 2)⊕6 P3→

P3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 ⊕ S(−m′ − 2)⊕6 ⊕ S(−m − m′)
P2→

P2→ S(−2)⊕6 ⊕ S(−m) ⊕ S(−m′)
P1→ S → S/Iσ(C∩C′) → 0where Pi's are matri
es with homogeneous polynomial entries with no non-zero s
alars[SeeSe
tion 3.1℄Theorem 4: Let C, C′ be two irredu
ible 
urves of degrees say d = 2m and d′ =

2m′ − 1, m, m′ ≥ 2. Then the homogeneous 
oordinate ring S/Iσ(C∩C′) of σ(C ∩ C′) in
P

5 has the following minimal graded free resolution.
0 →S(−m − m′ − 4)

Q5→ S(−m − 4)⊕3 ⊕ S(−m′ − 4) ⊕ S(−m − m′ − 2)⊕6 Q4→

Q4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 ⊕ S(−m′ − 2)⊕6 ⊕ S(−m − m′ − 1)⊕8 Q3→

Q3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 ⊕ S(−m′ − 1)⊕8 ⊕ S(−m − m′)⊕3 Q2→

Q2→ S(−2)⊕6 ⊕ S(−m) ⊕ S(−m′)⊕3 Q1→ S → S/Iσ(C∩C′) → 0whereQi's are matri
es with homogeneous polynomial entries with no non-zero s
alars[SeeSe
tion 3.2℄Theorem 5: Let C and C′ be two irredu
ible plane 
urves of odd degree say d = 2m−1and d′ = 2m′ − 1 for m, m′ ≥ 2. The 
oordinate ring S/Iσ(C∩C′) of σ(C ∩C′) in P
5 hasthe following minimal graded free resolution.

0 →S(−m − m′ − 3)⊕3 R5→ S(−m − 4) ⊕ S(−m′ − 4) ⊕ S(−m − m′ − 2)⊕8 R4→

R4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 ⊕ S(−m′ − 2)⊕6 ⊕ S(−m − m′ − 1)⊕6 R3→

R3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 ⊕ S(−m′ − 1)⊕8 ⊕ S(−m − m′ + 1)
R2→

R2→ S(−2)⊕6 ⊕ S(−m)⊕3 ⊕ S(−m′)⊕3 R1→ S → S/Iσ(C∩C′) → 0whereRi's are matri
es with homogeneous polynomial entries with no non-zero s
alars[SeeSe
tion 3.3℄Corollary 2: S/Iσ(C∩C′) is Gorenstein if degrees of C and C′ are of di�erent pari-ties and is Cohen-Ma
ulay but not Gorenstein otherwise.Part 3 7



Consider the resolution in Theorem 2. Namely,
0 →S(−m − 4)

β4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 β3→

β3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 β2→ S(−2)⊕6 ⊕ S⊕3(−m)
β1→ S → S/Iσ(C) → 0Then

P • .0 → S(−m − 4)
β4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 β3→

β3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 β2→ S(−2)⊕6 ⊕ S⊕3(−m)
β1→ S → S/Iσ(C) → 0is a symmetri
 a
y
li
 
omplex.In [KM℄, the author proves that any length 4, symmetri
 resolution has a DG Algebrastru
ture. Hen
e the above resolution has a DG Algebra stru
ture.Theorem 3.1: We give an expli
it DG Algebra stru
ture to the above a
y
li
 
omplex

P • .

8
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1Preliminaries
1.1 The d-Uple embeddingLet P

n be n-dimensional proje
tive spa
e over a �eld K. Then for d > 0, we 
an de�nea map σd: P
n → P

N , where N =
`

n+d

n

´

− 1, su
h that for P̄ ∈ P
n,

σd(P̄ ) =
`

M0(P̄ ), . . . , MN (P̄ )
´where Mi's are degree d monomials whi
h form a basis of the ve
tor spa
e of all ho-mogeneous polynomials of degree d in n + 1 variables.This map whi
h is an embedding, is 
alled the d-Uple embedding.Now for n and N as above de�ne a map, θ su
h that

θ : K[y0, . . . , yN ] → K[x0, . . . , xn]

θ(yi) = Mi(x0, . . . , xn)Then ker θ is a homogeneous prime ideal of K[y0, . . . , yN ] and Z(ker(θ)) is a proje
tivevariety of P
N and Z(ker(θ)) = σd(P

n).(See [H℄ for proof of the statement.)The 2-uple embedding of P
2 is 
alled the Veronese Embedding, and σ2(P

2) is 
alledthe Veronese Surfa
e. Now let us look at the map θ with n = 2 and N = 5. So we have
θ: K[y0, . . . , y5] → K[x0, x1, x2]To see this map more 
learly, we will 
hange the notations.Let us denote, K[y0, . . . , y5] as K[x00, x01, x02, x11, x12, x22] and
θ(xij) = xi.xj for 0 ≤ i ≤ j ≤ 2Then we see thatker(θ) = 〈∆ij : 0 ≤ i ≤ j ≤ 2〉, where

∆00 = x11x22 − x2
12

∆01 = x01x22 − x12x02

∆02 = x01x12 − x02x11

∆11 = x00x22 − x2
02

∆12 = x00x12 − x02x01

∆22 = x00x11 − x2
01.

(1.1)
1



CHAPTER 1. PRELIMINARIESHen
e we get that, {∆ij = 0 : 0 ≤ i ≤ j ≤ 2} are the 6 de�ning equations of theVeronese Surfa
e; In fa
t Z(ker(θ)) = σ(P2) as a proje
tive subvariety of P
5

2



1.2. SYZYGIES AND MINIMAL FREE RESOLUTIONS1.2 Syzygies and minimal free resolutions
Note that as we will only look at homogeneous 
oordinate rings of proje
tive vari-eties and �nitely generated modules over them, our de�nitions and notations will beadapted a

ordingly. We know that the homogeneous 
oordinate ring of the proje
tivespa
e, P

n
K is the polynomial ring, S = K[x0, . . . , xn] in n + 1 variables, with all thevariables of degree one.Let M = ⊕d∈ZMd be a �nitely generated graded S-module with the dth graded
omponent Md. Now as M is �nitely generated, ea
h Md is �nite dimensional K-ve
torspa
e.For any graded module, M , M(a) is the module M shifted( or `twisted') by a, where

a ∈ Z:
M(a)d = Ma+dA module M over a graded ring S is 
alled graded free S-module if M is de
omposableas a dire
t sum of free S modules: M = ⊕iS(ai).Given homogeneous elements mi ∈ M of degree ai that generate M as an S-module,we de�ne a map from graded free S module F0 = ⊕iS(−ai) onto M , by sending the

ai
th degree generators to mi . Now if N is the kernel of this map, then the elementsof N are 
alled syzygies of M . We also know that N is �nitely generated graded

S-module, hen
e we 
an de�ne a map onto N from another graded free S-module, F1in same way. Continuing this way we 
an 
onstru
t a sequen
e of maps of graded freemodule. This sequen
e is 
alled a graded free resolution of M .A 
omplex of graded S-modules
. . . → Fi

δi→ Fi−1 → . . .is 
alled minimal if for ea
h i, δi (Fi) ⊂ mFi−1, where m = (x0, . . . , xn), the onlyhomogeneous maximal ideal of S.Now we are in a position to state a theorem, whi
h we will use extensively in the�rst two problems.Theorem 1.1[OP℄ : The homogenous 
oordinate ring S/Iσ(P2) of σ(P2) in P
5 hasthe following minimal graded free resolution:

0 → S(−4)⊕3 M3→ S(−3)⊕8 M2→ S(−2)⊕6 M1→ S → S/Iσ(P2) → 0 (1.2)where,
M1 =

ˆ

∆00, ∆01, ∆02, , ∆11, ∆12, , ∆22

˜ (1.3)3



CHAPTER 1. PRELIMINARIES
M2 =

2

6

6

6

6

6

6

4

x02 0 x01 0 0 x00 0 0
−x12 x02 −x11 x01 0 0 x00 0
x22 0 x12 x02 x01 x02 0 x00

0 −x12 0 −x11 0 −x11 −x01 0
0 x22 0 0 −x11 x12 x02 −x01

0 0 0 x22 x12 0 0 x02

3

7

7

7

7

7

7

5

(1.4)and let
M2 =

ˆ

W1, W2, W3, W4, W5, W6, W7, W8

˜

M3 =

2

6

6

6

6

6

6

6

6

6

6

4

x01 −x00 0
−x11 x01 0
−x02 0 x00

x12 −x02 0
−x22 0 x02

0 x02 −x01

0 −x12 x11

0 x22 −x12

3

7

7

7

7

7

7

7

7

7

7

5

(1.5)and let
M3 =

ˆ

G1, G2, G3

˜

4



1.3. NP -PROPERTY1.3 Np-propertyLet X be a smooth irredu
ible proje
tive 
urve of genus g and L be an very ampleline bundle on X generated by global se
tions. Thus L determines a morphism
ΦL : X −→ P

`

H0(L)
´

= P
rwhere r = dim

`

H0(L)
´

− 1. If L is very ample then ΦL is an embedding.Let S denote the symmetri
 algebra, Sym.H0(L) on H0(L). So S is a homogeneous
oordinate ring of P
r. Consider the graded ring

R = R(L) = ⊕mH0(X, Lm)asso
iated to L. Then R is in a natural way a �nitely generated module over S, andso we 
an talk about its minimal graded free resolution.F• → R → 0 of R; i.e.,
0 → Fr−1

fr−1
→ . . . → F1

f1→ F0 → R → 0 (1.6)is exa
t where ea
h Fi is a dire
t sum of twists of S, that is,
Fi = ⊕jS(−ai,j),and hen
e in parti
ular the maps in equation(1.6) are given by matri
es of homo-geneous forms. Minimality in this 
ontext means that none of the entries in thesematri
es are non-zero 
onstants.De�nition: [L℄ For a integer p ≥ 0, we say that the line bundle L satis�es Property(Np) if

F0(L) = S and Fi(L) = ⊕S(−i − 1) for all 1 ≤ i ≤ pThe above de�nition means the following:
L sati�es N0 =⇒ ΦL embeds X as a proje
tively normal 
urve;
L sati�es N1 =⇒ N0 holds for L, and the homogeneous ideal

I of X is generated by quadri
s;
L satis�es N2 =⇒ N0 and N1 hold for X, and the module ofsyzygies among the quadri
s generators Qi ∈ I isspanned by relations of the form

P

LiQi = 0where the Li are linear polynomials;... ...
L sati�es Np =⇒ L satis�es Np−1 and the syzygiesamongst the generators of Fp−1 arelinear polynomials

5



CHAPTER 1. PRELIMINARIES1.4 Di�erential graded(DG) algebrasLet S be a 
ommutative ring.Let
P• . . . → P2 → P1 → P0 → 0be an a
y
li
 
omplex of proje
tive S-modules with P0 = S. We 
an 
onsider P• as agraded module equipped with an endomorphism, ∂ : P• → P• of degree −1 satisfying

∂ ◦ ∂ = 0.In [BH℄, the authors give the following de�nition.The resolution, (P•, δ) is said to be a Di�erential graded(DG) algebra (or is saidto have a DG algebra stru
ture) if we 
an de�ne an asso
iative multipli
ation on P•satisfying the following 
onditions,
(i) Pn.Pm ⊂ Pn+m ∀n, m ≥ 0;
(ii) 1 ∈ P0 a
ts as the unit element i.e 1.a = a.1 = a ∀a ∈ P•;

(iii) a.b = (−1)deg(a).deg(b)b.a, for all homogeneous elements, a, b ∈ P•;
(iv) a.a = 0 for all odd degree elements, a;

(v) ∂(a.b) = ∂(a).b + (−1)deg(a)a.∂(b), for all homogeneous elements a, b ∈ P•.Proposition:[A℄ If A is a proje
tive resolution of a R-module, M , su
h that A0 = Rand An = 0 for n ≥ 4, then A has a stru
ture of DG algebra.Re
all the resolution used in the previous se
tion.
0 → S(−4)⊕3 M3→ S(−3)⊕8 M2→ S(−2)⊕6 M1→ S → S/Iσ(P2) → 0Let us 
all the above resolution P•. Noti
e that this resolution is of length 3, andhen
e by the earlier proposition this 
an be given a DG-algebra stru
ture.So we have P• : 0 → P3 → P2 → P1 → P0 = S → 0 where,rank(P1)= 6, with {ei : i = 1, . . . , 6} as the basis of P1rank(P2)= 8, with {ews : s = 1, . . . , 8} as the basis of P2rank(P3)= 3, with {egt : t = 1, 2, 3} as the basis of P3.Now with the following 
onditions,

(i) ei.ej =
X

s=1,...,8

Ai,jsews

(ii) ei.ews =
X

t=1,2,3

Bi,st.egt

(iii) ei.egt = 0 ∀ i = 1, . . . , 6 and t = 1, 2, 3

(iv) ews .ewt = 0 ∀ s, t = 1, . . . , 8

(v)
∂(e2i+j+1) = ∆ij i 6= 2, 0 ≤ i ≤ j ≤ 2
∂(e6) = ∆22

(vi) ∂(ews) =
X

i=1,...,6

Wsi
.ei

(vii) ∂(egt) =
X

s=1,...,8

(−1)t+1Gts .ews , 6



1.4. DIFFERENTIAL GRADED(DG) ALGEBRASand with [Ai,j ],[Bi,j ] matri
es from Chapter 4, we 
an 
he
k that P• is a DG-algebra.These stru
ture will be used extensively in the third part of this thesis.

7





2Resolutions of plane 
urves in theVeronese embedding.Re
all from 
hapter 1, that the map
xij 7→ xi.xj for 0 ≤ i ≤ j ≤ 2 indu
es a homomorphism

θ : K[x00, x01, x02, x11, x12, x22] → K[x0, x1, x2] of graded ringsFrom this we get the following lemma.Lemma 2.1: If g ∈ K[x0, x1, x2] is a homogeneous polynomial of even degree(say
2n). Then g ∈ Im(θ), whi
h means that the subalgebra Im(θ) of K[x0, x1, x2] is gen-erated by even polynomials.Proof: Let

g =
X

i+j+k=2n

bijkxi
0x

j
1x

k
2 (2.1)Depending on the parities of i, j, k, we de�ne some homogeneous polynomials in Susing the 
oe�
ients bijk appearing in (2.1) i.e., g = gI + gII + gIII + gIV with;

gI =
X

i+j+k=2n,
i,j,k all even bijkxi

0x
j
1x

k
2

gII =
X

i+j+k=2n,
i even, j,k odd bijkxi

0x
j
1x

k
2

gIII =
X

i+j+k=2n,
j even, i,k odd bijkxi

0x
j
1x

k
2

gIV =
X

i+j+k=2n,
k even, i,j odd bijkxi

0x
j
1x

k
2Case I : When i, j, k are all even, 
onsider

GI =
X

i+j+k=d
i,j,k even bijkx

i
2

00x
j
2

11x
k
2

22Noti
e that θ(GI) = gI 9



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.Case II : When i is even, j and k odd, 
onsider
GII =

X

i+j+k=2n
i even

j,k odd bijkx
i
2

00x
j−1

2

11 x
k−1

2

22 x12Similarly as in Case I, θ(GII) = gIICase III : When i,k are odd and j is even, 
onsider
GIII =

X

i+j+k=2n
j even
i,k odd bijkx

i−1

2

00 x
j
2

11x
k−1

2

22 x02

θ(GIII) = gIIICase IV : When i,j are odd and k is even 
onsider,
GIV =

X

i+j+k=2n
k even
i,j odd bijkx

i−1

2

00 x
j−1

2

11 x
k
2

22x01

θ(GIV ) = gIVNow let
G = GI + GII + GIII + GIVThen θ(G) = g.Hen
e g ∈ Im(θ).From Se
tion (1.1), we also know that for the embedding, P

2 σ
→֒ P

5, Z(ker(θ)) =
σ(P2).Let C be a smooth(or irredu
ible) plane 
urve. Hen
e C is given by a irredu
ible poly-nomial in three variables. The Veronese embedding of P

2 in P
5 gives an embedding

C
σ
→֒ P

5. We will 
ompute the syzygies of the homogeneous ideal Iσ(C) of this em-bedding of C in P
5 using the resolution of the Veronese embedding talked about inChapter 1 . Let C be de�ned by the polynomial f of degree d in three variables. Let

C = Z (f(x0, x1, x2)) where, f =
X

i+j+k=d

aijkxi
0x

j
1x

k
2

10



2.1. DEGREE OF C IS EVEN2.1 Degree of C is evenWe have d is even(say 2m) and
f =

X

i+j+k=2m

aijkxi
0x

j
1x

k
2From Lemma 2.1, we get that f ∈ Im(θ). Let F be a homogeneous polynomial in

S su
h that θ(F ) = f .Lemma 2.2: Let G ∈ S su
h that, G homogeneous and Z(θ(F )) ⊂ Z(θ(G)) ⊂ P
2.Then G ∈< F, ∆i,j : 0 ≤ i ≤ j ≤ 2 >, where 〈F, ∆ij : 0 ≤ i ≤ j ≤ 2〉 is the homoge-neous ideal generated by F and ∆ij in S. i.e isProof : Let θ(G) = g, then g is a homogeneous polynomial of even degree and,

Z(f) ⊂ Z(g)Hen
e g ∈ (f). As C is an irredu
ible 
urve f is irredu
ible, hen
e,
g = f.h for some h homogeneous in K[x0, x1, x2]Now f and g are even degree implies that h is of even degree hen
e, by Lemma(2.1)we 
an �nd a homogeneous H ∈ S, su
h that θ(H) = h.Thus θ(G) = θ(F ).θ(H) = θ(F.H),

⇒ θ(G − F.H) = 0

⇒ G − F.H ∈ ker(θ)

⇒ G − F.H =
X

0≤i≤j≤2

∆ijSij for some Sij ∈ S, Sij homogeneous
⇒ G ∈< F, ∆ij : 0 ≤ i ≤ j ≤ 2 >This 
ompletes the proof of the lemma.From now on we will denote M1, M2 and M3 from equations (1.4), (1.5) of se
tion(1.2)as below: The ith row of M2 will be Wi and the jth of M3 will be Gj , for 1 ≤ i ≤ 8and j = 1, 2, 3. So we have,

M2 =
ˆ

W1, W2, W3, W4, W5, W6, W7, W8

˜ (2.2)
M3 =

ˆ

G1, G2, G3

˜ (2.3)Theorem 2.1: Let C be an irredu
ible 
urve of even degree say d = 2m, m ≥ 1. Thehomogeneous 
o-ordinate ring S/Iσ(C) of σ(C) in P
5 has the following minimal freeresolution.

0 →S(−m − 4)⊕3 α4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 α3→
α3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 α2→ S(−2)⊕6 ⊕ S(−m)

α1→ S → S/Iσ(C) → 0
(2.4)where αi's are as follows,

α1 =
ˆ

[M1] , F
˜ (2.5)If

α′
2 =

2

6

6

6

6

6

6

4

−F 0 0 0 0 0 ∆00

0 −F 0 0 0 0 ∆01

0 0 −F 0 0 0 ∆02

0 0 0 −F 0 0 ∆11

0 0 0 0 −F 0 ∆12

0 0 0 0 0 −F ∆22

3

7

7

7

7

7

7

5 11



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.write α′
2 as

α′
2 =

ˆ

U00, U01, U02, U11, U12, U22

˜TThen
α2 =

ˆ

W ′
1, W ′

2, W ′
3, W ′

4, W ′
5, W ′

6, W ′
7, W ′

8, U00, U01, U02, U11, U12, U22

˜(2.6)with
W ′

i =

»

Wi

0

–

∀i = 1, . . . , 8with Wi as in (2.1)That is,
α2 =

»

[M2] −FI6

0 [M1]

–If
Hi =

» ˆ

F.I8
i

˜

[Wi]

–with
Ik

i =
h

0, 0, . . . ,
ith position

1 , 0, . . . , 0

iT is a k × 1 ve
torThen, α3 =
ˆ

G′
1, G′

2, G′
3, H1, . . . , H8

˜ (2.7)where
G′

i =

»

Gi

[0̄]

– for i = 1, 2, 3where Gi as in (2.2) and [0̄] is a 0 matrix of appropriate dimension.That is,
α3 =

»

[M3] FI8

0 [M2]

–Finally,
α4 =

» „ ˆ

−F.I3
1

˜

[G1]

«

,

„ ˆ

−F.I3
2

˜

[G2]

«

,

„ ˆ

−F.I3
3

˜

[G3]

« – (2.8)That is,
α4 =

»

−FI3

[M3]

–Proof : From Lemma 2.2, it is 
lear that
α1 =

ˆ

∆00, ∆01, ∆02, ∆11, ∆12, ∆22, F
˜Now 
onsider B ∈ S homogenous and

A =
ˆ

a00, a01, a02, a11, a12, a22

˜where aij ∈ S homogeneous su
h that
X

i,j

aij .∆ij + B.F = 0

⇒ θ(B.F ) = 0

⇒ θ(B).f = 0

⇒ B ∈< ∆ij : 0 ≤ i ≤ j ≤ 2 > 12



2.1. DEGREE OF C IS EVENHen
e, B =
P

(bij∆ij) for some homogeneous polynomials bij ∈ S.
⇒
X

(aij + bij .F ).∆ij = 0Now if aij∆ij + bij .F = 0 for all (aij , bij) then su
h a [A, B] is generated by Uij . Ifnot then,
⇒
P

(aij + bijF ) ∈ Syz1(< ∆ij : 0 ≤ i ≤ j ≤ 2 >)Hen
e, the relations between ∆ij and F are generated by Uij : 0 ≤ i ≤ j ≤ 2 and
W ′

k : k = 1, . . . , 8.Hen
e we get,
α2 =

ˆ

W ′
1, W ′

2, W ′
3, W ′

4, W ′
5, W ′

6, W ′
7, W ′

8, U00, U01, U02, U11, U12, U22

˜Now 
onsider
A =

ˆ

a00, a01, a02, a11, a12, a22

˜T
, aij ∈ S, aij homogeneous ∀0 ≤ i ≤ j ≤

2 and,
B =

ˆ

(bk)
˜

, bk ∈ S, homogeneoussu
h that
X

0≤i≤j≤2

aij .Uij +
X

1≤k≤8

bk.W ′
k = 0

⇒
X

i,j

aij∆ij = 0as the last 
olumn of ea
h W ′
k, k = 1, . . . , 8 is zero and the last 
olumn of Uij is ∆ijfor 0 ≤ i ≤ j ≤ 2
⇒ A ∈< Wk : k = 1, . . . , 8 >Let A =

P

k
(ckWk), for some homogeneous polynomial, ck ∈ S

⇒ −
X

k

ckWkF.Id6 +
X

k

bkWk = 0where Idn is a n × n identity matrix.
⇒
X

i,k

Wk(−ckF + bk) = 0Hen
e if −ck.F +bk = 0 for all k, this implies bk = ck.F for all k then su
h (bk, aij)are generated by<
ˆˆ

F.[I8
i ]
˜

, [Wi]
˜

> for i = 1, . . . , 8. If not then, [(−ckF + bk)Ik]k=1,...,6 ∈Syz1(< Wj : j = 1, . . . , 8 >).Hen
e the relations between W ′
k and Uij are generated by G′

i and Hk. Hen
e weget
α3 =

ˆ

G′
1, G′

2, G′
3, H1, . . . , H8

˜Now 
onsider
A =

ˆ

a1, a2, a3, a4, a5, a6, a7, a8

˜T
, ai ∈ S, homogeneous for i =

1, . . . , 8

B =
ˆ

(bk)
˜, bk ∈ S, homogeneous for k = 1, 2, 3 su
h that

X

i

ai.Hi +
X

k

bk.G′
k = 0

⇒
X

i

aiWi = 0, 13



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.as the last six 
olumns of ea
h G′
k, k = 1, 2, 3 are zero.

⇒ A ∈< Gk : k = 1, 2, 3 >Let A =
P

k
(ckGk), for some homogeneous polynomial, ck ∈ S.Then we have, P

k
(ckGk).(F.Id8) +

P

k
bk.Gk = 0

⇒
X

k

(ck.F.Id8 + bk) Gk = 0Now if ck.F + bk = 0 for every k, then bk = −ck.F for all p, then we 
an say that
([bp], [cp]) is generated by <

`ˆ

−F.I3
i

˜

,
ˆ

I3
i

˜´

: i = 1, 2, 3 >, hen
e ([bp], [ak]) is gener-ated by <
`ˆ

−F.I3
i

˜

, [Gi]
´

i = 1, 2, 3 >Also from Theorem 1.1, we have that G′
k : k = 0, 1, 2 are independent. Hen
eSyz1(< G′

i, Hj : i = 1, 2, 3 and j = 1, . . . 8 >) =<
`ˆ

−F.I3
i

˜

, [Gi]
´

: i = 1, 2, 3 >Hen
e,
α4 =

"

„ ˆ

−F.I3
i

˜

[Gi]

«

1≤i≤3

#

14



2.2. DEGREE OF C IS ODD2.2 Degree of C is oddRe
all
f =

X

i+j+k=d

aijkxi
0x

j
1x

k
2Now let f0 = x0.f , f1 = x1.f , f2 = x2.f . Then fn is of even degree and hen
ea

ording to Lemma 2.1, fn ∈ Im(θ) for n = 0, 1, 2. We have the following lemma.Lemma 2.3: Z(f) = Z(f0) ∩ Z(f1) ∩ Z(f2).Proof : Clearly, Z(f) ⊂ Z(f0) ∩ Z(f1) ∩ Z(f2)Also if ∃ p̄ = (p0, p1, p2) ∈ Z(f0) ∩ Z(f1) ∩ Z(f2) and p̄ /∈ Z(f). Then p̄ ∈

Z(xi) ∀i = 0, 1, 2. This implies pi = 0∀i = 0, 1, 2. But this 
ontradi
ts the fa
t that
p̄ ∈ P

2. Hen
e Z(f) = Z(f0) ∩ Z(f1) ∩ Z(f2).In the same way as proof of Lemma 2.1, we split f in four parts depending on theparities of i,j,k.Case I: i, j, k are all odd. LetLet hI =
X

i,j,k

aijkx
i−1

2

00 x
j−1

2

11 x
k−1

2

22

F0
I =

X

i+j+k=d

aijkx
i+1

2

00 x
j−1

2

11 x
k−1

2

22 x12

F1
I =

X

i+j+k=d

aijkx
i−1

2

00 x
j+1

2

11 x
k−1

2

22 x02

F2
I =

X

i+j+k=d

aijkx
i−1

2

00 x
j−1

2

11 x
k+1

2

22 x01Then,
F0

I = x00x12hI

F1
I = x11x02hI

F2
I = x22x01hICase II: i odd, j even, k even. NowLet hII =

X

i,j,k

aijkx
i−1

2

00 x
j
2

11x
k
2

22

F0
II =

X

i+j+k=d

aijkx
i+1

2

00 x
j
2

11x
k
2

22

F1
II =

X

i+j+k=d

aijkx
i−1

2

00 x
j
2

11x
k
2

22x01

F2
II =

X

i+j+k=d

aijkx
i−1

2

00 x
j
2

11x
k
2

22x02Then,
F0

II = x00hII

F1
II = x01hII

F2
II = x02hII 15



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.Case III: i even, j odd, k even. NowLet hIII =
X

i,j,k

aijkx
i
2

00x
j−1

2

11 x
k
2

22

F0
III =

X

i+j+k=d

aijkx
i
2

00x
j−1

2

11 x
k
2

22x01

F1
III =

X

i+j+k=d

aijkx
i
2

00x
j+1

2

11 x
k
2

22

F2
III =

X

i+j+k=d

aijkx
i
2

00x
j−1

2

11 x
k
2

22x12Then,
F0

III = x01hIII

F1
III = x11hIII

F2
III = x12hIIICase IV: i even, j even, k odd. NowLet hIV =
X

i,j,k

aijkx
i
2

00x
j
2

11x
k−1

2

22

F0
IV =

X

i+j+k=d

aijkx
i
2

00x
j
2

11x
k−1

2

22 x02

F1
IV =

X

i+j+k=d

aijkx
i
2

00x
j
2

11x
k−1

2

22 x12

F2
IV =

X

i+j+k=d

aijkx
i
2

00x
j−1

2

11 x
k+1

2

22Then,
F0

IV = x02hIV

F1
IV = x12hIV

F2
IV = x22hIVWrite Fn = Fn

I + Fn
II + Fn

III + Fn
IV ∀n = 0, 1, 2Also noti
e θ(Fn) = fn for n = 0, 1, 2Lemma 2.4: Let G ∈ k[x00, x01, x02, x11, x12, x22] be homogeneous and

Z(θ(F0)) ∩ Z(θ(F1)) ∩ Z(θ(F2)) ⊂ Z(θ(G)) ⊂ P
2Then G ∈< Fk, ∆i,j : 0 ≤ k ≤ 2, 0 ≤ i ≤ j ≤ 2 >.Proof : Now let θ(G) = g, then degree(g) is even.

Z(f0) ∩ Z(f1) ∩ Z(f2) ⊂ Z(g)

⇒ Z(f) ⊂ Z(g)

⇒ g ∈ (f) as C is an irredu
ible 
urve and f is irredu
ible 16



2.2. DEGREE OF C IS ODD
⇒ g = f.h for some h ∈ k[x0, x1, x2]

⇒ h 6= 1 as degree of f is odd while degree of g is even. Moreover h is an odd-degree polynomial
⇒ g =

X

i=0,1,2

fihi for some homogeneous polynomial hi ∈ k[x0, x1, x2],where degree of hi is even and h = x0h0 + x1h1 + x2h2Hen
e ⇒ G =
X

i=0,1,2

FiHi, where θ(Hi) = hi∀i = 0, 1, 2.Su
h a Hi exists as the degree of hi is even.
⇒ θ(G −

X

i=0,1,2

FiHi) = 0

⇒ G −
X

i=0,1,2

FiHi ∈ ker(θ)

⇒ G =
X

i=0,1,2

FiHi +
X

i,j=0,1,2

∆ijSij for some Sij ∈ k[x00, . . . , x22]

Hence ⇒ G ∈< Fk, ∆ij : i, j, k = 0, 1, 2 >Theorem 2.2: Let C be an irredu
ible 
urve of odd degree say d = 2m−1, for m ≥ 2.The homogeneous 
oordinate ring S/IC of σ(C) in P
5 has the following resolution.

0 →S(−m − 4)
β4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 β3→

β3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 β2→ S(−2)⊕6 ⊕ S(−m)⊕3 β1→ S → S/IC → 0
(2.9)Proof :From Lemma 2.3 and Lemma 2.4, it is 
lear that

β1 =
ˆ

∆00, ∆01, ∆02, ∆11, ∆12, ∆22, F0, F1, F2

˜Now 
onsider A =
ˆ

a00, a01, a02, a11, a12, a22

˜, aij ∈ S, homogeneous ∀0 ≤
i ≤ æ ≤ 2 and b =

ˆ

b0, b1, b2

˜ where bl ∈ S, homogeneous, for k = 0, 1, 2 su
hthat,
X

i,j

aij .∆ij +
X

k

bk.Fk = 0 (2.10)
⇒ θ(

X

k

(bk.Fk)) = 0

⇒
X

k

(θ(bk).fk) = 0

⇒
X

k

(θ(bk).f.xk) = 0

⇒
X

k

(θ(bk).xk) = 0Let θ(bk) = Bk, then degree of Bk is even. Then
B = (B0, B1, B2)

T ∈ Syz1(x0, x1, x2)Now by simple 
omputation we getSyz1(x0, x1, x2) =<

0

@

x1

−x0

0

1

A ,

0

@

x2

0
−x0

1

A ,

0

@

0
x2

−x1

1

A > 17



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.hen
e B ∈< Y0, Y1, Y2 > where
Y0 =

`

x1, −x0, 0
´

Y1 =
`

x2, 0, −x0

´

Y2 =
`

0, x2, −x1

´But degree of Bk is even, hen
e, B ∈< xkYl : k, l = 0, 1, 2 >.Hen
e, (b0, b1, b2) ∈< Ylk : k, l = 0, 1, 2 >where
Y00 =

`

x01, −x00, 0
´

Y01 =
`

x11, −x01, 0
´

Y02 =
`

x12, −x02, 0
´

Y10 =
`

x02, 0, −x00

´

Y11 =
`

x12, 0, −x01

´

Y12 =
`

x22, 0, −x02

´

Y20 =
`

0, x02, −x01

´

Y21 =
`

0, x12, −x11

´

Y22 =
`

0, x22, −x12

´Also note that,
Y02 = Y11 − Y20Now substituting all Yij for i, j = 0, 1, 2 ex
ept for Y02 for b in equation(2.8) weget, the following 8 ve
tors,Note that if A is a nXm matrix then by AT we denote the transpose of A.

V1 =
ˆ

0, 0, −x00hI , 0, hIV , hIII , [Y00]
˜T

V2 =
ˆ

0, 0, hIV , 0, −x11hI , −hII , [Y01]
˜T

V3 =
ˆ

0, x00hI , 0, hIV , hIII , 0, [Y10]
˜T

V4 =
ˆ

x00hI , hIV , 0, 0, −hII , −x22hI , [Y11]
˜T

V5 =
ˆ

0, −hIII , 0, −hII , −x22hI , 0, [Y12]
˜T

V6 =
ˆ

0, hIV , hIII , x11hI , 0, −x22hI , [Y20]
˜T

V7 =
ˆ

hIV , x11hI , −hII , 0, 0, 0, [Y21]
˜T

V8 =
ˆ

−hIII , −hII , x22hI , 0, 0, 0, [Y22]
˜TLet

β′
2 =

ˆ

[V1] , [V2] , [V3] , [V4] , [V5] , [V6] , [V7] , [V8]
˜ 18



2.2. DEGREE OF C IS ODDNow all the relations between Fn's and ∆ij 's are generated by Vk's and W ′
l 's and allthe relations between only ∆ij 's are generated by Wl's. Hen
e all relations between

Fn, ∆jk are generated by Vk, W ′
l .Hen
e Syz1(< Fn, ∆ij >) =< Vk, W ′

l : 1 ≤ k, l ≤ 8 > and
β2 =

`ˆ

W ′
1

˜ ˆ

W ′
2

˜

. . .
ˆ

W ′
8

˜

[V1] . . . [V8]
´where W ′

k = [[Wk] [0̄]] with [0̄] a 1 × 3 zero ve
torNow 
onsider, Ā = (ai) with ai ∈ S homogeneous and B̄ = (bk) with bk ∈ S, ho-mogeneous
X

i

aiVi +
X

k

bkW ′
k = 0 (2.11)Let Ā = [a1, . . . , a8] and V= [V1, . . . , V8]

T then equation(2.11) 
an be written as
Ā. V +

X

k

bk.W ′
k = 0 (2.12)Now as all the entries in the last 3 
olumns in ea
h of W ′

i are zero we have,
X

i

aiYij = 0.Now it 
an be 
omputed that Syz1(Yij) =< K′
l : 1 ≤ l ≤ 6 > where

K′
1 =

ˆ

x02, 0, −x01, 0, 0, x00, 0, 0
˜

K′
2 =

ˆ

x12, x02, −x11, −x01, 0, x01, x00, 0
˜

K′
3 =

ˆ

x22, 0, −x12, x02, −x01, 0, 0, x00

˜

K′
4 =

ˆ

0, x12, 0, −x11, 0, 0, x01, 0
˜

K′
5 =

ˆ

0, x22, 0, 0, −x11, −x12, x02, x01

˜

K′
6 =

ˆ

0, 0, 0, x22, −x12, −x22, 0, x02

˜Hen
e Ā =
P

l dl.K
′
l in equation (2.12), we get

8
X

l=1

dlK
′
l . V+

X

k

bkW ′
k = 0where dl are homogenous polynomials in S for all l = 1, . . . , 6. Simple 
al
ulation givesus that, ˆB̄,

P

l dlK
′
l

˜

∈ 〈Kl : l = 1, . . . , 6〉, where Kl's for 1 ≤ l ≤ 6 are as follows
K1 =

ˆ

0, 0, 0, x00hI , 0, 0, −hIV , hIII , [K′
1]
˜T

K2 =
ˆ

0, 0, x00hI , 0, −hIII , −hIV , x11hI , hII , [K′
2]
˜T

K3 =
ˆ

−x00hI , −hIV , 0, −hIII , 0, hIII , hII , x22hI , [K′
3]
˜T

K4 =
ˆ

0, 0, −hIV , −x11hI , hII , x11hI , 0, 0, [K′
4]
˜T

K5 =
ˆ

−hIV , −x11hI , hIII , hII ,−x22hI , 0, 0, 0 [K′
5]
˜T

K6 =
ˆ

hIII , hII , 0, 0, 0, −x22hI , 0, 0, [K′
6]
˜T 19



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.Now all the relations between Vi's and W ′
j 's are generated by {Kl, G′

k, 1 ≤ l ≤ 6, k =
1, 2, 3} and all the relations between only W ′

j 's (whi
h are a
tually Wj) are generatedby G′
k's. Hen
e we have that all relations between {{Vi}, {W

′
j}} are generated by

{Kl,G′
k 1 ≤ l ≤ 6,k = 1, 2, 3 }. So, Syz1(< Vi, W

′
j >) =< Kl, G

′
k >. So we get that,

β3 =
ˆ

[G′
0] [G′

1] [G′
2] [K1] . . . [K6]

˜where, G′
i =

ˆ

[Gi] [0̄]
˜ where [0̄] is an appropriate dimensional zero matrix.Now 
onsider Ā = (Ai), su
h that Ai ∈ S, homogeneous and B̄ = (Bk), su
h that

Bk ∈ S, homogeneous su
h that,
X

l

AlKl +
X

k

BkG′
k = 0 (2.13)Hen
e we have,

X

l

AlK
′T
l = 0(as the last eight 
olumns of G′

i's are zero entries)Now it 
an be 
omputed that Syz1(K′
l) =< J ′ > where,

J ′ =

2

6

6

6

6

6

6

4

J ′
1

J ′
2

J ′
3

J ′
4

J ′
5

J ′
6

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

x12
2 − x11x22

−x02x12 + x01x22

x11x02 − x01x12

x02
2 − x00x22

−x01x02 + x00x12

x01
2 − x00x11

3

7

7

7

7

7

7

5Like in the 
al
ulation of Kl's, substitute J ′ in equation(2.13). Then we get,
J =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

J1

J2

J3

J4

J5

J6

J7

J8

J9

3

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

−x00x12hI − x00hII − x01hIII − x02hIV

−x11x02hI + x01hII + x11hIII + x12hIV

−x01x22hI − x02hII − x12hIII − x22hIV

ˆ

[J ′]
˜

3

7

7

7

7

7

7

7

7

5Now all the relations between Kl's and G′
k's are generated by J and there are no rela-tions between only G′

k's as there are no non-trivial relations between Gk's. Hen
e all re-lations between Kl, G
′
k are generated by J . Hen
e Syz1(< Kl, G

′
k >) = 〈Ji : 1 ≤ i ≤ 9

〉. Hen
e
β4 = [J ]This 
ompletes the proof of the theorem.
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2.3. SOME REMARKS ON NP PROPERTIES ON PLANE CURVESUNDER VERONESE EMBEDDING2.3 Some remarks on Np properties on plane 
urvesunder Veronese embeddingDue to the expli
it 
omputation of resolutions done in earlier se
tions we get someresults about Property Np of the line bundle, OC(2) of a plane 
urves, C with degree
d ≥ 2.Consider L = OC(2). Now OC(1) is very ample by de�nition. So L is very ampleand hen
e globally generated and so determines an embedding, ΦL su
h that:

ΦL : C → P
5Also we have σ|C : C →֒ P

5. Hen
e we get the following diagram.
P

5

C

ΦL

P
2

σWe 
laim that the above diagram is 
ommutative.Noti
e that ΦL
∗(OP5(1)) = OC(2) and also σ∗(OP5(1)) = OP2(2). We have byde�nition of C →֒ P

2, that OC(1) = OP2
|C

(1). Hen
e we get that ΦL
∗(OP5(1)) =

σ|C
∗(OP5(1)) and so, we get that the above diagram is 
ommutative.Remark-1: C is as above with degree d, then (C, L) satis�es Property N0 for every

d ≥ 2.Proof: Now IC is the ideal sheaf of C in P
5 in P(H0(L))). Then we have thefollowing short exa
t sequen
e:

0 → IC → OP5 → OC → 0So for every n ∈ Z, we have
0 → IC(n) → OP5(n) → OC(2n) → 0Also as C →֒ P

2, we get a map from H0(P2,OP2(n)) → H0(C,OC(n)) for all n ∈ Z.Let this map be γn.To prove that (C, L) satis�es N0. We have to prove that the map, H0(P5,OP5(n))
ΦLn→

H0(C,OC(2n)) is surje
tive for all n ∈ Z. Now we have the following 
ommutative di-agram.
H0(OP5(n))

σ̃n

Φ̃Ln

H0(OP2(2n))
γ2n

H0(OC(2n))Claim 1: H0(OP5(n))
σ̃n→ H0(OP2(2n)) surje
ts for all n.From [OP℄, we know that OPn (d) satis�es Property Np, ∀d ≥ p and ∀n. Hen
e wehave that OP2(2) satis�es N0, and so we have that σ̃n surje
ts for all n. 21



CHAPTER 2. RESOLUTIONS OF PLANE CURVES IN THE VERONESEEMBEDDING.Claim 2: γn surje
ts for all n.As C →֒ P
2, we get the following short exa
t sequen
e.

0 → OP2(−d) → OP2 → OC → 0for every n ∈ Z, we get the following long exa
t sequen
e:
0 → H0(OP2(n − d) → H0(OP2(n))

γn→ H0(OC(n)) →

→ H1(OP2(n − d)) → H1(OP2(n)) → H1(OC(n) → 0But,
H1(P2,OP2(n − d)) = 0 ∀n, d ∈ ZHen
e γn surje
ts for all n ∈ Z.So we get that Φ̃Ln surje
ts for all n. This implies that (C, L) satis�es Property

N0 for all plane 
urves, C with degree, d ≥ 2.Remark-2: If (C, L) as above, then L satis�es N1 i� degree of C = 3 or 4.Proof: A very ample line bundle L is said to satisfy property N1 if α1 from (A)has degree 2 entries, implying that IC is generated by quadri
s.Now if the 
urve C has even degree, d = 2m, then the degree of f is 2m. And fromlemma 1 we know that, IC =< F, ∆ij > where, degree (F ) is m and degree(∆ij) = 2.Hen
e for d = 4, IC is generated by quadri
s, moreover for any even d, d 6= 4, IC is
annot be generated by quadri
s.Now if the 
urve C has odd degree, d = 2m − 1, then the degree of fi is 2m for
i = 0, 1, 2. Now from lemma 3, we know that IC =< F0, F1, F2, ∆ij >. where degree
(Fi) = m and degree(∆ij) = 2. Hen
e for d = 3, IC is generated by quadri
s,andmoreover for any odd d, d 6= 3, IC is 
annot be generated by quadri
s.Remark-3: Let (C, L) be as above, with degree(C) = 2m, m ≥ 1. Then (C, L)fails to satisfy Property N2, and hen
e Property Np, p ≥ 2.Proof: Let d = 4, then the matrix α2 has degree 2 entries, hen
e the resolution isnot linear. Hen
e su
h a C fails to satisfy Property N2. And for d 6= 4 we know fromresult 2, that su
h a C fails to satisfy Property Np for p ≥ 1. Hen
e we have the aboveresult.Remark-4: Let (C, L) be as above, with degree(C) = 3, then su
h a C satis�esProperty N3 but fails to satisfy Property N4.Proof: Noti
e that, if the degree of C = 2m − 1, then degree(hi) = m − 1,for ∀i = II, III, IV and degree(hI) = m − 2.hi for i = I, II, III, IV as de�ned inChapter 2 Now when the degree(C) = 3, degree(hI) = 0 and degree(hi) = 1, for
∀i = II, III, IV , hen
e βi has linear entries, for i = 2, 3. So we have that the res-olution is linear till the third step while β4 has quadrati
 entries, implies that theresolution is not linear in the fourth step, whi
h implies that L satis�es N3 but fails22



2.3. SOME REMARKS ON NP PROPERTIES ON PLANE CURVESUNDER VERONESE EMBEDDINGto satisfy N4.Remark-5 For all plane 
urve, C, (degree ≥ 2), OC(2) fails to satisfy Np for p ≥ 4.Proof: With all but degree 3 and 4 
urves failing to satisfy N1, degree 4 
urvefailing to satisfy N2 and degree 3 
urve failing to satify N4, we get the above result.
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3Resolutions of Veronese embedding of
omplete interse
tions of 
urves in theplane.If C and C′ are two distin
t plane 
urves, then 
onsider, C ∩ C′ →֒ P
2 σ
→֒ P

5, where
P

2 →֒ P
5 is the Veronese embedding. We will 
ompute the syzygies of the homoge-neous ideal, Iσ(CC′) of σ (C ∩ C′) in P

5.Throughout we assume (C ∩ C′) is redu
ed.Now let C be de�ned by the polynomial f of degree d in three variables, and C′be de�ned by f̃ of degree d′ in three variables. Hen
e
C = Z(f(x0, x1, x2)), C′ = Z(f̃(x0, x1, x2))Let us re
all Theorem 2.1. and Theorem 2.2Theorem Let C be an irredu
ible 
urve of even degree say d = 2m, m ≥ 1. Thehomogeneous ideal Iσ(C) of σ(C) in P

5 has the following minimal free graded resolution.
0 →S(−m − 4)⊕3 α4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 α3→

α3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 α2→ S(−2)⊕6 ⊕ S(−m)
α1→ S → S/Iσ(C) → 0where

α1 =
ˆ

[M1] , F
˜

α2 =
ˆ

[Wi, 0], [Ujk]
˜where i = 1, . . . , 8 and 0 ≤ j ≤ k ≤ 2

α3 =
ˆ

[G′
i, 0̄], [Hj ]

˜where i = 1, 2, 3 and j = 1, . . . , 8.
α4 =

» „ ˆ

−F.I3
1

˜

[G1]

«

,

„ ˆ

−F.I3
2

˜

[G2]

«

,

„ ˆ

−F.I3
3

˜

[G3]

« –Also when we 
onsider the above resolution for the 
urve, C′, we will denote the ma-tri
es in the resolution with `∼'.Before re
alling Theorem 2.2, we introdu
e a 
hange in the notations for Vi, Ki and J25



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.appearing in Theorem 2.2 for the sake of 
onvinen
e, so from now on we will denote
V1 =

ˆ

[V00], [Y00]
˜, V2 =

ˆ

[V01], [Y01]
˜, V3 =

ˆ

[V10], [Y10]
˜, V4 =

ˆ

[V11], [Y11]
˜,

V5 =
ˆ

[V12], [Y12]
˜, V6 =

ˆ

[V20], [Y20]
˜, V7 =

ˆ

[V21], [Y21]
˜, V8 =

ˆ

[V22], [Y22]
˜.

Ki =
ˆ

[K′′
i ], [K′

i]
˜, and, J =

ˆ

[J ′′], [J ′]
˜Hen
e we haveTheorem: Let C be an irredu
ible 
urve of odd degree say d = 2m − 1, for m ≥ 2.The ideal Iσ(C) of σ(C) in P

5 has the following minimal free graded resolution.
0 →S(−m − 4)

β4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 β3→

β3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 β2→ S(−2)⊕6 ⊕ S⊕3(−m)
β1→ S → S/Iσ(C) → 0where

β1 =
ˆ

∆00, ∆01, ∆02, ∆11, ∆12, ∆22, F0, F1, F2,
˜

β2 =
ˆ ˆ

Wi, 0̄
˜

,
ˆ

[Vjk], [Yjk]
˜ ˜where i = 1, . . . , 8 and 0 ≤ j, k ≤ 2 with (jk) 6= (02)

β3 =
ˆ ˆ

Gi, 0̄
˜

,
ˆ

[K1, K
′
j

˜ ˜where i = 1, 2, 3, j = 1, . . . , 6 and 0̄ is an appropriate dimensional zero matrix.
β4 =

ˆ

J
′′,J′˜Note that all the matri
es in bold print are independent of the 
urve 
onsidered. Alsolike in the 
ase of theorem 2.2, we will denote the matri
es o

uring in the resolutionof C′ with a `∼'
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3.1. DEGREES OF C AND C′ ARE EVEN.3.1 Degrees of C and C ′ are even.In this 
ase d is even(say 2m), and d′ = 2m′.
f =

X

i+j+k=2m

aijkxi
0x

j
1x

k
2 and

f̃ =
X

i+j+k=2m′

ãijkxi
0x

j
1x

k
2As the degrees of f and f̃ are even, from Lemma 2.1, we have that f , f̃ ∈ Im(θ).Let F, F̃ ∈ S be homogeneous polynomials su
h that θ(F ) = f and θ(F̃ ) = f̃Lemma 3.1: Let G ∈ S su
h that G homogeneous and Z(θ(F ))∩Z(θ(F̃ )) ⊂ Z(θ(G)) ⊂

P
2. Then G ∈< F, F̃ , ∆i,j : 0 ≤ i ≤ j ≤ 2 >.Proof : Let θ(G) = g, then g is a homogeneous even degree polynomial and

Z(f) ∩ Z(f̃) ⊂ Z(g)

⇒ g ∈ (f, f̃) as C and C′ are irredu
ible 
urves and hen
e f and f̃ are irredu
ible.
⇒ g = f.h + f̃ .h̃ for some h and h̃ homogeneous, in K[x0, x1, x2]Now as f , f̃ and g are even degree homogeneous polynomials we get that h and h̃ areboth even degree polynomials hen
e ∃ H and H̃ ∈ S, homogeneous su
h that θ(H) = hand θ(H̃) = h̃.Thus we have

θ
“

G − (F.H + F̃ .H̃)
”

= 0Hen
e G − F.H − F̃ .H̃ ∈ ker(θ)So we get G − F.H − F̃ .H̃ =
X

0≤i≤j≤2

∆ijSij for some Sij ∈ S, Sij homogeneous
⇒ G ∈< F, F̃ , ∆ij : 0 ≤ i ≤ j ≤ 2 >This 
ompletes the proof of the lemma.Theorem 3.1: Let C, C′ be two irredu
ible 
urves of even degree say d = 2m and

d′ = 2m′, m, m′ ≥ 1. The homogeneous 
oordinate ring S/Iσ(C∩C′) of σ(C ∩ C′) in P
5has the following minimal free graded resolution.

0 →S(−m − m′ − 4)⊕3 P5→ S(−m − 4)⊕3 ⊕ S(−m′ − 4)⊕3 ⊕ S(−m − m′ − 3)⊕8 P4→

P4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 ⊕ S(−m′ − 3)⊕8 ⊕ S(−m − m′ − 2)⊕6 P3→

P3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 ⊕ S(−m′ − 2)⊕6 ⊕ S(−m − m′)
P2→

P2→ S(−2)⊕6 ⊕ S(−m) ⊕ S(−m′)
P1→ S → S/Iσ(C∩C′) → 0 (3.1)where the matri
es Pi are given as follows:

P1 =
ˆ

[M1] , F, F̃
˜ (3.2)27



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.Let
P2 =

2

6

6

6

6

6

6

4

−F 0 0 0 0 0 ∆00 0
0 −F 0 0 0 0 ∆01 0
0 0 −F 0 0 0 ∆02 0
0 0 0 −F 0 0 ∆11 0
0 0 0 0 −F 0 ∆12 0
0 0 0 0 0 −F ∆22 0

3

7

7

7

7

7

7

5Similarly we get̃
P2 =

2

6

6

6

6

6

6

4

−F̃ 0 0 0 0 0 0 ∆00

0 −F̃ 0 0 0 0 0 ∆01

0 0 −F̃ 0 0 0 0 ∆02

0 0 0 −F̃ 0 0 0 ∆11

0 0 0 0 −F̃ 0 0 ∆12

0 0 0 0 0 −F̃ 0 ∆22

3

7

7

7

7

7

7

5and
P2 =

ˆ

U00, U01, U02, U11, U12, U22

˜TWe have Ũij for 0 ≤ i ≤ j ≤ 2 and hen
e P̃2Also let
S =

ˆ

0 0 0 0 0 0 F̃ −F
˜T

P2 =
h

W ′
1, W ′

2, W ′
3, W ′

4, W ′
5, W ′

6, W ′
7, W ′

8, [P2] ,
h

P̃2

i

, [S ]
i(3.3)where

W ′
i =

2

4

Wi

0
0

3

5 ∀i = 1, . . . , 8with Wi as in equation (2.2) of Chapter 2.Let
Hi =

2

6

6

4

ˆ

F.I8
i

˜

[Wi]
[0̄]
0

3

7

7

5

H̃i =

2

6

6

6

4

h

F̃ .I8
i

i

[0̄]
[Wi]

0

3

7

7

7

5where i = 1, . . . 8 , [0̄] is a zero-matrix of appropriate dimension and
Ik

j =
h

0, 0, . . . ,
jth position

1 , 0, . . . , 0

iT is a k × 1 ve
torLet
Lij =

2

6

6

6

4

[0̄]
h

−F̃ I6
2i+j+1

i

ˆ

FI6
2i+j+1

˜

∆ij

3

7

7

7

5

∀ 0 ≤ i ≤ j ≤ 2 28



3.1. DEGREES OF C AND C′ ARE EVEN.And let
L =

ˆ

[L00] , . . . , [L22]
˜

P3 =
ˆ

[G′
i]1≤i≤3, [Hj ]1≤j≤8, [H̃j ]1≤j≤8, [L]

˜ (3.4)where
G′

i =

»

Gi

[0̄]

– for i = 1, 2, 3where Gi as in equation(2.3) of Chapter 2 and [0̄] is a 0 matrix of appropriate dimen-sion, and j = 1, . . . , 8.We de�ne
P4 =

2

6

6

4

0

B

B

@

ˆ

−F.I3
1

˜

[G1]
[0̄]
[0̄]

1

C

C

A

,

0

B

B

@

ˆ

−F.I3
2

˜

[G2]
[0̄]
[0̄]

1

C

C

A

,

0

B

B

@

ˆ

−F.I3
3

˜

[G3]
[0̄]
[0̄]

1

C

C

A

3

7

7

5

P̃4 =

2

6

6

6

4

0

B

B

B

@

h

−F̃ .I3
1

i

[0̄]
[G1]
[0̄]

1

C

C

C

A

,

0

B

B

B

@

h

−F̃ .I3
2

i

[0̄]
[G2]
[0̄]

1

C

C

C

A

,

0

B

B

B

@

h

−F̃ .I3
3

i

[0̄]
[G3]
[0̄]

1

C

C

C

A

3

7

7

7

5And let
Wi =

2

6

6

6

4

[0̄]
h

−F̃ .I8
i

i

ˆ

F.I8
i

˜

[Wi]

3

7

7

7

5

i = 1, . . . , 8.Let
P4 =

ˆ

[P4] , [P ′
4] , [W1] , . . . , [W8]

˜ (3.5)And
Gi =

2

6

4

h

F̃ I3
i

i

ˆ

−FI3
i

˜

[Gi]

3

7

5

P5 =
ˆ

[G1] , [G2] , [G3]
˜ (3.6)Proof :From Lemma 3.1, it is 
lear that

P1 =
ˆ

∆00, ∆01, ∆02, ∆11, ∆12, ∆22, F, F̃
˜Now 
onsider

A =
ˆ

A00, A01, A02, A11, A12, A22

˜where aij ∈ S, homogeneous. And B, B′ ∈ S, homogeneous su
h that
X

i,j

Aij .∆ij + B.F + B̃.F̃ = 0

⇒ θ(B.F + B̃.F̃ ) = 0

⇒ θ(B).f = −θ(B̃)f̃ 29



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.Now if B = 0, then we get θ(B̃) = 0, hen
e B̃ ∈< ∆ij : 0 ≤ i ≤ j ≤ 2 >So we get, P̃2. Similar reasoning for B̃ = 0, gives us, P2.Now if B and B̃ both non-zero, we get,
θ(B) ∈< f̃ > and θ(B̃) ∈< f >So let θ(B) = p.f̃ , then θ(B̃) = −p.f , where p ∈ k[x0, x1, x2]. Degree of p is even,therefore ∃P ∈ S, su
h that θ(P ) = p. Hen
e [B, B̃] ∈< S >. So we get that the rela-tions between ∆ij , F and F̃ are generated by Uij : 0 ≤ i ≤ j ≤ 2, Ũij : 0 ≤ i ≤ j ≤ 2, W ′

k : k = 1, . . . , 8 and SNow we get
P2 =

h

[W ′
i ]1≤i≤8, [P2] ,

h

P̃2

i

, [S ]
ifor i = 1, . . . , 8Now 
onsider

A = [Ak]1≤k≤8 , Ak ∈ S, Ak homogeneous ∀1 ≤ k ≤ 8 and
B =

ˆ

(Bij)
˜

, Bij ∈ S, homogeneous
B̃ =

ˆ

(B̃ij)
˜

, B̃ij ∈ S, homogeneousfor 0 ≤ i ≤ j ≤ 2, and D ∈ S homogeneous, su
h that
X

1≤k≤8

Ak.W ′
k +

X

0≤i≤j≤2

Bij .Uij +
X

0≤i≤j≤2

B̃ij .Ũij + D.S = 0 (3.7)Now let B̃ij = 0 for all i, j, so D=0. Then we have
B ∈< Wk : k = 1, . . . , 8 >Hen
e from Theorem 2.1, we get that the relations between W ′

k and Uij are generatedby G′
i and Hk. Similarly, when Bij = 0, for all i, j, we get that all relations between

W ′
k and Ũij are generated by G′

i and H̃kNow if Bij , B̃kl 6= 0 for some i, j, k, l, then it is 
lear that D 6= 0 in (3.7) from thede�nitions of W ′
i , Uij ,and Ũij .So we have
X

ij

Bij∆ij + D.F̃ = 0 , X

ij

B̃ij∆ij − D.F = 0This implies that D ∈< ∆ij : 0 ≤ i ≤ j ≤ 2 >. So for some Cij ∈ S, homogeneous wehave D =
P

ij Cij∆ij and hen
e
X

ij

“

Bij + Cij .F̃
”

∆ij = 0 and X
ij

“

B̃ij − Cij .F
”

∆ij = 0If Bij − Cij .F̃ = 0 for all i, j and B̃ij + Cij .F = 0 for all i, j, then Cij .F̃ = Bij and
Cij .F = −B̃ij for all i, j then su
h (Bij , B̃ij , Cij) are generated by < Hk, H̃k, Lij >for 0 ≤ i ≤ j ≤ 2 and k = 1, . . . , 8.And if not then P(B̃ij + Cij .F ) ∈ Syz1(< W ′

j : 1 ≤ j ≤ 8 >).Similarly P(Bij − Cij .F̃ ) ∈ Syz1(< W ′
j : 1 ≤ j ≤ 8 >).Hen
e the relations between {W ′

k, Uij , Ũij , J }are generated by G′
k : k = 1, 2, 3, Hi,

H̃i : 1 ≤ i ≤ 8 and Ljk : 0 ≤ j ≤ k ≤ 2.Hen
e
P3 =

ˆ

[G′
1], [G′

2], [G′
3], [Hi], [H̃i] [L]

˜ 30



3.1. DEGREES OF C AND C′ ARE EVEN.for i = 1, . . . , 8Now 
onsider
A =

ˆ

(Ai)
˜

1≤i≤3
Ai ∈ S homogeneous for i = 1, 2, 3

B =
ˆ

(Bj)
˜

1≤j≤8
and

B̃ =
ˆ

(B̃j)
˜

1≤j≤8
, where Bi and B̃i homogeneous in S for i = 1, . . . , 8,

C =
ˆ

(Ckl)
˜

1 ≤ k ≤ l ≤ 2,where Cij ∈ S homogeneous for 0 ≤ k ≤ l ≤ 2 su
hthat
X

i

Ai.G
′
i +
X

i

Bi.Hi +
X

i

B̃i.H̃i +
X

i,j

Cij .Lij = 0Now if hB̃i = [0̄], then C = [0], hen
e we have
P

i
BiWi = 0 then, B ∈< Gp : p = 1, 2, 3 > Now theorem 2.2, we get P4. Similarly weget P̃4, when Bij = 0 for all (i, j)If B 6= [0] and B̃ 6= [0], then we have that Cij 6= 0 for some i, j. So we get that

P

i,j(Cij .∆ij) = 0. This implies that C ∈< Wk >, then with similar arguments as inthe proof of theorem 2.2, we get Wi for i = 1, . . . , 8.Hen
e we get
P4 =

h

[P4] ,
h

P̃4

i

, [W1] , . . . , [W8]
iNow let

B =
ˆ

(Bi)
˜

B̃ =
ˆ

(B̃i)
˜

A =
ˆ

(Aj)
˜su
h that for i = 1, 2, 3, Bi,B̃i are homogeneous in S, and for j = 1, . . . , 8, Aj arehomogeneous in S

B.P4 + B̃.P̃4 +
X

i

Ai.Wi = 0Then we get that Pi Ai.Wi = 0, this implies that A ∈< Gk : k = 1, 2, 3 >, with thesame arguments as earlier we get, G1, G2, and G3. Hen
e
P5 =

ˆ

[G1] , [G2] , [G3]
˜

31



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.3.2 Degree of C is even and degree of C ′ is oddlet d = 2m, and d′ = 2m′ − 1

f =
X

i+j+k=2m

aijkxi
0x

j
1x

k
2 and ,

f̃ =
X

i+j+k=2m′−1

ãijkxi
0x

j
1x

k
2As the degree of f is even from Lemma 2.1, we have that f ∈ Im(θ). Also fromLemmas 2.2 and 2.3, we also know that for f̃ with odd degree, we have f̃i = xi.f̃ for

0 ≤ i ≤ 2 su
h that Z(f̃) = ∩2
i=0Z(f̃i) and that ea
h f̃i ∈ Im(θ) for i = 0, 1, 2.Like in Chapter 2 we also have, h̃I , h̃II , h̃III , and h̃IV su
h that

F̃0 = x00x12h̃I + x00h̃II + x01h̃III + x02h̃IV

F̃1 = x11x02h̃I + x01h̃II + x11h̃III + x12h̃IV

F̃2 = x22x01h̃I + x02h̃II + x12h̃III + x22h̃IVLemma 3.2: Let G ∈ S su
h that G homogeneous and
Z(θ(F )) ∩ Z(θ(F̃0)) ∩ Z(θ(F̃1)) ∩ Z(θ(F̃2)) ⊂ Z(θ(G)) ⊂ P

2. Then G ∈< F, F̃k, ∆i,j : 0 ≤ i ≤ j ≤ 2 , k = 0, 1, 2 >.Proof :Let θ(G) = g, then g is a homogeneous even degree polynomial and,
Z(f) ∩ Z(f̃0) ∩ Z(f̃1) ∩ Z(f̃2) ⊂ Z(g)

Z(f) ∩ Z(f̃) ⊂ Z(g)

⇒ g ∈ (f, f̃) as C and C′ are irredu
ible 
urves and by assumption(i.e. C ∩ C′ is redu
ed. So
g = f.h + f̃ .h̃ for some h and h̃ homogeneous in K[x0, x1, x2]Now as f and g are even degree homogeneous polynomials and f̃ is homogeneousof odd degree, we get that degree of h is even and h̃ is a odd degree polynomialhen
e, there exists H ∈ S, homogeneous su
h that θ(H) = h and h̃ =

P

i h̃ixi, where
h̃i ∈ K[x0, x1, x2], h̃i homogeneous of even degree.So there exists H̃is su
h that θ(H̃i) = h̃i for i = 0, 1, 2Thus we have

θ

 

G −

 

F.H +
X

i

(F̃i.H̃i)

!!

= 0hen
e, G −

 

F.H +
X

i

(F̃i.H̃i)

!

∈ ker(θ)So we get
G −

 

F.H +
X

i

(F̃i.H
′
i)

!

=
X

0≤i≤j≤2

∆ijSij for some Sij ∈ S, Sij homogeneous
⇒ G ∈< F, F̃k, ∆ij : 0 ≤ i ≤ j ≤ 2 and k = 0, 1, 2 >This 
ompletes the proof of the lemma.Theorem 3.2: Let C, C′ be two irredu
ible 
urves of degrees say d = 2m and32



3.2. DEGREE OF C IS EVEN AND DEGREE OF C′ IS ODD
d′ = 2m′ − 1, m, m′ ≥ 2. Then the homogeneous 
oordinate ring S/Iσ(C∩C′) of
(σ(C) ∩ σ(C′)) in P

5 has the following minimal free graded resolution.
0 →S(−m − m′ − 4)

Q5→ S(−m − 4)⊕3 ⊕ S(−m′ − 4) ⊕ S(−m − m′ − 2)⊕6 Q4→

Q4→ S(−4)⊕3 ⊕ S(−m − 3)⊕8 ⊕ S(−m′ − 2)⊕6 ⊕ S(−m − m′ − 1)⊕8 Q3→

Q3→ S(−3)⊕8 ⊕ S(−m − 2)⊕6 ⊕ S(−m′ − 1)⊕8 ⊕ S(−m − m′)⊕3 Q2→

Q2→ S(−2)⊕6 ⊕ S(−m) ⊕ S(−m′)⊕3 Q1→ S → S/Iσ(C∩C′) → 0

(3.8)Proof:From Lemma 3.2, we get that
Q1 =

ˆ

[M1] , F, F̃0, F̃1, F̃2

˜ (3.9)Now let
A =

ˆ

(Aij)
˜, Aij ∈ S, homogeneous for 0 ≤ i ≤ j ≤ 2 and,

B ∈ S, homogeneous, B̃ =
ˆ

B̃0, B̃1, B̃2

˜

, B̃i ∈ S, homogeneous for i = 0, 1, 2,su
h that
X

ij

(Aij .∆ij) + B.F +
X

i

(B̃i.F̃i) = 0Now if B̃i = 0, for all i = 0, 1, 2, then we have,
X

ij

(Aij .∆ij) + B.F = 0By theorem 2.1 we get that
[ [Aij ], B ] ∈< [ [Wi], 0], [Ujk] : i = 1, . . . , 8, 0 ≤ j ≤ k ≤ 2 >.Hen
e we get that
[[Aij ], B, [0̄]] ∈< [[Wi], 0, [0̄]] , [[Ujk], [0̄]] : i = 1, . . . , 8, 0 ≤ j ≤ k ≤ 2 >.Similarly if B = 0, by theorem 2.2 we get that
[[Aij ], 0, [B̃k]] ∈< [[Wi], [0̄]] , [Ṽj ] : i, j = 1, . . . , 8 >.Now we have,

h

[Aij ], 0, [B̃k]
i

∈
˙ ˆ

[Wi], [0̄]
˜

,
ˆ

[Vjk], 0, [Yjk]
˜ ¸for i = 1, . . . , 8 and 0 ≤ j, k ≤ 2, (j, k) 6= (0, 2).Now let B 6= 0 and B̃i 6= 0 for some i.Then we have,

b.f +
X

i

(b̃i.f̃i) = 0where b = θ(B) and b̃i = θ(B̃i) for i = 0, 1, 2Hen
e we have, b ∈< f̃ > and Pi(b
′
i.xi) ∈< f >,but the degree of b is even, so b ∈< xi.f̃ : i = 0, 1, 2 >. So we get,

B =
P

i Ci.F̃i.This gives us that
ˆ

B, [B̃0, B̃1, B̃2]
˜

∈
˙ˆ

F̃i, [−F.I3
i ]
˜

: i = 0, 1, 2
¸Let Li =

ˆ

[0̄]6, F̃i, [−F.I3
i ]
˜ , where [0̄]i is a 1× i zero-ve
tor. Hen
e we get that

h

[Aij ], B, [B̃k]
i

∈
˙ ˆ

[Wi], 0, [0̄]
˜

,
ˆ

[Ujk], [0̄]
˜

,
ˆ

[Ṽln], [0̄], [Yln]
˜

, [Ls]
¸33



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.for i = 1, . . . , 8, 0 ≤ j ≤ k ≤ 2, 0 ≤ l, n ≤ 2 ((l, n) 6= (0, 2)) and s = 0, 1, 2Hen
e we get Q2.Now let
A =

h

(Ai) 1≤i≤8

iT

, Ai ∈ S, homogeneous for i = 1, . . . , 8

B =
h

(Bij) 0≤i≤j≤2

iT

, Bij ∈ S, homogeneous for 0 ≤ i ≤ j ≤ 2

B̃ =
h

(B̃ij) 0≤i≤j≤2

iT

, B̃ij ∈ S, homogeneous for 0 ≤ i, j ≤ 2,
C =

ˆ

C0, C1, C2

˜T
, Ci ∈ S, homogeneous for i = 0, 1, 2.su
h that

X

i=1,...,8

Ai

ˆ

[Wi], 0, [0̄]3
˜

+
X

0≤i≤j≤2

Bij

ˆ

[Uij ], [0̄]3
˜

+
X

ij

B̃ij

ˆ

[Ṽij ], 0, [Yij]
˜

+
X

i=0,1,2

Ci.Li = 0
(3.10)Consider the following 
ases:(1)Let B = [0̄], B̃ = [0̄] and C = [0̄], then A ∈< Gi : i = 1, 2, 3 >. Hen
e

ˆ

[Aij ], 0, [0̄], [0̄]
˜

∈<
ˆ

[Gi], 0, [0̄], [0̄]
˜

>for i = 1, 2, 3(2)Let B̃ = [0̄], C = [0̄], but B 6= [0̄], then theorem 2.1 we get, [[A], [B]] ∈<
[Gi, 0] , [Hj ] : i = 1, 2, 3, j = 1, . . . , 8 >. Hen
e,

ˆ

[Aij ], B, [0̄], [0̄]
˜

∈
˙ˆ

[Gi], [0̄], [0̄], [0̄]
˜

,
ˆ

[Hj ], [0̄], [0̄]
˜¸for i = 1, 2, 3 and j = 1, . . . , 8(3)Let B = 0, C = [0̄], but B̃ 6= [0̄], then like the previous 
ase we get, [[A], [B̃]] ∈<

[Gi, 0] , [K̃j ] : i = 1, 2, 3 j = 1, . . . , 6 >. Hen
e
ˆ

[A], [0̄], [B̃], [0̄]
˜

∈
˙ ˆ

[Gi], [0̄], [0̄]
˜

,
ˆ

[K̃′′
j ], [0̄], [K′

j ], [0̄]
˜ ¸for i = 1, 2, 3 and j = 1 . . . 6(4)Let B 6= [0̄] and B̃ 6= [0̄], then we have ,

X

0≤i≤j≤2

(Bij∆ij) +
X

i=0,1,2

(Ci.F̃i) = 0Hen
e
X

i=0,1,2

(ci.f̃i) = 0where ci = θ(Ci) for all i = 0, 1, 2So we get that ˆ C0, C1, C2

˜

∈ 〈Yij : 0 ≤ i, j ≤ 2, (i, j) 6= (0, 2)〉. Hen
e,
[C] =

X

k,l

Dkl[Ykl] where Dkl ∈ S, homogeneous for, 0 ≤ i, j ≤ 2, (l, k) 6= (0, 2)So
X

ij

(Bij).[Yij] =
X

ij

F (Dij)[Yij] 34



3.2. DEGREE OF C IS EVEN AND DEGREE OF C′ IS ODDNow if, Bij − F.Dij = 0 for all i, j, then ([Bij ], [C]) ∈< [F.I ]8k, [Ykl] >,where k = 2i + j + 1 if i = 0, 1 and k = 6 + j for i = 2.Hen
e we get that ([A], [B], [B̃], [C]) ∈
˙ˆ

[0̄], [Ṽij ], [F.I ]8k, [Yij]
˜¸. De�ne,

Vij =
ˆ

[0̄], −Vij , [F.I8
k ], [Yij]

˜

,for i, j = 0, 1, 2, and for k = 2i + j + 1, if i 6= 2 and k = 6 + j if i = 2.If not then, [(Bij − F.Dij)] ∈< K′
l : 1 ≤ l ≤ 6 > ( Syz1(< Yij >)).Hen
e we get Q3.Let

A =
h

(Ai) 1≤i≤3

iT

, Ai ∈ S, homogeneous for i = 1, 2, 3

B =
h

(Bi) 1≤i≤8

iT

, Bi ∈ S, homogeneous for i = 1, . . . 8

B̃ =
h

(B̃i) 1≤i≤3

iT

, B̃i ∈ S, homogeneous for i = 1, . . . , 6,
C =

h

Cij 0≤i,j≤2

iT

, Cij ∈ S, homogeneous for i, j = 0, 1, 2.su
h that
X

i=1,2,3

Ai

ˆ

[Gi], [0̄]6, [0̄]8, [0̄]3
˜

+
X

0≤i≤j≤2

Bij

ˆ

[Hi], [0̄]8, [0̄]3
˜

+

X

i

B̃i

ˆ

[K̃′′
i], [0̄]8, [K′

i], [0̄]3
˜

+
X

i,j

Cij . [Vij ] = 0
(3.11)Consider the following 
ases,(1)B̃ = [0̄], hen
e B 6= [0̄] and C = [0̄], then from Theorem 2.1, we get that

[[A], [B]] ∈
˙`

[−F.I3
i ], [Gi]

´

: i = 1, 2, 3
¸Hen
e h[A], [B], [B̃], [C]

i

∈
˙ˆ

[−F.I3
i ], [Gi], [0̄], [0̄]

˜

: i = 1, 2, 3
¸Denote ˆ [−F.I3

i ], [Gi], [0̄], [0̄]
˜ as [ℑi] for i = 1, 2, 3(2)B, C = [0̄] and B̃ 6= [0̄], then from theorem 2.1, we get that h[A], [B̃]

i

∈
D

[J̃ ]
EHen
e h[A], [B], [B̃], [C]

i

∈
Dh

[J̃ ′′], [0̄], [J′], [0̄]
iE(3)C 6= [0̄], then we have, Pij Cij .[Yij] = 0, hen
e C ∈< [K′

i] : i = 1, . . . , 6 >.Hen
e we have
h

[A], [B], [B̃], [C]
i

∈<
h

[0̄], [K̃′′
i], [−F.I6

i ], [K′
i]
i

: i = i, . . . , 6 >Lets denote the above set of ve
tors as K̃i, i = 1, . . . , 6Hen
e we have,
ˆ

[A], [B], [B̃], [C]
˜

∈<
“

[ℑi] ,
ˆ

J̃ ′′, [0̄], [J ′], [0̄]
˜

,
h

K̃j

i ”

>

i = 1, 2, 3, and j = 1, . . . , 6Hen
e we get Q4.Let
A =

ˆ

(Ai)
˜

, Ai ∈ S, homogeneous for i = 1, 2, 3
B ∈ S, homogeneous. C =

ˆ

(Ci)
˜

, Ci ∈ S, homogeneous for i = 1, . . . , 6, su
h that
X

i=1,2,3

Ai[ℑi] + B.J +
X

i

Ci[K̃i] = 0 (3.12)35



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.From theorem 2 and 3 in [A℄, we get that if [C] = [0̄] then [A] and [B] are alsoequal to [0̄]. So [C] 6= [0̄], then we have
P

i
Ci.K

′
i = 0, hen
e [C] ∈< J

′ >.Hen
e we have ˆ [A], B, [C]
˜

∈
˙ˆ

[−J̃ ′′], −F, [J′]
˜¸.Hen
e we get Q5.

36



3.3. DEGREES OF C AND C′ ARE ODD3.3 Degrees of C and C ′ are oddLet the degrees of f ,f̃ be 2m − 1 and 2m′ − 1 respe
tively. Then we have,
f =

X

i+j+k=2m−1

aijkxi
0x

j
1x

k
2 and,

f̃ =
X

i+j+k=2m′−1

ãijkxi
0x

j
1x

k
2Now let f0 = x0.f , f1 = x1.f , f2 = x2.f . Similary de�ne f̃i for i = 0, 1, 2Then fi and f̃i are of even degree and hen
e a

ording to Lemma 2.1, fi , f̃i ∈ Im(θ)for i = 0, 1, 2. Also like in Se
tion 3.2, we have,

F0 = x00x12hI + x00hII + x01hIII + x02hIV

F1 = x11x02hI + x01hII + x11hIII + x12hIV

F2 = x22x01hI + x02hII + x12hIII + x22hIVLemma 3.4: Let G ∈ k[x00, x01, x02, x11, x12, x22] su
h that G homogeneous and
(∩iZ(θ(Fi)))∩(∩iZ(θ(F̃i))) ⊂ Z(θ(G)) ⊂ P

2. Then G ∈< Fk, F̃k, ∆i,j : 0 ≤ k ≤ 2, 0 ≤
i ≤ j ≤ 2 >.Proof : Now let θ(G) = g, then degree(g) is even.

(∩iZ(fi)) ∩ (∩iZ(f̃i)) ⊂ Z(g)

⇒ Z(f) ∩ Z(f̃) ⊂ Z(g)

⇒ g ∈< f, f̃ > as C and C′ are irredu
ible 
urves and the assumption about the inter-se
tion of C and C′.
⇒ g = f.h + f̃ .h̃ for some h, h̃ homogeneous ∈ k[x0, x1, x2]

⇒ h 6= 1 as degree f is odd while degree g is evenSimilarly h̃ 6= 1, hen
e, g =
P

i=0,1,2 fihi +
P

i=0,1,2 f̃ih̃i,for some homogeneous polynomials hi, h̃i ∈ k[x0, x1, x2] with even degrees.
⇒ G =

X

i=0,1,2

FiHi +
X

i=0,1,2

F̃iH̃i, where θ(Hi) = hi and θ(H̃i) = h̃i,for all i = 0, 1, 2 and su
h His, and H̃is exists as the degrees of both hi and h̃i areeven from Lemma 2.1.
⇒ θ

 

G −
X

i=0,1,2

FiHi +
X

i=0,1,2

F̃iH̃i

!

= 0

⇒ G −

 

X

i=0,1,2

FiHi +
X

i=0,1,2

F̃iH̃i

!

∈ ker(θ)

⇒ G =
X

i=0,1,2

FiHi +
X

i=0,1,2

F̃iH̃i +
X

i,j=0,1,2

∆ijSijfor some Sij homogeneous ∈ k[x00, . . . , x22]

⇒ G ∈< Fk, F̃k, ∆ij : i, j, k = 0, 1, 2 >Theorem 3.3: Let C and C′ be two irredu
ible plane 
urves of odd degree say d =37



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.
2m − 1 and d′ = 2m′ − 1 for m,m′ ≥ 2. The homogenous 
oordinate ring S/Iσ(C∩C′)of the interse
tion of σ(C) and σ(C′) in P

5 has the following minimal free gradedresolution.
0 →S(−m − m′ − 3)⊕3 R5→ S(−m − 4) ⊕ S(−m′ − 4) ⊕ S(−m − m′ − 2)⊕8 R4→

R4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 ⊕ S(−m′ − 2)⊕6 ⊕ S(−m − m′ − 1)⊕6 R3→

R3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 ⊕ S(−m′ − 1)⊕8 ⊕ S(−m − m′ + 1)
R2→

R2→ S(−2)⊕6 ⊕ S(−m)⊕3 ⊕ S(−m′)⊕3 R1→ S → S/Iσ(C∩C′) → 0

(3.13)Proof :From lemma 3.2 and 3.4, it is 
lear that
R1 =

ˆ

∆00, ∆01, ∆02, ∆11, ∆12, ∆22, F0, F1, F2, F̃0, F̃1, F̃2

˜Hen
e we get R1Now 
onsider
A =

ˆ

A00, A01, A02, A11, A12, A22

˜, Aij ∈ S, homogeneous ∀0 ≤ i ≤ æ ≤
2,
B =

ˆ

B0, B1, B2

˜ where Bk ∈ S, homogeneous, for k = 0, 1, 2 and
B̃ =

ˆ

B̃0, B̃1, B̃2

˜ where B̃l ∈ S, homogeneous, for l = 0, 1, 2su
h that
X

i,j

Aij .∆ij +
X

k

Bk.Fk +
X

k

B̃k.F̃k = 0 (3.14)Consider the following 
ases:(1)[B] = [B̃] = [0̄], then we get that [A] ∈< Wi : i = 1, . . . , 8 >. Hen
e we get
ˆ

[A], [0̄], [0̄]
˜

∈
˙ ˆ

W1, 0̄, 0̄
˜

, . . . ,
ˆ

W8, 0̄, 0̄
˜ ¸(2)[B] 6= [0̄], but [B̃] = [0̄], then from [A℄ we get that

ˆ

[A], [B], [0̄]
˜

∈
˙ ˆ

V00, Y00, 0̄
˜

, . . . ,
ˆ

V22, Y22, 0̄
˜

,
¸(3)Similarly for [B] = [0̄], but [B̃] 6= [0̄], we get that

ˆ

[A], [B], [0̄]
˜

∈
˙ ˆ

Ṽ00, 0̄, Y00

˜

, . . . ,
ˆ

Ṽ22, 0̄, Y22

˜

,
¸(4)B, B̃ 6= [0̄], hen
e we get that

θ

 

X

k

“

(Bk.Fk) + (B̃k.F̃k)
”

!

= 0Let bk = θ(Bk) and b̃k = θ(B̃k). Now note that the degrees of bk and b̃k are even, for
k = 0, 1, 2Hen
e we have that

X

k

(bk.xk).f +
X

k

(b̃k.xk).f̃ = 0 38



3.3. DEGREES OF C AND C′ ARE ODDNow as f and f̃ are irredu
ible polynomials and by assumption that C ∩ C′ is redu
edwe get that
X

k

(bk.xk) ∈< f̃ > and X
k

(b̃k.xk) ∈< f > (3.15)To get bk and b̃k satisfying the above equation, 
onsider the two ve
tors ,
(h0, h1, h2) =

`

x1.x2.θ(h̃I) + θ(h̃II), θ(h̃III), θ(h̃IV )
´

“

h̃0, h̃1, h̃2

”

=
`

−x1.x2.θ(hI) − θ(hII), −θ(hIII), −θ(hIV )
´And let [H] =

ˆ

x12.h̃I , h̃II , h̃III , h̃IV

˜ and [H̃] =
ˆ

−x12.hI − hII , −hIII , −hIV

˜Now substituting hi as bi and h̃i as b̃i, we get thatPi(hi.xi) = f̃ andPi(h̃i.xi) = −f .So Pi(hi.xi)f +
P

i(h̃i.xi).f̃ = 0Now for any ve
tors satisfying (3.15) the following holds
X

i

bi.xi = p.f̃ and X
i

b̃i.xi = −p.f, for some homogeneous p ∈ SNoti
e that degree of p is even, as degree of bi is even and degree of f is odd.Hen
e we get that
X

i

bi.xi = p.(
X

i

(hi.xi)) and X
i

b̃i.xi = p.(
X

i

(h̃i.xi)),So
X

i

(bi − p.hi).xi = 0 and X
i

(b̃i − p.h̃i)xi = 0Hen
e
`

(b0 − p.h0, b1 − p.h1, b2 − p.h2) , (b̃0 − p.h̃0, b̃1 − p.h̃1, b̃2 − p.h̃2)
´

∈ Syz1(x0, x1, x2)Now using the same arguments as Theorem 2.2, we get that
[B − P.H ], [B̃ − P.H ′] ∈< Yij : 0 ≤ i, j ≤ 2 >,where P su
h that θ(P ) = p.Hen
e [B] ∈ 〈Yij,H : 0 ≤ i, j ≤ 2〉 and [B̃] ∈< Yij, H̃ : 0 ≤ i, j ≤ 2 >. Let H =

[ ( 0, τ1, τ2, 0, 0, , 0 ), H , H̃ ],where τ1 = h̃I .hIV − ˜hIV .hI and τ2 = ˜hIII .hI − h̃I .hIII , then we get
ˆ

A, B, B̃
˜

∈
D

[Wi, 0̄, 0̄] , [Vjk,Yjk, 0̄] ,
h

Ṽjk, 0̄,Yjk

i

, [H]
Efor i = 1, . . . , 8,and 0 ≤ j, k ≤ 2, (j, k) 6= (0, 2)Hen
e we get R2Consider

A =
ˆ

(Ai)
˜, B =

ˆ

(Bjk)
˜, B̃ =

ˆ

(B̃jk)
˜ and C,where Ai,Bjk,B̃jk ,C ∈ S, homogeneous, for i = 1, . . . , 8 , j, k = 0, 1, 2 and (j, k) 6=

(0, 2) su
h that
X

i

Ai.[Wi, 0̄, 0̄, 0]+
X

jk

Bjk.[Vjk,Yjk, 0̄, 0]+
X

jk

B̃jk.[Ṽjk, 0̄,Yjk, 0]+C.[H] = 0 (3.16)39



CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OFCOMPLETE INTERSECTIONS OF CURVES IN THE PLANE.Like in the earlier part of this proof, we 
onsider four 
ases(1) B = [0̄] and B̃ = [0̄], hen
e C = 0, then we get that [A] ∈ 〈G1, G2, G3〉Hen
e ([A], [0̄]) ∈
˙

[G1, 0̄], [G2, 0̄], [G3, 0̄]
¸(2)B 6= [0̄] but B̃ = [0̄], then we get that C = 0.Then [A, B] ∈

˙

[Gi, 0̄], [Kj ,K
′
j] : i = 1, 2, 3, j = 1, . . . , 6

¸.Hen
e [A, B, 0̄, 0] ∈
˙

[Gi, 0̄], [Kj ,K
′
j , 0̄, 0] : i = 1, 2, 3, j, k = 0, 1, 2

¸.(3)B̃ 6= [0̄] but B = [0̄], hen
e C = 0. Similarly to 
ase(2) we get,
[A, 0̄, B̃, 0] ∈

D

[Gi, 0̄], [K̃j , 0̄,K′
j , 0] : i = 1, 2, 3, 1 ≤ j ≤ 6

E.(4))B, B̃ 6= [0̄], Then we have
X

jk

Bjk.Yjk + C.H = 0 and X
jk

B̃jk.Yjk + C.H ′ = 0 (3.17)So ,
X

jk

xjbjk.Yk + c.h = 0 and X
jk

xjb
′
jk.Yk + c.h′ = 0 (3.18)where 〈Y0, Y1, Y2〉 = Syz1(x0, x1, x2)(see Theorem 2.2)Now multiplying (3.18) by [x0, x1, x2]

T , we get
c.f = c.f̃ = 0 ⇒ c = 0 ⇒ C ∈< ∆ij >Now substituting C = ∆ij , ∀0 ≤ i ≤ j ≤ 2 in (3.17), we get a set of six ve
tors, lets
all them Dij . So we have

Dij =
ˆ

δij , ∆ij

˜Hen
e [A, B, B̃, C] ∈
D

[Wi, 0̄, 0̄] , [Kj , K
′
j , 0̄, 0] ,

h

K̃j , 0̄, K′
j ,
i

, [Dkl]
Efor 1 ≤ i ≤ 8, 1 ≤ j ≤ 6, 0 ≤ k ≤ l ≤ 2.Hen
e we get R3Consider,

A =
ˆ

(Ai)
˜

, B =
ˆ

(Bj)
˜

, B̃ =
ˆ

(B̃j)
˜

, C = [(Ckl)],where Ai,Bj ,B̃j ,Ckl ∈ S, homogeneous, for i = 1, 2, 3, j = 1, . . . , 6and 0 ≤ k ≤ l ≤ 2 with (k, l) 6= (0, 2) su
h that
X

i

Ai.[Gi, 0̄, 0̄, 0̄] +
X

j

Bj .[K
′′
j ,K′

j, 0̄, 0̄] +
X

j

B̃j .[K̃
′′
j , 0̄,K′

j, 0̄] +
X

k,l

Ckl.[Dkl] = 0(3.19)If we take similar 
ases as in the earlier part of the proof, we get(1)If C = 0̄, then [A, B, B̃, 0̄] ∈
˙

[J ′′,J′, 0̄, 0̄], [J̃ ′′, 0̄,J′, 0̄]
¸.(2)C 6= 0̄, then [C] ∈ 〈[Wi] : i = 1, . . . , 8〉Substituting [C] = [Wi] for some i in (3.19), we get a set of 8 ve
tors

Wi = [[ωi], [Wi]] .Hen
e we have,
[A, B, B̃, C] ∈

˙ˆ

J ′′, J
′, 0̄, 0̄

˜

,
ˆ

J̃ ′′, 0̄, J
′, 0̄

˜

, [Wi]
¸for 1 ≤ i ≤ 8. 40



3.3. DEGREES OF C AND C′ ARE ODDHen
e we get R4Let A =
h

(Ai) 1≤i≤8

i, B, B̃where Ai, B, B̃ ∈ S, homogeneous for i = 1, . . . , 8 su
h that
X

i

Ai.[ωi, Wi] + B.[J ′′,J′, 0, 0̄] + B̃.[J̃ ′′, 0, J′, 0̄] = 0 (3.20)As the last rows of the last two ve
tors are zero we haveX
i

Ai.Wi = [0̄]This implies that, [A] ∈ 〈Gk : k = 1, 2, 3〉. Substituting this in (3.20), we get 3 ve
tors,let us 
all them Γk.
Γk = [Gk, Gk] for k = 1, 2, 3So [B, B̃, A] ∈ 〈Γk : k = 1, 2, 3〉Hen
e we get R5.
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4DG -AlgebraRe
all from Chapter 2, that for C a smooth(or irredu
ible) plane 
urve, the Veroneseembedding of P
2 in P

5 gives an embedding C
σ
→֒ P

5. In Chapter 2 we 
omputed thesyzygies of the homogeneous ideal Iσ(C) of this embedding of C in P
5. Now if the degreeof C is odd then from theorem 2.2, we have that the minimal graded free resolution of

S/Iσ(C) is as follows:
0 →S(−m − 4)

β′
4→ S(−4)⊕3 ⊕ S(−m − 2)⊕6 β′

3→

β′
3→ S(−3)⊕8 ⊕ S(−m − 1)⊕8 β′

2→ S(−2)⊕6 ⊕ S⊕3(−m)
β′
1→ S → S/IC → 0where

β′
1 =

ˆ

∆00, . . . , ∆22, F0, F1, F2

˜

β′
2 =

ˆ

[W1, 0̄], , . . . , [W8, 0̄] , [ [Y ′
1 ], [Y1] ], . . . , [ [Y ′

8 ], [Y8] ]
˜

β′
3 =

ˆ

[G′
1, 0̄], , [G′

2, 0̄], [G′
3, 0̄] , [ [K′

1], [K1] ], . . . , [ [K′
6], [K6] ]

˜

β′
4 = [β′

1]
Twhere(1) Wi are matri
es from equation (2.2)(2) G′

1 = G1, G′
2 = −G2 and G′

3 = G3 from equation (2.3)(3) Yts = Gst , for all s = 1, 2, 3 and t = 1, . . . , 8(4) Kts = Wst , for all t = 1, . . . , 6 and s = 1, . . . , 8(5)  Y ′
1 = V00, Y ′

2 = −V01, Y ′
3 = −V10, Y ′

4 =
ˆ

x00hI , 0, ,−hIII , −x11hI , , hII , 0
˜T

Y ′
5 = −V12, Y ′

6 = V20, Y ′
7 = −V21, Y ′

8 = V22(6) K′
ts

= Y ′
st

for all t = 1, . . . , 6 and s = 1, . . . , 8

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;(4.1)where Vij are matri
es from Chapter 3.Note that the β′
is in the above resolution are not the same as the βis de�ned inTheorem 2.2. But be
ause the above resolution is symmetri
, 
olumns of Wi's and

Gi's are linearly independent and the fa
t that,
X

i

Win .Y ′
im

+
X

j

Y ′
jn

.Wjm = 0 ∀ n, m = 1, . . . , 6gives us that the above β′
is also de�ne a resolution.Let us 
all the above exa
t sequen
e P•. So we have

P• : 0 → P4 → P3 → P2 → P1 → P0 = S → 0 43



CHAPTER 4. DG -ALGEBRAwhere rank (P0) = rank (S) = 1 , rank (P1) = 9, rank (P2) = 16, rank (P3) = 9, rank(P4) = 1Let {ei, eFn−1
} be basis of P1, {ews , evs} be basis of P2, {egn , eki

} be basis of P3,
{eJ } be basis of P4. where i = 1, . . . , 6, n = 1, 2, 3, s = 1, . . . , 8.In [KM℄ the authors prove that any symmetri
 resolution of length 4 has a DG algebrastru
ture. Hen
e we know that the above resolution has a DG-algebra stru
ture. Inthis 
hapter we will de�ne a DG-algebra stru
ture for the resolution, P•.
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4.1. DEFINING (∗)4.1 De�ning (∗)Let us de�ne the multipli
ation (∗) on the above basis elements
(i) ei ∗ ej =

8
X

t=1

Ai,js .ewt

(ii) ei ∗ ews =
X

t=1,2,3

Bi,st .egt

(iii) ei ∗ egs = 0

(iv) ews ∗ ewt = 0

(v) ei ∗ eFn−1
=

8
X

t=1

Bi,tn .evt +
8
X

t=1

α′
i,n−1t

.ewt (4.2)
(vi) ei ∗ evs =

6
X

t=1

Ai,ts .ekt +

3
X

t=1

α′
i,t−1s

.egt

(vii) eFn−1
∗ eFm−1

=
8
X

t=1

An−1,m−1t
.evt

(viii) eFn−1
∗ evs = −

6
X

t=1

α′
t,n−1s

.ekt

(ix) eFn−1
∗ ews = −

6
X

t=1

Bt,sn .ekt

(x) ei ∗ eks = δis.eJ

(xi) eFi−1
∗ eks = 0

(xii) eFi−1
∗ egs = δis.eJ (4.3)

(xiii) ewi
∗ evs = −δis.eJ

(xiv) evs ∗ evt = 0where
Ai,j , Bi,s, An−1,m−1, α′

i,n−1 are matri
es given below and
δis =



1 if i = s
0 otherwise

Ai =
ˆ

[Ai,1], . . . [Ai,6]
˜ for i = 1, . . . , 6

A1 =

2

6

6

6

6

6

6

6

6

6

6

4

0 x12 x11 x02 0 0
0 0 0 x12 x11 0
0 −x22 −x12 0 x02 x01

0 0 0 0 0 x11

0 0 0 0 0 −x12

0 0 0 −x22 −x12 −x11

0 0 0 0 0 0
0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

5

, A2 =

2

6

6

6

6

6

6

6

6

6

6

4

−x12 0 x01 0 0 0
0 0 0 x02 x01 0
x22 0 −x02 0 0 0
0 0 0 0 0 x01

0 0 0 0 0 −x02

0 0 0 0 0 0
0 0 0 −x22 −x12 −x11

0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

545



CHAPTER 4. DG -ALGEBRA
A3 =

2

6

6

6

6

6

6

6

6

6

6

4

−x11 −x01 0 −x00 0 0
0 0 0 0 0 0
x12 x02 0 0 0 0
0 0 0 0 0 0
0 0 0 0 x02 x01

0 0 0 x02 0 0
0 0 0 −x12 0 0
0 0 0 0 −x12 −x11

3

7

7

7

7

7

7

7

7

7

7

5

, A4 =

2

6

6

6

6

6

6

6

6

6

6

4

−x02 0 x00 0 0 0
−x12 −x02 0 0 x00 0
0 0 0 0 0 0
0 0 0 0 0 x00

0 0 0 0 0 0
x22 0 −x02 0 0 0
0 −x22 −x12 0 −x02 −x01

0 0 0 0 0 −x02

3

7

7

7

7

7

7

7

7

7

7

5

A5 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 0 0
−x11 −x01 0 −x00 0 0
−x02 0 0 0 0 0
0 0 0 0 0 0
0 0 −x02 0 0 x00

x12 0 0 0 0 0
0 −x12 0 x02 0 0
0 0 x12 0 0 −x01

3

7

7

7

7

7

7

7

7

7

7

5

, A6 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 0 0
0 0 0 0 0 0
−x01 0 0 0 0 0
−x11 −x01 0 −x00 0 0
x12 x02 −x01 0 −x00 0
x11 0 0 0 0 0
0 x11 0 x01 0 0
0 0 x11 x02 x01 0

3

7

7

7

7

7

7

7

7

7

7

5And
Bi =

ˆ

[Bi,1], . . . , [Bi,8]
˜ for i = 1, . . . , 8

B1 =

2

4

0 0 0 −x12 −x11 0 x02 0
0 0 0 0 0 0 x12 x11

0 0 0 0 0 0 x22 x12

3

5 , B2 =

2

4

0 0 0 −x02 −x01 −x02 0 0
0 0 0 0 0 −x12 0 x01

0 0 0 0 0 −x22 0 x02

3

5

B3 =

2

4

0 x02 0 x01 0 0 0 0
0 x12 0 x11 0 0 0 0
0 0 0 0 0 −x12 −x02 0

3

5 , B4 =

2

4

0 0 x02 0 −x00 0 0 0
0 0 x12 x02 0 0 0 x00

0 0 x22 0 −x02 0 0 0

3

5

B5 =

2

4

−x02 0 0 x00 0 0 0 0
−x12 0 0 x01 0 0 0 0
0 0 x12 x02 0 x02 0 0

3

5 , B6 =

2

4

−x01 −x00 0 0 0 0 0 0
−x11 −x01 0 0 0 0 0 0
0 −x02 x11 0 0 x01 0 0

3

5

A0,1 =

2

6

6

6

6

6

6

6

6

6

6

4

−hII

hIII

x11hI

−hIV

0
0
−x00hI

0

3

7

7

7

7

7

7

7

7

7

7

5

, A0,2 =

2

6

6

6

6

6

6

6

6

6

6

4

−x22hI

0
hII

−hIII

hIV

−hIII

0
−x00hI

3

7

7

7

7

7

7

7

7

7

7

5

, A1,2 =

2

6

6

6

6

6

6

6

6

6

6

4

0
−x22hI

0
0
x11hI

−hII

hIII

−hIV

3

7

7

7

7

7

7

7

7

7

7

5

α′
i =

ˆ

[α′
i,0] [α′

i,1] [α′
i,2]

˜ 46



4.1. DEFINING (∗)

α′
1 =

2

6

6

6

6

6

6

6

6

6

6

4

0 −x11hI −hII

x11hI 0 0
−hIII −hII −x22hI

0 0 0
0 0 0
−hII 0 0
0 0 0
0 0 0

3

7

7

7

7

7

7

7

7

7

7

5

, α′
2 =

2

6

6

6

6

6

6

6

6

6

6

4

x00hI 0 hIII

0 −x11hI 0
0 hIII 0
0 0 −x22hI

0 −x22hI 0
0 0 0
−hII 0 0
−x22hI 0 0

3

7

7

7

7

7

7

7

7

7

7

5

α′
3 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 −hIV

0 0 −x11hI

−x00hI 0 0
0 0 0
0 −hII −x22hI

0 −x11hI 0
−x11hI 0 0
−hII 0 0

3

7

7

7

7

7

7

7

7

7

7

5

, α′
4 =

2

6

6

6

6

6

6

6

6

6

6

4

0 −x00hI 0
x00hI 0 hIII

0 0 0
0 0 0
0 0 0
0 hIII 0
hIII hII 0
0 0 x22hI

3

7

7

7

7

7

7

7

7

7

7

5

α′
5 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 −x00hI

0 0 −hIV

0 −x00hI 0
0 0 0
0 hIII −x22hI

−x00hI 0 0
0 −x11hI 0
hIII 0 x22hI

3

7

7

7

7

7

7

7

7

7

7

5

, α′
6 =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 0
0 0 0
0 0 0
0 0 −hIV

−x00hI −hIV −hIII

0 0 0
0 0 x11hI

−hIV −x11hI 0

3

7

7

7

7

7

7

7

7

7

7

5
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CHAPTER 4. DG -ALGEBRA4.2 Asso
iativity1.Che
k that
8
X

s=1

Ai,js .Bl,st =
8
X

s=1

Aj,ls .Bi,st for all t = 1, 2, 3 and for all 1 ≤ i, j, k ≤ 6This implies that (ei ∗ ej) ∗ el = ei ∗ (ej ∗ el) for all 1 ≤ i, j, k ≤ 62. Che
k that
8
X

s=1

Bj,sl+1
.α′

i,t−1s
+

8
X

s=1

Bi,stα
′
i,t−1s

=
8
X

s=1

Ai,jsAl,t−1sfor all 1 ≤ i, j ≤ 6 and l = 0, 1, 2.And,

8
X

s=1

Ai,js .Bt,sl+1
=

8
X

s=1

At,is .Bj,sl+1
for all 1 ≤ i, j, t ≤ 6 and l = 0, 1, 2, by 1. aboveThis implies that (ei ∗ ej) ∗ eFl

= ei ∗ (ej ∗ eFl
) for all 1 ≤ i, j ≤ 6 and l = 0, 1, 23. Che
k that

8
X

s=1

A0,1s α′
t,2s

=

8
X

s=1

A1,2sα′
t,0s

for all 1 ≤ t ≤ 8This implies that (eF0
∗ eF1

) ∗ eF2
= eF0

∗ (eF1
∗ eF2

)4.Che
k that
(ei ∗ ej) ∗ evs = ei ∗ (ej ∗ evs) , by 4.2.(i), 4.2.(vi), and 4.35.Che
k that

(ei ∗ eFj
) ∗ ews = ei ∗ (eFj

∗ ews ) , by 4.2.(v), 4.2.(ix), and 4.36.Che
k that
(ei ∗ eFj

) ∗ evs = ei ∗ (eFj
∗ evs) , by 4.2.(v), 4.2.(viii), and 4.37.Che
k that

(eFi
∗ eFj

) ∗ ews = eFi
∗ (eFj

∗ ews) , by 4.2.(vii), 4.2.(ix), and 4.38.Che
k that
(eFi

∗ eFj
) ∗ evs = eFi

∗ (eFj
∗ evs) = 0 , by 4.2.(vii), 4.2.(viii), and 4.3Hen
e we get that ∗ is asso
iative.
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4.3. DEFINING ∂4.3 De�ning ∂

1) ∂(e2i+j+1) =



∆ij when 0 ≤ i ≤ j < 2
∆22 i = j = 2

2) ∂(eFn) = Fn

3) ∂(ews) =
6
X

t=1

Wstet

4) ∂(evs) =
3
X

t=1

G′
ts

eFt−1
+

6
X

t′=1

Y ′
st

5) ∂(egs) =
8
X

t=1

G′
st

ewt

6) ∂(eks) =

8
X

t=1

Wstevt +

8
X

t=1

Y ′
st

ewt

7) ∂(eJ ) =
6
X

t=1

(∂(et)) ekt +
3
X

t=1

Ft−1egtwhere Wi as in equation (2.2), G′
j as in equation (2.3), Y ′

k as inequation (4.1).To prove that ∂ is well-de�ned,(1)To 
he
k that
∂(ei ∗ ej) = ∂(

X

t,n

Ai,jtewt)Now {Ai,jt} is 
omputed su
h that [Ai,j ] satis�es the following 
onditins,
X

t

Ai,jtWti
= −∆j

X

t

Ai,jtWtj
= ∆i (4.4)

X

t

Ai,jtWtn = 0 for n 6= i, j and n = 1, . . . , 6(2)To 
he
k that
∂(ei ∗ ews) = ∂(

X

t,n

Bi,stewt)Now {Bi,st} is 
omputed su
h that [Bi,s] satis�es the following 
onditions,
X

t

Bi,stG
′
ts

= ∆i −
X

t

WstAi,ts (4.5)
X

t

Bi,stG
′
tn

= −
X

t

WstAi,tn for n 6= i, j and n = 1, . . . , 8So you get that ∂(ei ∗ ews) = ∂(
X

t,n

Bi,stewt)(3)To 
he
k that
∂(ei ∗ egs) = ∂(0), 
he
k that 49
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X

t

Bi,tsG′
st

= ∆i (4.6)
X

t

Bi,tsG′
st

= 0 for n 6= s and n = 1, 2, 3(4)To 
he
k that
∂(ewi

∗ ewj
) = ∂(0), 
he
k that

X

t

WitBt,jn
+
X

t

WjtBt,in
= 0 for all n = 1, 2, 3 (4.7)(5)To 
he
k that

∂(ei ∗ eFj
) = ∂

 

X

t

Bi,tj+1
evt

!

+ ∂

 

X

t

α′
i,jt

ewt

!Now from equation(4.6) we get that the 
oe�
ients of evn of both the sides areequal and further, {α′
i,j} have 
omputed su
h that [α′

i,j ] satisfy the following 
ondi-tions,
X

t

α′
i,jt

Wti
= −Fj −

X

t

Bi,tj+1
Y ′

ti (4.8)
X

t

α′
i,jt

Wtn = −
X

t

Bi,tj+1
Y ′

tn
su
h that n 6= i and n = 1, . . . , 6(6)To 
he
k that

∂(eFi
∗ eFj

) = ∂(
X

t

Ai,jtevt)Now {Ai,jt} have been 
omputed su
h that [Ai,j ] satisfy the following 
onditions
X

t

Ai,jt
G′

i+1t
= −Fj

X

t

Ai,jt
G′

j+1t
= Fi (4.9)

X

t

Ai,jt
G′

nt
= 0 for n 6= i + 1, j + 1 and n = 1, 2, 3

X

t

Ai,jt
Y ′

tn′ = 0 for n′ = 1, . . . , 6 (4.10)(7)To 
he
k
∂(eFi

∗ evs) = ∂(−
X

t

α′
t,is

ekt), 
he
k that
X

t

Ai,t−1s
G′

ts
−
X

t

Y ′
st

Bt,si+1
−
X

t

α′
t,is

Wst = Fi (4.11)
X

t

Ai,t−1n
G′

ts
−
X

t

Y ′
st

Bt,ni+1
−
X

t

α′
t,is

Wnt = 0 for n 6= s and n = 1, . . . , 8

X

t

α′
t,in

Y ′
st

+
X

t

α′
t,is

Y ′
nt

= 0 for all n = 1, . . . , 8, (4.12)50



4.3. DEFINING ∂(8)To 
he
k
∂(eFi

∗ ews) = ∂

 

−
X

t

Bt,si+1
ekt

!

+ ∂(
X

t

Ai,t−1s
egt) 
he
k thatfrom equation(4.11) we get that the 
oe�
ients of ewn are equal for both the sides,and from equation(4.7) we get that the 
oe�
ients of evn on both the sides are equal.(9)To 
he
k

∂(ei ∗ ekj
) = δij .eJ noti
e thatfrom equation(4.4) we get that the 
oe�
ients of ekn are equal for both the sides,andsimilarly equation(4.8) gives us that the same holds for the 
oe�
ients of egn .(10)To 
he
k

∂(eFi−1
∗ egj

) = δij .eJ noti
e thatfrom equation(4.9) we get that the 
oe�
ients of ekn are equal for both the sides,andsimilarly equation(4.6) gives us that the same holds for the 
oe�
ients of egn .(11)To 
he
k
∂(eFi−1

∗ ekj
) = 0 noti
e thatfrom equation(4.8) we get that the 
oe�
ients of ekn are zero for the LHS, and simi-larly equation(4.10) gives us that the 
oe�
ients of egn of the LHS are zero.(12)To 
he
k

∂(ewi
∗ evj

) = −δij .eJ noti
e thatfrom equation(4.5) we get that the 
oe�
ients of ekn are equal for both the sides,andsimilarly equation(4.11) gives us that the same holds for the 
oe�
ients of egn .(13)To 
he
k
∂(evi

∗ evj
) = 0 noti
e thatfrom equation(4.12) we get that the 
oe�
ients of egn are zero for the LHS, further
he
k that

X

t

G′
ti

α′
n,t−1j

+
X

t

G′
tj

α′
n,t−1i

=
X

t

Y ′
it

At,nj
+
X

t

Y ′
jt

At,ni
for all n = 1, . . . , 6This gives us that the 
oe�
ients of ekn are zero.
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5Appendix
Here we re
ord some observations by one of the referees about the 
al
ulations in thethesis.

1. If we have a short exa
t sequen
e sequen
e of �nitely generated modules M1, M2, M3over a polynomial ring,
0 −→ M1 −→ M2 −→ M3 −→ 0and if we know the minimal free resolution of M1 and M2 we 
an build a freeresolution of M3 whi
h may not be minimal.Therefore as a 
onsequen
e, the matri
es (or the maps) in the free resolution of

M3 is built up from the free resolutions of on M1 and M2 will naturally be builtup from the up in the free resolution of M3. This is 
alled the mapping 
one.The free resolution built this way naturally turns out to be a 
omplex, but alsoan exa
t sequen
e.2. In our 
ase in Theorem 2.1 we have the short exa
t sequen
e of ideals:
0 −→ (∆ ∩ F ) = F∆ −→ ∆ ⊕ (F ) −→ (∆, F ) −→ 0and the 
orresponding free resolution of (∆ ∩ F ) and ∆ ⊕ F

0 0

F3 G3

F2 G2

F1 G1

0 (∆ ∩ F ) = F∆ ∆ ⊕ (F ) (∆, F ) 0 53



CHAPTER 5. APPENDIXwhere Fi and Gi are free modules.The mapping 
one gives the following free resolution for (∆, F ):
0 −→ F3 −→ F2 ⊕ G3 −→ F1 ⊕ G2 −→ G1 −→ (∆, F ) −→ 0.3. Similarly, on
e we know the free resolution in Theorem 2.1 and Theorem 2.2,the free resolution in Theorem 3.1, Theorem 3.2 and Theorem 3.3 
an be builtup from them.4. Hen
e the maps (or matri
es) in minimal free resolution of ∆ = (∆00, . . . , ∆22)does appear in the Theorem 2.1, Theorem 2.2, Theorem 3.1, Theorem 3.2 andTheorem 3.3.5. The interesting thing here is that all the free resolutions in Theorem 2.1, The-orem 2.2, Theorem 3.1, Theorem 3.2 and Theorem 3.3 are indeed minimal freeresolutions whi
h 
an be seen from the maps.
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Theorem 2.1: Sin
e the minimal free resolution for ∆ is:
0 S(−4)3

[M3]8×3

S(−3)8
[M2]6×8

S(−2)6
[M1]1×6

∆ 0,

the minimal free resolution for ∆ ∩ (F ) = F∆ is:
0 S(−m − 4)3

[M3]8×3

S(−m − 3)8
[M2]6×8

S(−m − 2)6
[F M1]1×6

∆ ∩ F 0where [FM1]1×6 = [F∆00, . . . , F∆22].The minimal free resolution of (F ) is
0 −→ S(−m) −→ (F ) −→ 0

Therefore the minimal free resolution for ∆ ⊕ (F ) is
0 S(−4)3

[M3]8×3

S(−3)8

2

4

[M2]6×8

[0]1×8

3

5

S(−2)6 ⊕ S(−m)
[F,[M1]1×6]

∆ ⊕ (F ) 0,55



CHAPTER 5. APPENDIXHen
e we get the 
ommutative diagram
0 S(−m − 4)3

[M3]8×3

F I3×3

S(−m − 3)8
[M2]6×8

F I8×8

S(−m − 2)6
[F M1]1×6

2

6

6

6

4

−FI6×6

[M1]1×6

3

7

7

7

5

∆ ∩ (F )

i

0

0 S(−4)3
[M3]8×3

S(−3)8

2

6

6

6

4

[M2]6×8

[0]1×8

3

7

7

7

5

S(−2)6 ⊕ S(−m)
[[M1]1×6,F ]

∆ ⊕ (F ) 0

0 S(−m − 4)3

2

6

6

6

4

[M3]8×3

[FI ]3×3

3

7

7

7

5

S(−m − 3)8 ⊕ S(−4)3

2

6

6

6

4

[M2]6×8 [0]6×3

[FI ]8×8 [M3]8×3

3

7

7

7

5

S(−m − 2)6 ⊕ S(−3)8

2

6

6

6

4

[−FI ]6×6 [M2]6×8

[M1]1×6 [0]1×8

3

7

7

7

5

S(−2)6 ⊕ S(−m)
[[M1]1×6,F ]

(∆, F ) 0,
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Hen
e the maps 
an be given as blo
k matri
es as follows:
α1 = [[M1]1×6 F ] α2 =

»

−FI6×6 [M2]6×8

[M1]1×6 01×8

–

α3 =

»

[M2]6×8 06×3

−FI8×8 [M3]8×3

–

α4 =

»

[M2]8×3

´−FI3×3

–

Remark 2: The above argument 
an be used for Theorem 2.2, Theorem 3.1, Theo-rem 3.2 and Theorem 3.3.Theorem 2.2:
β1 = [[M1]1×6 F1 F2 F3] β2 =

»

[M2]6×8 [V ]6×8

03×8 [Y ]3×6

–

β3 =

»

[M3]8×3 −[V T ]8×6

08×3 −[M2]
T
8×6

–

β4 =

»

−[J”]8×1

[J ′]6×1

–

Remark 3 The 
omplex in Theorem 3.1, 
an be built up from Theorem 2.1 asfollowsTheorem 3.1:We have the following 
ommutative diagrams: 57
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P1 =

h

[M1]1×6 F F̃
i

P2 =

2

4

−F̃ I6×6 [0]6×1 [−FI ]6×6 [M2]6×8

[0]1×6 [FI ]1×1 [M1]1×6 [0]1×8

[M1]1×6 [0]1×6 [F̃ ]1×1 [0]1×8

3

5

P3 =

2

6

6

4

−FI8×6 [M2]6×8 [0]6×8 [0]6×3

[M1]1×6 [0]1×8 [0]1×8 [0]1×3

[−F̃ I ]6×6 [0]6×8 [M2]6×8 [0]6×3

[0]8×6 −F̃ I8×8 [−FI ]8×8 [M3]8×3

3

7

7

5

P4 =

2

6

6

4

[M2]6×8 [0]6×3 [0]6×3

FI8×8 [M3]8×3 [0]6×3

[−F̃ I ]8×8 [0]8×3 [0]6×3

[0]3×8 [−F̃ I ]3×3 [0]6×3

3

7

7

5

P5 =

2

4

[M3]8×3

[FI ]3×3

[−F̃ I ]3×3

3

5Similarly, we 
an write the maps for Theorem 3.2 and Theorem 3.2.
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