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Abstract

This thesis has three parts. In the first part we take an irreducible curve C in
P2. Then we use the Veronese map,(o) to map it to P® and compute the resolution of
o(C).In the second part we look at reduced intersection of two distinct curves C and
C’ in P?. And find the resolution of ¢(C N C’). In the third part we compute explicit
Differential graded algebra for one of the resolutions computed ealier.

Part 1

Let C be a smooth irreducible homogeneous curve in P?. Then we know that C is
given by zeros of an irreducible homogeneous polynomial in 3-variables, ie., C =
Z(f(xo,x1,22)), f € K [T0,21,22] Is an irreducible homogeneous polynomial.

Consider the embedding on P? in P° via the Veronese embedding o, where o(z,y,2) =
(22, 2y, 22,97, yz, 2%), this also gives an embedding of C in P°.

In this part of the thesis, we look at S/Z, ), the homogeneous coordinate ring of
o(C) in P° and explicitly calculate the minimal graded free resolution of S/Z, ),
where S is the homogeneous coordinate ring of P°,

Let the degree of C in P? be d.i.e, C be defined by an irreducible homogeneous poly-
nomial, ‘f’ of degree d in K|[zo,z1,22]. Depending on the parity of d, we get the
following two results.

Theorem 1: Let C be an irreducible curve of even degree say d = 2m, m > 1.
The homogeneous coordinate ring S/Z, ) of o(C) in P° has the following minimal
graded free resolution:

0—S(—m—4)% 23 5(—4)® ¢ §(—m —3)P* 28
B8(-3) e S(—m—-2)%° B S(-2)* @ S(~—m) B S — S/T,c) — 0

where «a;’s are matrices of homogeneous polynomial entries with no non-zero scalars
[See Section 2.1]

Theorem 2: Let C be an irreducible curve of odd degree say d = 2m — 1, for m > 2.
The homogeneous coordinate ring S/Z, ) of o(C) in P° has the following minimal
graded free resolution:

0 —S(—m—4) 24 §(—4)®* @ S(—m — 2)%° 2
53 9(=3)%% @ S(—m — 1)® 2 §(—2)%0 @ $%%(—m) B S — §/T,c) — 0

where f3;’s are matrices of homogeneous polynomial entries with no non-zero scalars
[See Section 2.2]

Corollary 1: Let C be a smooth, irreducible plane curve of degree d and L be the
line bundle O¢(2).

(a)S/Z,(c) is Gorenstein if ‘d’ is odd and when ‘d’ is even S/Z,c) is Cohen-Maculay
but not Gorenstein.

(b)(C, L) satisfies property Ny for all d > 2.

(c)(C, L) satisfies Ny iff d = 3,4.

Part 2

Consider two distinct irreducible plane projective curves, C and C’ of degrees d and d’
respectively. Then by Bezout’s theorem we know that C and C’ intersect at d.d’ points



counted with multiplicity.

In the second problem, we explicitly write down the minimal graded free resolution of
S/Z,(cncr), where I, cnery is the ideal sheaf of o(C NC’). Depending on the parities
of d and d’, we get the following three results.

Theorem 3: Let C, C' be two irreducible curves of even degree say d = 2m and
d =2m’, m,m’ > 1. The homogeneous coordinate ring S/Z,cncy of o(CNC’) in P
has the following minimal graded free resolution.
0—=S(—m—m' —4)® B S(—m -0 o S(—m' — )P B S(—m—m' —3)%
i} S(—4)® @ S(—m —3)* @ S(—m’ —3)** & S(—m —m’ —2)%° i
P8 5(=3)%8 @ S(—m — 2)®° @ S(—m’ — 2)®° @ S(—m —m') 23

72 9(—2)% @ S(—m) @ S(—m') B2 S — /T, crery — 0

where P;’s are matrices with homogeneous polynomial entries with no non-zero scalars|See
Section 3.1]

Theorem 4: Let C, C' be two irreducible curves of degrees say d = 2m and d' =
2m’ — 1, m,m’ > 2. Then the homogeneous coordinate ring S/Z,cnc/) of o(CNC’) in
P® has the following minimal graded free resolution.

0—S(—m—m' —4) 2 S(—m — )% @ S(—m' —4) ® S(—m —m' — 2)®°
25— @ S(—m —3)® B S(—m’' —2)® B S(—m —m/ —1)®° =
23 5(—3)%* @ S(—m — 2)%° @ S(—m’/ — 1)®¥ @ S(—m — m')®* B
2 5(-2)% © S(—m) @ S(-m")?* B § — $/T,crery — 0

where Q;’s are matrices with homogeneous polynomial entries with no non-zero scalars|See
Section 3.2]

Theorem 5: Let C and C’ be two irreducible plane curves of odd degree say d = 2m—1
and d’ = 2m’ — 1 for m,m’ > 2. The coordinate ring S/Z,cnc/y of ¢(CNC’) in P® has
the following minimal graded free resolution.

0—=S(—m—m' —3)P X S(cm—4)@S(—m' —4) & S(—m —m' —2)* ™4
15— @ S(—m — 2)%° @ S(—m’ — 2)%° ® S(—m —m’ — 1) X3
R 9(-3)" @ S(—m — 1) @ S(—m/ — )®* @ S(—m —m/ + 1) 2

@ (—2)696 ® S(—m)®3 ©® S(—ml)®3 7i1> S — S/Ig(cﬂc/) — 0

where R;’s are matrices with homogeneous polynomial entries with no non-zero scalars[See
Section 3.3]

Corollary 2: S/Z,cncry is Gorenstein if degrees of C and C’ are of different pari-
ties and is Cohen-Maculay but not Gorenstein otherwise.

Part 3



Consider the resolution in Theorem 2. Namely,
0—S(—m—4) By S(—4)%% @ S(—m — 2)®° Bs
5 9(=3)% @ S(—m —1)** B 5(—2)%° ¢ 5% (—m) B § = §/T,c) — 0
Then
Pe.0— S(—m—4) 2 S(—4)% @ S(—m —2)%°
53 9(=3)%% @ S(—m — 1)®® 22 §(—2)%¢ ¢ §%(—m) B § — §/T, ) — 0

is a symmetric acyclic complex.
In [KM], the author proves that any length 4, symmetric resolution has a DG Algebra
structure. Hence the above resolution has a DG Algebra structure.

Theorem 3.1: We give an explicit DG Algebra structure to the above acyclic complex
Pe.
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Preliminaries

1.1 The d-Uple embedding

Let P" be n-dimensional projective space over a field K. Then for d > 0, we can define
a map oq: P* — PV, where N = (”:d) — 1, such that for P € P",
agq(P) = (MO(P), R MN(P))

where M;’s are degree d monomials which form a basis of the vector space of all ho-
mogeneous polynomials of degree d in n + 1 variables.

This map which is an embedding, is called the d-Uple embedding.
Now for n and N as above define a map, 0 such that

0 : Klyo,...,yn] — Klzo,...,Zn]
H(yl) = Mi(I07...,In)

Then ker 6 is a homogeneous prime ideal of K[yo,...,yn] and Z(ker(6)) is a projective
variety of PV and Z(ker(6)) = g4(P").(See [H] for proof of the statement.)

The 2-uple embedding of P? is called the Veronese Embedding, and o2(P?) is called
the Veronese Surface. Now let us look at the map 6 with n = 2 and N = 5. So we have

0: K[yo,...,y5]—>K[xo,x1,xg]

To see this map more clearly, we will change the notations.

Let us denote, Klyo,...,ys] as K[zoo, To1, Toz2, T11, T12, T22] and
O(zij) = xixj for 0 <i < j <2

Then we see that
ker(9) = (A;; @ 0<i<j<2), where

Ago = T11T22 — ﬁz
Ao1 = Zo1T22 — T12T02
Ao2 = Z01T12 — T02211 (1.1)
A11 = TooT22 — Ty '
A1z = ZooT12 — T02Z01

Ass = TooT11 — Ty
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Hence we get that, {A;; =0 : 0<:¢<j <2} are the 6 defining equations of the
P%)

Veronese Surface; In fact Z(ker(0)) = o(P?) as a projective subvariety of P°



1.2. SYZYGIES AND MINIMAL FREE RESOLUTIONS

1.2 Syzygies and minimal free resolutions

Note that as we will only look at homogeneous coordinate rings of projective vari-
eties and finitely generated modules over them, our definitions and notations will be
adapted accordingly. We know that the homogeneous coordinate ring of the projective
space, P% is the polynomial ring, S = KJzo,...,x,] in n + 1 variables, with all the
variables of degree one.

Let M = @gezMy be a finitely generated graded S-module with the d*™® graded
component My. Now as M is finitely generated, each Mj is finite dimensional K-vector
space.

For any graded module, M, M(a) is the module M shifted( or ‘“4wisted’) by a, where
a € 7L

M(a)a = Ma+a

A module M over a graded ring S is called graded free S-module if M is decomposable
as a direct sum of free S modules: M = @;5(a;).

Given homogeneous elements m; € M of degree a; that generate M as an S-module,
we define a map from graded free S module Fy = ®;S(—a;) onto M, by sending the
a;™? degree generators to m; . Now if N is the kernel of this map, then the elements
of N are called syzygies of M. We also know that N is finitely generated graded
S-module, hence we can define a map onto N from another graded free S-module, F}
in same way. Continuing this way we can construct a sequence of maps of graded free
module. This sequence is called a graded free resolution of M.

A complex of graded S-modules
8
.—>F¢—>Fi71—>.‘.

is called minimal if for each i, ¢; (F;) C mF;_1, where m = (zo,...,Zn), the only
homogeneous maximal ideal of S.

Now we are in a position to state a theorem, which we will use extensively in the
first two problems.

Theorem 1.1|OP] : The homogenous coordinate ring S/Z, 2y of o(P?) in P has
the following minimal graded free resolution:

0— 5(—4)%* % 5(-3)%* L 5(-2)*° X § — §/T,52) — 0 (1.2)
where,

Ml:[AOOv Ao, Aoz, A, Aia,, Agg} (1.3)
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To2 0 To1
—T12 o2 —x11
_ T92 0 T12
M = 0 —z12 O
0 T22 0
0 0 0
and let
My = [Wl, Wy, Ws, Wy,
[ zo1
—11
—Zo2
Ms — T12
—ZT22
0
0
. O
and let
Ms = [ G,

0 0
o1 0
o2 o1
—X11 O
0 —T11
22 12
Ws, We,
—Z00 0
o1 0
0 00
—X02 0
0 o2
o2 —Zo1
—T12 T11
22 —T12
G2, Gs |

oo 0 0
0 oo 0
To2 0 00
1.4
—T11 —To1 0 )
12 o2 —Zo1
0 0 T02
Wi, Ws ]

(1.5)




1.3. Np-PROPERTY

1.3 N,-property

Let X be a smooth irreducible projective curve of genus g and L be an very ample
line bundle on X generated by global sections. Thus L determines a morphism

d,: X —P(HY(L)=P"
where r = dim (H°(L)) — 1. If L is very ample then @, is an embedding.

Let S denote the symmetric algebra, Sym H°(L) on H°(L). So S is a homogeneous
coordinate ring of P". Consider the graded ring

R=R(L)= ®,H(X,L™)

associated to L. Then R is in a natural way a finitely generated module over S, and
so we can talk about its minimal graded free resolution.Fe — R — 0 of R; i.e.,

0—F_ 5 R i R —-R-0 (1.6)

is exact where each F; is a direct sum of twists of S, that is,
Fy = @;5(—ai;),

and hence in particular the maps in equation(1.6) are given by matrices of homo-
geneous forms. Minimality in this context means that none of the entries in these
matrices are non-zero constants.

Definition: [L] For a integer p > 0, we say that the line bundle L satisfies Property
(Np) if

Fo(L) =S and F;(L) =®S(—i— 1) forall 1 <i<p

The above definition means the following:

L satifies Ny == 1, embeds X as a projectively normal curve;
L satifies N1 — Ny holds for L, and the homogeneous ideal

I of X is generated by quadrics;
L satisfies No — No and Ni hold for X, and the module of

syzygies among the quadrics generators Q; € 7 is
spanned by relations of the form
S LiQ: =0

where the L; are linear polynomials;

L satifies N, == L satisfies Np_1 and the syzygies
amongst the generators of Fj,_; are
linear polynomials
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1.4 Differential graded(DG) algebras

Let S be a commutative ring.
Let

P. —>P2—>P1—>Po—>0

be an acyclic complex of projective S-modules with Py = S. We can consider P, as a
graded module equipped with an endomorphism, 9 : P, — P, of degree —1 satisfying
000 =0.
In |BH]|, the authors give the following definition.
The resolution, (P.,d) is said to be a Differential graded(DG) algebra (or is said
to have a DG algebra structure) if we can define an associative multiplication on P,
satisfying the following conditions,

(i) Pa.Pm C Pogm Yn,m > 0;
7i) 1 € Py acts as the unit element i.e l.a =a.1 =a VYa € P.;
iii) a.b = (—1)dee(@-de®p 4 for all homogeneous elements, a,b € Pa;
w) a.a =0 for all odd degree elements, a;
v) d(a.b) = d(a).b+ (—1)*5“a.0(b), for all homogeneous elements a,b € P,.

~ A~~~

Proposition:[A] If A is a projective resolution of a R-module, M, such that Ao = R
and A, =0 for n > 4, then A has a structure of DG algebra.

Recall the resolution used in the previous section.
0— S(—4)% M 5(-3)" 2 5(-2)*° M 5 §/T, 4oy — 0

Let us call the above resolution Po. Notice that this resolution is of length 3, and
hence by the earlier proposition this can be given a DG-algebra structure.
So we have Py : 0 — P3s — P» — P — Py = S — 0 where,

rank(Py)— 6, with {e; : 4=1,...,6} as the basis of P,
rank(P)= 8, with {ew, : s=1,...,8} as the basis of P,

rank(Ps)— 3, with {eg, : t=1,2,3} as the basis of Ps.
Now with the following conditions,

() ees= Y. Aijeu
1 8

(i)  esew, = Z Bi,s, g,
t=1,2,3
(#i1) eseq, =0 vV i=1,...,6 and t=1,2,3
()  ew..€w, =0 V st=1,...,8
() O(e2itjr1) = Ay 1#£2,0<i<5<2
8(66) = Agg

(vi) 8(6105):.2 Wi, e
(vit) Beq) = Y (~1)""'Gu,eu,,

s=1,...,8
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and with [4; ;],[B;, ;] matrices from Chapter 4, we can check that P, is a DG-algebra.
These structure will be used extensively in the third part of this thesis.






Resolutions of plane curves in the
Veronese embedding.

Recall from chapter 1, that the map
xij — xi.xj for 0 <4 < j <2 induces a homomorphism

0: Klzo0,To1, %02, Z11, T12, T22] — K[x0, T1, T2] of graded rings

From this we get the following lemma.

Lemma 2.1: If g € K[zo,z1,x2]| is a homogeneous polynomial of even degree(say
2n). Then g € Im(6), which means that the subalgebra Im(0) of K[zo,z1, 2] is gen-
erated by even polynomials.
Proof: Let
g= Y, bikzyzies (2.1)
i+it+k=2n

Depending on the parities of 4,7, k, we define some homogeneous polynomials in S
using the coefficients by, appearing in (2.1) i.e., g = g’ + g7 + g'" + ¢'V with;

I i Jk
g E bijkToTI TS
i+j+k=2n,

1,7,k all even

Ir _ b i gk
g = ijkToL1T2
i+j+k=2n,
1 even, j,k odd

Irr b i gk
g = ijkToT1T2
i+j+hk=2n,
j even, i,k odd
v i gk
g = E bijkTOT T
i+j+k=2n,
k even, 4,7 odd

Case I : When i, j, k are all even, consider

I i Ji k

— 2 2 2

G = E bijkT T 1T
itjthk=d

1,7,k even

Notice that (GT) = g*
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Case I1I: When i is even, j and k odd, consider

I i j—1 k—1
— L. 2 2 2
G = E bijkTdHpT17 Tos T12
i+ji+k=2n
1 even
4.k odd

Similarly as in Case I, 8(G') = g'*

Case III: When i,k are odd and j is even, consider

I i—1 j  k—1
p— L. 2 2 2
G = § bijeTod T{1T25 To2
itj+k=2n
J even
i,k odd

H(GIII) — gIII

Case 1V: When 14,5 are odd and k is even consider,

i—1 j—1 k

v 5= 8
G = E bijkTos T17 TipTo1

i+j+k=2n
k even
i,j odd

vy _ IV

0(G") =g
Now let

G=G"+c"+c" +a"

Then 6(G) = g.
Hence g € Im(9).

From Section (1.1), we also know that for the embedding, P* < P°, Z(ker(6)) =
o (P?).
Let C be a smooth(or irreducible) plane curve. Hence C is given by a irreducible poly-
nomial in three variables. The Veronese embedding of P? in P® gives an embedding
¢ <% P We will compute the syzygies of the homogeneous ideal Z, ) of this em-
bedding of C in P® using the resolution of the Veronese embedding talked about in
Chapter 1 . Let C be defined by the polynomial f of degree d in three variables. Let

C=Z(f(xo,x1,22)) where, f = Z aijpzor] ok
i+jtk=d



2.1. DEGREE OF C IS EVEN

2.1 Degree of C is even

We have d is even(say 2m) and
_ i pd .k
f= QijRToT] T
i+j+k=2m

From Lemma 2.1, we get that f € Im(6). Let F' be a homogeneous polynomial in
S such that 0(F) = f.

Lemma 2.2: Let G € S such that, G homogeneous and Z(0(F)) C Z(0(G)) C P
Then G €< F,A;;: 0<i<j<2> where (F,A;; :0<¢<j<2)is the homoge-
neous ideal generated by F' and A;; in S. i.e is

Proof: Let (G) = g, then g is a homogeneous polynomial of even degree and,

Z(f) < Z(9)

Hence g € (f). As C is an irreducible curve f is irreducible, hence,
g = f.h for some h homogeneous in K|z, 1, x2]
Now f and g are even degree implies that h is of even degree hence, by Lemma(2.1)
we can find a homogeneous H € S, such that 0(H) = h.
Thus 0(G) = 0(F).0(H) =60(F.H),
=0(G—-FH)=0
= G — F.H € ker(0)
=G—-FH= z A;;S;; for some S;; € S, S;; homogeneous
0<i<j<2
:>G€<F7Aij20§i§j§2>
This completes the proof of the lemma.
From now on we will denote M7, M2 and M3 from equations (1.4), (1.5) of section(1.2)

as below: The i*" row of Ms will be W; and the j*® of M3z will be G, for 1 <7 < 8
and j = 1,2,3. So we have,

My=| Wi, Wa, Wi, Wi, Ws, Ws, Wr, Ws] (2.2)
Mz = G, G2, Gs | (2.3)

Theorem 2.1: Let C be an irreducible curve of even degree say d = 2m, m > 1. The
homogeneous co-ordinate ring S/Z,(c) of o(C) in P° has the following minimal free
resolution.

0—S(—m—4)%* 23 5(—4)® @ S(—m —3)P* 28

2.4
B 9(-3) @ S(-m-2)%° B 5(-2)%° 3 S(—m) B S — /T,y — 0 (24
where «;’s are as follows,
o] = [ [Ml], F ] (25)
If
—F 0 0 0 0 0 Aogo
0 —F 0 0 0 0 Ao
;o 0 0 —F 0 0 0 Aope
@2 = 0 0 0 —-F 0 0 Ap
0 0 0 0 —F 0 Aje
0 0 0 0 0 —F Ax

11
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write o as

ay = [ Uoo, Uon, Us2, U, Uiz, Us ]T

Then
az=[ Wi, Wi, Wi, Wi Wi, Wi Wi, Wi Uwn, Ui, Usp, Un, Usa, Us |
(2.6)
with
W{:{Wi} Vi=1,...,8
with W; as in (2.1)
That is,
g — [Ms] —FIg
0 [Mi]
If [ 8]
F.I;
H; = :
|
with
. . T
If:[o 0. . ’thp‘ism‘)“ 0. . 0] is a k x 1 vector
Then, a3 = [ ,17 GIQ7 Gé7 H17 ey Hsg } (2.7)
where
G.
G;:|: _l:| fori=1,2,3
(0]
where G as in (2.2) and [0] is a 0 matrix of appropriate dimension.
That is,
oo [s] Fs
3 0 [Ms]
Finally,
[—F.I7) [—F.I5) [-F.I5)
_ 2.8
w=| (T ) (Red ) (He &)
That is,
oo [ —FIs
P (M)

Proof: From Lemma 2.2, it is clear that

o1 = Ao, A1, Aoz, A, A, Agp, F

Now consider B € S homogenous and
A= [ aopo, @o1, Qo2, aii, aiz2, @22 ]

where a;; € S homogeneous such that
> ai.Aij+ BF =0
ij
=6(B.F)=0
=60(B).f=0
=>Be<A;:0<i<j<2>

12
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Hence, B =) (bi;Ajj) for some homogeneous polynomials b;; € S.
= Z(aij =+ b”F)AU =0

Now if aijAs; + bi;.F' = 0 for all (asj,bs;) then such a [A, B] is generated by U;;. If
not then,

= Y (ai + by F) €Syz' (< Ay :0<i<j<2>)

Hence, the relations between A;; and F are generated by U;; : 0 < i < j < 2 and
Wi:k=1,...,8.

Hence we get,

Q2 = [ Wllv W2/7 Wé7 W4l7 W5/7 Wé: W7l7 W8/7 UOO: U017 U027 U117 U127 Uss ]

Now consider
A= [ @oo, Go1, Go2, @11, G12, G22 }T,aij € S, ai; homogeneous V0 < i < j <
2 and,

B = [ (br) } ,br € S, homogeneous

such that
Z aij.Uij + Z kaé =0
0<i<j<2 1<k<8
= z aiinj =0
J
as the last column of each Wy, k = 1,...,8 is zero and the last column of U;; is A;;

for0<i<j<2
S Ae<Wy:k=1,...,8>

Let A=}, (cxWy), for some homogeneous polynomial, c, € S
= =Y cxWiFIds+» bWi =0
k k
where Id,, is a n X n identity matrix.
= ZWk(_CkF+ bk) =0
ik

Hence if —ci.F' + b, = 0 for all k, this implies by, = ci.F for all k then such (b, aij)
are generated by < [[F.[I}]] ,[Wi]] >fori=1,...,8. If not then, [(—ciF + bi)lklyy, 6 €
Syz (< Wy :j=1,...,8>).

Hence the relations between W), and U;; are generated by G; and Hy. Hence we

get
a3 = [ l17 Gl27 Gé7 Hly R H8 ]

Now consider

T .
A= [ a1, a2, as, a4, as, dag, ar, as ] ,a; € S, homogeneous for i =
1,...,8

B = [ (br) ], bi € S, homogeneous for k = 1,2, 3 such that

Za,—.Hi + Zka;“ =0
7 k
= ZaiWi =0,

13
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as the last six columns of each G, k = 1,2, 3 are zero.
=>Ae<Gr:k=1,2,3>

Let A =3}, (cxGy), for some homogeneous polynomial, c; € S.
Then we have, 3, (ckGr).(F.Ids) + 3, bk.Gr =0

=Y (cx.F.Ids +bg) G =0
k

Now if cx.F" + by, = 0 for every k, then by = —ci.F' for all p, then we can say that
([bp], [cp]) is generated by < ([—F.I7], [I}]) : i =1,2,3 >, hence ([by], [ax]) is gener-
ated by < ([-F.I7] ,[Gi])i=1,2,3 >

Also from Theorem 1.1, we have that G}, : k = 0, 1,2 are independent. Hence
Syz' (< Gi,Hj:i=1,2,3and j=1,...8 >) =< ([-F.I}],[Gi]) :i=1,2,3 >

Hence,
| (FE) L

14



2.2. DEGREE OF C IS ODD

2.2 Degree of C is odd

Recall
i gk
f= E QiR TOT T

i+j+h=d

Now let fo = xo.f , fi = z1.f , fo = x2.f. Then f, is of even degree and hence
according to Lemma 2.1, f, € Im(0) for n = 0,1,2. We have the following lemma.
Lemma 2.3:  Z(f) = Z(fo) N Z(f1) N Z(f2).

Proof:  Clearly, Z(f) C Z(fo) N Z(f1) N Z(f2)

Also if 3 p = (po,p1,p2) € Z(fo) N Z(f1) N Z(f2) and p ¢ Z(f). Then p €
Z(x;)  Vi=0,1,2. This implies p; = 0Vi = 0, 1, 2. But this contradicts the fact that
P € P2 Hence Z(f) = Z(fo) N Z(f1) N Z(f2).

In the same way as proof of Lemma 2.1, we split f in four parts depending on the
parities of 7,5,k.

Case I: 7, j, k are all odd. Let

i—1 j—1 k—1

— .. 2 2 2
Let h;y = E AijkTo5 T11 Tog

ijk
s ikl =1 k-1
Fy = Z @ijhTos T1f Tog T12
i+j+k=d
s io1 gl ko1
o= Z @ighTos Tif Tog 02
i+j+k=d
= Z AijkTog Ty1i Loz Lol
i+j+k=d

Then,

I
Fo" = zoox12hs

I
Y = zizozhs

I
Iy’ = za2x01hs

Case II: 7 odd, j even, k even. Now

i—1 J k
— . 2 2 2
Let hrr = E Qijk TG T11Toy
W5,k
I gk
Fo = § AijkTos Ti1T3n
i+j+k=d
i—1 J k
7 _ 3 2 .2
F = E QAijkToo Li1L32701
i+j+k=d
i—1 J k
7 _ 2 2 .32
Fy = E QijkToo Li1T32702
i+j+k=d
Then,
IT
Fo = xoohir
IT
Fy = zorthir
T
s = xo2hir

15
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Case III: i even, j odd, k even. Now

i o=l k
— .. 2 2 2
Let hrrr = E ik TEoT17 Ty
1,5,k
e
mro_ 3 55
Fo = § QijkLooL11 Lo2L01
i+ith=d
i i+l ok
Irr R e |
F = E AijkTooTi1 To2
i+ith=d
i J—1 k
Irr s 55
Fy = E AijkTooLli1 T2T12
i+ith=d
Then,
111
Fo = wothirr
111
Fy = zuhr
111
s = z12hir
Case IV: i even, j even, k odd. Now
i J k—1
— . 2 2 2
Let hrv = E ik TSoT T Tog
W4,k

i J k—1

v 5 5 A=
Fo = § AijkTTH1Tas T2
i+j+k=d
i j k—1
v i g k=1
F = § AijkToT11Tas T12
i+j+k=d
i j—1 k+1
v i =1 kfl
Fy = § AijkTGHT11 Tos
i+j+k=d
Then,
v
Foy = xo2hrv
v
Iy = zi2hrv
v
Iy = x22hrv

Write F, = F, + B, + F,""T + B,V Yn=0,1,2
Also notice 0(F,) = fn for n=10,1,2

Lemma 2.4: Let G € k[zo0, To1, To2, 11, T12, T22] be homogeneous and
Z(0(Fo)) N Z(O(FL)) N Z(0(F2)) C Z(0(G)) C P?

Then G €< Fio, A :0<k<20<i<j<2>.
Proof: Now let 0(G) = g, then degree(g) is even.

Z(fo) N Z(f1) N Z(f2) € Z(9)
= Z(f) c Z(9)

= g € (f) as C is an irreducible curve and f is irreducible

16
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= g = f.h for some h € k[zo, z1, z2]
= h # 1 as degree of f is odd while degree of g is even. Moreover h is an odd-degree polynomial

=>g= Z fihi for some homogeneous polynomial h; € k[zo, z1, z2],
i=0,1,2

where degree of h; is even and h = xoho + z1h1 + z2h2

Hence = G = Y FiH,, where 0(H;) = hVi=0,1,2.
i=0,1,2

Such a H; exists as the degree of h; is even.

i=0,1,2

= G- Y FH € ker(0)

i=0,1,2

=G = z Fi;H; + z Ai]‘Si]‘ for some Si]‘ c k[x()(), .. .71’22]

i=0,1,2 1,j=0,1,2
Hence = G €< Fy, Aij 14,5,k =0,1,2 >

Theorem 2.2: Let C be an irreducible curve of odd degree say d = 2m — 1, for m > 2.
The homogeneous coordinate ring S/Zc of o(C) in P® has the following resolution.

0 —S(~m —4) 24 §(~4)** & §(—m — )0 X (2.9)
53 5(—3)% @ §(—m — 1)®° 2 9(—2)® & S(—m)® B § - §/Tc —0

Proof:
From Lemma 2.3 and Lemma 2.4, it is clear that

Br=1] Doo, Aoi, Aoz, A, Az, Ag, Fo, Fi, F ]

Now consider A = [ aopo, @oi, Qo2, ai1, Qi2, @22 ], a;; € S, homogeneous V0 <
i<e<2andb= [ bo, b1, b2 ] where b, € S, homogeneous, for £ = 0,1, 2 such
that,

> ai.Ai+ Y bpFr =0 (2.10)
: = a(Z(bk;)) =0

= ;k(ﬁ(bk).fk) =0

= zk:(@(bk).f.ack) =0

= zk:(ﬁ(bk).mk) =0

Let 0(bx) = Bi, then degree of By is even. Then
B = (B, B, BQ)T S Syzl (z0, 1, 22)

Now by simple computation we get

T1 T2 0
Syzl(:co,:cl,:cg) =< —X0 s 0 s €2 >
0 —Xo —T

17
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hence B €< Y, Y:,Ys > where
Yo=( z1, —=x0, 0)
Yi= (22, 0, —z0)
Yo=(0, x2, —z1)

But degree of By is even, hence, B €< zY; : k, 1 =0,1,2 >.
Hence, (bo7b17bz) eE< Yi: kyl =0, 172 >

where
Yoo = ( o1, —zo0, 0)
Yor = ( ®11, —zo1, 0)

Yoo = ( 212, —wo2, 0)

Yio = ( @o2, 0, —Zoo )
Yii=( 212, 0, —zo1 )
Yiz=( @22, 0, —zo2 )

Ya0=( 0, xo2, —zo1 )
Yar=(0, z12, —x11 )
Yoo =( 0, 22, —z12 )
Also note that,
Yoo = Y11 — Yoo

Now substituting all Y;; for 4,7 = 0,1,2 except for Yoo for b in equation(2.8) we
get, the following 8 vectors,
Note that if A is a nXm matriz then by AT we denote the transpose of A.

Vi = [0, 0, —zoohs, 0, hrv, hirr, [Yoo] }T
Vo = [0, 0, hrv, 0, —ziihr, —hrr, [Yoi] }T
Vs = [0, moohs, 0, hrv, hir, 0, [Yio] }T
Vi = [JL’oohI7 hiv, 0, 0, —hrr, —wzazhr, [Yi1] ]T
T
Vs = [0, —hr, 0, —hi, —zashr, 0, [Yio] ]
Vo = [0, hrv, hirr, xuhr, 0, —zahr, [Yao ]T
T
Vi = [ hv, xuhr, —hi, 0, 0, 0, [Yai] ]
Vs = [—h[][, —h][, :Ezzhj, 07 ()7 07 [Yzz] ]T

Let

ﬂé = [ [Vl] ) [VQ] ’ [V3] ) [V4] ) [V5] ) [Vﬁ] ) [V7] ) [V8] }

18



2.2. DEGREE OF C IS ODD

Now all the relations between F,’s and A;;’s are generated by V}’s and W/’s and all
the relations between only A;;’s are generated by W;’s. Hence all relations between
F,,Aji are generated by Vi, W.

Hence Syz' (< Fn, Ay >) =< Vi, W/ : 1<k, 1<8> and

Bz = (W] [Wa] ... (W] (] [Vs])
where W}, = [[Wy][0]] with [0] a 1 x 3 zero vector

Now consider, A = (a;) with a; € S homogeneous and B = (bx) with by € S, ho-
mogeneous
> aVi+ ) Wi =0 (2.11)
i k
Let A=[ai,...,as] and V=[V1,..., Vg]T then equation(2.11) can be written as
AV 4+ b Wi =0 (2.12)
k
Now as all the entries in the last 3 columns in each of W/ are zero we have,
St <o
Now it can be computed that Syz'(Yi;) =< K] : 1 <1< 6 > where
K{ = [ zo2, 0, —xzo1, 0, 0, =z, 0, O }
Ti2, Toz, —xu, —xo1, 0, Zoi, oo, O ]

T22, 0, —x12, o2, —xo1, 0, 0, woo ]

[
[

Ki=[0, za2, 0, —=zu, 0, 0, zo, 0]
[0, @22, 0, 0, —=x11, —m12, To2, To1 |
[

0, 0, 0, =z, —z12, —x22, 0, zo2 |

Hence A =Y, d;. K] in equation (2.12), we get

8
STdK] V4> Wi =0
=1 k

where d; are homogenous polynomials in S for all/ = 1,...,6. Simple calculation gives
us that, [B,Y, diK]| € (K;: 1 =1,...,6), where K;’s for 1 < < 6 are as follows

Ki=[0, 0, 0, woohs, 0, 0, —hrv, hir, [Ki]]"

K>=[0, 0, wmoohr, 0, —hirr, —hrv, xuhr, hir, [K3)] }T

Ky = [ —zoohr, —hrv, 0, —hrrr, 0, hrrr, hrr, x2ohr, [K3] }T
Ki=[0, 0, —hrv, —ziihs, hi, xuhr, 0, 0, [K}] ]T
Ks=| —hrv, —xuhs, hirr, hi,—za2h, 0, 0, 0 [KE] }T

Ke=[ hrrr, hir, 0, 0, 0, —xzahy, 0, 0, [Kg]]"
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Now all the relations between V;’s and W/’s are generated by {K;, G}, 1 <1 <6,k =
1,2, 3} and all the relations between only W;’s (which are actually W;) are generated
by Gj’s. Hence we have that all relations between {{Vi}, {W/}} are generated by
{K,,G, 1<1<6,k=1,2,3}. So, Syz' (< Vi, W] >) =< K, G}, >. So we get that,

Bs=[[Go] [Gi] [Ga] [Ki] ... [K] ]

where, G; = [ [G;] [0] ] where [0] is an appropriate dimensional zero matrix.
Now consider A = (A;), such that A; € S, homogeneous and B = (By), such that
By € S, homogeneous such that,

S TAK+Y  BiGL=0 (2.13)
l k

Hence we have,

S AKT =0
l

(as the last eight columns of G}’s are zero entries)
Now it can be computed that Syz'(K]) =< J’ > where,

Ji T12% — L1222
J5 —T02T12 + To1T22
J = J3 _ T11T02 — T01T12
JZ; 56022 — TooT22
J§ —T01T02 + TooT12
J§ T01° — TooT11

Like in the calculation of K;’s, substitute J’ in equation(2.13). Then we get,

J1
J2 [ —zoox12hr — woohir — xorhirr — zozhrv |
J3
Ja —x11¢02hr + Torhrr + x11hrrr + r12hrv
J = Js =
Je —xo122hr — xo2hrr — x12hrrr — To2hrv
J7
Jg [ 7] ]
Jo

Now all the relations between K;'s and G’s are generated by J and there are no rela-
tions between only G.’s as there are no non-trivial relations between G’s. Hence all re-
lations between K, G}, are generated by J. Hence Syz' (< K, G, >) = (J; :1<i <9
). Hence

B1 = [J]

This completes the proof of the theorem.
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2.3. SOME REMARKS ON N, PROPERTIES ON PLANE CURVES

UNDER VERONESE EMBEDDING

2.3 Some remarks on N, properties on plane curves
under Veronese embedding

Due to the explicit computation of resolutions done in earlier sections we get some
results about Property N, of the line bundle, O¢(2) of a plane curves, C with degree
d>2.

Consider L = O¢(2). Now Oc¢(1) is very ample by definition. So L is very ample
and hence globally generated and so determines an embedding, ®;, such that:

o :C—P°

Also we have o¢ : C — P°. Hence we get the following diagram.

]P)E)
v
o
C—1P?
We claim that the above diagram is commutative.

Notice that ®7*(Ops(1)) = Oc(2) and also 0" (Ops(1)) = Op2(2). We have by
definition of C < P?, that Oc(1) = OPZ‘C(].). Hence we get that ®."(Ops (1)) =
o1¢"(Ops (1)) and so, we get that the above diagram is commutative.

Remark-1: C is as above with degree d, then (C, L) satisfies Property No for every
d>2.

Proof: Now Z¢ is the ideal sheaf of C in P° in P(H°(L))). Then we have the
following short exact sequence:

0—Zc — Ops — Oc — 0
So for every n € Z, we have
0 — Z¢(n) — Ops(n) — Oc(2n) — 0

Also as C — P?, we get a map from H°(P?, Op2(n)) — H°(C,Oc(n)) for all n € Z.
Let this map be v,.

Ln

To prove that (C, L) satisfies No. We have to prove that the map, H°(P®, Ops (n)) L
H°(C,O0c(2n)) is surjective for all n € Z. Now we have the following commutative di-
agram.

HY(Ops (1))

\L’.' &
On

HO(Op2(2n)) 2> HO(O¢(2n))

Claim 1: H°(Ops(n)) I H°(Op2(2n)) surjects for all n.
From [OP], we know that Opn(d) satisfies Property Np, Vd > p and Vn. Hence we
have that Op2(2) satisfies No, and so we have that &, surjects for all n.
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Claim 2: +, surjects for all n.
As C — P?, we get the following short exact sequence.

0— Op2(—d) = Opz — Oc — 0

for every n € Z, we get the following long exact sequence:

0 — H%(Op2(n — d) — H"(Og2(n)) ™ H*(Oc(n)) —

— H'(Op2(n —d)) — H' (Op2(n)) — H'(Oc(n) — 0
But,

H'(P?,Op2(n—d)) =0  VYn,d€Z

Hence ~,, surjects for all n € Z.

So we get that &, surjects for all n. This implies that (C, L) satisfies Property
Ny for all plane curves, C with degree, d > 2.

Remark-2: If (C, L) as above, then L satisfies Ny iff degree of C =3 or 4.

Proof: A very ample line bundle L is said to satisfy property Ny if a1 from (A)
has degree 2 entries, implying that Z¢ is generated by quadrics.
Now if the curve C has even degree, d = 2m, then the degree of f is 2m. And from
lemma 1 we know that, Zec =< F, A;; > where, degree (F') is m and degree(A;;) = 2.
Hence for d = 4, Z¢ is generated by quadrics, moreover for any even d, d # 4, Z¢ is
cannot be generated by quadrics.

Now if the curve C has odd degree, d = 2m — 1, then the degree of f; is 2m for
i =20,1,2. Now from lemma 3, we know that Zc =< Fy, F', F2,A;; >. where degree
(F;) = m and degree(A;;) = 2. Hence for d = 3, Z¢ is generated by quadrics,and
moreover for any odd d, d # 3, Z¢ is cannot be generated by quadrics.

Remark-3: Let (C,L) be as above, with degree(C) = 2m, m > 1. Then (C, L)
fails to satisfy Property N2, and hence Property Np, p > 2.

Proof: Let d = 4, then the matrix as has degree 2 entries, hence the resolution is
not linear. Hence such a C fails to satisfy Property N>. And for d # 4 we know from
result 2, that such a C fails to satisfy Property N, for p > 1. Hence we have the above
result.

Remark-4: Let (C,L) be as above, with degree(C) = 3, then such a C satisfies
Property N3 but fails to satisty Property Na.

Proof: Notice that, if the degree of C = 2m — 1, then degree(h;) = m — 1,
for Vi = I1,I11,1V and degree(hr) = m — 2.h; for i = I,11,111,IV as defined in
Chapter 2 Now when the degree(C) = 3, degree(h;) = 0 and degree(h;) = 1, for
Vi = II,11I,IV, hence (3; has linear entries, for ¢« = 2,3. So we have that the res-
olution is linear till the third step while 84 has quadratic entries, implies that the
resolution is not linear in the fourth step, which implies that L satisfies N3 but fails
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to satisfy Na.

Remark-5 For all plane curve, C, (degree > 2), O¢(2) fails to satisfy N, for p > 4.

Proof: With all but degree 3 and 4 curves failing to satisfy Ni, degree 4 curve
failing to satisfy N2 and degree 3 curve failing to satify N4, we get the above result.
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Resolutions of Veronese embedding of
complete intersections of curves in the
plane.

If C and C’ are two distinct plane curves, then consider, CNC < P? < P®, where
P? — P® is the Veronese embedding. We will compute the syzygies of the homoge-
neous ideal, Z, ¢y of o (CNC’) in P°.

Throughout we assume (C N C’) is reduced.

Now let C be defined by the polynomial f of degree d in three variables, and c’
be defined by f of degree d’ in three variables. Hence

C = Z(f(xo, 1, x2)), C' = Z(f(zo,71,72))

Let us recall Theorem 2.1. and Theorem 2.2

Theorem Let C be an irreducible curve of even degree say d = 2m, m > 1. The
homogeneous ideal Z, ) of ¢(C) in PP® has the following minimal free graded resolution.
0—S(—m—4)* X1 5(—4)® @ §(—m —3)P* 2
BY(-3)F e S(-m -2 B 5(-2)%° 0 S(-m) 2 S — §/T,c) — 0

where

alz[[Ml], F]

az = [ [Wi,0], [Ujx] ]
wheret=1,...,8 and 0 < j <k <2

az = [ [G},0], [Hj] ]
where t =1,2,3and j =1,...,8.

3 3 3
o — [—F.I7] 7 [-F.I3] 7 [—F.I5]
[G1] [G2] [G]
Also when we consider the above resolution for the curve, C’, we will denote the ma-
trices in the resolution with ‘~’.

Before recalling Theorem 2.2, we introduce a change in the notations for V;, K; and J

25
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appearing in Theorem 2.2 for the sake of convinence, so from now on we will denote
Vi= [ [Voo],  [Yoo] }, Vo = [ Vo],  [You] }, V3= [ [Vio], [Yio] }, V= [ V],  [Yu] },

Vs=[ Vaiz], [Yi2] |, Ve = [Vao], [Yao] |, Ve=[ [Vau], [Yai] |, Vo= [Vea], [Y22] .
K= [K/), [Ki] ] and, J=] [J"], [J]]
Hence we have

Theorem: Let C be an irreducible curve of odd degree say d = 2m — 1, for m > 2.
The ideal Z, ¢y of o(C) in P° has the following minimal free graded resolution.

0 —S(—m—4) 24 §(—4)®* @ S(—m — 2)%° 2
5 9(=3)% @ S(—m — 1)** 2 5(—2)%° ¢ 5% (—m) B § — /T, ) — 0
where

/81 = [ A()()7 AOI, AOZ, A117 A127 AZZ: FOy F17 F27 }

Bo=[ [ Wi, 0], [[Visl, [Yad]]

where i =1,...,8 and 0 < j, k < 2 with (jk) # (02)
Ba=[[Gn 0], [[K, Kj]]
where i = 1,2,3, 5 =1,...,6 and 0 is an appropriate dimensional zero matrix.
Ba=[J"T]

Note that all the matrices in bold print are independent of the curve considered. Also
like in the case of theorem 2.2, we will denote the matrices occuring in the resolution
of ¢’ with a ‘~’
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3.1. DEGREES OF C AND C’ ARE EVEN.

3.1 Degrees of C and C’ are even.

In this case d is even(say 2m), and d’ = 2m/.

f = Z aijkacé:c{:cg and
idj+k=2m
i+j+k=2m'

As the degrees of f and f are even, from Lemma 2.1, we have that f , f~€ Im(6).
Let F, F' € S be homogeneous polynomials such that 6(F) = f and 6(F) = f

Lemma 3.1: Let G € S such that G homogeneous and Z(0(F))NZ(0(F)) C Z(0(G)) C
P2, Then G €< F,F,A;;:0<i<j<2>,

Proof: Let (G) = g, then g is a homogeneous even degree polynomial and
Z(H)nZ(f) € Z(9)

=ge€(f, f) as C and C’ are irreducible curves and hence f and f are irreducible.
= g = f.h+ f.h for some h and h homogeneous, in K|z, z1, z2]

Now as f, f and g are even degree homogeneous polynomials we get that & and h are
both even degree polynomials hence 3 H and H € S, homogeneous such that 0(H) = h

and 0(H) = h.
Thus we have
9 (G —(F.H + FH)) ~0

Hence G — F.H — F.H € ker(0)

So we get G — F.H — F.H= Z A;;S;; for some Si; € 5, S;; homogeneous

0<i<j<2

S Ge<FEFN;:0<i<j<2>

This completes the proof of the lemma.

Theorem 3.1: Let C, C’ be two irreducible curves of even degree say d = 2m and
d =2m’, m,m’ > 1. The homogeneous coordinate ring S/Z,cncy of o(CNC’) in P
has the following minimal free graded resolution.
0—=S(—m—m —4) B S(—m -0 o S(—m' — )P B S(—m—m' —3)"
PL5(—)® @ S(—m—3)"* @ S(—m/ — 3)®* @ S(—m —m/ — 2)®0 3
P2

P2 5(=3) @ S(—m —2)*° @ S(—m' —2)%° & S(—m —m') 2
72 9(—2)% @ S(—m) @ S(—m') B2 S — /T, crery — 0

where the matrices P; are given as follows:
P1= [ [M1]7 F7 F ] (3.2)
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Let ~ _
-F 0 0 0 0 0 Ag O

0 -F 0 0 0 0 Ao O

P, = 0 0 -F 0 0 0 Ay O

0 0 0 —-F 0 0 Ay O

0 0 0 0 -F 0 A 0
L0 0 0 0 0 —F Asx 0|

Similarly we get

r—F 0 0 0 0 0 0 Ag ]

0 —-F 0 0 0 0 0 An

B = 0 0 —-F 0 0 0 0 A

0 0o 0 —-F 0 0 0 An

0 0 0 0 —F 0 0 A
L 0 0 0 0 0 —F 0 A |

and .
Py =[ Uo, Uon, Us2, Un, Uiz, Us ]

We have fJi]‘ for 0 <7 < j <2 and hence Py
Also let - T
S=[0 00 00 0 F —F]

Po=[ Wi, Wi Wi Wi wh wi owi wh (), [R], 1) ]

(3.3)
where
Wi
Wi=1 0 Vi=1,...,8
0
with W; as in equation (2.2) of Chapter 2.
Let
[F.I7]
(W]
H; = v
(0]
0
[F.If]
a,=| [0
(Wi
0
where i = 1,...8 , [0] is a zero-matrix of appropriate dimension and
. - T
If:[o 0. .. Jthpis‘“"“ 0. ... 0} is a k x 1 vector
Let B
(0]
—FI8iy 11
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And let
L= [Loo], ..., [L22] ]
Ps=[ [Gih<i<s, [Hjh<jzs, [Hili<jzs, [L] ] (34)
where
G;:[[C(_)v‘]i] for i =1,2,3

where G; as in equation(2.3) of Chapter 2 and [0] is a 0 matrix of appropriate dimen-
sion, and j =1,...,8.

We define
[—F.I7) [—F.13) [-F.15)
Py = [G1] [G2] [Gs]
[0] ’ [0] ’ [0]
[0] [0] (0]
[—F.If] [—F.IS] [—F.Ig]
Py = [0] 7 (0] 7 (0]
[G] [Go] [Gs]
[0] [0] [0]
And let _
[0]
| [E) |
i [F.IZ-S} 1,...,8
(Wi
Let
Pa=[ [P, [Pi], M), ..., W] ] (3.5)
And
[FI?J
Gi=| [-FI7]
[G:]
Ps=[ 1G], [Ga], [Gs] ] (3.6)

Proof:

From Lemma 3.1, it is clear that

Pr=[ Aoo, Ao1, Aoz, A, A, Ay, F, F]

Now consider
A= Ao, Ao, Aoz, An, A, Ag |

where a;; € S, homogeneous. And B, B’ € S, homogeneous such that
> Aij.Aij+BF+BF=0
%)
= 0(B.F+B.F)=0
= 0(B).f = —0(B)f
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Now if B = 0, then we get O(B) =0, hence Be< Ay :0<i<j<2>
So we get, P». Similar reasoning for B = 0, gives us, P».
Now if B and B both non-zero, we get,

0(B) €< f > and §(B) e< f >

So let 6(B) = p.f, then 0(3) = —p.f, where p € k[xo,x1,x2]. Degree of p is even,
therefore 3P € S, such that 6(P) = p. Hence [B, B] €< S >. So we get that the rela-
tions between A;;, F' and F are generated by U;; : 0 <i <5 <2, U@'j 0<1 <32
,Wi:k=1,...,8and S

Now we get

Py = [ Wil<ics, [P2], [P2]’ 5] ]

fori=1,...,8
Now consider

A= [Ak]lgkgs ,Ar € S, Ay homogeneous V1 < k <8 and

B = (Bi;) |,Bij € S, homogeneous
B= [ (Bij) ] , Bi; € S, homogeneous
for 0 <i<j <2 and D € S homogeneous, such that

Z Ak.ng + Z Bi; .Us; + Z BUU” +D.S=0 (3.7)

1<k<8 0<i<j<2 0<i<j<2

Now let Bi]‘ =0 for all 7,4, so D=0. Then we have
Be<Wi:k=1,...,8>

Hence from Theorem 2.1, we get that the relations between W}, and U;; are generated
by Gj and Hy. Similarly, when B;; = 0, for all 7, j, we get that all relations between
Wy and U;; are generated by G} and Hy

Now if B;j, B # 0 for some 4, j, k, I, then it is clear that D # 0 in (3.7) from the
definitions of W/, Uij,and Us;.
So we have

> BijAy+D.F=0, > BijAy —D.F =0

ij ij
This implies that D €< A;; : 0 < i < j <2 >. So for some C;; € S, homogeneous we
have D =37, Ci;Ai; and hence

Z (B” + C”F) Aij =0 and Z (B” — OUF) Aij =0
ij ij
If Bij — Cyj.F = 0 for all 4,j and Bi; + Cy;.F = 0 for all i, j, then Cj;.F = B;; and
Ci;.F = —Bij for all 4,7 then such (Bij7Bij7Cij) are generated by < Hk7_gk7Lij >
for0<i<j<2and k=1,...,8.
And if not then Y (By; + Ci;.F) € Syz' (< W} :1<j <8>).
Similarly 3 (Bi; — Cij.F) € Syz' (< W] : 1 <j < 8>).
Hence the relations between {W}, U,;, Uij, J }are generated by G}, : k = 1,2,3, H;,
Hi:1<i<8and Ljz:0<j<k<2
Hence

Po=[(Gi), [Gsl, (G4l [HJ. ] (L))
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fori=1,...,8

Now consider

A= [ (A;) }1<i<3 A; € S homogeneous for i =1,2,3

B = [ (Bj) ]1§jgs and

B= [ (BJ) ]1<j<8, where B; and B; homogeneous in S for i = 1,...,8,

C = [ (Cr1) } 1 <k <1< 2where C;; € S homogeneous for 0 < k <[ < 2 such
that

ZA@'.G; + ZBi.Hi + ZBzﬁz + Zcij'Lij =0
i i i 4,7

Now if [B] = [0], then C = [0], hence we have
Zi B;W; =0 then, B €< G, :p=1,2,3 > Now theorem 2.2, we get P;. Similarly we
get Py, when B;; = 0 for all (i, §)
If B # [0] and B # [0], then we have that Ci; # 0 for some i,j. So we get that
>2,;(Cij.Ai;) = 0. This implies that C' €< Wi >, then with similar arguments as in
the proof of theorem 2.2, we get W, for i = 1,...,8.

Hence we get

Po=[ 1P, [B], ] ., D] ]
Now let
B=[ (B |
B=1[ (B ]
A= (4)) ]

such that for i = 1,2,3, B;,B; are homogeneous in S, and for j = 1,...,8, A; are
homogeneous in S

B.P, + BP4 + ZAM/V, =0

Then we get that >, A;.W; = 0, this implies that A €< G : k = 1,2,3 >, with the
same arguments as earlier we get, G, Go, and G3. Hence

Ps=[[G1], [Ga], [Gs] ]
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3.2 Degree of C is even and degree of C’ is odd

let d =2m, and d’ = 2m’' — 1

-

I = E AijkTOT]T and ,
i+j+k=2m

r3 _ ~ i gk

f = QijkTOTT TS

i+j+k=2m'—1

As the degree of f is even from Lemma 2.1, we have that f € Im(f). Also from
Lemmas 2.2 and 2.3, we also know that for f with odd degree, we have fl = xlf for
0 < i < 2 such that Z(f) = ﬂf:oZ(fi) and that each f; € Im(0) for i =0,1,2.

Like in Chapter 2 we also have, 7LI, ﬁu, EIII, and ﬁ]v such that

Fo = zoox12hr + xoohir + xorhirr + xozhrv

Fy = z1ixozhr + xorhir + x11hirr + xi2hrv

F> = xo2x01hr + xo2hir + x12hirr + x22hrv

Lemma 3.2: Let G € S such that G homogeneous and
ZOF)) N Z(0(Fo)) N Z(O(F1)) N Z(B(F:)) € Z(0(G)) C P?
. Then G €< F,Fp,Aij :0<i<j<2,k=0,1,2>.

Proof:Let 0(G) = g, then g is a homogeneous even degree polynomial and,

Z(f)NZ(fo) N Z(fr) N Z(f2) C Z(g)

Z(f)nZ(f) c Z(g)
= g e (f,f) as Cand C are irreducible curves and by assumption(i.e. C N C’ is reduced. So

g = f-h+ f.h for some h and h homogeneous in K|[zo, z1, z2]

Now as f and g are even degree homogeneous polynomials and f is homogeneous
of odd degree, we get that degree of h is even and h is a odd degree polynomial
hence, there exists H € S, homogeneous such that §(H) = h and h = >, hix;, where

hi € K|[zo,x1,x2], hi homogeneous of even degree.

So there exists H;s such that H(fiz) =h; for1=0,1,2
Thus we have

hence, G — <F.H—|— Z(Eﬁﬂ) € ker(0)

So we get

G — <F.H + Z(EH{)) = z A;;Si; for some S;; € S, Si; homogeneous

0<i<j<2

=>Ge< FF,Aij:0<i<j<2andk=0,1,2>

This completes the proof of the lemma.

Theorem 3.2: Let C, C’ be two irreducible curves of degrees say d = 2m and
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d = 2m' —1, m,m’ > 2. Then the homogeneous coordinate ring S/Z,cncr) of
(e(C) N a(C")) in P5 has the following minimal free graded resolution.

0—=S(—m—m'—4) L S(—m - ) & S(—m' —4) ® S(—m —m’ — 2)%0 A

UG- @ S(—m—3)® B S(—m —2)% B S(—m —m — 1) %

(3.8)
%93 @ S(—m —2)% B S(—m' — )P B S(—m —m')®* B
2 5(-2)% & $(—m) & S(-m)** B S = /T, crery — 0
Proof:
From Lemma 3.2, we get that
Qu=|[[M], F, F, F, F] (3.9)

Now let

A= [ (Ai5) }, Ai; € S, homogeneous for 0 <14 < j <2 and,
B € S, homogeneous, B = [ Bo, Bi, B ] B, € 8, homogeneous for i = 0,1, 2,
such that o
Z(Aij-Aij) + B.F + Z(Bze) =0
i i
Now if B; = 0, for all ¢ =0,1,2, then we have,
Z(AUAU) +B.F=0
ij
By theorem 2.1 we get that
[ [Ayl,B Je<[ Wi, 0], [Ujs] :i=1,...,80<j<k<2>

Hence we get that
([Ai;], B, [0]] €< [Wi],0,[0]], [[Ujx], 0] s i =1,...,8,0< j <k <2>.

Similarly if B =0, by theorem 2.2 we get that
([Ai], 0, [Bx]] e< [Wi], [01), [Vs] 45 = 1,..., 8 >.

Now we have,
[(Ag), 0, Bd] e [ Wi, 0], [ Vil 0 [¥ad ])
fori=1,...,8 and 0 < j, k <2, (j, k) # (0,2).

Now let B # 0 and B, # 0 for some 1.
Then we have,

b.f+Z(l~)¢.fi) =0

where b = 0(B) and b; = 0(B;) for i =0, 1,2
Hence we have, b €< f > and >, (bj.z:) €< [ >,

but the degree of b is even, so b €< z;.f :1=0,1,2>. So we get,
B=>,Ci.F;.
This gives us that

[ B, [Bo, Bi, Bo) |e([ F, [-FI}]]: i=0,1,2)
Let Li = [ [0]s, Fi, [~F.I}] ], where [0]; is a 1 x4 zero-vector. Hence we get that

[[Aij]737 [Bk]] €< [ [WZL 0, [()] ]7 [ [Ujk]v [6] }7 [ [‘7171]7[()]7[1/1”] ]7 [LS] >
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fori=1,...,8,0<j<k<20<Ln<2((n)#(0,2)ands=0,1,2

Hence we get Q2.

Now let
A= [ (A;) 1<i<8] ,A; € S, homogeneous for : =1,...,8

o T
B= [ (Bij) O<i<j<2] ,B;; € S, homogeneous for 0 <7 < j <2
_ . 3T .
B = [ (Bij) 0<i<j<2:| , Bij € S, homogeneous for 0 < 1i,j5 < 2,
C = [ Co, Ci, C3 }T,C’i € S, homogeneous for ¢ =0, 1, 2.
such that

SA W 0, [0s 1+ > Byl [Uyl, [0s]

i=1,...,8 0<i<j<2

+> By [ [Vigl, 0, [Yyl ]+ > CiLi=0

i=0,1,2

(3.10)

Consider the following cases:
(1)Let B =[0], B =[0] and C' = [0], then A €< G, :i=1,2,3 >. Hence
[ [Aiu], 0, [0, [0] Je<[[Gi, o, [0, [0] ]>
fori=1,2,3

(2)Let B = [0], C = [0], but B # [0], then theorem 2.1 we get, [[4],[B]] €<
[G,0],[H;]:i=1,2,3,7=1,...,8 >. Hence,

[ [Ay), B, [0, [0] Je([[Ga, [0, [0, [0 ],[ [H#], [0], [O]])
fori=1,2,3and j=1,...,8

(3)Let B =0, C' = [0], but B # [0], then like the previous case we get, [[A], [B]] e<
[G:,0],[K;]:i=1,2,3j=1,...,6 >. Hence

[ [A]7 [6]7 [B]7 [()] ] €< [ [Gl]v [6]7 [6] }7 [ [I(:HJ'L [6]7 [K,j]v [6] } >

fori=1,23andj=1...6

(4)Let B # [0] and B # [0], then we have ,

z (BijAiz) + (Ci.Fy) =0
0<i<j<2 i=0,1,2
Hence ~
> (ei.fi)y=0
i=0,1,2

where ¢; = 0(C;) for all i =0, 1,2
So we get that [ Co, Ci, Ca | € (Yi:0<1i,5<2,(i,5) # (0,2)). Hence,

[C] = z Dy1[Yii] where Dy € S, homogeneous for, 0 <4,j <2, (I,k) # (0,2)

k,l

So
> (Biy)[Yy) = ZF(Dij)[Yij]

ij
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Now if, B;; — F.D;; = 0 for all i, j, then ([Bi;], [C]) €< [F.I]%, [Yii] >,
where k =2i+j+1ifi=0,1and k =6+ j for i = 2.
Hence we get that ([A], [B), [B],[C]) € ([ [0], [Vij], [F.II, [Yy] ]). Define,

Vij=[ [0, -Vij, [FI], [Yy] ],
fori,7=0,1,2, and for k=2i+j+ 1,if i #2and k=6+jif i = 2.
If not then, [(Bi; — F.Di;)] €< K[ : 1 <1<6> (Syz'(< Y35 >)).

Hence we get Qs.
Let

A= [ (A;) ,A; € S, homogeneous for i = 1,2,3

T
B = [ (Bi) 1993} , B; € S, homogeneous for i =1,...8

_ - T .
B = [ (Bi) i< ,B; € S, homogeneous for i = 1,...,6,
T aT
C= [ Cij O<ij<2] ,Ci; € S, homogeneous for 4,7 =0, 1, 2.
such that
S A G, [0 [Os, [0]s ]+ > Byl [H], [0s, [0 |+
i=1,2,3 0<i<j<2
SB[ [K7i], [0s, [Kil, [0)s ]+> Ci.[Vij] =0
i i,

Consider the following cases,
(1)B = [0], hence B # [0] and C' = [0], then from Theorem 2.1, we get that

[[A], [B]] € (([-F.I}],[Gi)) 1i=1,2,3)

Hence [[AHBHB],[C]] e([ [FFI3, (G, [0, [0]]:i=1,2,3)
Denote [ [-F.I}], [Gi], [0], [0] | as [S] fori=1,2,3

(2)B,C = [0] and B # [0], then from theorem 2.1, we get that [[A], [B]] € <[J]>
Hence [[4],[B], [B]. [C]] € ([17"]. 0] ). 0] )
(3)C' # [0], then we have, 3", Ci;.[Yyj] =0, hence C' €< [K{] :i=1,...,6 >.
Hence we have
[[A],[B],[B],[c]] e< [[()],[If”i],[—F.If],[K’i]] Ci=d,...,6>

Lets denote the above set of vectors as I@i, i=1,...,6
Hence we have,

[, B, B, (€ le<( 81, [ O, ), 0] [&])>
i=1,23 andj=1,....6
Hence we get Qa.

Let
A= [ (A;) ] ,A; € S, homogeneous for i = 1,2,3

(3.11

)

B € S, homogeneous. C = [ (Ci) ],Ci € S, homogeneous for i = 1,...,6, such that

S ASI+ B+ Y CilKi] =0 (3.12)

i=1,2,3 i
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From theorem 2 and 3 in [A], we get that if [C] = [0] then [A] and [B] are also
equal to [0]. So [C] # [0], then we have
> C;.K'; =0, hence [C] €< T’ >.
Hence we have [ [4], B, [C] |€([ [-J"], —F, [J]]).

Hence we get Qs.
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3.3 Degrees of C and C’ are odd

Let the degrees of f,f be 2m — 1 and 2m’ — 1 respectively. Then we have,

= E aijrzerieh  and,
i+j+k=2m—1

o < ik

f = QijhTOT] TS

it+j+k=2m'—1

Now let fo =zo0.f , fi =z1.f , fo = z2.f. Similary define f, for i=0,1,2
Then f; and f; are of even degree and hence according to Lemma 2.1, f; , fi € Im(0)
for i = 0,1,2. Also like in Section 3.2, we have,

Fo = zoox12hr + xoohrr + xorhrrr + zo2hrv

Iy = x1uiwozhr + xorhir + x1hirr + vizhrv

Iy = xo2x01hr + xo2hir + x12hirr + v22hrv

Lemma 3.4: Let G~€ klxoo, To1, To2, T11, T12, T22] such that~G homogeneous and
(01Z(0(Fz)))ﬂ(ﬂ1Z(0(Fz))) (- Z(@(G)) C P2. Then G e< Fk7Fk7Ai,j 0<k<2,0<
i<j<2>.
Proof: Now let 0(G) = g, then degree(g) is even.

(N:Z(f:)) N (NaZ(f2)) C Z(g)

= Z(f)nZ(f) c Z(9)

=g e<f, f > as C and C’ are irreducible curves and the assumption about the inter-
section of C and C'.

= g = f.h+ f.h for some h, h homogeneous € k[zo,z1, z2]
= h # 1 as degree f is odd while degree g is even

Similarly & # 1, hence, g = Yiconafihi+2 010 fihi,
for some homogeneous polynomials h;, h; € k[mo,xl,xz] with even degrees.

=G = Z F;H; + Z Fzﬁ“ where G(H,) = h; and 0([;[1) = iLi,
i=0,1,2 i=0,1,2

for all i = 0,1,2 and such H;s, and Iglis exists as the degrees of both h; and le are
even from Lemma 2.1.

i=0,1,2 i=0,1,2

=G — < z F;H; + z Flﬁ[l) € ker(&)

i=0,1,2 i=0,1,2

i=0,1,2 i=0,1,2 1,j=0,1,2

for some S;; homogeneous € k[zoo, ..., T22]

= Ge< Fy, Fr,Aij 4,5, k=0,1,2 >

Theorem 3.3: Let C and C’ be two irreducible plane curves of odd degree say d =
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2m — 1 and d’ = 2m’ — 1 for m,m’ > 2. The homogenous coordinate ring S/Z,(cnc’)
of the intersection of o(C) and o(C’) in P° has the following minimal free graded
resolution.

0—=S(—m—m'—3)® B g—m—1)®S(—m' —4) @& S(—m —m' —2)®* &
S @ S(—m —2)%0 @ S(—m’ —2)%° @ S(—m —m' — 1)®0 8
B 5(-3) @ S(—m— 1% @ S(—m' — 1) B S(—m —m’ +1) 2
B 5(-2)% & S(—m)® @ S(—m)** B 8 — §/T,cnen — 0

Proof:
From lemma 3.2 and 3.4, it is clear that

Ri=[ Ao, Ao1, Aoz, A, A, Awm, R, F, F, F, F, F]

Hence we get R:

Now consider

A = [ Aoo7 14()17 Aog7 14117 A127 Azz }, Aij € S, homogeneous VO S 7 S x S
2’

B = [ By, Bi, B2 } where By € S, homogeneous, for k =0, 1,2 and

B= [ Bg, Bl, B } where B, € S, homogeneous, for [ = 0,1, 2

such that

> Ay D+ BiFr+ Y BrFy =0 (3.14)
i k i

Consider the following cases:

(1)[B] = [B] = [0], then we get that [A] €< W; :4=1,...,8 >. Hence we get

[[A, [0, O Je([w, 0, 0], ..., [Ws 0, 0])

(2)[B] # [0], but [B] = [0], then from [A| we get that

[[AL (B], [G]}€< [V007 Yoo, ()]7 R [VQQ7 Yoo, ()}7>

(3)Similarly for [B] = [0], but [B] # [0], we get that

[ [AL [B]7 [6] ] €< [ ‘7007 (_)7 Yoo ]7 ey [ ‘7227 (_)7 Yoo }7 >

(4)B, B # [0], hence we get that

9 (Z ((Bk.Fk) + (Bk.ﬁk))> =0

k

Let by, = 6(By) and by = Q(Bk) Now note that the degrees of b, and bi, are even, for
k=0,1,2
Hence we have that

k

k
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Now as f and f are irreducible polynomials and by assumption that C N C’ is reduced
we get that

> (brwy) €< f> and > (by.wx) €< f > (3.15)

k k

To get by, and br satisfying the above equation, consider the two vectors ,

(ho,hl,hz) = ( xl.xzﬁ(ﬁj) —|—9(H][), 9(5}[1), e(ﬁjv) )

(Eoﬁhim) = ( —w1.22.0(ht) — 0(h1r), —0(hirr), —0(hrv) )
And let [H] = [ xlz.ﬁh ﬁ]h ﬁ][h ﬂ[v }and [ﬁ] = [ —x12.hr — hrr, —hrrr, —hrv }

Now substituting h; as b; and hi as Z~)i, we get that > . (hi.xi) = f and Zz(iu:cl) =—f.
So 3> (hiwi)f + 3 (hiwi).f =0

Now for any vectors satisfying (3.15) the following holds

Zbi.:ci = p.f and Zl;lxl = —p.f, for some homogeneous p € S
i i

Notice that degree of p is even, as degree of b; is even and degree of f is odd.

Hence we get that

Zb,ml = p(Z(hlac,)) and Zi),x, = p(Z(ilez))7

i i

So
Z(bi — p.hs).x; =0 and Z(Bl —p.hi)z; =0

i

Hence

( (b() —p.ho,bl —p.hl,bz —p.hz), (50 —p.iLo,Bl —p.iLl,Bz —p.ilz) ) S Syzl(xo,xh:cz)

Now using the same arguments as Theorem 2.2, we get that

[B—PH]|,[B-—PH]|e<Yij:0<i,j<2>,

where P such that 0(P) = ~ ~
Hence [B] € (Yy, H:0<4,j<2) and [B] €< Yy, H : 0 < i,j < 2> Let H =
[ ( 07 T1, T2, 07 07 70 )7 H7 H ]7

where 7 = };I.hIV — h;v.hz and o = h1~11.h1 — H].hn], then we get

p-
i,

[ A, B, B] €< (W:,0,0], [Vie, Y, 0], [f/jk,anky ] >

fori=1,...,8,and 0 < j,k <2, (5,k) # (0,2)
Hence we get Ro

Consider ~ ~

A=[(A4) ], B=[ Bj) |, B=[ (Bj) | and C,

where A;,Bji,Bj, ,C € S, homogeneous, for ¢ = 1,...,8 , j,k = 0,1,2 and (j,k) #
(0,2) such that

ZAi'[Wi’(_)’G’O]—’_Z Bjk'[‘/jk7ij7(_)7 0]+Z Bjk.[f/jm(_),ijO]—i-C.[H] =0 (3.16)
i jk ik
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CHAPTER 3. RESOLUTIONS OF VERONESE EMBEDDING OF
COMPLETE INTERSECTIONS OF CURVES IN THE PLANE.

Like in the earlier part of this proof, we consider four cases

(1) B = [0] and B = [0], hence C = 0, then we get that [A] € (G1,Ga, G'3)
Hence ([A],[0]) € ( [G1,0], [G2,0], [Gs,0] )

(2)B # [0] but B = [0], then we get that C' = 0.

Then [A,B] € { [G:,0], [K; K] :i=1,2,3,j=1,...,6).

Hence [4, B,0,0] € { [G;,0], [K;,K';,0,0] :i=1,2,3,4,k=0,1,2).
(3)B # [0] but B = [0], hence C' = 0. Similarly to case(2) we get,

(4,0, B,0] € (G4, 0], [K;,0,K;,0] : i = 1,2,3,1 < j <6).

(4))B, B # [0], Then we have

> B Yp+C.H=0and » Bj.Yy+CH =0 (3.17)
jk jk
So 7ijbjk.Yk +c.h =0 and Z 25 Y +c.h =0 (3.18)
jk jk

where (Yo, Y1,Y2) = Syz' (xo, 21, 22)
(see Theorem 2.2)
Now multiplying (3.18) by [zo, 21, x2]", we get

cf=cf=0=c=0=Ce< Ay >

Now substituting C' = A;;, V0 < i < j < 2in (3.17), we get a set of six vectors, lets
call them D;;. So we have

Dij = [ 65, Aij |

Hence [A,B,B,C] S < [Wi,(),()], [Kj,K’j,(),O], [kj,(),K’j,] s [Dkl] >
for 1<i<8 1<j<6,0<k<I<2

Hence we get R3

Consider,

A=[(A) ], B=[®B)], B=[(®B)], C=[Cw)

where Ai,Bj,Bj ,Cri € S, homogeneous, for i =1,2,3, j=1,...,6
and 0 < k <1 <2 with (k,1) # (0,2) such that

ZAi.[Gi,(),(),G] + ZBj.[Kél,Kj,(),()] + ZBJ[R}N,(),K;,G] + ZOM.['Dkl] =0
i j j Kl

(3.19)
If we take similar cases as in the earlier part of the proof, we get

(1)If C' =0, then [A, B, B,0] € ( [J”,3',0,0], [J”,0,3',0] ).

(2)C #0, then [C] € (W] :i=1,...,8)
Substituting [C] = [W;] for some ¢ in (3.19), we get a set of 8 vectors
Wi = [lwi], W]

Hence we have,

[A7B7B7C] € <[ J”7 J/7 67 0 }7[ J”7 (_)7 J,7 0 }7[W1]>

for 1 <i<S8.
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3.3. DEGREES OF C AND (¢’ ARE ODD

Hence we get Ra

LetA:[( ) SS]BB

where A;, B, B € S, homogeneous for i = 1,...,8 such that

ZA [wi, W;] + B.[J",3,0,0] + B.[J”,0,3',0] = 0 (3.20)

As the last rows of the last two vectors are zero we have ZAsz =[0]
This implies that, [A] € (Gy : k = 1,2,3). Substituting this in (3.20), we get 3 vectors,
let us call them I';.

Fk = [Gk,Gk] for k = 1,2,3

So [B,B,A] € (Tx : k=1,2,3)

Hence we get Rs.
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DG -Algebra

Recall from Chapter 2, that for C a smooth(or irreducible) plane curve, the Veronese

embedding of P? in P° gives an embedding C <> P°. In Chapter 2 we computed the
syzygies of the homogeneous ideal Z, (¢) of this embedding of C in P°. Now if the degree
of C is odd then from theorem 2.2, we have that the minimal graded free resolution of
S/Z5c) is as follows:

0—S(—m —4) %4 §(—4)%3 @ §(—m — 2)®0 &

%1 9(=3)®8 @ S(—m — 1)® 2 §(—2)%0 g 593 (—m) 2L 5 = §/7c — 0

where
B =[ Ao, ..., Do, Fo, Fi, F» |
ﬂé :[ [W176]7 Yo [W876] ) [ [Yll]7 [Yl] ]7 ceey [ [YS/L [Yé] ] ]
B3 :[ [ l176]7 7[G/276]7 [Gév(—)] ) [ [Kﬂv [Kl] ]7 R [ [Ké]v [Kﬁ] ] ]
g =[al"
where

1) W.L are matrices from equation (2.2)
2) G1 = G1, GH=—G> and G5 = G5 from equation (2.3)
3)Y}S—Gst,foralls—123andt—1 ,8
4) Ky, = Wst,forallt—l,...,6ands—1,...,8
5) { 1 = Voo, Yy =—Vo1, Y3 =-Vio, Yi=[ xoohs, 0, ,—hirr, —zu1hs, ,hi,
—Via,  Y¢ = Vo, Yi=—Var, Yg=Va
6) Ki, :Ystforallt—l ,6and s=1,...,8
(4.1)
where V;; are matrices from Chapter 3.

Note that the (js in the above resolution are not the same as the (3;s defined in
Theorem 2.2. But because the above resolution is symmetric, columns of W;’s and
G;’s are linearly independent and the fact that,

> Wi, Y, ZY Wi, =0 ¥V n,m=1,...,6

gives us that the above 3/s also define a resolution.
Let us call the above exact sequence Pe. So we have

Pe : 0—>'P4—>733—>732—>'P1—>'P0=S—>0
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CHAPTER 4. DG -ALGEBRA

where rank (Po) = rank (S) =1, rank (P1) = 9, rank (P2) = 16, rank (P3) =9, rank(Ps) =1

Let {ei,er, ,} be basis of P1, {ew,,ev,} be basis of P2, {eg,,ex, } be basis of Ps,
{es} be basis of P4. where i =1,...,6, n=1,2,3,s=1,...,8.

In [KM] the authors prove that any symmetric resolution of length 4 has a DG algebra
structure. Hence we know that the above resolution has a DG-algebra structure. In
this chapter we will define a DG-algebra structure for the resolution, Pe.
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4.1.

4.1 Defining (%)

Let us define the multiplication (x) on the above basis elements

8
() eixe; =) Aijeu
=1

t=

(17)  eixew, = Z Bi,s,-€q,

t=1,2,3
(#i1) eixeqg, =0

() ew, *ew, =0

8 8
/
(v) Ci*CF, ; = E Bit,, €0 + E Qin—1-
t=1 t=1
6 3
. !
(vi)  eixen, = E Ao, + E -1, -y
t=1 t=1
8
(vii)  er, y *€r = > Antm1, €,
=1
6
ces /
(viti)  er, _, * €y, = — E Qp 1, -Chy
t=1
6

(’L(I}) an,1 * ews = - Z Bt,sn ‘ekt
t=1
(z) € * e, = 0is.e7
(zi) er,_,*xex, =0
(zii) er,_ , xeg, = dis.€g

(@iii)  ew, * €y, = —bis.eg

i

(ziv)  ev, * €y, =0

s

where
Aij, Bis, An—1,m—1, a;,n,l are matrices given below and

62_52{ 1 ifi=s

0 otherwise

Ai = [ [Aia], [Aig] Jfori=1,...,6
[0 12 T11 02 0 0 ] r
0 0 0 z12 w11 O
0 —m22 —w12 O To2 To1
— 0 0 O 0 0 11 -
A= 0 0 0 0 0 —z | Ag =
0 0 0 —T22 —T12 —ZT11
0 0 0 0 0 0
L 00 0 0 0 0o | I

Cwy

—x12

22

o

(e R e s Bl an)

[en R el en B o M e B e i e M an)

DEFINING ()

(4.2)

Zo1

—Z02

OO O OO

02

0

0

0

0
—222

0
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CHAPTER 4.

s
I

As

And

Ao =

DG -ALGEBRA
—z11 —xo1 0 —moo O 0 i [ —z02 O 00
0 0 0 0 0 0 —x12 —x02 0
12 To2 0 0 0 0 0 0 0
0 0 0 O 0 0 A, — 0 0 0
0 0 0 0 To2  xo1 |’ 1o 0 0
0 0 0 xo2 0 0 22 0 —Z02
0 0 0 —T12 0 0 0 —T22 —T12
0 0 0 0 —T12 —T11 | L 0 0 0
0 0 0 0 0 0 ] [0 0 0
—x11 —xo1 O —x00 0 O 0 0 0
—T02 0 0 0 0 0 —Xo1 0 0
0 0 0 0 0 0 Ao — | 7T —To 0
0 0 —xo2 O 0 oo ’ O a o2 —Zo1
12 0 0 0 0 0 11 0 0
0 —X12 0 o2 0 0 0 T11 0
0 0 12 0 0 —X01 L 0 0 11
Bi: [ [Bi,1]7 ey [Bi,g] }fOI“iZL...,B
0 0 0 —T12 —T11 0 o2 0 ] i 0 0 0 —X02 —T0o1
0 0 0 0 0 0 12 11 , BQ = 0 0 0 0 0
0000 0 0 2 12 | 00 00 0
0 o2 0 Zo1 0 0 0 0 ] [ 0 0 o2 0 —X00
0 T12 0 T11 0 0 0 0 5 B4 = 0 0 T12 Zo2 0
0 0 0 0 0 —T12 —X02 0 1 L 0 0 X222 0 —T02
—T02 0 0 oo 0 0 0 0 —T0o1 —X00 0 0
—X12 0 0 Zo1 0 0 0 0 s B6 = —X11 —X01 0 0
0 0 12 o2 0 o2 0 0 0 —X02 11 0
[ —hir ] [ —xo2hr ] [0 i

hrrr 0 —x22hs

z11hr hrr 0

—hrv —hrrr 0

; Aoz = ; Aiz =

0 02 hrv b2 z11hr

0 —hrrr —hrr

—xzoohs 0 hrrr

L O i | —zoohr | | —hrv |
04; = [ [O‘Q,o] [O‘;,l] [052,2] ]
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o
=

oo oo

—Z00
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To1
Zo2

o O O
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x11h1
—hrrr

OO O OO

—zoohr

hrrr

—z11hr

—hrr

OO O oo

—zoohr

hirr

—z11hr
0

4.1.

o O OO

—zoohr

—hrv

DEFINING (x)

—z11hr
hrrr

—x22h1

oo OO

—hrv

—x11hr

hrrr

—x22hr
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CHAPTER 4. DG -ALGEBRA

4.2 Associativity

1.Check that
8 8
> Aij.Bis, =Y _ Ajui.Bisforallt =123 and for all 1 <i,j,k <6
s=1 s=1

This implies that (e; xe;) xe; = e; * (ej x¢;) for all 1 < 4,5,k <6

2. Check that

8 8 8

! !
E Bj 001, + E Bis -1, = E Ai g Are—1,
s=1 s=1 s=1

forall 1 <i,j<6andl=0,1,2.

8

8
And, Y " Aij Buis, = Aui,Bj,,forall 1<i,5,t<6andl=0,1,2 by 1. above

s=1 s=1

This implies that (e; xe;) *x er, = €; * (ej xep,) forall 1 <i,7 <6 and [ =0,1,2

3. Check that .

8
Z-AO,ISOC;,ZS = ZAl,%a;,ostT all 1 <t <8
s=1

s=1

This implies that (er, * er, ) x er, = er, * (€r, * €F,)
4.Check that
(eixej) *x ey, =e€; % (ej*eq,), by 4.2.(4),4.2.(vi), and 4.3

5.Check that

(ei*er;) * ew, = €; % (eF; * €w,) , by 4.2.(v),4.2.(ix), and 4.3
6.Check that

(ei xer;) * ey, = €; % (eF, * €y, ) , by 4.2.(v), 4.2.(vii), and 4.3
7.Check that

(er; ¥ er;) * ew, = er, * (eF; * ew,) , by 4.2.(vi7),4.2.(ix), and 4.3
8.Check that
(er; x er;) *x ev, = €F, * (eF; * €y,) = 0, by 4.2.(vi7), 4.2.(viii), and 4.3

Hence we get that * is associative.
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4.3. DEFINING 9
4.3 Defining 0

A;; when0<i<j<2
1) 8(62i+j+1) = { A22 i :] =9 J
2) der,) = Fn

3) ews Z W.st €t

4) evs Z Gts er,_, + Z YSt

t/'=1

5) Ol(eg,) Z Gstewr

8
6) = Z Wsr €y, + Z Ys,t Ewy

t=1 =1
6 3

7) E (er)) ex, + E Fi_1eg,
t=1 =1

where W; as in equation (2.2), G as in equation (2.3), Y} as inequation (4.1).
To prove that 0 is well-defined,

(1)To check that

d(e; x €;) E A jy €y )

Now {A; ;,} is computed such that [A; ;] satisfies the following conditins,

Do AigWe = =

t

S Ay Wi o= A (4.4)
t

> Ay Wi, = Oforn#ijandn=1,...,6

t

(2)To check that
d(ei* ew.) = 00> Bisieuw,)

Now {Bi,s, } is computed such that [B; ;] satisfies the following conditions,

ZBi,StG;s = Ai_ZWstAi,ts
P P

(4.5)

ZBi;StG;n = —ZWStAi,tn forn#i,jandn=1,...,8
t t

So you get that d(e; * ew,) = 8(2 Bi s €uw;)

t,n

(3)To check that
(e x eg,) = 9(0), check that
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> B G, = A
t
(4.6)
ZBivtSG;t = Oforn#sandn=1,2,3
t
(4)To check that
O(ew; * ew;) = 0(0), check that
> WiBij, +> W;jBii, =0foralln=123 (4.7)
t t

(5)To check that

deixep;) =0 <Z Bi,tjﬂevt) +0 <Z a;,jtewt>
t t

Now from equation(4.6) we get that the coefficients of e,, of both the sides are
equal and further, {a ;} have computed such that [o] ;] satisfy the following condi-
tions,

Z @ Wi, = —Fj— Z Bit; s Yy,
t t
(4.8)
Zangtn = —ZBMHIY{” such that n #iand n=1,...,6
t t

(6)To check that
8(6Fi * eFj) = 8(2“47«'7]& e’Ut)
t

Now {A; j, } have been computed such that [A; ;] satisfy the following conditions

> Ay, G, = —F

t
Z‘Aivth;Jrlt = F (4-9)

t

S Aij,Gh, = Oforn#it1j+1landn=123

t
Z -Ai,jt}/t,n/ = Oforn = 1,...,6 (410)
t

(7)To check
O(er; * ey,) = O(— Z Qi ek, ), check that

t

! ! !
2 Ai,tflsGtS - 2 YstBt,siJrl - 2 at,is WSt = F’L
t t t

(4.11)
ZAi»tflnG;s — ZYS/tBtvniJrl — Za;»isWnt = Oforn#sandn=1,...,8
t t t
D aba YL+ at, Ve, =0foralln=1,...,8, (4.12)
t t
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4.3. DEFINING 0

(8)To check

d(er, * ew,) =0 <— ZBtvS'H»lekt) + B(Z Ait—1,€g,) check that
t t

from equation(4.11) we get that the coefficients of e.,, are equal for both the sides,
and from equation(4.7) we get that the coefficients of e,, on both the sides are equal.

(9)To check
d(ei * ex;) = dij.eg notice that

from equation(4.4) we get that the coefficients of ey, are equal for both the sides,and
similarly equation(4.8) gives us that the same holds for the coefficients of ey, .

(10)To check
d(er;,_, * €g;) = d;j.€7 notice that

from equation(4.9) we get that the coefficients of ey, are equal for both the sides,and
similarly equation(4.6) gives us that the same holds for the coefficients of e, .

(11)To check
d(er,_, * ex;) = 0 notice that

from equation(4.8) we get that the coefficients of ey, are zero for the LHS, and simi-
larly equation(4.10) gives us that the coefficients of ey, of the LHS are zero.

(12)To check
Oew, * euj) = —d;j.e7 notice that
from equation(4.5) we get that the coefficients of ey, are equal for both the sides,and
similarly equation(4.11) gives us that the same holds for the coefficients of eq,, .
(13)To check
J(ew, * €y;) = 0 notice that

from equation(4.12) we get that the coefficients of ey, are zero for the LHS, further
check that

DG, + Y Glania, = Vi A, + > Y, A, foralln=1,...,6
t t t t

This gives us that the coefficients of ey, are zero.
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Appendix

Here we record some observations by one of the referees about the calculations in the
thesis.

1. If we have a short exact sequence sequence of finitely generated modules My, M2, M3
over a polynomial ring,

0— My — My — M3 — 0

and if we know the minimal free resolution of M; and M> we can build a free
resolution of M3 which may not be minimal.

Therefore as a consequence, the matrices (or the maps) in the free resolution of
M3 is built up from the free resolutions of on M; and M> will naturally be built
up from the up in the free resolution of Ms3. This is called the mapping cone.
The free resolution built this way naturally turns out to be a complex, but also
an exact sequence.

2. In our case in Theorem 2.1 we have the short exact sequence of ideals:
0— (ANF)=FA —A®(F)— (A,F)—0

and the corresponding free resolution of (AN F) and A @ F

0 0
F G3
Fy Ga
Iy G
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where F; and G; are free modules.

The mapping cone gives the following free resolution for (A, F'):

0—F —FRoGs —F®G — G — (A F) — 0.

3. Similarly, once we know the free resolution in Theorem 2.1 and Theorem 2.2,
the free resolution in Theorem 3.1, Theorem 3.2 and Theorem 3.3 can be built
up from them.

4. Hence the maps (or matrices) in minimal free resolution of A = (Ao, ..., A22)
does appear in the Theorem 2.1, Theorem 2.2, Theorem 3.1, Theorem 3.2 and
Theorem 3.3.

5. The interesting thing here is that all the free resolutions in Theorem 2.1, The-
orem 2.2, Theorem 3.1, Theorem 3.2 and Theorem 3.3 are indeed minimal free
resolutions which can be seen from the maps.
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Theorem 2.1: Since the minimal free resolution for A is:

[M2]6xs Milixe

S(—3)8 ——= S5(-2)

M:
0 S(—4)3 [M3]gxs

the minimal free resolution for AN (F) = FA is:

[M3]gx3

00— S(—m —4)* —2% g(—m —3)8

[M2]6xs [FMi]1xe
—

S(=m—2) ——FAQF ——>0

where [FM1]1><6 = [.FA()()7 . .,FAQQ].

The minimal free resolution of (F) is

0— S(—m) — (F) —0

Therefore the minimal free resolution for A @ (F') is

{ [M2]6xs }

[0] [F.[M1]1x6]

[M3]gx
I G(—3)F K220 @ §(—m) ——> A @ (F) ——= 0,

00— S(—4)*
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Hence we get the commutative diagram

[M3] [M3] [FM;)
00— S(-m—4) —2 5 §(-m—3)F — 5 §(—m —2) — AN (F) —=0
—Flgxe
Fl3x3 Flgxs i
[M1]1><6
{ [Ma]6xs
3 [M3]sxs (0] x5 6 [[M1]1x6,F]

00— S(—4)

S(=3)F ————=5(—2) @ S(—m) —A® (F)—=0

[M3]8><3 [M2]6><8 [0]6><3

[ [FI]3><3 [FI]SXS [M3]8><3
0—= S(—m —4)° — S(—m — 3)* @ S(—4)° — S(—m = 2)

[_FI]GXe [M2]6><8 ]

[Mi], (0], s [[M1]1x6.F]
@ S(—=3)° — S(=2)%® S(—=m) —= (A, F) —=0,

o=——
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Hence the maps can be given as block matrices as follows:

ar = [[Mi]ixe F] a2 —Floxe  [Meloxs ]a = [ [Mo]exs Usxs } = [ [M2]sx3 ]

- [M1]1><6 O1xs | —FlIsxs [Ms]sxs "—FI343

Remark 2: The above argument can be used for Theorem 2.2, Theorem 3.1, Theo-
rem 3.2 and Theorem 3.3.

Theorem 2.2:

ERELEEEE I o )
[Ms]sxs —[VT]M}

—[J"]sx1
Osx3 _[M2]§><6

ﬁ3 = 54 = [ [JI]GXI

Remark 3 The complex in Theorem 3.1, can be built up from Theorem 2.1 as
follows

Theorem 3.1:

We have the following commutative diagrams:
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CHAPTER 5.

58

[ Mzl g [Malgwa |
[#1],,.4 |71 My

: [=Fl g | Ma)oxa
(M,

CEE ] _.:x.._ __h.m_ _ _._\.t

| IFaar] e FF

h——=S—m—m' —4) —= S—m—m -3 28 —m' —4) = Fl—m—wm — 2 S —m' =3 = S(—m' — 2" 2 f—m —m) = [AF, FF1) =

| —————= S| —m

{1 == S(—m—m' —4} =

[ P

Si—m —m' -3y
&S(—m —4)°

-1 R

S | R, S |

[Fars  [Mawa 1381 PR (1] P
_..__.__\._ _m..._q__r 3 Naa _m.,m_._?._

| Ma] g [Malaes Vg, [=F g |Maloes
_m_m_.:u 1 __n_m_...,\x _..__.___.__:uu _._._..?__ A

(0150

|1

Gl

Ladi

H1va [F] 501

[1ar] 1 g P

Byobl—m—m — 2P S —wm — AP m S(—m' — 2 S—m—w) P S-S @ Si—-m) B

—== JE—. —_—
TS (—wm =3 @ S(—1)? S =23y 25 —m')

Sl — =8 —m—2)z 54 —= 52 2 S —m LS —m) = (A FI S =

14, F ) —=1,



=2
10

|Ads)s =n |Ma]ews :
fh— = S—m-m -4 — = §m-wm -3 — = F—m—m' -2 0
—Flze
Flyzs Flg.a T
[ Malas (M) a
[Adxlaa [0 18 [Py ]y e PR
il S —m’ I.HU_.._ 8- — BEL D o gt |.._.._”_._._ &8 —m— ) —= AR D FF —= )

[ Mg 5
(£ Py

h—= Sl—m—m -4 —=S—m—m =3P & 5w’ -4 —= F—m—-wm =5 - -3 — §(—m' =2

| [Malaxs Olas
| (Prlye 36510

_Im..m_._rm

[M1] g

|42 o

=8

[ Faddy |g s

S S —m— ') —= [AF, P —= 1)
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~ I —FIGXG [0]6><1 [_FI]6><6 [M2]6><8
Pu= [(Mi]ico F F| Po=| WOl Pl DAl O
L [M1]1><6 [0]1><6 [F]1><1 [0]1><8

[ —Flsxe  [Ma]oxs [0]6xs 065 [ [Ma]gys (Olgxs [Olgys
Py = [Mi]; 6 (0] s (0], s (0] 3 P, — Flsxs  [Ma]gyy  [0ys
o [=F1lgx6 L0]6X8 [Mz]g, 5 065 ! [—F1sys ~[0]8><3 065
[0]8><6 —Flsxs [_FI]sxs [M3]8><3 L [O]sxs [_F‘I]SXS [0]6><3
[ [Ms]g 5
Ps = [F{]?,x?,
[_FI]SXS

Similarly, we can write the maps for Theorem 3.2 and Theorem 3.2.
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