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1 | Introduction

Let M be a Galois extension of a number field L with Galois group . The associated order
Apgn of M over L is defined as: {z € L[G] | 2O C On}, Hlere L[G)] is the usual group
algebra. Then the ring of integers Opr of M is a module over Apye.

We are interested in the explicit Galois module structure problem which is the same as the

following problem :

Is it possible to:

1) Describe Ay g explicitly?

2) Determine il Oy is [ree as an Aprpr—module, i.e., determine if there exists a ~ € Opr such
that Oy = T Appr?

3) Describe explicitly the generator o whenever Oy is [ree over Apysi?

Il is known that Apryr = OL|G] il M is tame over L. VFor an extension M over L,
by normal basis theorem, there is a v € M, which can be chosen to be in Oy, such that
{o(7)}-ec spans M over L. Normal integral basis problem is concerned with the existence
of such a 4 € Oy, In other words, it concerns with the freeness of O as an Op[G] module.

One of the early results is the following due to Hilbert and Speiser: Let L = @ and
M C () for some squarefree n. Then Oy = Tropagm(l = G)ZG.

By a Theorem of Noether [16], if Op is free over @4 [G], M/L is necessarily tame. In
fact, the squarefree condition on n in the above result ensures Lhat M/L is tame. Thus, in
the tame case the Galois module structure problem is just a normal integral basis problem.

The Galeis Module structure problem has been completely solved in the case when



L= () and G is abelian by Leopoldt [13]. A simpler proof is given recently by G. Lettl, [14].
Theorem 1: (Leopoldt) Let M be a finite abelian extension of Q). Then the ring of
integers Oz of M s a free, rank one module over the associated order Antio.
When L # @, no general result is known. In the following situations the associated order

Apgye has been delermined:
(1) (almost) Maximally ramified Kummer extensions [8].
(2) Kummer extensions of Cyclotomic extensions of € and some complex analogues [23]
(3) Kummer extensions of Lubin- Tate division fields, [22].
In [20], the Galois module struciure for relative quadratic extensions was determined. Similar
results were obtained independently by Lett] [14]. When M/Q is a dihedral extension of order
2p, p an odd prime, the associaled order and conditions for Opn Lo be [ree over Apyg was
given by A. M. Berge [2]. When M/L is an extension of Cyclotomic fields, Chan and Lim
[7], have proved that Opy is always free over Ay

Let & be an imaginary quadratic field and let k(J) denote the ray class field with
conductor J for an integral ideal J in Or. When M = k(I°), L = k(f) and I|I7|f?, Schertz
[19] has proved [reeness.

There are more results on Explicit Galois Module Structure problem in ([2], [3], and
[3]) for the local cases and in ([1], [7], [17], and [19]) for the global cases. [6] and [24] Lave
good surveys for the explicit Galois module structure.
In this Lhesis we have considered the lollowing cases:
(1) M, a bicyclic biquadratic extension of ¢ and L, quadratic subfield.
(2) M, a cyclic quartic, Galois extension of ¢} and L, quadratic sublield.
(3) L =Q(v/=3) and M, its cubic Galois extension.
(4) L = (i) and M, a cyclic Galois extension of degree 4 i.e. M = L(/a) where a is an
integer which is fourth power free.
(5) L = (i) and once again M be a cyclic Galois extension of degree 4 but here M = L(/a)
where a is an element of Z[1] which is fourth power free,
And in each of the above cases we have completely solved the Explicit Galois Module Struc-

ture problem.



One can also study the structure of @uy as a Z|G] module. If M/L is tame, Oy

defines a class in the locally free class group cl(Z[G]). One can describe this class in terms
of certain constants associated with the Artin L- [unctions for the extension M/L. We have
Taylor’s theorem which implies in particular that Oy is al ways {ree as a Z[G] module when
M/ L is abelian. For more details [21]. There is no method for constructing a Z[G] basis {or
Our when Oy is free over Z|G]. In this thesis in cases (1) and (2), we have found Z|G] basis
of Ops over L whenever extension is tamely ramified.

This thesis is organised in the following way:

[n chapter 2 of this thesis, we consider a field extension M over L, where M is a quartic
galois extension of @ and L, it's quadratic subfield. In this case (3 = Za % Zy or Z3. We give
the explicit structure of the associated order and conditions under which the ring of integers
of M will be free over Antyi, as a module and whenever it is free, we give a generator of Dy
over Ayrp. In this chapter we also study the structure of On as a Z[G] module whenever
M is tame over L.

In chapter 3 of this thesis, we have found explicitly the associated order and structure of

Oy as an Anrpr—module for the following cases:

(1) L = Qw), (' = Z;, where w is a primitive cube root of unily.

(2) L =), M = L[y/a] where i* = —1 and a is an integer which is fourtl: power [ree,

In chapter 4 of this thesis, we consider the field extension F of X where X' — (i) and
(¢ = Zy. Pirst we lind an integral basis of 7 over & and using this integral basis we lind
explicit structure of Apye and of Op as an Aprie module. In each of the cases we give

generator of Op over Apy,



(alois module structure of
quartic Galois extensions

| I

Let M be a quartic Galois extension of @ and let L be it’s quadratic subfield. Here (G =
3 % Zy or Zy. In this chapter, we give the explicit structure of the associated order and
conditions under which the ring of integers of M will be free over Apyroas a module and
whenever it is free, we give a generator of Oy over Anssr

In section 1 we will give notations used in this chapter and some known results which
we will use in later sections. In section 2 we will give explicit structure of the associated
order and structure of @y as an Apyr module and in section 3 we will give Z[(G] basis of

M over L whenever M is tame over L.

1 Preliminaries

Let m,n # 1 are distinct and squarefree integers such that mn is not a square. d = (m,n),
m' = % and n’ = 3. Let M be a quartic Galois extension over ¢ and L be the quadratic
subfield of M. G denotes the Galois group of M over L, A denotes the discriminant of M
over L. When m > 0 let ¢ = r + t\/m be the fundamental unit of £. When M is cyclic
quartic, let § € Z be such that § = 0 if r,t € Z and 6 = 2 if r,t & Z. When § = 2, let
s=3(2r +1).

When 6 =2, ¢ = Iir"?—m, en? = #ﬂ-’ and ¢* = E—“’—”‘zﬂ for some p,q,7, k. {,me 2.

When M is cyclic quartic, in [10] it is shown that M = Q(\/A (I)—I—B@))T with
A, B, C € Z, A and D square free, A is odd, B, C > 0 and D = B? + C%.  Clearly




D #3  (mod 4). Moreover (A, D)) = 1.
We now state a few known results which will be used later in this chapter.
Theorem 2: (K. S. Williams [27]) An integral basis of field M over () where

M = Q(y/m,v/n) and m, n are as above, is given as follows.
1 Lo I_+'\£TI |+\_fn_14-yq+m
1 T B P

1, %51 ﬁ1¢4-ﬁ+f{+m
£ 1_?5’ i, 1+ﬁ+f+m
1’1_-552@: ﬁ11+ﬁ+f+m
L1ﬁ1ﬁ11+ﬁ+m§ﬁ+m

whenm=n=1 (mod 4)

whenm =1,n#1 (mod 4)
whenn=1,m#1 (mod4)

whenm=n#£l,mn'=1 (mod4)

whenm £ 1, n# 1l,m'n' £ 1 (mod 4)

Theorem 3: (Bird - Parry [4] ) The discriminant of Q(~/m, V) over Q(/m) is
(z). n' whenn=1 (mod4) orm'n' =1 (mod 4)
(). 4n' whenm =1 (mod4) and n#£1 (mod 4)

(#22). 2n' otherwise,

Theorem 4: (Bird - Parry [4]) An Integral basis of Q(\/m,/n) over Q{/m) for

m < [ is given as follows.

m, n, m'n' = (mod 4) Conditions Integral Basis
n=l d=1 {1, L
m=1, n#l =1 $1; Vi)
m=1, n#l d=—m {1, v—r')
m=n=2 mn'= =2 {1, }@_—g@}
m=mn'=2, n=3 d==" {1 J‘FJ’—J_@}
n=1 d=—m 1 ﬂ'i':fﬂ}
m=3 n=mn'=2 m=-1 {1, ﬁ%"E}
m=n=3 d=—m 518 '—“’—";:“—T”—’-}
m=n=3 d=1 {1, ﬂziﬁ}

Lemma 1.1: (Bird - Parry [4]) Let € = e or ¢ be of the form p + q\/m where
Pyq €4 and let the norm of € be 1. If m=1 or2 (mod 4) then (p,q) = (1,0) (mod 2) and
=1 (mod 4) then ¢ =0 (mod 4). Furthermore

=



Ve =svu+ o (1)

with (u,v) =1 and wv =m. If m=3 (mod 4) then either g =0 (mod 4) and equation (1)
holds or (p,q) = (0,1) (mod 2) and

" sv2u + i2u

. 2)

with the above conditions on v and v.

Theorem 5: (Bird - Parry [4]) An integral basis of M = Q(\/m,+/n) over Q(v/m) for

=

m >0, whend=1, m or > 15 as in theorem 3 and in other cases it is as follows. Here, for

this lable, \/¢ = ﬂf-ﬁ where v =1 for all cases exceptl for the last case in which » = 2.

m, n, m'n' = (mod 4) Conditions Integral Basis

d=u or v
normn’ =1 {1, Il

' =1 (mod 4)

m=1
fik vn'e}
n#l
m=2 d=u or v 1 l-!-:rn‘.-l-m}
n or m'n' =1 pn' =3 (mod 4) ?
m=n=2 T
d=2u or2v b M}
mn' =3 ‘
m=mn=2 —
d- =2 % or :_r {l, Em+: in :]_
n=4
m=3 d=u or v -
{1, Vit
n or mn' = | ' =3 (mod 4)
m=3 P
d=wuorv {1, ¥ty
n=2

Lemma 1.2: (Hymo - Parry [11]) Let M be a cyclic quartic extension of Q and
L= Q(V'D) be ils quadratic subfield. Then ML has an integral basis iff M = L(y/ A'ep/D)

where
A'=2A ifD=1 (mod4)and B=1 (med 2)

A'= A alherwise.

G



Theorem 6: (Hymo - Parry [11]) If D is odd and M = L(y/2Ae\/D) then
1,\/24e0\/'D) is an integral basis for M over L. If M = L(\/Aegv/D) then an integral
basis of ML can be given by,

(1) 1,4 (1—{%1—’-@ +VAVD) if d=1 (mod 4), A=3 (modd4) and §=2.
(8) 1, V49D it b Al =1 (mod4) and §=0

(8) L\ Acov/'D  otherwise. =

Theorem 7: (Srivastav - Venkataraman [20]) Lel M/L be a quadratic extension of

number fields with Galois group G. Let IT(Op) = {trf(a)la € Op). Then Op is a Jree
Apgpr, module tf and only if

L. Tr (Opm) is a principal ideal of O,

2. Op s monogenic over Oy, i.e. there erisls an a € Op sueh that Oy = Ola] and,

J. There exists a generator t of Tr(Op) such that tr{a) =t (mod 20,).

Moreover, if M[L salisfies all the above conditions then,

Amin = Ople +17'Oro, where o = g, + 92,8 € G such thal g, and g, are distinct. and
Onr = vAny1, where v = a + t—_t-;-{ﬂ

Lemma 1.3: (Srivastav - Venkataraman [20]) Let |G| = 2. Then Oy = aOL[G)
Jor an e € Opp if and only if Op = OLla] and tr(a) € O

2 Structure of Oy

In this section we will determine the structure of Oy as an Apgrr, module.,

Theorem 8: et M = Q(m, /) be a bicyclic, biquadralic extension of @ and
L= 0Q+/m). The structure of Op as an Apyr module for m > 0 can be given as follows.
Here p is as in lemma 1.1, and t = z + y\/m with 2* — y'm =42 Whend =1, m or = the

structure is given in table 11 In other cases it is as in table I

Table 1
m, n= (mod 4) Conditions Oy
l m=n=1 LG ]i}zfn:rl}
2 noermn =1 m'=1 (mod 4) | OL[G]( 1+3{2n’c}

=]



n=| pn' =3 (mod 4) |
3 ts not an Ay free module.
nm=2 fl\'rLI,';{{ﬁu] =1
= 1 :
4 (@ng—FEULJ)[Vn’E—I—]}
n %l
=2 St
5 b u=2orv=2 (C’Llc + %@Lﬁ') ({ VF"E L ‘!_‘{ﬁ)
n or mn'=3
. m=3 i ey
6 . (@;ch + EDLU’)( )
n=32
m =3 .
T ' =3 (mod 4) | is not an Apngyr, Jree module
n oor mn'=1
Table [T
m, n= (mod 4) Conditions Oar
1 22 1 d=1 O, [G) (1)
m=1 ’
9 d=m O [G)(H)
n=1
td=rm
m=2 1 Yoh/E | t—ym
3 w=2or (Oplg + {Opo)(¥EpE 4 toym)
n=1
v =12
m=3
4 d=m is not an Apgyy, free module,
nm=1
m = d=1 or
5 (Ovle + %C}Lﬂ')(\ﬁ?-l-l)
7l d=m
= d 0T % 1 Wl t—y/m
6 (Ople + {O0po)(BHE 4 4m)
n=3 u=2orv=2

Proof. (i) Proofs of the cases of table 1.

Case : m=n=1 (mod4)

Here Oy = {1, '—JC-%“_'—‘}. By Theorem 3, M is tame over L. Now, il we take a = li.'_,“E,
then e satisfics Lemima 1.3 and hence Oy = OLlG)(e). This shows that Oy is a [ree Aty

module and Oy = @"*[Gl[}'-‘t‘z’f”“ ).



Case 2: n =1 (mod4)ormm'=1 (mod4)

The proof is similar to that of case 1 above.
Case 3: n=1 (mod4)andm=2 (mod 4)

Here Oy = {1, '—4""’;2—*'@} Let Npyr(eo) = 1. Again by Theorem 3, M is tame over L.

We now have to check if there is any « € @y which satisfies Lemnma 1.3, 1T there is any such

a then a = + y{l—i'-‘{i‘*—m} for some z,y € Oy,. Since « satisfies Lemma 1.3, {1,c} is an

inlegral basis of M and therefore the diseriminant of o is ', Hence yois a unil in @p. We
can check easily that every unit in @y, is of the form a + b/ where a and & are odd and

even inlegers respectively. Therelore, y = p+ ¢/m for some p and g in &£ where p is an odd

integer and q an even integer. Then

trla) = 2z4y+yvm
= 2z+(p+aovm)+ (p+gv/m)vm
= (2z+p+aom)+(p+q)vm
= r+sym where, r and s are odd

This implies that tr(e) can not be a unit in @y. Therefore, there does not exist any o which
salislies Lemma 1.3, Hence @y is not an Apryr Tree module,

Case &t m=1 (modd)andn#1 (mod 4)
Here Op = {1,V/n’c}. So Tr(Op) = (2) and consequently, Tr(Oy) is a principal ideal of
Op. Morcover, since Oy = Op[vn'e], & = vn'e and so we have Llr(a) = 0. Thus tr(a) = 2

(mod 2)0r and hence, from Theorem 7, we conclude that Oy is an Apssr Iree module,
Thus Apgp, = Oplg + %E?Lr: and Oy = (@Llr_‘; + %{?La) [x/rﬁ—i— 1).
Case 5: m=2 (mod4)andn or m'n’=3 (mod4)
Here = Op {1, 354'—2-@} So Tr(Op) = (2, v/m). We now need to check whether this ideal
is principal in Of. Denote this ideal by I.

IT 1 is principal then, I = (2, /m) = z + y/m for some = and y in Z. This implies

I? = (2) = (2> + y*m+2xy+/m). Therefore, Ny (%) = 4 = (22 —y*m)?ie., 2® —y?m = £2.
One can casily verify that whenever there exist =,y in Z such that 22 — y*m = +2, the idecal

generated by x + yy/m in O is the same as I. Therefore, to show that [ is a principal ideal

L2




is equivalent to showing that the equation z? — y*m = x2 has solution in Z. Since m is

even, z is even. So this equation can be reduced to 2¢% — y2b = +1, where a = tand b=1T
- So clearly I'is principal in Oy, iff the equation

2a* — b = 41 (1)

admits solutions in Z. From the criterian in D. T". Walker [26] (1) has solutions iff lfcnfﬁ-{-
yv'b)* = ¢n. By Lemma L1, av/24yvb = s\/u+t/v [rom which one can deduce immediately
that ¥ = Zor v = 2. Now if [ is principal then [ = ({) = (2a-+by/m) where bis an odd integer.
Therefore tr(a) = /m =t (mod 20;) (because 20, = 2r + 2sy/mfor r | s € Z). Hence
from Theorem 7, Oy is an Apgyy, [ree module and Opy = Ol + %DLJ{V(H"’;IE L ‘_‘f’:].

Case 6: m =3 (mod4)andn=2 (mod 4)

Here Oy = {l,@} 5o Tr(Op) = (2). Now, as in case 4, we can show that Appn =
Oila + §0u0 and Op = Oplg + L0y o(L2EL2),

Case 7: m =3 (mod4)andn or m'n'=1 (mod 4)

Here Clyy =A1, ﬁ";—E} and by Theoremn 3 M is tame over L. We now have to check if there
15 any e € Opg which satisfies Lemma 1.3. If there is any such o then o = z—i—yl[-"ﬂﬂ} {or
some 2,y € Op. Since o satisfies Lemma 1.3, {1, 2} is an integral basis of M and therefore
the discriminant of e is n'. Hence y is a unit in @y, Now if ty = p 4 g4/, where p,g € 7,
is a fundamental unit of O, then it can be easily checked from congruence conditions thal
the norm of ¢; can not be -1, So in this case, the fundamental unit (and therefore all other
units) has norm 1. From Lemma 1.1, ¢ or ¢y has the form ry + raa/m where r; is an odd
integer and 7y is an even integer. But if €] has this form we can easily show that ¢ also
has Lhe same form. I'rom the above we get that every unit in Oy is of the form h + j/m
where h is an odd integer and j even. Therefore y = r + sy/m, where r and s are as above.
Now ir (a) = 2z + yy/m = 2z + sm + ry/m. But z = z, + z3/m where zy,1, € Z. Then
tr (&) = k + Iy/m where k = 22, + sm and [ = 2z, + . Bul here k is an even integer and
Lis odd. Therefore, tr(e) cannot be a unit in Oy, implying that such an o does not exist.
Therefore, Opy is not an Ay, free module.

(i) Proofs of the cases of Table 11I.

Since the prools of the cases 1,3 and 6, 4, 5 of Table IT is similar to the prools of the cases

10



1, 5, 7, 4 of the Table [ respectively, it is enough to prove the case 2,

Case(2) m = n =1 (mod4). In this case Oy = IT@. So tr(Ox) = (2, /m).
Since m is an odd integer tr(Opy) = (1). Therefore in this case tl.lt", extension is tame. So
Amy. = OL[G]. Now since tr(Op) = (1), there exist z and y in @, such that 2z +yvm = 1.
Consider a = M@E then obviously Oy = Ola] and tr(a) = 2z + y/m € (Op)".
Therefore by Lemma (1.1) we get Oy is free over Ay, with Oy = gdg}{@ﬁ?ﬁiﬂ)_

This completes the proof. |

Theorem 9: Let M = Q(v/m,/n) be a bicyclic, biquadratic extension of Q and

L= Q(/m) where m < 0. Then the structure of Onr as an Apgyp, module can be given as
follows:

m, n, mn' = {mnd 4) Conditions Oy = AMIL{&}
1| n=1 d=1 |- OL[G] (42
2| m=n=1 d=—m OL[G)( A=l
m= |
J4 d=1 (@;,Ic;—F%ULJ) {'\H’?-I*l}
n# 1
m=1
1 d=-m (Cj;,l(; -+ %UL{T]( vi=n'+41)
n#
m=n=12
5 * d=—m O4|G) (l—t"‘gﬁ)
mifnt =1
m=n=%2 +an’
§ gd=2 m=—2 (GLlG -- ?1_—2@;,0' (:'{mz*—h))
min' =
m=2 m= -2 .
; i=p (010 + 7250, ()
n=2a mint = <2 ’
m=3
8 d=4m |m# -1 is not an Apgyy, free module
n=1

11



=3 A ST
9 d=4m | m=—1 | OL[G](LtYm'n)
n=1
m=3 1 nta S —n
10 d=1 |m=~1|(0Llg+}0L0) (L)
n=2

ljm=n=3]d=1 |m#~1]isnotan Ayyy free module
12 1m=n=3|d=1 m=-1 GL[G]()E:F"E)
13 |m=n=3|d=4m OL[G] (_l_-b..f;m_’_rr')

Proof. Case 1: n=1 (mod 4)

By Theorem 3, M is tame over L. This implies Amyr = Of[G). Now let @ = U0

= 2
Then tr(a) = 1 € Of and Oy = Opla). Therefore, a satisfies Lemma 1.3 and hence
Oum = OL[G](a).
Cases (2), (5), (9), (12) and (13): In all these cases M is tame over .. So following the
same procedure as in case | one can show thai in each of these cases Oun = OLlG](e) for

the corresponding ¢ mentioned in the table.

Case 3: m =1 (mod4),n # 1 (mod4) and d = 1

Since in this case Op = {1,v/n'}, Tr(Opy)= (2). Therelore Tr(Ops) is the principal ideal
ol O),. Mareover, since @y = @L{v’(ﬁ}, a = vn' and so we have tr(er) = 0 and tr{e) = 2

(mod 20.). lence, [rom Theorem 7, we conclude Lthat @y is an Angpr Iree module. Thus
Amyr, = Oplg + 1010 and Oy = (@:,15 G %ULGJ (Vn! + 1),
Case 4: m =1 (mod 4), n# | (mmod 1) and d = —mn
Similar Lo case 3.
Case 6: m =n =2 (mod 4) and m'n’ =3 (mod 4)
In this case, Oy = {I, fﬁ%—@} 5o tr(Opn) = (2,v/m). We now have to check whether
this ideal, denoted as 1, is principal in Op. Il [ is principal then, I = (2,/m) = (z + y/m)
for some x,y € Z. Now (z — yy/m) = (2,v/m) = I so that (2) = J? = (z* — y*m). Thus

x* — y*in = 2. Clearly, I is principal if and only il there exist solutions to the equation
z* — y*m = £2. Now since z,y € Z, z? and y* are positive. Moreover m < 0. So,
this equation has solutions il and only if m = —2. When n = =2, I = (v/=2). Then

Tr(Oar) is a principal ideal of ;. Now since g, = {?L[Y{”—‘—{;——-— "2"'] tr = yﬁt— vin' ey

12



tr(a) = /in = =2 (mod 20.). lence from Theorem 7, @y is an Apgyr free module with
Op = (ULlc + :?]:'EGLU') [:E‘J;—m]

Case T: Since Oy and Oy, are the same as in the previous case, the proof is identical.
Case 8: m =3 (mod 4),n =1 (mod 4) and m # —1

Since Oy = {1, EW{FT- /mn Y by ‘Theorem 3, M is tame over L. Therelore Apyr = OL[G].

We now need to see if there exists an o € Onr which satisfies Lemma 1.3, If there exists
such an o then o = z + y{@] f[or same =,y € Op. Since e salisfies Lemma 1:8;
{l;a} is an integral basis. Thus the discriminant of & is n', implying that y is a unit in L.
So y = &1. Therefore, & = o & @'}@ and tr(a) = 2z £ /1n = 2z, + 225/m + V0
where z1,2, € Z. By Lemma 1.1 this cannot be a unit in L. So such an o canmot exist.

Thus O is not an Ay, free module.

Case 10: m =3 (mod 4), n =2 (mod 4) and m = —1

[n this case, Oy = {1, 3‘5-%"’5} So Tr(Op) = (2) and is a principal ideal of @, Hence, as
i case 4 we can show that Amie = Ople + ;010 and Oy = (Opla + %@La]{ﬁi"fﬁ—”).
Case 11: Here Oy = {1, ﬁj—‘ﬁ} and by Theorem 3, M is tame over [. Following the
same procedure as in case § above, one can show that O is not an Ay, free module.

I
Theorem 10: [Let M be o cyelic quartic extension of Q and lel L be the quadralic
subfield of M. If M over L has an integral basis then the conditions under which Oun i5 u
Jree Awggr, wodule and the corresponding strielure of Opr as an Apgyp, module in the form

Apyile) are as given in the table below.

Clonditions Apgy, a
1) — odd |
1 Orle + 10.(o) | V2AevVD +1
M=L ( 2A¢v/D e :
D=1 d4),
5 (mad4) OL(G] 141/4 VB
A+r=1 (mod4)




D=1 (mod4)
31 =2 and A=3 (mod4) |OL[G] 1 (m;@ +Aeov'D |
s-even p =g (mod 4)
D=1 (mod4)
4| 6=2 A=3 (mod4) OL[C) (242 1 \/AcoV/DD)
s-even p# g (mod 4)
=1 [mod4)
5| 6=2 A=3 (mod4) 0.(G) ! (L*-ﬁgh”—ﬁ + mnuv"ﬁ)
s-odd p#q (mod4)
=1 (mod4)
6] 6=2 A=3 (mod4) OL|G] : (Lﬂ%@ + 4/ Acu@)
s-odd p=gq (mod4)
i all  other cases Ol + 10.(a) \/;'lszrﬁ eS|

=1

Proof.  Case (1) Here, Oy = { 1,ﬁ!mamfb‘} over O. Sao, Tr(@y) = (2) and is a
principal ideal of Oy, lIlence, following the same procedure as in the previous theorem's
prool, we get Oy is {ree over Anggr, with Oy = (Oplg + %L']Lcr} (w 240V D + l).

Case (2) In this case, Oy = {l,”’ ’;”"m} over ;. Now as Ll‘(i"@) = I
Tr(Op) = Oy. Therefore, M is tame over L. So by Lemma 1.3, Ay = OL[G]. Morecover,

: . Ly Aen /T 144/ A VD
since Oy = Oy, [ﬁ'—f;”j], o= ;“ . Cle

Lemma 1.3, Oy = O4[G] (H m”“’fﬁ).

arly « satislies Lemma 1.3. Therclore by

2
Cases (3), (4), (5) and (8) In all these cases, Oy = {1,%(%@ + v AegD }
Here Tr(Oy) = (z, ’-ﬂ—;&ﬁ)

We have to check if this ideal is principal in Op. Let us denote this ideal by I. If it
is principal in Oy, then there exists an o € @}, such that (o) = (ZT M) Therefore,
3@,y € Op such that ar = 2 and ay = B0IWD NGy Ni(a)Njz(y) = =B whicl
is an odd integer since D =5 (mod 8). Therefore, Ni¢(a) is an odd integer. Moreover,
Nigle)Nji(x) = Nfe(ex) = N(2) = 4. This implies that Nli(a) = 1. Thus a is a unit in

Op. But then since | = (a)Op = O, Tr(Op) = O, Therefore, M is a tame extension of

14




L. So by Lemma 1.3, Apyp = OL[G]. To check if @y is an Apngyr free module one has to
check whether there exists an a € @y such that Oy = Orla] and tr{e) is a unit in O,
Note that as 6 = 2, ¢g = wfﬂ, where p, q are odd integers.

If s is an even integer and p = ¢ (mod 4) then, MM € Op. Let
= {”_'J+?_l}m -+ % ('ﬂ';}‘m + 4/ AoV D ), Then it is casy Lo see thal the discriminant
of {1,a} is Aecgv/'D and a € Q. So Oy = Oplal. Now tr(e) = Pi%’_,’ﬁ which is a unit in
Oy,.
50 by Lemma 1.3, Oy = OL[G] (IL"L";EQ@ - % (w + 1\ Aeg/ D )

IT's is an even integer and p # g (mod 1), then one can check that eg? = ﬁZ—m,
where j = & (mod 4). Therefore, iJ—_!-:'i[‘:'—;'—-m € 0. Now let

Ll 1}+ig-— 1}\»’5+%(1+[-21}w‘ﬁ+m)

Then, just as above, one can check that Oy = Opla] and tr(a) = €? which is a unit in O;.
S0 by Lemma 1.3, Op = 0,[G] ((U=UtG=1D 4 4 (L VAavD)).

II s is an odd integer, § = 2 and p # ¢ (mod 4) then since p,q are odd integers,
clearly (p—1) = (¢ +1) (mod 4). Therefore, L=UEHIVD ¢ o 1y

oo 2= 1J+fq+w’ﬁ+1(l TR ;—“A@)

1 2

Then, o satisfies Lemma 1.3 and this gives
— P F(=1)*
ow=oua) (A WENE L (1+CIVD | fr75))

Il s an odd integer, § = 2 and p = g (mod 4), then one can check that ¢, = ‘—T"ﬁ‘@
where I —=1=m+1 (mod4). Therefore, uﬁ?ﬂ-‘f—ﬁ €0 Léta = EJ:%"‘—IET—J +
: (i:-'zi—"’:’ + \Kﬂﬁuvﬁ). Then o satisfies Lemma 1.3, giving

Onr = OL[6] (u— 1) + (. + 1}\/"ﬁ+1 (1 “‘@4- r—mnﬁ))

4 2 2

Case (7) In this case, Oy = {l ; \#Acuv“’ﬁ} over O, Then Tr(Opr) = (2) and consequently
Tr(Op) is a principal ideal of @;. Moreover, since Oy = O, [*-.J'ﬂfnxfﬁ ca = AV D

and so we have tr{a) =0=2  (mod 20p,) and hience from Theorem 7, @Oy is an Anyn free

module with Oy = (Ol + é@;,r.r] (ﬂ.;‘At‘u»ﬁj-l— l), i
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3  Z[@] basis of O

Theorem 11: Let M = Q(vm, /1) be a bicyclic, biquadratic extension of Q@ and let
L=Q(ym). If M/L has an integral basis then a Z[G] basis of Oy (whenever M is tame

over L) can be given as follows:

m, n, m'n' = (mod 4) {a,8)
Lllm=n=1 {]:l:}.fzm'ﬂ', 1+ﬁ+~{;ﬁ+m}
: = 14 L/t i’
2 lm=1, m#1 {(E : |
3 mn' = l’ m=n ?—é 1 {I+V£n‘ﬂ’|l l+ﬁ+\f+@}

Prool. Let G = (g, 92) where g, is the identity map and g, Vit = —/n. In cach case we
show thal e and f are generators of Oy over Z[G] by showing Oy = Z{en gala), B, 9208)}.
It suffices to show that generators of @y can be written as linear combination of e, g2(a), §
and g2(3) over Z, The reverse containment (Z{e, B, 92(a),02(8)} € Op) is obvious.

Case : m=n=1 (mod4)

Here o + ga(a) = |, f+g2(8) = %’E and 3 — g(ff —a) = %’E

Case 2:n=1, m#1

Here o+ ga(a) = 1 and f - a = gya — f) = Jim

Case 3: mi'n'= 1, m=n#|
Here a+ga(a) =1, f—a+g.(5 —a)= y/mand g— o —ga(f —a) = /n. Since in each case,

we liave shown that the generators are linear combinations of a, ga(a), B and gy(fF) over Z,

we are done, !

Theorem 12: Let M be a eyelic quartic extension of Q@ with gquadratic subfield L =
Q(Vd). If M/L has an integral basis then a Z[G) basis of Oy (whenever M is lame over

L) can be given as follows,

Conditions {e, 5}
D=1 {(mod4)
_ 1+ AVD 1 Ao VDAVB D AV e
A+r=1 (mod4) 3 ) 3
6=10

LG



D=1 (mod4)

A=3 (mod4) ]—t;'ﬁ (@‘l‘\,ﬁlﬂu@) %, _(I[]—:rz@jz-’r—l—l—wﬂm@

§=3

1
]

Proof. lere g, is the identity map and g2/ (Aegv'D —/{Aegv/D). Like in the bicyelic

biquadratic case we have to find some o, 8 € Oy such that a, 8
Q

:5’2(‘3’) and g2(f) generate
m over Z, We will follow the same procedure like in bicyclic biquadratic case and show

that generators of @y can be written as 11nea.r combinations of a, 4, g2(e) and g2(3) over Z.

Case(1) g = V4w +"f_+"'£_'“ A6V ol o = ﬂ Then

e gabid]] == I-I—‘a.ff'ltu ‘n..-"Acu --l S
."3‘|"§2{:ﬂ} - ﬁ_}_’l_'l..fﬂﬁn‘\-'f_“l‘\;_ \/’r_‘l.a'!"‘f.u

— 4D
2

Therefore {a, A} form a Z[G] basis for Oy,

Case (2) Let o = 11/D (ﬁiﬂ + AcevD | L and g = ((eyBy2 4 g 4 Acov/D)L. Then
Le(F)-tr(e) = 1. Now consider g = (Ll“'ij-f—g 4144/ Acﬂv’_ﬂ)% = [-5—‘&%2—‘!@—# v Aeg' D %

In this case one can show that D = 5 (mod 8). Therefore, we can write D as 8z + §

for some » € Z. Substituling the value of D we get @ = M +  Aegy/D

Lhdz | (/D 4 AeoV/D)}. Therefore, (M2 4+ \/Acov/D VD)L = (14 z)( h[a)—ir[ﬁ]}+;ﬁ‘

This implies that o and g form a Z[G] basis for Opy. I
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Galois module structure
for Kummer extensions of
degree 3 and 4.

W co

In this chapter we give an Explicit Galois Module Structure result for the following cases:

L. i = Q(w), L = K[VA], where w is a primitive cube root of unity and A = fg*is a
cube free integer for some f,g € Oy and Jig#F —1 (mod/-3).

2. i =), L = K(Va) where i* = —1 and a is an integer which is fourth power free,

In the first section of this chapter we will prove the result in the cubic case and in the second

section we will give proof for the quartic case.

1 Cubic Galois extensions of Qw]

Throughout this section, # = Qw] and L = K[VA], A= [f¢% is a cube free integer for some
[, € O and f,g £ —1 (mod +/=3). Here @}, and Oy are rings of integers of L and K
respectively. Let 0 = /A and 0° = 62/,

Theorem 13: (Wada [25]) Let i = Qlw], L = K[VA] and let Op, and O denote

rings of inlegers of L and I respectively then, a basis for O over Oy is as Jollows:
{1,0,0°) when fs ¢ (mod 3),

{1,0, i—l‘-"—ﬁ_tf' } when f=¢ (mod3)and f#¢ (mod 3v/—3)

{1, {]7:—'331, ﬁ?ﬂ} when f=g (mod 3/=3)
A primitive cube root of unity w is fixed once for all. Let o € G = Gal(L/K) be delined

by o(#] = wl, and y, a character of G be defined by x(¢) = we. For1l < i < 3, let
)




Xi = x' and ¢; = L33 vi(e™)o" denote the idempotent in K@ corresponding to y,.
Then, M = @2=]Of.e; is the maximal @x-order in K G and Apye € M. So, any element x
in Ay can be written uniquely in the form Zon=1 Tie; for some z; € Oy.

In this section, the associated order is determined by determining the conditions on z;. For
this, the basis given by Wada will be used.

Theorem 14: Let ¥ = Qlw], L = K[V/A] and let Oy, and Ok denotes rings of integers

of L wnd IC, Then the associated order and the siructure of Oy, as an Ay module, is us

Jollows:

Conditions Apyi Generator
f ﬁ q |:1TIDEI 3) GH’EI -+ @j{ﬂg + G;{Cg L+6+ 0
f=g (mod3) Ok (e + ea + ea)+ 148407
f#£g (mod3y/-3) | /-30ke, +/-30yey v—d

f=g (mod3y/-3) OxG ut0+0°

Proof. Case 1: f# ¢ (mod4). lere, by Wada's result, {1,0,0°} is an integral basis for

O, over Ok, One checks that every element of the maximal order takes the basis elements

into @y,. So, the maximal order is the associated order. Taking y =1+ 0 + 0"

that Oy, = Ay,

, one verifies

Case 2: [ =g (mod3)and f # g (mod 3/—3). The integral base in this case is
{1, 0,(L+040%)/\/—3}. One easily checks that M = B0.v; where

U = ea; Uz = €1 va=e + ez + es.
Now, if x = 32020 0; € Ay k., it takes every element of the basis into Oy if and only if,
(L+0+0°) T Ty (1404 0%)
= 04 rg—e—1_ A
x 7=3 /3 e 7—3 + 3 /=3 € 0y

This implies that

1 =0 (mod /=3); z3=0 (mod\/—3); a3 arbiirary.
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Now [rom the relations

V=3 = 13 V”—SUQ-‘T =0; wvsy= T

it follows that v = (1 +0+40%)//—3 is a generator of Op, over Ay .

Case 3: [ =g (mnod 3,/-3). Since the sixth roots of unity are distinet (mod 3), one can
find a root of unity u such that f = v (mod 3). So, (u+ 0+ 6%)/3 is an integer. Recall
that for an abelian tame extension, an element v € O generates Op, over O (7 if and only
if
2
(H{T-X}) = Discriminant of L/ K
X

where the product is over the characters of the Galois group & = Gal(L/K) and (v,x) =
Lgea X(9)97 (7) is the resolvent of 4 with respect to x. In this case the discriminant of
the extension L over K is (fg)?. One can check that (I'Ix{-y,x]) for 4 = (u+ 604+ 6*)/3 is
(w00") = (fg). I

2 Quartic extensions of Q[

In this section, f, ¢ and i denole square free positive integers such that [ > 1 and & is odd.
Also, 5 = JTg%I7, 7 = /TT, 7 = /T34,
{ (14 )y when g is odd,
iy = (

) 1 when g even.

anl -
J7 when [ and g odd,

B (e =1
R
(T) 7 when [ or g even.

Throughout this section K = Q[i], L = Q(n,¢) and O, and O are rings of integers of
L and K respectively. Let ¢ € G = Gal(L/K) be defined by o(y) = tp. Let y be the
character of & defined by x(o) = «. Then y; = X' 1 i < 4 gives all the characters of G.
Let e; = 2 370, xi(e™)e™™ be the corresponding idempotents in K'G. The maximal order is
M=al_ O.c.

The [ollowing result, dve to Parry and Hymo [11], gives a basis of (71 over @y.
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Theorem 15: (Parry-Hymo) K = Q[J], L = Q(1,¢) and Op, and Ok are rings of
integers of L and K respectively. Then an integral basis of L over K is as follows:

{i w140 +7 7+ F(l +a}}

5 RS YT when fh=2 (mod4), g—odd,

{h?h]—zﬂﬂ.‘n:{rﬁ}.l when  fh=3 (mod4), g—odd,
| L+ 14947
{ 1 2 1 2 1
Wi =y (h=1)f2, =
l+Jﬁ+‘”+“+;}”+{ J “'J} when fh=3 (mod8), g—evern,
L 1+a L4+ (g/2)hy
1 2 1 2 ]
T —ylh-1)f2 =
L fm’?}ﬁ+n+{ff{f12£h;L}uﬂ 1) ”?}, when fh=7 (mod8), g—even,
L
{1,[1-1 l—-.EETﬁ—;m} when fh=1 (mod4), g—even,
| I+ |l4+a+a
{ 1 .2 ¥ ‘2 1
I rom) ol “I.--'l}ll"?=
1+3L+a4{1+;}ﬂ+( b m}, when fh=5 (mod8) g—odd,
[ l 4+ 14 a+gha
i 2 ¥ 2 1
—_af o —_13th=1)/2 .=
1 -"”“JFGJF{E’I:‘E?:}:;J“( L ‘“} when fh=1 (mod8) g—odd.

Naw .A;J”‘- and the structure of @ as an .AL‘;H module will be determined.
Theorem 16: K = Qe),L = Q(n,¢) and O is the ring of integers of L. The associated

order and the struclure of @y as an Apyic- module is as follows:

Conditions -AL,-"K v
fh=2 (mod 4) Ores + Opes 24T n(14+e)+7(140)
g-odd +(1 + ) Opee; + Ol ]
Jh=3 (modAd) 20k .e4 + 205 .29+ LEgtigss
E,F-'U{.].fj ﬂf{(ﬂ-l -+ Eg} + EJH-I 2
Th =3 (mod 8) 2(1 4+ 1)Ores + (1 + t)Ok(e2 + eq) 1= tdn (140057 +(=1) %45
g-even 420k (e1 + €2) + Of.1 'i
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fh=1 (mod4) 20k.e4 + 20k ¢ Lo it s
g-even +Ojc (e + e3) + Okl 2

fh=5 (mod 8) [2(1+¢)Ok.eqs+ (14 ¢).O(es+ e4) I—itod (14t (-1}5
g-even +20xk (€1 + €2) + Op. 1 4

h=7 (modB8 e ulla b (1 uie{—1)" 5

! Eﬁ'"evE:n ) O« i AT _ﬂh_h

IIr||r.I =1 I:rl'lﬂd 8:| ) uil ) tob (14 ud b —1) "0
g-add St i)

Proof. lIlere, two of the extensions are tame and Lhe others are non-tame, Proofs will be

given for a typical tame case and a typical non-tame case. The prools for the other cases

are analogous,

Non—tame case. fh =3 (mod 8}, g-even. Let

vy = gy U2 = €2 + ey U3 = e; + ey Vg = €1+ €3 + ey + &4 = id.
Note that v;'s span the maximal order M m G over Oy
=
M= H}:=1@j.;vn.

The integral base in this case is,

L+ 43 l4+n475 L =49+ (1 47+ (=1)0h-125
: =T 5 1 Q=T oy = ’
2 2 A(1 4 ¢)

Let x = zyv; + vy + Tavs + 2404 € M. Then, a necessary and sufficient condition for X to

be in Ay is thal xe; € @y, for 1 <t <4. Applying x to as, we get

> + (zg + 3 + Tq)eeg.

Thus, xas € @p if and only il z; = =3 (mod 2). Applying x to a3 one deduces that
xay € Op il and only if 2y — a3+ (1 + )z, = 0 (mod 2). Applying x to ., one deduces
that xey € O ifand only il z, = (I+e)zs  (mod 2(1+44)) and (14+4)zs = a5 (mod 2). One

easily checks that all these conditions are together equivalent to the following conditions:

1 =0 (mod 2(1 +4)); 23=0 (mod (1 +¢)); 23=0 (mod2); x4 arbitrary.
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- — 0t 1slh=1)2.=
Now if v = st ol "'j” +(=1) Y then it can be easily checked that

Apiiey = Ogol + Oal, + Orery + Opcal,
where,

oy =01 ey =ay  ah=—a + os+ ag; o) = oy.
The determinant of the matrix that maps {an, a7, 03,04} Lo {d, af, ay, ) } is one. Therefore
{a), o), o, a4} is also an integral basis for LK. Therefore v generates @y, over A i
Appicy = Oy,

Tame case. fh =7 (mod 8). A generator of Oy, over O G will be constructed by

modifying suitably the last element of the integral basis. Lel g = (g/2). Since fh = —1
(mod 8), it follows that A = — f (mod 8). From the observation made at the beginning,

Ltafednt+ (—aJT+ (=02 14 gifidn+ (14 g o)+ (—1)-D025
4(1 + 1) - 41+ )

is also an integer. In each of the following cases, one checks that the square of t

he product of
the resolvents of the modified element over the characters of G equals the field discriminant
which is, in the present case, [Pg*hd /4.

g f =1 (mod 8) then

L+etp+(1+gq+ (=25
4(1 + )

is an integer and, in fact, is a generator of Op, over Ay,

fgif=3 (mod 8), then,

LHde+n+ (1 +30ap 4 (=I5 1 44
A(1 +4) 2
_ et g4 (=14 g+ (—1)BN2E
- A(1 + 1)

is an integer and this generates O, over Oy G

Similarly, il ¢y f =5 (mod 8),

L+ 5+ 4 (1 +5e)eqy + (—1)-0725 i1 a] + i
(1 + 1) 2
_ oL Tk g (=1 Te)e + (=025
B 4(1 + 1)
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o S P ¥ — =12 =
is an integer, So, S ol i“ _:_}:3; {=1) I is an integer and this is a gener-

alor.
g f=7 (mod §),

L—t4g+ (1 —Jag4 (—1)*-D/25
401 +¢)

is an integer and this generates O}, over O G. I
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Galois Module Structure
of Quartic Galois
Extension of Q(.)

[N

In this chapter we will find explicitly the associated order and structure of Op as an Ag -
module for the case when K = Q(¢) and F = K(¥/Tg®h3), where f, g and h are pairwisc
coprime, squarefree integers in Z[s].

In the first section, we will give notalion used in this chapter. In the second section,
we will give an inlegral basis for F over K. In the 3rd section we will prove Galois Module

structure result when I over K is tame and in the 4th section we will prove Galois Module

structure result when F' over K is a non-tame extension.

1 Notation

Let [, g and h be pairwise coprime, squarefree integers in Ze). = YTgh3, o = gh/TH,
m = fg*h? K = Q(¢), L = K(V/TR), F = K(YT§F). Ok, O, Op are rings of integers
ol K, I and [I" respectively, Lel G = Gal(F/K). We fix a primitive fourth root of unity
t. We define o € G by o(a) = ta. Then, G is generated by o. Let y be the character
defined by x(e) = to. Then y generates the group G of characters of G, Xi = x' are the
characters of . e; = 1 T2 yi(6™)o"is the idempotent corresponding to the character y,.

Let Gy( £/ )(resp.G;(L/K)) denote the i** —ramification group of the extension [/ (resp.
LIK).



2 Integral Basis

[n this section we delermine an integral basis for the extension /. When [, g and h are
rational integers, this was done by Parry and Hymo in [12].

Let [t be a P.1.D with quotient field K, where K is a finite extension of . Let N be
an extension of degree n over K and S, the integral closure of 7 in N. Let a € § be such
that (o) = N. We have the following result (cf. [15]):

There exist dy,dy,...,dy € R and monic polynomials fi(X) € R[X], 1 <i<n -1,
deg( fi(X)) = i, such that {1, I‘J:'], f:’r}f" ---,"r‘;:‘_[]“]} is a basis for S over R. Further, d;’s

satisfy the following conditions:

1. did; I Ef,'+_f ifi43 <n.

2. (didy. .. dn_y) disc(S/R) = disc(a).

3. The fi’s can be replaced by any monic polynomial g of the same degree such that
9le) . ¢
=t
4. di" N | dise(a).
g(e) . - e i .
5. df e S for some monic polynomial g(X) € R[X] of degree i and n € R, n | d;.
T

In particular, if N/K is quadratic and o = V7 1 € R, v square free, then {1, Eij‘ﬁ}

is an integral basis for § over R, Then,

6. d?|4.

7. 2 =4 (mod d*) has a solution and d® is the largest square divisor of 4 for which

this congruence has a solution.

Since Z[t] is a P.I.D, there is a basis

a+ o b+ co + o d+ca+ fa?® + o
1,00 = —— —_— = ;
.Efz dB

We will determine dy, dy, dy and the reader can easily check that the elements in the integral

basis given in the following table are integers.
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Belore we prove the theorem we will give an integral basis for L/IK. This follows from

the general statements about quadratic extensions and the [ollowing facts. (a) £1 are the

only squares  (mod 4Z[s]), (b) +1+2¢ is a square  (mod 2), but not a square (mod 4),
(¢) ¢, 1+ ¢ are non squares  (mod 2) and 2(1 4 ¢) is not a square (mod 4).
The integral basis for L/ is as follows:
Case Integral basis Discriminant
FR=1 (mod4) 1, Huity fh
fh=—-1 (mod4) {1.¢3;E} fh
fh=142¢ (mod 4) {1,#}:{5} 2fh
fh=—142 (mod4) {1y 2fh
fhi=¢ (mod2)or0 (mod 1+ :) {1,/ Th} 4fh

Theorem 17T:

An integral basis of I' over I{ can be given as follows:

Condition Integral Basis
= 4o lehP ({1 +0)a)+a? R (14ata?)+a
m=1 (mod 8) y, e, LClaGdialie’ g i
=t 1) 2 W2 (2=t bia? ) da?
m= 144 (mod 8) 1, ﬁ?: — E{Tl[l-]a‘]l_gf]: B, M ‘i:h“-l- %
m=2t (mod4) : g atadgh?
] Lt} ol 4 2
Jh=1 (mod 4) b
m=2t (mod4) 1 tghta? tarto’ gh?
' oy 2gh !

fh=—-1 (mod 4) - =
m=2 (mod4)

I:!? (=3 n:"] E
fh=£1 (mod2(1+0) |1, B, R
Jh=1 (mod 2(1 + 1))
m =2t (mod 4)

& oo fph?
Jh=241 (mod 2(1+4) [1, o ﬁ%ﬁqﬁ: _4."_2&
fh=—1 (mod 2(1 4))
m=3d+42t (mod4) i o, L?H_it'%*;_ jgh![z{l;-;:l-;-nﬁ«j-w‘
m=1+% (mur_{ 4:' 1, &, |gh12{1+§;1-;}uj+n=’ ]H_hztzin.;.zi:;:]uij-:—aa
m=3 (mod4) flom ﬂﬂzl;*‘_ﬂi, I,r.rh2|?[=-|2-;i-=:-gﬂ+na
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m=5 (mod 8)

o lte  ehPd4e? ek (14eta?)4ol
or L B 2gh ! 2{14e)gh?

m=5+4 (mod 8)

[ is even or h is even

ar 1y oy ook, a? fahk?
m=¢ (mod 2)

; 3 for?
fh =k {mud 2:} and g s even | 1, oy e fgh 5.”1"—1:_‘1!;&

Proof. Consider the extension F/K. Let §;,6,,8 denote the even parts of dy,ds, ds and
g1, the odd parts of g and k. Since

disc(a) = (1 + )" fAg%h" (8)

[rom the relation

(dydads ) *disc(F/ K) = disc(a) (9)

I:Itl:2 1'.1'3

it follows that g; Jdy, hy }d; since d1? | disc(a). From the fact that T € Op, it follows
an g

that gi1hy | dy, g1} | ds. From (9), it follows that gk, | d2, g1h3 || da.

It remains to delermine &, 8,, é3. Before that we list some trivial facts that will be

needed:

10. If I/ K is unramified, f, g and h are odd. (If f or h is even, 1 + ¢ ramifies in L/ K. 1f g
is even, since gh/ [T is a uniformiser at all primes in L dividing 1 + ¢, the congruence

a? = ghy/Th  (mod P*) has no solution for any prime P, in L dividing 1 4+ ¢. Thus,
from 7, d = 1 and 4 | disc(F'/ K)).

11. I m s odd and dy = 4, /K is unramified at 2. (Trpc(a’ay) = m is odd. So LiK

is Lamely ramified.)

12. di[l +vand dy =1+ iland only if m =1 (mod 10g). (d}*|disc(e). So, it follows
from (8) that dy|1+ . i e

L

Nprc(az)). The only odd fourth power (mod 40y) is 1.)

is an integer il and only if a® = m  (mod 40 )(Consider

13. ds|4 when m is odd.
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Case 1 ['/I is unramified. In this case, from 10, m is odd. Since L/K is unramified,
fh==%1 (mod4). Som=+1 (mod4). Further f;;h& (resp. Eii’,g_jh—a} is an integer
when fh =1 (mod 4)(resp. —1 (mod 4}) ). So 2|dy. Let Py be any prime ideal in ¥
dividing 1 + ¢,
FLK unramified & o? ¢ Go(F/K)
& o'(og)— a3 &€ P or o ay) — oy & P
> & & Pr or = + 24 € Py

—‘;-E:;_—al & PF, E Pr. Suppose not. Since 61](1 4 ¢) and
3 b2

bald, if 6 = 2 then (616263)%|(1 + ¢)™. So, from (8), (1+¢)?|disc(f/K) and F'/K ramifies al
2

1+¢ So 2(1+41)|8;. If EE € Pryvig(20) 2 14, (8)+1 2 4. Soc=0 (mad 2). Considering
2

First we check that, if

dm(2b — *
Trix(e® Nryp(as)) = Am(2! 53__)
2
we get b =0 (mod | 4+ ¢). It follows that c:: = (mod 1 + ¢), which is a contradiction.

So I'/ K is unramified at 1 + ¢ if and only 1[ — ﬁ? Py

Suppose 5 gﬁ' Pr. Since 2(1 +1)|6,, ¢ = {i (mod 1 +¢). As before, e #0 (mod 2).
So 8; = 2(1 + LJ Hence 2b—¢* =0 (mod 4), which implies that ¢ = 2, (mod 4). So b
and ¢ can be replaced by 4 and 1 4 ¢ respectively. If §; = 1 or 63 = 2(1 + &), F/K ramifies
ab 1+ ¢ So 6 =1 + «(which implies that m =1 (mod 4)) and 83 = 4. Consider

b 4+ m+ a?®(2b — )
8

Since b = d¢and c = 144, 26— ¢2 = Qor 4 (mod 8) and #* +m = m — 1. When

*NF]."L{D'S:J =

26 —¢* =0 (mod 8), Eg:i € Ok orm =1 (mod8), When 26 — ¢ = 4, (mod 8),
— 1+ 4ee®
m-—ﬂii is an integer only when m = 1 +4¢ (mod 8). So if F/K is unramified,

m = lorl+ 4 (mod8). Conversely, if m = lorl + 4¢ (mod 8), & = 1 4+ ¢ If

B
m=1 (mod8§), -t f;;fﬁ:' € Op. 50 21 +1)|6;. Thus, 4]6:6,]6 and & — 4. Tt

follows that & = 2(14¢). fm=1+4¢ (mod 8) the same argument goes through with
) T ¥
A é} 11”'3“ LR s PR et leniients.
- &
Case 2 I'/L is ramified and L/K is unramified. Note that Jh==£1 (mod4) since L/K

is unramified.
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Case 2(a) f,g,h are odd.

Sincemisodd and m = +1 (mod 4), m = 5 or 54-4. (mod 8)orm =3 (mod 4).
Whenm =5 or 54+4¢  (mod 8), 6; = 1+ and so 2|63 and 2(141)|83. Since F/L is ramified
at 1 + ¢, from 12, it follows that 4 /63 and 6, = 2(1 +¢). As 6:6:]6a, 2(1 + t) Aéz. Thus,
82 = 2,

Let m =3 (mod 4). Then § = 1. We have Npg(e—=1)=m—1=2 (mod 4).
Since primes above 1 + ¢ are unramified in L{K, a—1is a uniformiser at all primes P in
F dividing 1 + ¢. We have 6?(a—1) —(a—1) = —2a € P; when 1 + ¢ is inert in L and
Py 1s the unique prime in F dividing 1 +¢. So o? & G3(F/L) and 0 @ G4(F/L). Using the
formula for the different(cf. [18])

o

v(D) = 3 (|G| = 1)

=0
we get (1+4)* || disc(F/L). If 1 + ¢ splits in L and P; is one of the Lwo primes in F dividing
L+, £ || 2a. From this, it follows that [or any prime £ in L dividing 1 4 &, we have
P} || disc(F/L). So (14 ¢)"|disc( F[L) and (14 4)8|disc(#/ ). Therefore, from (9), it follows
that &85 = 4. Since
tghl® + o® |gh?[fia + o
2gh 2gh*

€ Op,

Case 2(b) Suppose g is even and fh = +1 (mod 4). Then

vry (Nrye(e)) = vp, (ghy/Th) = 1

where P, is a primein L dividing 1 +¢. So e is uniformiser at all primes in F dividing 1 + ¢.
We have ¢%(a) — e = 20, As in the previous case we can check that (1 )10 || disc(F'/ K)
and 8383 = (1 +¢)% . Since
gh+ o igh® 4 o?
2gh ' 2gh?

€ Op

b= 6= 91 44,

Case 3 I"/ K is totally ramified at 1 + ¢. Note Lhat F[K is totally ramified at 1 + & if and
only if 1+ ¢ ramifies in L/ K. If L/K alone is ramified, Go(F/ 1) is of order 2 and there is a
sub-extension of I/ K which is unramified at 1+ and is of degree 2 over K. Since G(F/K)

is cyclic, L is the unique sub—extension of F/ K which is of degree 2 over K.
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We will use the results from [28]. Let b; and & denote the i'* lower and upper break
numbers of the extension L/K.

Case 3(a) m=¢ (mod 2).

In this case, 4 || disc(L/K). From the formula for the different, it follows that the
break number for the extension for LK is 3. So it follows that b = 0, = 3 for the extension
for J7/K. Using Theorem 3 of Wyman [28], it follows that 2 = 5 and l.her;:fm‘e by = 7 for
the extension I/ K. Using the formula for the different, we get that (14 ¢)'¢ || dise(F/K).
From (8), it follows thal &,8,6; = 1.

Case 3(b) fh =1 (mod 2), g is even .

As before, (1 4 ¢)'® || disc(F/K). So we get, from (8), 665 = (1 + ¢)*. Since
o?[gh € Op and 6,83, the only possibility is 6, = 1 + ¢ and by = 2.

Case 3(c) [ or h is divisible by 1 + .

In either case (1 4 ¢)° || disc(L/J). As in the previous case, we conclude that b =
by =4, 6% = 6 and by = 8. So using the formula for the different, we gel (14)"® || disc(£/K).

When [ is even, 6,63 = 1. When h is even, 8,83 = (14+:)*. As a®/gh € O, 6, = 141
and &y = 2.

Since 2 || disc(L/K) when fh = &1 4+ 2 (mod 4), the break number is 1 for LiK
and so by = 1 for /K. So the break numbers are odd.
Case 3(d) m=142 (mod4).

Since the break numbers are odd, by > 3. (1 + ¢)®|disc(f7/L). Thus, G283 (1 + o)*.

When m =1 + 2, L+ {1+ et € Op. Therefore §; = 2, §; = 2.

i
When m =342t (mod 1),

Nela—1)=m—1=2(1+4) (mod 4)

a— 1), ; : . Sy s g ke
So {—é——}u is a uniformiser for the unique prime in 1" dividing 1 4 ¢. We have

2 ((ﬂ;”ﬂ) —(a=1)*=ala®+3)

and Npyre(e® +3) = (m — 9)% Sincem — 9 = 2(1 + ¢) (mod 4), (1 4 ¢)° || Npyra(a?® + 3)
and 5o o? € G5(F/K) and ¢* ¢ Ge(F/K). So, in this case, by = 5 for F/K. Thus,
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: " 4o |
(14 ¢)"dise(4'/K). Therelore, 385 || (1 4 ¢)% So 8:85](1 + ¢)*. Since MJT is an
integer, &; = (1 +¢), 83 = 2.

Cased(e) Let fh =142t (mod 4), g be even.
Since fh==£1 (mod 2(1+1)), f=+h (mod 2(1+:)). When f=h (mod 2(1+

3/ ok
t)), consider the element X' =1 + ﬂ%_{g_ . We have
16 — (g(f—h))* — 16fgh
Neywe(x) = 2= =

Since g = (1 +¢) (mod2), g = a+ b with a and b odd. So ¢* = +2t (mod 8). One
checks easily that (g(f —A))* = 16 (mod 32) and 16fgh = 16(1 +¢) (mod 32). So X is

a uniformiser. We have

r:rz[r't'j —X = a4 a’/gh?

and

(14 e)® | Npx(a+a®/gh?) = g fh(f - h)?.

So Gz # {1}. Since by is odd, so is by. So by # 8. Since Go(F/K) =1, by = T. (Gi{(N/K) =
{1} ifi > e/(p — 1) for any extension of local fields N/K, where p is the characteristic of

the residue field and e is the valuation of p in L. CI. [18], Exercise (2)c at the end of §2 in

2 3 e
Chapter 4.) So (1 + ¢)"?|disc(F/K) and therefore 8,6, = 5. Since fhg% and ”*—“23’15’—
are in Op, 6 =2, 8; = 2(1 + ¢,

3 B
Similarly, when [ = —h  (mod 2(1 + ¢)), 1 + L—ﬂ#?i is a uniformiser. As
2 2
belore, it can be checked that (1 + ¢)'|disc(F/K). Since ﬁj:l_]ah and £ ffgh are in
Llg

(?;:', fa = 2, 863 = Zf_l - F,:L 1

3 Galois Module Structure in the tame case

Theorem 18: Let F/K be a tamely ramified extension. Then,

[. Whenm =1 (mod 8), Op has a normal integral basis over L if and only if h = u

(mod 4) for some unit u in O.

42



20 Whenm = 1440 (mod 8), normal integral basis exists for O if and only if h is not

congruent  (mod 4) lo any unit in Q.

Belore we prove this result we recall some facts about locally free modules over the
group ring. ‘Throughout, P in the subscript denotes the completion at P.

Let M be a locally [ree module over O G. Suppose MK = KG.v for some v € M.
Then, al each prime P, Mp = Ok, cp.v for some ap in KpG. We have (ap) € J(KG) and
the map (M) [(@p)] gives an isomorphism

J(KG)

CUOx0) — HErTone

Here, [(ap)] denotes the coset (ap)(KG)*U(OxG), J(K G) denotes the idefe group of KG,
U(OxG) denotes the subgroup of unit ideles and ({£G)" denotes the unit group of KG. cf,
[9] for details.

Remarks

L. Let [ be a Dedekind Domain and let # be its quotient field. Suppose G is an abelian
group, |G| = n and that K contains n™ roots of unity. Let {e,) denote the set of
idempotents corresponding to the characters of . Then M — B, fley is the maximal
fi—order in K{G. Let & € RG. Then, & € RG* if and only if @ € M*, This is because

RG < M is an integral extension. Further, T =2 Tyex € M is a unit if and only if

Ty € I [or all y.

2. To show that OF is free over Qi G, it is enough to produce an integer of the form

ity + wya + uga® fgh + o fgh?
4

for some units wug, uy,us. This is because it can be casily checked Lhat the square
of the product over the resolvents of this element is equal to the discriminant of the

extension.(In our context the resolvent of an element 7 € I with respect to yx; is

dei(v).)

3. During the course of the proofl, whenever we say something like g is a unit  (mod 4),

we mean thal g is congruent is to a unit in O modulo 40
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Proof. Let m =1 (mod 8). The integral base in this case can be re-written as

{1 L+a gh(e+ (14 )a) +o*/gh gh¥(1 + a + gha?/gh) + a'“‘fgh"‘}

(142¢)° 2(1+ 1) ! 4
Since h* = +1  (mod 4) and |gh]? = 1 (mod 4). So
7 + ega + ha’ fgh + o [ gh?

4

is an integer, ¢ = +1. If gisa unit  (mod 4),

u + ua + ko fgh + a’ [gh®
4

is an inleger for some unit u € Ok. I 7 is not a unit (mod 4), adding 2
G+ cgo + ha?/gh + o /gh?
e 4'@ o /gh ; we get that

Uy 4w+ halfgh + o fgh?
4

is an inleger for some unit uy € @g. This is because (2 non-unit) (mod 4) + 2(1 + t) is a

(unit) (mod 4). So we can always assume that

U+ uer + ha?/gh + o [gh?
4

is an integer for some unit u € Q.

If kis a unit (mod 4), say b = u; (mod 4), we can replace A by u; and the

resulting element generates Op over OxG. One checks this by computing the resultant of

this element.

We show that, il O is free over Ox G, T is congruent to a unit  (mod 4).

Choose L
u+ ue + he? fgh + o [gh?

.4
Then,
EI+Ez+Ea+ﬂJ| lfp/r-:l
&p = izt
er + h 1ﬂ2+ﬂ3+r34 if Plh

Let A= ey + heg + ea + ¢y € KG". Then, it is necessary that (Aep) is in U(OxG)KG*, for
(OF) =0 in the class group. Here
ey + heg +es+eq P Jh

(@r) = (Aap) =
#=Hage er+erteateqs il Plh
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Il (ap) € U(OxG)KG*, there is an clement x = z,0, + Egey + 2aey -+ r4eq4 such that
(xdp) € U(OkG). We have that,
. Iy -+ :Fzﬂﬂ-z + @ <+ Ty il e f“l
Xop =
I8y + Tags + Lata e Taey if .P“L

is an element of U(OxG). So it lollows that Ty, T, T3, Ty € @f{jjffrom the first Remark in
this section) when Plh and z, hzq, 23, 74 € Ok, for P fh. It lollows that z; are units. If
Plk, (P,4) = 1 and therefore z,e; + ey + w35 + 1404 € (Ok,G)*. When P [h, a necessary

condition for x1e; + z9€; + Tses + z4e4 to be in OrG is

(14w’ —o*—10) & T (1 -0 +a%—0)
1 N
—- o 4 o) i (1+crd+::ri—|-£l

Iy

4 4

i5 in Okl Regrouping the Lerms, we get the following congruence conditions:

|

. {1 —go®
-+

zy+hrtzs4+zy = 0 (mod 4) (14)
i —hzy—ixs+ag = 0 (mod 4) (15)
—zy+hzg—z3+ 24 = 0 (mod 4) (16)

—tzy —hzstwy 424 = 0 (mod 1) (17)

Subtracting (16) from (14), we get 2(z, + z3) =0 (mod4) or z; = z3 (mod 2). Since
Ty, %2, T3, 24 € {£1, e}, this implies that z; = 4w, If o, = 3, using this in (15), we get
h=u (mod 4). Iy = —23, we use this in (16) to get the result.

Let m=1+4: (mod 8). In this case, the integral base is

|, Lk gh(—c+ (1 + ta) + a?fgh gh?(2 — 1+ a + gha?[gh) + o®/gh?
S 2(1 4+ ¢) ' 4

As in the previous case,

(2 = )7 + Gea + ha®/gh + o [gh?
4

is an inleger,
We will show that Op is free over @y G when 7 is a unit and % is a non-unit or when
g and k are both non-units, If g is a unit and h is not a unit

w2 — ) +ua+ hafgh + o’/ gh?




; ; . o TS . . L+ atfgh ,
18 an integer for some units w,u;. Since k is a non-unit, adding b 1L Lo this element,

we get an element of the form

up + o + wpa fgh + o fgh?
4

£ Op
and this generates Op over Q) G.

Suppose § and h are non-units, Then § = up(2 + ¢) for some unit uy. So
Pl q /]

upe + gear + ha? [gh 4+ o [ gh?

1 = GF
gh
Adding E-tj_—i, we get an element of the form
L
U+ we +uge’? fgh + o fgh? € Op,

4
and this generates Qp over Qi G.

Next we show that, if h is congruent  (mod 4) to any unit in O then Of is not

free over Oy G,

Suppose g is unit mod 4 Lo some unit in Q. Then, there is an integer of the form

up(2 — ¢) + we + wpe? /gh + & gh?
1

Choose this for v. Then
£+ ez + €3 + ey [P J2—.
e {EI +eites+(2—10) ey if Pl2—.
As belore, we can modify this to
erteatest+(2—ies il P J(2—4)

(@p) = (Aap) = .
€1+ ez + 3 + €4 if P|(2— 1)

Tier + Taez + Taea + a4(2 — ey P 22—
Nip =

Iy8) + Tacg + Iaeg -+ Tqey if Piz =

As before, we get xy, 29, 19,74 € O} and the [ollowing congruence conditions if we assume

that (xap) € U(OxG). (Again, (P,2) = 1i[ P2 —..)

Ty t+zat+z3+(2—t)zy = 0 (mod 1) (18)
=Ty —tza+ (2 —t)zy = 0 (mod 4) (19]
—Trt+ Ty —aa+ (2—tzy = 0 (mod 4) (20)

—tr; =Ty + w3+ (2—t)zy = 0 (mod 4) (21)
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Subtracting (20) from (18), we get 2(z; + a4) = 0 (mod 4) or @y = txy. Il 2y = x3, using

thisin (19), weget 2—t =u  (mod 4) for some unit u, which is a contradiction, If T] = —3,
using this fact in the (18) one gets a contradiction.
If g is a nonunit mod 4 then, there is an integer of the form
ug + ego + uya fgh + o [ gh?
4
Choose this for v. Then
€1+ ez +ex+ ey i Bt
s {'g_lel +ex+es+ey if Plg
Again, we could work with (é&p) instead, where
. geaterteates P Jg
(ﬂp}*{ﬂl+ﬁg+ﬂa+ﬁ4 if Plg
The congruence conditions in this case are
gritzatratoy = 0 (mod 4) (22)
gy — 23—tz +z4 = 0 (mod4) (23)
—gTit+z—2z3+34 = 0 (mod4) (24)
—Fr —Ia+izatzy = 0 (mod 4) (25)

Adding (22) to (24) we get 29 = +74. [z, = 4, using this in (25), we get g=u (mod 4).

Il 3 = —x4, we use this in (22) to get the same result. |

4 Galois Module Structure in the non-tame case

Let er, ea, ey and ey as belore. Lel 15 denote the identily element of .
Theorem 19: Let FF over K be a non-tame extension. Then the associaled order of I

over K and a generator v of Op as an Apic—module is given as follows.

Conditions Associated Order Apx Generator ~
m=2 (mod 4) 20keq + 20k e,
fhi=1 (mod 4) +(:JJ{I:E.;+C2}+E]I-;IG

Idede? fphta? fgh?
7
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m =2 (mod 4) 20rey 4+ 2058,
Jh=-~1 (mod 4) +Ox(eq+ €2) + Ol

m =2 (mod 4)

itioto? ghtad [ghi
2

fh- — j_.l [mﬂd 2{1 + E.}J El = L}Dﬁ'ﬂﬁ + 2@;{61 I—*+ﬁ+[1—1:ln‘ifgh+a‘3l.’gh7

+O0xr(eq + e2) + Ol :
Fh=1 (mod 2(1 + )

m=2t (mod4) " o -
T R-Ed -{- IFEI — L - o 3
fh=+1 (mod 2(1 + 1)) i 1—ttia(1 ‘J:’fgh+ 3 foh

_ +O0xk(ea +€2) + O lg
fh=—-1 (mod 2(1 +))

20ke4 + 2006,
+(1+ t)(eq + e2) + O le
20req +20ke,
+(1 4+ )Ox(eq + 3) + Opelg
205 e4 + 205,

l+ato? fphta® fgh?
2

m=3+2t (mod 4)

gh? {1 +iadia?)+a?
! Zgh*

Ir

—

=142t (mod4)

=1 (mod4) laf? P et iota? ) 4al

Ok (eq +e3) + Oplg 2gh°
m=h (mod 8)ar 2(1+)Okeq + 20k (eq + &) Ltato? fghta fgh?
m=5b+4 (mod 8) +(1 + )0k (es + €3) + Ok lg 2(14e)
m=¢ (mod2)or
m=2+2¢ (mod4)or Mazimal order G T :{. A ;TE;
[ even
fh=¢ (mod 2) Oxeq + (1 +1)Oxey Lbitiod(141)e? fghta® foh?
g FREn +Oxes + Ok lg ol

Proof. 'We will give the proof for a typical non-tame case. Proofs in the other cases are

analogous.

Case: m=5 (mod8)orm=5+4s (mod 8)

Let vy = eq, w3 =¢4+ €1, va=eq+tes and vy =e;+ e+ ey+ eq. Note that the v;'s

span the maximal order M in K[G] over Oy:

M= ED”=':G;.;U,,

=

1 + L 4 2 2 12 2 a
. h i
In Lhis case, oy = 1, ay = 1= I’—zlfg-“— and oy = 12 lz‘{ﬁ?}ﬁ* e senerates Op over

Q. Then, a necessary and sufficient condition for x € M to be in App s that xa; € Op,
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for 1 <1 <4, Applying x on a;, we get,

i 1'4o c b+
, 50, @= d 1 db+d i
= I+f.+£+:- T ta=e (mod 1 +¢) and b+ d € Oy

L 2 whil? g R ;
. Xo = ﬂzﬂ::_;ll £ ﬂ,fq—’:!—-;- (c-j—djlh"—;-gy%, which implies 5‘:’—“ € Oy

LI € )

[gh?|* hlghilzu-ﬁr} lgh?|* (1407 gl (1 4ata?)bad

il ﬂE{H—:}g.’i 2 14c)gh? < {1 tifght 2(144)gh?

One easily checks that all these conditions are together equivalent to the following conditions:
a=0 (mod2(1+4¢),b=0 (mod2)andc=0 (mod 14 ). Therefore, every element of
Apyic is of the form 2(1 + ¢)Okey +20es + (1 + )Oes + Orey and obviously any element

of M of this form is in Agpic. Therefore,

Apsi = 2(1 +)Ogey + 205e5 + (1 4 ¢)Oges + Opey.

lgh?* (1 + & + o?) + a?

2(1 + ¢)gh?
checked that ...ilpl,r,l.;.'}' = Oga) + @f‘fﬂ:! + Ogaj + G;{ﬂ;, where

Now we will show that v = generates Op over Ay, It is easily

Vs ahme ol oo ;_—21_|§hig .ot
@ = gAT o =ghtas oy = ght(————+ aa); o) = ay.

2
The determinant of the change from the old integral basis to the new one is unit in O

. . " ; . 22 -
Therelore, in this case, Oy is free over Apire with generator v = lah |2{(13t:;gigj e I
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