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Abstract

In this thesis we have demonstrated that one can understand the consequences
of the quantum dynamics implied by loop quantum cosmology in a more famil-
jar classical spacetime picture in terms of an effective Hamiltonian, The effective

: Hamiltonian incorporates important non-perturbative modifications coming from
loop quantun cosmology which imply modifications of Einstein dyvnamics when uni-
verse comes closer to Planck size, The effective dynamics poes over to the classical
or Einstein dyvnamies for large volumes.

We show that the absence of isotropic or the big bang singularity in loop quantum
costnology can be understood in the effective deseription as the universe exhibiting
a generic big bounce. The non-perturbative modifications coming fron loop quan-

| tum cosmology to the scalar matter sector is known to imply inflation. We [urther
prove that loop quantum cosmology modified scalar field generates near exponential
inflation in the small scale [actor regime, for all pesitive definite potentials, inde-
pendent of initial conditions and independent of ambiguity parameters i.e. inflation
is generic in loop quantum cosmology,

In the context of inflationary scenario; it is widely believed that guantum field
fluctuations in an inflating background create the primeval seed perturbations which
through subsequent evolution lead to the observed large scale structures of the uni-
verse, Using similar techniques in the context of effective framework, we show that
loop quantum cosmology induced inflationary scenario ean produce seale invariam
power spectrum as well as small amplitude for the primordial density perturbations
without any fine funing. Further its power spectrum has a qualitatively distinet

- feature which is in prineiple [alsifiable by observation and can distinguish it from
the standard inflationary scenario.

In the effective framework of loop quantum cosmology. non-perturbatively modi-
fied dynamics of a minimally coupled scalar field violates weak, strong and dominant
energy conditions when they are stated in terms of equation of state parameter.
While violation of strong energy condition is desirable to permit a non-singular

evolution, violation of weak and dominant energy conditions raises concern about




the causality and stability of the eéffective model, since in general relativity precisely
these conditions ensure causality of the system and stability of vacuum via Hawking-
| Ellis conservation theorem. We show that although the non-perturbatively modified
dynamics leads to violation of energy conditions but it still ensures positivity of
| energy density, as scalar matter Hamiltonian remains bounded from below. We also
show that the modified dynamics restricts group velocity for inhomogeneons modes

to remain sub-luminal thus ensuring causal propagation across spatial distances.
In eonclusion, the effective dvnamics implied by loop guantum cosmology grace-
fully modifies the Einstein dynamics retaining stability. causality. evading the big
| bang singularity, generically implying a desirable inflationary phase. Furthermore,
the inflationary phase leads to a scale invariant power spectrum for primordial den-

sity perturbation with a small amplitude and with a distinguishable swnature.
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Chapter 1

Introduction

1.1 Standard Model of Cosmology

When we look around us in day-to-day life, we find ourselves surrounded by objects
which are arguably complex in structures. However, onee we inerease the lensth
stale of observation, say to astronomical scale, the structures appears to be rather
simple. In fact, on the largest scale of physical observations (~ 10% mega parsec) our
universe appears to be remarkably simple. In particular, our visible universe turns
out to be nearly wofropic when observations are made from the earth and around it
In maodern seience, it iz believed that we do not live in a privileged position of our
universe and on the large seale average it would appear similar in nature when it
is viewed from any other point. This postulate is formally referred as Cosmological
Prineiple and it savs that on large scale there erists neither a preferred divection nor
a preferved place in our universe.

The standard model of cosmology is based on Einstein's relativistic theory of
gravity, viz general relativity, together with an implementation of the cosmological
principle. The space-time of the standard model is thus taken to be spatially homao-
geneous and isotropie. Suell space-times are deseribed by a single degree of freedom,
namely the scale of the spatial geometry. The matter distribution alse has to he
consistent with spatial homogeneity and isotropy since matter and geometry both

determine cach other. The matter stress-enerev tensor is taken to be of the so-called
T



perfect fluid form. Such perfect fluids are described by two functions - the energy
density and the pressure - together with an equation of state connecting the two,
The cosmological principle, consistent with large scale observations, thus reduces
the general field theorvetical problem with infinitely many gravitational and matter
degrees of freedom to a much simpler system involving only three variables. This is
adequate to deseribe the large seale dynamies of space-time geometry and matter,

The standard model of cosmology is formulated using the Friedmann-Robertson-
Walker (FRW) solution of general relativity. The structure of the FRW solution is
dictated by the cosmological principle. Depending on spatial topology, the FIRW
solution can be classified into three classes namely spatially flat, close and open. In
this thesis, we will be mainly dealing with spatially flat and close models. We begin
with a spatially Hat FRW spacetime. The invariant line element in such a spacetime
(using natural units i.e. ¢ = Il = 1) is given by the so-called spatially flat FRW
metric

ds* = gudr*ds® = —dt* + a*(1) dx?, (111

where a(f) is the scale factor. The coordinate time ¢ in the metric (1.1.1) is also
referred as synchronous time. The perfect fuid form of the matter stress-energy
tensor is given by,

L = (p+B) wiup—+ giP, (1.1.2)

where 1 denotes the 4-velocity of the isotrapic observers. Here p and P denote
energy density and pressure of the matter respectively. The equation of state w is
defined as the ratio of pressure and energy density i.e. w = P/p. The typical value
of equation of state parameter for radiation Huid is ii whereas for dust matter i
is 0. Einstein equation for FRW metric (1.1.1), commonlv referred as Friedmann

equation, is given by

3 (;—;) = &G plt) (1.1.4)

where G is Newton's constant of gravitation, Now Einstein equation implies that as
long as energy density is positive, the universe will be either expanding or contract-

ing. Along with conservation equation, this also imply that a currently expanding



universe must have begun a finite time ago in a highly singular state, the big bang.
The initial singularity in this context means that the scale factor (or size of the
universe) vanishes a finite time ago if one considers its backward evolution. This
vanishing size also implies that energy density, spacetime curvature diverge ar this
time. Due to this fact. standard model of cosmology is also referred as standard
big bang cosmology. Thanks to singularity theorems. singularity within the context
of homogeneous and isotropic expanding space-times is unavoidable, as long as the
matter contents satisfy the so-called strong energy condition.

Ignoring the precise moment of creation, according to the standard mode] the
history of the universe is as follows [1]. The expansion history of our universe begins
from an extremely hot state. The subsequent geometrical expansion aradually makes
the universe cooler, Around few seconds after the big bang, the temperature of our
universe becomes of the order of 10K, This brings cosmological dynamics inta
the realm of the standard model of particle phyvsics. The subsequent era between
the period of few seconds to few minutes is known as the era of nucleosynthesis.
During this period the nuclel of light elements such as Deunterium, Helinm and
Lithium are ‘cooked’. The matter and the radiation continue to interact with each
other thermally through ionisation and recombination until the temperature falls
down around 10°K" due to further expansion. Around this temperature formation
of neutral atoms begins as the photons no longer have the sufficient energy to ionise
the atoms. This leads the photons to decouple from the matter and to start moving
frecly. This cosmic event is referred as decoupling. sometimes also as recombination.
After decoupling, the era of matter domination begins. The small inhomogeneities
created in early universe then start growing under gravitational influences and give
rise to the currentl large structures of the universe.

As mentioned ecarlier. the standard model of classical cosmology contains an
initial singularity. Apart from the breakdown of theoretical framework, the existence
of singularity also leads to various conceptual problems in classical cosmology, The
most severe of them is the so called horizen problem. The horizon problem is direetly

I related with the fact that the standard model of classical cosmology containg an




initial singularity. The particle horizon with respect to a space-time point is defined
by the maximum proper distance a particle could have travelled since the beginning
of the universe, Due to the singular bhehaviour of the scale factor, this is a finite
distanee. It also means that any space-time point could have causal contact only
with & finite pateh of the space-time around it. By itself, existence of particle
horizon need not be a problem. However, in conjunction with the thermal history
of the universe, the finite horizon size implies that the last scattering surface of the
cosmnic microwave background photons has regions which could not have been in
causal contact. Yel, there is remarkable isotropy (to within few parts of hundred
thousand] in their angular distribution. This is the horizen problem of the big hang
cosmology.

The most popular approach to solve this puzzle (along with few other puzzles)
is to postulate a phase of wmflation [2]. Phase of inflation generally refers 1o a poriod
during which the universe goes through a rapid (generally exponential) expansion.
This is generally achieved by introducing a scalar field with a self interaction poten-
tial. The scalar leld is also known as the inflaton field - By now there are several
versions of inflationary models [3]. Generically these models solve the horizon prob-
lem (and other traditional problems such as the Hatness problem). In addition,
quantum fluctuations in such inflating background quite generally produce seale in-
variant power spectrim of inhomogeneous density perturbations which is consistent
with present observations. While these are attraciive features of inflationary models,
generally they need line tuning of the potential and initial conditions for the inflatan
to ensure a sufficient amount of inflation with graceful exit. In a sense, the isotropic
singularity in Einsteinian gravity implies existence of particle horizon which leads
to the horizon problem which needs an inflationary scenario to be invoked with its
own set of problems of fine tuning and initial conditions,

The initial singularity, however is viewed as an attempt to extrapolate the clas-
sical theory bevond its natural domain of validity. In other words, the spacetime
singularity signals breakdown of the theoretical framework of classical general rela-

tivity, [t is widely expected that a quantum theory of pravity will provide a more



accurate description which will hopefully be free of such breakdowns. Unfortunately
we are vet to formulate a completely satisfactory quantum theory of gravity.

The Standard model of particle physics, a deseription of matter fields based on
perturbative quantum feld theory, is one of the most predictive physical theory ever
constructed. A similar strategy based on techniques of perfurbative quantum feld
theory was attempted to construet a quantum theory of gravity, Unfortunately, the
techniques of perturbative quantum [ield theory when applied to theorv of gravity,
fail severely due to non-renormalizibility. Thus, in a quest for a quantum theory of
gravily one is being compelled o explore different courses. Nevertheless, in last few
decades, two promising candidate thearies of quantum gravity bave emerged. In the
most popular approach, known as string theory [4]. one postulates the basic con-
stituents of the theory to be one dimensional objects, The other leading eandidate
quantum theory of gravity is known as loop quantum gravty (LQG) [5, 6, 7, 8, 9
where one attempts to formulate a background independent, non-perturbaiive theory
of quantum gravity.

The thesis consists of studies of hnplications of a particular quantum theory
addressing the issues of costuological singularities, This quantum theory is a detailed
adaptation of methods used in loop quantum gravity to the cosmological context
and has come to be known as Loop Quantum Cesmology (LQC) [10, 11, 12, 13, 14

iy R i M

1.2 Loop Quantum Cosmology

As mentioned, loop quantum gravity is an attempt to formulate a background inde-
pendent. non-periurbative theory of quantum gravity, In this approach one follows
the canonical quantization (with constraints) procedure. It should be emphasized
here that canonical quantization is one of the approaches to construct a guantum
theorv. It iz well known that general relativity admits a canonical formulation in
terms of the so-called ADM (Arnowitt-Deser-Misner [20]) variables. In the canonical

formulation one views the space-time as being foliated by 3 dimensional spacelike
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hypersurfaces. The ADM wvariables consist of a 3-metric and a symmetric rank 2
tensor on the 3-manifold. The later represents the extrinsic curvature of the slice.
This leads to a constrained Hamiltonian svstem. The constraints reflect the diffeo-
morphism af the 3-manifold (diffeomorphism or vector constraint) and the normal
(temporal) defarmation of it (Hamiltonian or sealar constraint). However, these vari-
ables turn out to be unsuitable for the quantization. On the other hand, Ashtekar's
discovery of an alternative choice of variables to describe the gravitational dvnam-
ies, namely o non-abelian gauge connection (1-form) and densitized triad (related
to a 2-form) permits progress toward construction of a gquantum theory, In this
approach the space-time geometry is a derived quantity. This formulations also is
a constrained Hamiltonian svstem. The construction of quantization method pro-
ceeds in two steps [5, 6, 7, 8 91 In the first step ane constructs a Hilbert space
disregarding the constraints. This is called the kinematical Hilbert space and is
constructed as the representation space of a suitable commutative C'* algebra and
the basic variables being 1 and 2 forms, allows one to do so without having to use
any background metric, Iu this sense it is (metric) background independent, The
kinematical Hilbert space is typically non-separable and is very different from the

Fock space of usual quantization. In the second step one defines operators repre-

senting the constraints and proceeds o define a physicel Hilbert space from the set

of solutions of the constraints and also physical operators (also known as Dirac op-

erators) which act invariantly on these states. Once these are defined. one can make

predictions by computing physical matrix elements. This step is not yet adequately

carried out, particularly with regards to the Hamiltonian constraint,
| While nnderstanding of dynamics implied by full theory of loop quantum gravity
s far from complete, one has applied the methods used in the full theory in much
more simpler cantext. In particular. the methods of loop quantum gravity has been
closely followed in the cosmological (spatially homogeneous) context with notable
success. In loop quantum cosmology, one uses the techniques of LOQG for quantiza-
tion of classically symmetry reduced phase space. As one considers finitely many

degrees of freedom truncated by the classical symmetryv, this approach of quanti-
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zation is also referred as minwsuperspace approach. 1t is worth mentioning here
that similar approach of quantizing cosmological models has been attempted earlier
as well and is known as Wheeler-DeWitt quantum cosmology. This uses the usual
method of quantization (Schroedinger quantization) and is based on metric variable.

In the minisuperspace approach, oue considers only finitelv many degrees of free-
dom. These degrees of freedom are chosen after considering their relevance in the
aspects of the physical system one is studying. The minisuperspace approxime-
tion nevertheless leaves several questions unanswered in the process. lu particular.
whether contributions from the ignored degrees of freedom can change the conclu-
sion of minisuperspace approximation dramatically. In fact, there is example [21]
where conclusion from minisuperspace quantum theory differs when some ignored
degrees of freedom are included. However, such symmetry reduction turns out to he
unstable even classically under inclusion of some of the ignored degrees of freedom.
So the problem there cammot be correlated directly with the quantization procedure
itself. The quantization of classically symmetry reduced system greatly reduces the
complexity of analysis. Being simpler, it allows explicit caleulations to be carried
out. This in turns allows many clues into the dyvnamics expected from the full theory,

In loop quantum cosmology, one follows the spirit of minisuperspace approach
but uses the quantization methods of LOQG. Loop quantum cosmology framewark
differs from earlier approach of quantum cosmology namely Wheeler-DeWitt quan-
tum cosmology in a fundamental way. In loop quantum cosmology, the quantum
configuration space is constructed from the gravitational holonomies of gauge con-
nection as opposed to gauge connection itself, Further, it can be rigorously shawn
that the quantization method used in loop quantum cosmology is ineguivalent to
Schroedinger quantization which is used in the Wheeler-DeWitt quantum cosmol-
ogy. Naturally, many conclusions from loop quantum cosmology fundamentally
differ from those of Wheeler-DeWitt quantum cosmology.

It has already been shown that loop quantum cosmology framework is free of
singularity, in the isotropic context [22] as well as more generally for homogeneous

diagonal models [23, 24], There are two aspects of this singularity-free nature. The

|




first aspect can be seen at the kinematical level itself. In loap quantum cosmology
the operators corresponding to inverse powers of the scale factor have bounded spec-
trums [25]. This in turns leads to the matter enerpy density and enrvatures remain
finite at all sizes. Second aspect of singularity free nature of loop quantum cosmol-
ogy can be understood at the dynamical level. The imposition of the Hamiltonian
constraint ( “Wheeler-DeWitt equation” ) in loop quantum cosmology leads to a dif-
ference equation with eigenvalues of the densitized triad variable serving as labels.
These cigenvahies can take nesative values corresponding to reversal of orientation
and in this context classical singularity lies in the interior of the classical phase space
insteadl of at a boundary. The difference equation, viewed as an evolution equation
in these labels. allows solutions to evolve through the zero cigenvalue (zero size) [22].
Thus there is no breakdown of evolution equation at the classically indicated singu-
larity at zero size. In other words, the basie equation of loop quantum cosmology
remains well-deflined at all values of the seale factor including zero. Tt is unlike to

the classical situation in which the governing equations break down at zero size,

1.3 Effective Description of LQC

While quantum theory is well specified at the kinematical level, the complete under-
standing ol issues like Dirac observables, physical inner product to have a bona-fide
Hilbert space of solutions of the Hamiltonian constraint (the difference equation) are
still in the early stages (but see [26, 27, 28]; also [20] for recent developments toward
these issues). Consequently, the semi-classical behaviour of loop gquantum coesmaol-
ogy in terms of expectation values of observables is not yet completely nnderstood
. To relate implications of loop quantum cosmology which is based on discrete
quantum geometry, to observable (and more familiar) quantities described in terms
of the continuum geometrical framework of general relativity, the idea of an effective

Hamiltenian has been proposed [15, 30, This Hamiltonian contains the modifica-

"Recently in [20], a sipnificant progress has been made in this direetions. In the concluding

chapter we will brichy discuss the methods and the resalts obtained therein.
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tions implied by loop quantum cosmology to the usual classical Hamiltonian, This
approach retains the kinematical framework of Robertson-Walker geometry hut gives
modification to the dyvnamics of the Friedmann equation.

The effective Hamiltonian in loop quantum cosmology is generally derived in two
steps [30, 31]. In first step. one develops a continuum appromimation to the funda-
mental difference equation to obtain a differential equation. For large volumes where
one expects the manifestation of discrete geometry to be neglizgible, the differential
equation matches with the usual Wheeler-DeWitt equation (with certain factor or-
dering). In the second step one looks for a WKB form for solution of the dilferential
equation to derive the corresponding Hamilton-Jacobi equation and read-ofl the
Hamiltonian. This is the effective Hamiltonian, The effective Hamiltonian differs
from the classical Hamiltonian due to the modifications in the differential equation
derived from the difference equation. There are two sources of modifications. In the

matter sector, the modifications come from using the modified inverse triad operator

which incorporates the small volume deviations. These involve inverse powers of the
Planck length and thus are non-perturbative. One can also get modifications in the
- gravity sector for small volumes. These have been obtained in [31, 32], exploiting
non-separable nature of the kinematical Hilbert space of loop quantum cosmology
{17].

It turns out that the dynamies (evolution witl respect to the synchronous time)
implied by the effective Hamiltonian captures esgential features of the difference
equation, in particular the dynamics is non-singular. A universe beginning at some
large volume will never reaclt zero volume when evolved backwards. Since the frame-
work for effective dynamics is that of the usual pseudo-Riemannian geometry, the
arguments leading to the singularity theorem are applicable and therefore a non-
singular evolution should lead to a vielation of the strong energy condition through
effective matter CHCTEY [II‘I‘!HHZ_‘.’ an pressure.

So one of the question we address in the thesis is whether the modifications
i the matter sector imply violation of strong energy condition, In general, the

strong encrgy condition requires R.a£%¢7 = 8nG(Ths — %yn,{]’"].f“lfj > 0, lor all

N




time-like vectors £7. Within the context of homogeneous and isotropic geometries,

the strong energy condition applied to the congruence of isotropic observers (or four
velocity of the matter perfect fluid). becomes Hoy = 47G(p+ 3P) > 0 where p is
the total energy density and P is the total pressure of the matter fuid. Defining
w:= P/p (with passumed to be positive definite) as the equation of state variable,
the violation of strong energy condition is conveniently stated as w < —z. Note that
sinee fHyg ~ — :-: violation of the strong energy condition in this context also implies
an accelerated evolution of the scale factor or in other words an inflationary phase.

The non-perturbative modification coming from loop quantum cosmalogy to the
scalar matter sector is known to imply inflation [33, 34]. We further prove [35] that
loop quantum cosmology modified scalar field generates near exponential inflation
in the small scale factor regime, for all positive definite potentials, independent
of initial conditions and independent of ambiguity parameters. In other words,
in small scale factor regime, the non-perturbatively medified sealar matter leads
to generie violation of the strong energy condition. This is consistent with non-
singular evolution as singularity theorems are bypassed. We show next [36] that the
absence of isotropic singularity in loop quantum cosmology can be understood in au
effective classical description as the universe exhibiting a hig bounce. We show that
with scalar matter field. the big bounce is generic in the sense that it is independent
of quantization ambiguities and details of scalar field dvnamics. In conjunction
with generic occurrence of bounce at small volumes, particle harizon is absent thus
eliminating the horizon problem of the standard big bang cosmology.

As mentioned, the homogeneous and isotropic solution of general theorv of rela-
tivity appears to be an extremely good description of large scale spacetime dynamics
of our nniverse. Extreme simplicity of the FRW solution nevertheless ignores some
crucial features of the universe namely it has certain sub-structure as well. On large
seale the deviation from homogeneity and isotropy being small one can treat them
as small perturbations around homogeneous and isotropic background. The classical
theory of large scale structure formation in principle can be used to ‘derive’ the ob-

served structures of current universe but these models need to know the initial seed

10
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perturbations. In this sense the classical deseription of our universe is incomplete as
‘ there is no mechanism of generating the seed perturbation within the theory itself,

On the other hand the quantum field fuctuations in an inflating backeground
quite generically produce density perturbations with scale-invariant power speetrim
[37] which is consistent with current observations, This is certainly an attractive
feature of the standard inflationary scenario. However, one major problem that
plagues almost all potential driven inflationary seenario that these models generically
produce too large amplitude [or density perturbation. typically lf ~ 1 — 107 at

horizon re-entry (38, 39

. The cosmic microwave background (CMB} anisotropy
measurements on the other hand indicates E;;i ~ 107% Naturally to make these
models viable it is necessary to fine tune the parameters of the field potential [40],
In the presence of gquantum fluctnations it 18 rather difficult to justify or sustain
these line tuning of Held theoretical parameters.

We have mentioned that density perturbations generated by quantum field fue-
tuations in au infating background are believed to be the seed perturbations respon-
sible for the current large zcale structures of the universe. We have also mentioned
that non-perturbative modification of matter Hamiltonian in loop quantum casmol-
ogy leads 1o a generic phase of inflation. Naturally it is an important guestion to ask
whether the density perturbations generated by quantum fluctuations during loop
quantum cosmology induced inflationary phase can satisfy the basic requirements of
viability such as scale-invariant power spectrum. Further, it may leave some distine
imprint. on the power spectrum which may be observationally detectable as well.

Being inhomogeneous in nature treatment of these density perturbations requires
inhomogeneous models of loop quantum cosmology. However the technology required
to deal with inhomogeneity at fundamental level within loop quantum cosmology
is not vet available. Not having such technology, one needs to proceed rather in-
tuitively, Let us recall that in the standard inflationary scenario for computing
power spectrum of density perturbations due to quantum Huetuations, one uses
the technigues which broadly ean be classified as Quantuom Field Theory wm Curved

Buackground [41, 42]. In this approach one treats the background geometry as clas-
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sical object whereas matter fields living in it are treated as quantum entities. The

main justification for using such technigues comes from the faet the energy scale as-
sociated with inflationary scenario is few order of magnitude lower than the Planck
scale. So one expects the geometry to behave maore or less classically in this regime,
Using similar approach we compute the power spectrum of density perturbations
in the effective [ramework of loop quantim cosmology. In particular, we show that
loop quantum cosmology induced inflationary scenario can produce scale invarian
power spectrum as well as small amplitude for the primordial density perturbation
without auy fine tunimg. Purther, its power spectrum has a qualitatively distinet
feature which is in principle falsifiable by observation and can distinguish it from
the standard inflationary scenario [43],

In general relativity, dynamics of a spacetime is influenced by matter stress-
energy tensor. Naturally, several properties regarding spacetime evolution can he
concluded assuming some general properties of the matter stress-cneray tensor, with-
out having to know the details of the individual contributions from different matter
sources. These requirements on the matter stress-energy tensor, widely called energy
conditions. have heen used to prove several important theorems in classical general
relativity. One such theorem, the Hawking-Ellis conservation theorem [1, 44] savs
that if the matter stress-energy tensor is conserved. satisfics dominant energy condi-
fion and vanishes on a closed, achronal (no two points can be connected by timelike
curves) set S then it also vanishes in the domain of dependence (complete set of
events for which all conditions are determined by specifying conditions on S) D(S)
of the set. Physically, this theorem ensures the stability of classical vacuum. As
mentioned. the conservation theorem stands true provided the matter stress-energy
fensor satisfies dominant energy condition. This condition reguires local energy
density to be non-negative for all time-like observer and the energy-momentum 4-
gurrent to be non-spacelike 1.e. the speed of energv-fow should not be exceeding the
speed of light, Naturally, any violation of dominant energy condition raises concern
abaut the causality and the stability of the system. However, above theorem does

not have the converse i.e, although the dominant energy condition satisfying matter
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ensures causality and stability of the system but violation of this condition does not

necessarily imply that the svstem violates causalit v oor is unstable (see for example
[45]). In such a situation, these issues should be considered for the specific context,
as dominant energy condition violation and the Hawking-Ellis conservation theorem
| no longer vouch for the causality and the stability of the system.

In the effective framework of loop quantum cosmology, non-perturbatively maodi-
fied dynamics of a minimally coupled scalar field violates weak. strong and dominant

energy conditions when they are stated in terms of eruation of state parameter. On

the other hand several important features of loop quantnm cosmology, that have
been shown in literature, crucially rely an the effective classicoal description., Nat-
urally, in the effective loop quantum cosmology, the violation of dominant ELETEY
condition raises concern. In particular, whether such effective classical description
respects causality. In the cosmological context, ALy eomimnication across spatial
distances infroduces inhomogeneity. So it is a natural concern to check whether the
propagation of inhomogeneous modes respects causality. Also, whether suel domi-
nant energy condition violating effective description can still maintains st ability of
the vacuum, as the Hawking-Ellis conservation theorem no longer guarantees the
“SAIMe.

Studying the properties of the effective scalar matter Hamiltonian, we show [46]
that the kinetic term due to the modified dynamics. contributes negative pressure
even though it contributes positive energy density. This crucial feature essentially
leads to violation of dominant energy condition in terms of the equation of state
parameter but it also ensures a bounded (from below) scalar matter Hamiltonian.
To study the causality issue, we consider the propagation of inhomegeneous maodes
in the modified background. In particular. we derive a modified dispersion relation
for the inhomogeneous modes due to the modified dynamics. Then we show that
the group velocity for the relevant inhomogeneous modes remains sub-luminal thus
ensuring causal propagation across spatial distances,

In brief, one can develop an effective classical description using the effective

Hamiltonian, Most of the implications of loop quantum cosmology can be obtained
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rather easily from the effective Hamiltonian, Furthermore, viewed by itsell, the
offective deseription is free from potential pathologies such as stability, a-causality,
contradiction with observation.

The contents of this thesis are organised as follows. Apart from the introduction
and the discussion chapters, the contents of the remaining chapters of the thesis
have been published as independent articles. Nevertheless, to make the thesis co-
herent and to avoid repeating the contents of these chapters have been snitahly
modified. However, each chapter mostly retains the independent characters in its
subject matters and the corresponding problems being studied therein.

In chapter 2, we derive the effective classical Hamilionian for isotropic loop

quantum cosmology, The consequences of the dynamics implied by the effective
Hamiltonian are studied in details in remaining chapters. In particular, in chapter
3, we show that loop guantum cosmology modified scalar field generates near expo-
nential inflation in the small scale factor regime, for all positive definite potentials,
independent of initial conditions and independent of ambiguity parameters, In chap-
ter 4, we show Lhat the absence of isotropic singularity in loop quanium cosmology
ean be understood in the effective classical deseription as the universe exhibiting a
big bounce. We show that with scalar matter field, the big bounce is generic in the
sense that it is Independent of quantization ambignities and details of sealar field
dynamics. In chapter 5, we study the properties of density perturbation generated
during the loopy phase of inflation i.e. during the phase of inflation which is driven
by non-perturbative modification. In chapter 6, we study the stability and causality
issues that arise due the violations of dominant energy condition in the small scale
factor regime of the effective dynamics.

In the concluding chapter, we summarize the basic results shown in the thesis.
We also briefly discuss the applications of loop gquantum gravity methods to more
general homogeneous but anesotropic universes. In particular, implications of loop
quantization in the context of Bianchi-IX model is briefly discussed. Further, we

discuss the current open issues in loop quantum cosmology and recent attempts

u

ade in those directions.




Chapter 2

Effective Hamiltonian

2.1 Introduction

The singularities of classical general relativity. when specialized 1o homogeneons.
isotropic maodels. manifest as reaching zero physical volume at finite synchronous
time in the past. This in turn imply wnbounded growth of space-tine curvature
and of matter densities ete and signals break down of the evolution equations at
finite time in the past. It is widely believed that this feature of the classical theory
will be maodified in a guantuwm theory of gravity and recent development of Loap
Quantum Cosmology (LQC) [10. 11, 12, 13, 14, 15, 16. 17. 18, 19] corroborate this
expectation (22, 253]. Loop quantum cosmology is a detailed adaptation of Loop
Quantum Gravity (LOQG) methods to the cosmaological context.

The mechanism of “singularity avoidance’ [22] involves replacement of the classi-
cal evolution equation by a quantumn one which is a difference equation |13] thanks
to the necessity of using holonomy operators in the quantization of the Hamilto-
nian constraint in LQC. This equation exhibits the property that the quantm wave
function can be evalved through zero volume unambignonslv, In addition, the dis-
ereteness of the triad operator (having zero eigenvalue) necessitates defining inverse
triacd operator (or inverse scale factor operator) [25] indirectly. Thanks to the loop
epresentation on the (non-separable) kinematical Hilbert space of LQC [17], these

perators get so defined as to have a bounded speetrum implving only a bounded

15




gsrowth of curvatures/matter densities. This is true for all allowed values of the
ambiguity parameters [47, 48],

The non-separable structure of the Kinematical Hilbert space of LOC however.
also implies a huge set of solutions of the Hamiltonian constraint (a continnous
infinity in the gravitational sector alone). Presumably, a suitable choice of physical
inner product can be made to cut down the size of the admissible solutions of
the Hamiltonian constraint. A choice of inner product and physical observables
}iif.:merur are not yet available. The general issue of whether or not the non-separable
kinematical Hilbert space is mandatory, is currently an open issue [49. 50]. In the
present work however we assume the current framework of LOC [17].

Despite the open issues, it is possible to develop a WKB type semi-classical ap-
proximation from which an effective continuum Hamiltonian constraint can be de-
duced [15, 30]. This at once gives access to the usual classical Hamiltonian methods
to construet and analyvze the quantum modified space-time, This method relies on a
eontinuum approcimation [51] of the underlying difference equation to the Wheeler

DeWitt differential equation followed by the WKDB ansatz for its solutions, For large

volume corresponding to classical regime, the contimnum approximation s alwavs
available, in fact as a requirement on guantization of the Hamiltonian operator, ln
this regime, the WKD ansatz naturally reproduces the classical Hamiltonian as the
leading o( ") term. We would like to extend this method also to small vohumnes,
The large freedom offered by the non-separable siructure of the kinematical

Hilbert space can be exploited to propose a restriction to those solutions of the

Hamiltonian constraint for which a continuum approximation is valid for all volumes,
One can then develop the effective classical Hamiltonian constraint for all volumes
and explore its consequences.

In this chapter we develop such a picture and in comparison with the nsual FRW
equations identify the effective density and pressure which includes the contributions
of quantum Auctuations of the geometry. Some elementary consequences are also
noted. Further implications for phenomenology are studied in the next chapters.

In section 2.2, we detail the effective Hamiltonian constraint for isotropic mod-

16



els. In section 2.3, we diseuss the qualitative features of the corresponding dynamics

namely, the possibility of ‘bounce’ solutions as well as solutions that could attem pt
to ‘pass through’ the zero volume and connect to the oppositely oriented isotropic
universe. We discuss what features of the quantum evolution are captured by the
effective classical evolution. In section 2.4, we summarize our conclusions and out-

look.

2.2 Effective Hamiltonian Constraint

The kinematical Hilbert space [17] is conveniently described in terms of the eige-

states of the densitized triad operator,

Plu) = Fvlenle) o (') = G (2:2:1)

where y € B. Tt should be noted here that the eigenstates |p)'s are normalized with
Kronecker delta rather than Dirac delta even thon gh p takes values on the real line.
It follows from the procedures followed in the full theory to construet a well-defined
kinematical Hilbert space for loop quantum cosmology.

The action of the volume operator on the triad basis states are given by

[[~]

& 1 . .
Vjuy = ‘ﬁ’,\'fj;_:| g}y = V, |u}- (2.2.2)
| |

In the isotropic context we Lave two classes to consider, namely spatially flat

and close models. The quantization of the corresponding Hamiltonian operators is
given in [14]. By introducing a parameter  we can deal both classes together. The
values = 0 and 5 = 1 will give the flat and the close models respectively.

The action of the gravitational Hamiltonian on the triad basis states is then

3 e )
- (-1;) [nrﬂ-“g{.r:] (Virun = Vi)
[ eTHOM 4 Qi — (24 -'l,uﬁ'j.gy}}h.!) + e — Ay

Yo
(2.2.3)
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Here, g is a quantization ambiguity parameter which enters through the Aducial
of the loops used in defining the holonomies. Tt is a real number of the order

Notice that the Hamiltonian connects states differing in their labels by +44,

he quantization of the Hamiltonian aperator and is responsible for leading to a
nee equation below.

A general kinematical state

si. in the triad basis has the form

ls) = Z 5y |1 ( sum over countable subsets) (2:2:4)
i | HER

The Hamiltonian constraint of the classical theory is promoted as a condition to

ne phvsical states, ie.,

(Hlo) £ s gy — g (2.2.5)

Erav “IMALTLRF

~ In terms of §, == e%7s o and The Hamiltonian constraint (2.2.5) translates into

a difference equation.

0 = -"'1p--1pn-§p-!--i|un T [2+:i#3'727}]f1p5p =+ 44-;1—-1_114_15;:—-1;.1.-,
1
. 1 e i \
+ 8k pto® (Emfﬁ) Hn(p)d, . ¥Yp eR (2.2.6)
1 a o
Ay o= lptpolr—lp—ml® . HEL ) = Halu)le)

m{#} is a symbolic elgenvalue and we have assumed that the matter couples to
1 ;'e-:grfwit}' via the metric component and not through the eurvature component, In
particular, H,, (0 = 0) = 0. There are a few points about the above equation worth
:: ing explicitly.

Although i takes all possible real values, the equation connects the 8, coefficients
ly in steps of 4pq making it a difference equation for the coeflicients, By pulting
_r.-“.= v+ (dpg)n. n € I, v € [0,4py), one can gee that one has a continuous infinity

of independent solutions of the difference equation. labelled by oy =@y ae s For

each i an infinity of coefficients, 57, are determined by 2 ‘initial conditions’ since

order of the difference equation in terms ol these coeflicients 15 2. Coefficients

belonging to different v are mutually decoupled. Since the coefficients A 4 and the
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symbolic eigenvalues H,(p), both vanish for p = 0, the coeflicient &, decouples from
_'g]'l-:}LhEr coefficients,

For large values of g > 4y (0 3 1), which correspond to large volume, the
coetficients A, become almost constant (up te a common factor of /i) aud the
matter contribution is also expected similarly to be almost constant. One then
expects the coefficients to vary slowly as n is varied. This suggests interpolating these
slowly varying sequences of coetlicients by slowly varying functions of the continuous
variable p(n) .= £y¢%n [15]. The difference equation satisfied by the coofficients then
implies a differential equation for the interpolating functions which turns out to he
independent of v and matches with the nsual Wheeler-DeWitt equation of quantumn
cosmology. This is referred to as a continnum approximation [51]. This is of course
what one expects if LQC dynamics is to exhibit a semi-classical behavienr. While
admissibility of continuum approximation is well motivated for large volume, one
also expects it to be a poor approximation for smaller Planck scale volumes:

This logic is valid when applied to any one of the solutions S7. Thanks to the
non-separable structure of the Hilbert space, we Lave an infinitv of solutions of
the Hamiltonian constraint. Although S are uncorrelated for different v, nothing
prevents us from choosing them to be suitably correlated. In effect this amounts
to viewing 5, themselves as functions of the continuous variable g and stipulating
some properties for them. In the absence of a physical inner product, we don't have
any criteria to select the class of solution. It is then useful to study properties of
elasses of solutions of the Hamiltonian constraint.

The class that we will concentrate on is the class of slowly varying functions. For
these we will be able to have a continuum approximation leading to a differential
equation, Making a WKD approximation for this differential equation, we will
read-off the effective classical Hamiltonian constraint. In anticipation of making

coutact with a classical description, we will nse the dimensionful variable p(p) =

il as the continuous variable. Correspondingly, we define pg = 1~ (%p which
provides a convenient seale to demarcate different regimes in p. We also use the

notation: {p(p)) ;== 5,. Now the definition of a slowly varyving function is simple:
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Ulp) is locally slowly varymg around ¢ if vg + dg) = (q) + c'ﬁqm- i —r1l’12“;r.r' et

‘mth successive terms smaller than the preceding terms, for 8¢ < 4po. It is slowly
varying if it is locallv slowly varving around every ¢ € B [51]. Note that even
an exponentially rising funetion can be locally slowly varying if the exponent is
sufficiently small,

To explore the possibility of slowly varving solutions of the difference equation
(2.2.6), consider the difference equation more explicitly, For ¢ = (0, 4p). putting
Salv) = 8o igpen: Anlt) i= Apsyyn and momentarily ignoring the matter term for
notational simplicity, the difference equation (2.2.6) ean be written as,

Ansi{r)
rnl“ ]I

— A ()
Ayale)

Spaalr) = {3'—-1;4"‘“?,1} ] Spa(v) + [ ] Srler) (2.2.7)

Its general solution can be written as S, (¢) = Solv)p,(v) + 51 (vo, (1), where the
f; 0y are fxed funetions of » determined by the same difference cquation (2.2.7)
with the “initial’ conditions: pole) = 1. py(v) = 0 and ay(r) = 0. ay(v) = 1 and
Sg, are arbitrary functions of » € (0,4up). (The lincarity of the equation means
that only the ratio A{e) = 51(¢)/Su(v) (8ay) parameterizes the general solution.)
It is clear that the arbitrary functions allow us to control the variation of 3,
within an interval of width 4p. At the integral values of i/ (dpy) corresponding to
v =10, there is a consistency condition coming from vanishing of the highest (lowest )
order coefficient which fixes the ratio of 5;(0) and 5;(0). The values of 5,y are
fixed (up to overall sealing). The slowly varving class of functions will be assumed

ltu approximate these exact values. The continuum approximation developed below

may not be a good approximation at a finide subset of these values corresponding
to smaller n.

With these remarks, we now proceed to derive consequences from the assumption

of (every where) slowly varving, approximate solutions of the difference equation
{2,2.5],
Defining A(p) = (243}

I\..IL\:p

A, and substituting §, in terms of slowly varving (p)




in the difference equation (2.2.6), leads to the differential equation,

0 = Bolp.pohi(p) +ApeB_{p. py)e'(p) + 8pi3. (p, po "' (p) (2.2.8)
where,
Bi(p,po) = Alp+4po) = Alp — ) . and
Bolp,po) = Alp+dp) - (2 x l44%’!> A(p) + Alp — 4po) + (ESSHiF) Hpy()

In the above equation. terns involving higher derivatives of ¢'(p) have been ne-
glected as being sub-leading in the context of slowly varving solutions, This is nat
quite the continuum approximation referred to earlier since there is ~ dependence
hidden iuside py appearing explicitly in the coefficients of the differential equation,
This is also not guite the Wheeler-DeWitt equation sinee this equation is valid
aver the entire real line (since p can take negative values corresponding to oppo-
sitely oriented triad) while the Wheeler- DeWitt equation using the seale factor as
independent variable is defined only for half real line.

From the definitions of the coefficients A, 5, g, it is obvious that under p — —p
"*_[_l_!]_}ﬂ.llge of orientation of the triad), A, B, and the gravitational part of B, are all
odd while [3_ is even. For notational convenience we restrict to p = 0 while writing
the limiting expressions, the expressions for negative p can be obtained from the
add/even properties noted above. There are two obvious regimes to explore which
are conveniently demarcated by the scale pp, namely, p > po and 0 < p < py. The

corresponding limiting forms for the coeflicients By, B. are easily obtained. Oune
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b [ 3
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Bolp,po) = 12;}3;} 1 — -lLiEP{;"—:!u + ERM?; Hlp) (2.2.9)
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p<Lpy ¢ Alp.p) = 3ppy — gn'*pu
L Bi(pope) &= 3(5: —37)ppd

B_(p.p) = 2pi (5% - 31)

(=

_ 3 58

Bolp.pn) = [3;}11,% ]{5% -3 -2)— 432%13 -+ EBEH.P_‘—LH,,,UU

P fp

(2.2.10)
Notice that [or large volume the explicit py dependence cancels out. This equa-
tion corresponds 1o the nsnal continuum approximation which has no dependence
on 7y and matches with the Wheeler-DeWitt equation in a particular factor order-
ing. For small volume. the py dependence survives, is non-trivial and the coefficient
of the first derivative terms is non-zero. In view of the even/odd properties of the
coefficients, it follows that the first derivative of ¢(p) must vanish at p = 0. Further
more, evenl for the fat model without matter, the By coeflicient is non-zero. Had we
extrapolated the Wheeler DeWitt e¢quation from the large volume form. we would
qot have gotten these terms. Thus the quantum differential equation (2.2.8) aprees
with the Wheeler-DeWitt for large volume but differs significantly for small volume,
The small volume form of the equation in fact shows that there are two possible
behaviours namely (p) ~ constant or p) diverges as an inverse power of p.
Neither of the indicial roots depend on the matter Hamiltonian, The latter solution
5 not slowly varyving and the former one implies that the wave function has a non-
zero value at p = 0 and the wave [unction can obviously be contimied to negative p.
E:I'hus the differential equation derived for slowly varving functions is both consistent
i;:zer(: volume and mimics main features of the dilference equations namely passing

tirough zero volume and matching with Wheeler—DeWitt for large volume,
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In the earlier quantization of isotropic models [14] based on point holonemies
; king values in [7(1) representations (separable Hilbert space), the decoupling of s,
coefficient also fmplied a consistency condition which Lelped select a unique solution
162] from solutions of the Wheeler-DeWitt equation valid at large volume. With
_ he non-separable Hilbert space, such a condition can only result from 89 family of
coefficients.  Nevertheless, one has gotten a wnigue solution (up to normalization)
thanks to the slowly varving nature of the solutions. It is erueial liere that for small
p— 0, the B_ coefficient has a non-vanishing limit which forces the first derivative
o vanish at p = 0. (If the single derivative term has been dropped. both solutions
would have been slowly varying near p = 0),)

In summary. with the restriction to slowly varving solutions, we have a continuwmn

| 3 - % i o H . H i -
§ approximation (differential equation) valid for all values of the triad. Further more

ie differential cqnation perinits a unique solution (for each matter state) passing
through p = 0.

For future reference we also note that the differential equation admits & ‘con-
served eurrent’. Taking imaginary part of v times the differential equation leads
o,

SpaBd + BLJ =0, Ji=aty — gty (2.2.11)

Defining J(p) :== ~'(p)J(p} such that J' = 0 determines the function [+ Ex
plicitly,

J(p) = constant (I"F‘ﬂ” ){r,-'."‘-u':’—til[w‘}’} . =0 [(2212)

— constant (p) {u'" — ()} (p = p)

® i/

—  comstant (;:- i ) {0y’ —ab(wt)} (P < ) -

We will now go ahead with a WKDB type solution and infer an effective classical

iltonian,

Let w(ip) = F{;}}M“m Substitution of this ansatz in (2.2.8) leads to a complex
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differential erquation involving C'(p), ©(p). The real and imaginary parts lead to,

1

. & } "

0 = Buo(p.po) +4poB-(p.po) {(InC)'} + 8p3B.p.po) {— 75+ ((nC) 2 + (EnC0)
(2.2.1
0 = 4poB_(p.po) {9} + Bpi B (p. po) {@" + 20 ((nC')'} (2:2.1

The WKB appromimation consists in assuming that the amplitude ¢ is essentially
constant and the double derivatives of the phase are small compared to the single
derivatives, Consider the eq.(2.2.13) under the assumption of almost constant an-
plitude C'(p). Then this equation is a Hamilton-Jacobi partial differential equation.
heﬂc are generally, partial differential equarions involving only first derivatives
with respect to time and position and they always have an associated Hamiltonian

mechanics [53].

(o
h?

Noting that the Poisson bracker between the triad variable p and the extrinsic

Bolp. o) — 8piBL{popo)— = 0 (2.2.15)

M

eurvature variable K s £ we idemtify @ = iff and arrive at the effective Hamil-

fonian as,

; B.(p. g s
H%(p, K, ¢. pg):= —% [ —+_t:{:}fljﬁ‘ H q-’)ii? ]

| . . "

- s 5 {B.(p.pn) — 211{;}]}] + Halp.oo.ps) (2.2.16)
|\ 288py i

We have multiplied by certain factors so as to get the matter Hamiltonian term

appear without any pre-factors as in the classical case. The equation (2.2.13) of

gourse implies 117 = 0 and we will interpret this as the modified Hamiltonian

nstraint equation. The effective Hamiltonian is also odd under p — —p modulo

the matter term,

Note that the K and the n dependent terms are o{%), For large volume, the
terms enclosed within the braces are vanishingly small and the effective Hamiltanian
is indeed classical (the matter Hamiltonian recelving corrections from the inverse
triad operator also goes to the classical form without any {p dependence). For

smaller volumes, the quantum modifications are present with explicit dependence
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! po. The approximation used does not quite lead to a ‘classical limit® due to
explicit appearance of .

For small volumes, the equation (2.2.10) shows that By, B, A all vanish linearly

with p while B goes to a positive constant. The real and the imaginary parts of the
tion, equations(2.2.13, 2.2.14), then imply that ® and " both vanish, which
18 consistent with ¢ ~ constant, as deduced directly from the differential equation
B).

To interpret the effective Hamiltonian constraint as gencrating the space-time

r" mics, let us use the identification |p| = a®. One can then obtain the extrinsic

eurvature K from the Hamilton's equation of motion of p as,

, dp w OHT Bilppo) .
piim —/— = o = = — K ar,
it 3 Ok ﬁﬂu
. (.I!J'FJ[] . -
K = =12 (—) i {2.2,17
B (p.po) J

The large and small volume expressions for the effective Hamiltonian and the

ytrinsic curvature are.

_‘_H'rﬁJT —F —a .TJ‘ (I{Z + J’j‘) 5 f-lr-m LEEI&}
K — =24 (p = po) (2.2.19)
E 3 p |(B:—-33Y . 1 e g (B
H | 2 | K? Ty ff S IR L e H
— Ehv"i‘?_n 9 +T.f+144( 51+3) pﬁ H i
(2.2.20)
4.4 i
K~ = (‘*—5) : wen)  (2221)
a1 —Jdz /4

The large volume expressions are the same as for the classical Hamiltonian as
gxpected. The small volume expressions are useful in exploring the hehaviour of the
effective dynamics close to the classical singularity,

It is worth expanding on the identification |p| = ¢®. The basic variables of LQC

are first obtained for a general homogeneous Bianchi class A models with the Maurer-
an forms normalized in the usual manner. Comparing with the metric ansatz
1 leads to the relations |p)| = azas and eyclie. The basic variables of the wotropic

models are obtained from the above Bianchi ansatz, by putting p; = p, oy = a ¥/
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leading to the identification above. Let us denote this scale factor as apjupe. The
‘torresponding spatial Ricei scalar is * Rlapjugen;) = ,—:33— On the other hand,
2ranen
ﬂiﬂ'-standard FRW metric ansatz is so chosen that the spatial curvature is given
.; Rlappw) = "_EZT These two normalizations match provided api g = & e
o avoid writing the suflixes, we just note that while comparing the large volume
Hamiltonian constraint with the standard Friedmann equation, one should use the
i

teplacement a — £, This of course is relevant only for the close model.

2.3 Qualitative Features of Effective Dynamics

In the previous section we derived the effective Hamiltonian constraint {2.2.16),
ang a continuim approximation keeping terms up to second derivatives and using
the WKB approximation. If we include higher derivative terms that these would
__*.re perturbalive corrections in the large volume, Our focus is however on the small
wolumne regime and leading corrections which for the matter sector include non-
perturbative corrections. For our purposes the truncation to second derivatives
suffices.

For large volume, we already see that the effective Hamiltonian reduces to the
'-4.- ssical one to within terms of the order of p=2, We are interested in checking if
the effective dynamics is non-singular and precisely in what sense. For this it is
sufficient to focus on the small volume expressions. We will compare the classical
miltonian (2.2.18) extrapolated to small volume and the effective Hamiltonian
(2.2.20).

‘Consider first the classical case. As the scale factor soes to zero, the matter
density diverges cither as o™ for pressure-less matter or as a ™ for radiation. Cor-
respondingly, Hp, either goes to a non-negative constant or diverges as a~'. The
.'u iltonian constraint then implies that K necessarily diverges. As is well known,
i both cases the scale factor vanishes at a finite value of synchronous time and this
of course is the big bang singularity. This also suggests a NeCeSSAry condition for

Singular evolution: p = {) should be reachable in finite time. Equivalently. if p = 0
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is nof reachable in finite time, the evolution is non-singular.

Momentarily, let us assume that for some reason, the matter Hamiltonian van-
ES as the scale factor poes to zero, then K must remain finite and p = 0 is indeed
‘on the constraint surface. Further more p evaluated at p = 0 is also zero implying
that p =0 is a fired point (rather a fixed ‘sub-manifold’ of the phase space of grav-
i I'*,and' matter). The p = 0 trajectories of the dynamics are then not accessible in
,E-'u te time and the evalution is non-singular. Clearly (non-) divergence of mattor
ltonian dictates [non-) singular evolution.

For generic (non-singular) trajectories, there are two possibilities now. Either
}p = 0 is approached asvmptotically as ¢ — —ac ar (b} the trajectory exhibits
"hm:.uce K =0 at a finite, non-zero p. For example, in the case of scalar matter,

__,__h'LQC modifications included, the former is realized for flat models () = 0) while
the latter is realized for close models (y = 1) [54].

Consider now the quantum case. The matter Hamiltonian is guaranteed to
wvanish due to the inverse volume operator definition, The arguments for p = ()
; fixed point apply. However, due to the presence of 4 term in eq. (2.2.20),
i is & bounce independent of 1 [36], The p =0 is completelv decoupled from all
ofher trajectories. This is exactly the same feature exhibited by the fundamental
difference equation. The exact solution §, = sgd, o completely decouples from all
-.;.3; solutions. The bounce is then a completely generie feature of isotropic LQC,
L:_ a bounee also provides a minimum volume for the isotropic universe whose value
is dependent on matter Hamiltonian. Such a natural, generic scale has nnplications
{or phenomenology as well [36].

Notice that while interpreting the effective Hamiltonian as a (modified) con-
straint equation, we are keeping the kinematics of space-time (a pseudo-Riemannian
manifold | intact. The modifications imply modification of the dynamical aspects or
_"".valently of Einstein equations. To see the meodifications conveniently, let us
write the Hamilton's equations in a form similar to the usua! Ravehandhuri and

Friedmann equations in terms of the FRW scale factor,

[}
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'_Ite' the effective Hamiltonian (2.2.16) in the form,

HE -é[ﬂ'ffg + i) + %u + Hip where, (2.3.1)
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--*'E-;. with the usual FRW equations, we identify effective perfect fluid density

Al Pressure as,
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I'. and small volume expressions for the effective density and pressure are,

3 |5
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28




J_gﬂ‘écl:iwe density and pressure receive contributions from the matter sector and

ained the density and pressure for matter, direetly in terms o f the matter Hamil-
‘This is useful because currently LOC modifications to the matter sector
pporated at the level of the Hamiltonian and not at the level of an action,
sequently, usual preseription for construction of the stress tensor and reading off
the density and pressure is not available. These definitions of course automatically
sfy the conservation equation: ap' = —3(P + p).
1 Let us consider the vacmun sector, H,, = 0. The more general case of presence
¢ smlﬂ_r field matter is discussed in [35]. Even for the flat model (=0, the o{f})
terms contributes to the effective density and pressure. This term in the effective
Hamiltonian, 1V, = “%™ s a ‘potential’ term and will be referred to as the
quantuin geometry patential. It is actually of order \/E after expressing p, py in
terms of the . Tt is easy Lo see that the quantum geometry potential is odd
fo ﬂe:r p — —p (since 8. and A are odd) and for p > 0 it is negative-definife. Its
agu s shown in the figure 2.1, This immediately implies that in the absence of
matter (and cosmological constant), all the three terms in the effective Hamiltonian
must be individually zero which is not possible for the quantum geometry potential.
__"nther words, there is no solution space-time. This is in contrast to the purely
;:: ical Hamiltonian which does give the Minkowski space-time ! as a solution for
the flat case (= 0). This is also apparent from the non-zero value of the effective
density which prevents the Minkowski solution.
§ This feature can also be understood in the following manner. The differential

guation Lias a uunigque solution (which is slowly varving every where). This solution

I - YThe Minkowski space-tine here refers to Riemann flat metric regardless of its global topology,

I the cosmolegical context, the spatial slice is alwavs compact,
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Figure 2.1: The quantum geometry potential. The triad variable p is in units of

while the potential W, (p) is in units of 3=—ip, 3’“

i
s however purely real and does not admit & WKB form. Consequentlv, the universe

_-_:_:n' admit any ‘classically allowed region” in the WKB sense and thus also
does not exhibit a classical behaviour. Once matter is included, we have again a
_-'_'_1__1'3, real solution of the differential equation for every matter state. We can now
Jl-mmplex linear combinations admitting possibility of regimes of WKB [orm
and corresponding classical behaviour.

It is straight forward to write down a Lagrangian from the H*7 as,

Lpp) = %I{gi—Hm(ﬁ.K}
1190 o Alp) ( Iy ; 5
N 2 B tppy) — 34 2.3.11
= | BF Tap T 58877 {B(p.m) ()} )

It would be interesting to see if this Lagrangian can be obtained from a special-

fzation of 4 generally covariant action to homogeneous, isotropic metric.
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2.4 Discussions

The results of this chapter are based on two essential ingredients: the proposal of

@ continuum approximation for all volumes exploiting the non-separable nature of

3

the kinematical Hilbert space and the derivation of the effective Hamiltonian via
the WKB route.

The continunm approximation step leads to a differential equation for a (still)

guantum wave function, ¢ (p). This eguation matches with the Wheeler- DeWitt

ation for large volume and has important deviations (the first derivative torms)
from it at small volumes. These deviations allow contimation of the wave function
rough zero volume just as the fundamental difference equation does. For slow]y
rying solutions, it picks out the ‘boundary” condition %[H] = (. Again this is
alogous to unigue solution (per matter state) picked out by the difference equa-
tion obtained from the /(1) point holonomies in the earlier work [52], Thus the

tial features of the fundamental difference equation namely non-singular quan-

um evolution with semi-classical limit are captured by the continuum differential

The effective dyvnamics specified by the effective Hamiltomian deduced via the
WKB approximation also reflects these features. The effective dynamics is non-
nlar, captures the decoupling of the 8, = sody o exact solution of the difference
iation by making the classical p = 0 trajectory decouple and reduces to the usual
ical dynamics of general relativity for large volumes. Since the essential features
ol guantum dynamics are now captured in classical geometrical terms, the effective
namics 15 more reliable than the usual one and one can now simply work with the
flective dynamics to do phenomenoclogy. Already, at the gqualitative level, one sees
t all non-trivial evolutions necessarily show a bounce providing a natural scale
say, density perturbations and their power spectra.

Since the approach draws on the WKB method. a few remarks on the interpre-
ional aspects are in order.

From the continnum quantum dynamics, with the WKB approximation, one ob-
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e

tains a Hamilton-Jacobi equation. As a mathematical result, any Hamilton-Jacobi

=
differential equation has an associated Hamiltonian mechanics [53] and correspand-

ing trajectories. In our context, we are interpreting these trajectories as possible

lutions of the isotropic universe, There is at least an implicit implication (or

umption) that a guantum system executing a WKB approximable quantum mo-

._!_Ein physically exhibits a classical motion governed by the Hamiltonian associated
with the corresponding Hamilton-Jacobi equation. The justification for this comes
‘from noting that for large volume we expect the universe to exhibit classical be-
‘irin_m: and there it is indeed governed by the associated Hamiltonian, For how
ismall volumes can we assume this expectation? This question is naturally related
‘o the domain of validity of the WKB approximation.

One expects the WKB approximation (slow variation of the phase and almost
ponstancy of the amplitude of the wave function) to break down closer to the clas-
llg;-gli],r indicated singularity at zero volume. Noting that the differential equation is
Jocal in p and its solutions are also local solutions (valid in open intervals in p). we
gan begin with a WKDB approximable solution valid in the larger volume regime and
atternpt to extrapolate it to smaller and smaller volumes. All through these exten-
ﬁ ';_I_E, one will have the effective Hamiltonian with its associated trajectories which
TAn ACCeSS the values of p in these intervals, The effective Hamiltonian constraint
defines a sub-manifold of the phase space and all trajectories must lie on this. The
range of configuration space variables (eg p in our case) allowed by the sub-manifold
fefines ‘classically allowed region’. As is well known from the usual examples in
_;__-:elativistic quantum mechanics, the WKB approximation breaks down at the
Sfurning points’. These correspond to the boundary of classically allowed region
which therefore demarcates the domain of validity of WKB approximation. Clearly,
when such a boundary is reached by a trajectory, it must turn back. This is of course
the bounce (i@ = (). The expectation that WKB breaks down at non-zero volume
ranslates into the expectation of a bounce oconrring at non-zero scale factor. The

Phounce can thus be understood as the smallest volume (or scale factor) down to

which one may use the classical framework with some justification but below it one
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st use the gquantum framework,

Further justification comes from other known examples. For example, solutions
; thF Maxwell equations in the eikonal approximation can be understood in terms
he normals to the wave froms which follow null seodesic. The interpretation
t this actually reflects rectilinear motion of light, may be justified by nating
8t the Poyuting vector (energy flow) is also in the same direction ag the normals.
kewise, in the context of usnal Schiroedinger equation of particle mechanics, the
cor served probability current also points along the normals to the wave fronts giving
redence to the interpretation that a quantum state of the WKB form realizes mation
 particle (or wave packet) governed by the associated Hamiltonian mechanics.

both these examples, further inputs other than the mathematical association
A

setween Hamilton-Jacobi dilferemial equation and a Hamiltonian svsiem, seem to
be needed to understand the physical realization of the Hamiltonian svstem.

Interestingly, the equation (2.2.8) does admit a conserved current (2.2:12) which

indeed is proportional to the gradient of the WKEB phase. Whether this could be

d for guessing physical inner producet vis a vis a prohbability interpretation remains

io be seen:
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Chapter 3

Inflation is Generic

3.1 Introduction

The standard big bang model so far is the most successful large scale description
of our universe. In this description, the evolution of our universe hegins from a
dingularity,  Within the context of homogencous and isotropic expanding space-
times, the singularity is unavoidable as long as the matter satisfies the so called
strong energy condition. The singularity in this context means that the scale factor
or size of the universe) vanishes a finite time ago. This vanishing size also implics
that the energy density diverges at this time. Furthermore, the scale factor vanishes

slower than linearly with the synchronous time making the conformal time integral

finite thus implving the existence of particle horizon.

‘The particle horizon with respect to a space-time point is defined by the max-
jmum proper distance a particle could have travelled since the beginning of the
universe. Due to the singular behaviour of the scale factor, this is a finite distance.

so means that any space-time point could have causal contact only with a finite

patch of the space-time around it. By itself, existence of particle horizon need not
bea problent. However. in conjunction with the thermal history of the universe, the
finite Lorizon size implies that the last scattering surface of the cosmic microwave
around photons has regions which could not have heen in causal contact. Yet,

there is remarkable isotropy (to within few parts of hundred thousand) in their
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"gﬁlﬂr distribution. This is the horizen problem of the big bang model.

- The most papular approach to solve this puzzle (along with few other puzzles)

introduce a phase of inflation [2]. Phase of inflation generally refers to a period
during which the universe goes through a rapid (generally exponential) expansion.

This is generally achieved by introducing a scalar field (an inflaton) with a sell in-

feraction potential. By now there are several versions of inflationary models [3].
Generically these solve the horizon problem (and other traditional problems such
"-.;;- flatuess problem) and in addition make specific predictions about the power
spectra of inhomogencous perturbations. While these are attractive features of infla-
nary models, generally they need fine tuning the potential and initial conditions
for the inflaton to ensure a sufficient amount of inflation with graceful exit. In a

sense, the isotropic singularity in Einsteinian gravity implies existence of particle

hiorizon which leads to the horizon problem which needs an inflationary scenario to

T

e postulated with its own set of problems of fine tuning and initial conditions.

The space-time singularity, however, sisnals breakdown of the theoretical frame-
work of classical general relativity. It is widely expected that a quantum theory
of gravity will provide a more accurate description which will hopefully be [ree of
sich breakdowns and recent developments of loop quantum cosmology [10, 11, 12,

14, 14, 15, 16, 17, 18, 19] corroborate this expectation. It has already been shown

the LQC framework is free of singularity, both in the isotropic context [22] as
as more generally for homogeneous diagonal models [23, 24]. There are two as-
of this singularity-free property. The imposition of the Hamiltonian constraint
“Wiheeler-DeWitt equation”) of LQC leads to a difference equation with eisenval-
of the densitized triad variable serving as labels. These eigenvalues can take
tive values corresponding to reversal of orientation, The difference equation,
wed as an evolution equation in these labels, allows solutions to evolve through
the zero eigenvalue (zero size). Thus there is no breakdown of evolution equation at
lassically indicated singularity at zero size. This is the first aspect of absence of
mgularity. The second aspect is that matter densities and curvatures remain finite

|

Lall sizes. The inverse seale factor operator that enters the definitions of these
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fuantities turns out to have bounded spectrum. For au explanation and details see
To relate implications of LQC which s based on a diserete quantum geometry,
to observable (and more familiar) quantities described in terms of the continnum

‘geometrical framework of general relativity, the idea of an effective Hamiltonian has

been proposed in [15. 31] and discussed in chapter 2. This Hamiltonian contains
':-;ncdiﬁcat.im‘ls implied by LQC to the usnal classical Hamiltonian, This ap-

proach retains the kinematical framework of Robertson-Walker geometry but gives

iscussed before, the dynamies (evolution with respect to the synchronous time)

i plied by the effective Hamiltonian captures essential features of the difference

volume will never reach zero volume when evalved backwards. Since the frame-
rk for effective dynamics is that of the usual pgendo-Riemannian geometry, the ar-
guments leading o the singularity theorem are applicable and therefore non-singular
svolution must imply vielation of the strong energy condition on effective matter
density and pressure. While the effective density and pressure [31] includes contri-
blitions from gravity sector also, in this chapter we concentrate on the matter sectar
difications only:

- The question we address is whether the modifications in the matter sector imply
dolation of strong energy condition. In general the strong energy condition requires
Regt®¢” = 876G (Ths — §9as7)6787 = 0, for all time-like vectors £, Within the
gontext of homogeneous and isotropic geometries, the strong energy condition ap-

ilied to the congruence of isotropic observers (or four velocity of the matter perfect

'.!"; becomes Ry = 4nG{p+ 3FP) = 0 where p is the total energy density and
Pis the total pressure of the matter fluid, Defining w = P/p (with p assumed 1o

bt positive definite) as the equation of state variable, the violation of strong energy
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condition is conveniently stated as w < —:,l,r. Note that since Rgy ~ —-f, violation of
the strong energy condition in this context also implies an accelerated evolution of
the scale factor or in other words an inflationary phase.,

For simplicity, let the matter sector consists of a single scalar field with a standard
"etit: term and self interaction potential. For spatially homogeneous and isotrapie
lields, the density and pressure are read-off from the perfect fluid form as p = 16+
Vo), P= %L;'}E — V(&) while the classical Hamiltonian is Hy = %a_apn«,"l + a*V (o),
'Zr;ﬁ- e pp s the conjugate field momentum, Note that in LQC, the scale factor has
j&nsions of length. (In LQC, densitized triad is redefined 1o absorb the coardinate
wolume integral, making the scale factor a? = |p| to have dimensions of length., This

s

810 be kept in mind while making comparison with the standard scenarios which use

dimensionless scale factor.) The LQC modifications are incorporated by replacing
=% by a funetion coming from the definition of the inverse triad operator.
The modified effective matter Hamiltonian is then given by H = %|F}I;[ujj% Pa’ +
#V(¢), where Fjla) = (57v400i02) lﬁ}({é“r'p.njiﬁ}_]a"") [33. 34]. The j and | are
o quantization ambignity parameters 47, 48], The half integer j caorresponds to
the dimension of representation while writing holonemy as multiplicative operators
while the real valued | (0 < @ < 1) labels different, classically equivalent wavs of
writing the inverse power of the scale factor in terms of Poisson bracket of the basic
wriables. A smooth approximation (except at one point) to the function Fi(g) is

e by [30)

. - 3 .
Filg) = [:z|:u-2}1:z+1}4r('f"ur]""{':‘g“rl}f ’

lg— 11"} — [+ 2)g{(g+ 1)+ =

sgn{q — 1)lg — 1/} ) ]%

! — g ! (g 1)
1
g |77
— gt 1) 3.2:1
[z+1 (0<gxl) (3.2.1)

lws, for the large values of the scale factor one has the expected classical behaviour
r the inverse scale factor and the quantum behaviour is manifested for small values

fithe scale factor.




The density and pressure arve usually defined from the perfect #uid form of the
| stress tensor which in turn is derived from an action principle for the matter
Since the LQC modifications are incorporated at the level of the Hamiltoniau,

s ronte is not available. It is possible to define the density and pressure directly

i terms of the matter Hamiltonian. This has been dane generally in [31] (See also

95]). The relevant definitions, in terms of the notation in [31], are (" denotes i€

32 a 2o an' "

il

ﬂmabove o is a specific funetion of @. For large a”, o goes as :‘—J‘lu giving the familiar
form of density as 8Ha ? [31]. For the LQC modified sealar matter Hamiltonian,
and for large a. these definitions of density and pressure mateh with those of [55].
The conservation equation ap’ = —3{p 4 P) is of course, automatically satisfied. It
aight forward to verify that for the classical Hamiltonian for the scalar field,
hese reduce to the usnal definitions for large a,

Consider the two cquation of state variables. P/p, defined by the effective Hamil-

onian and by the classical Hamiltoniaa.

- 1 -
et _ _:—iﬁgﬂ SlE a2 talFula)]) + Vie)
Li2a-3[F (a)]E + V(6)
1 an’
+3 (1 = —ﬂ-) (3.2.3)
1.2 —6 _ 1r
g = % —VI0) (3.2.4)

%pgr}.—ﬁ + V()

The second term in eq.(3.2.3) vanishes for large volumes and goes to —1/3 for small
whimes [31]. 1t is independent of the matter variables and will be suppressed below
remarks on the scales at the end). The dynamical evolutions of these cquations
if state is of course governed by the corresponding Hamiltonians, 1t is however
ble to derive qualitative behaviour of w7 for small scale factors without having
ot explicit time evolution. as follows,

‘The equations (3.2.3, 3.2.4) can be thought of as two homogencons algebraic

quations for p3. V(o). For non-trivial values of these, the determinant. must vanish
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wwhich gives a relation between the two w's as,

(1+w)a ':[f' {a)] % _ alFy
34 2F, 4{a)

+ (1 —w)

:l: ing the expression (3.2.1) it is easy to see that for the large values of the scale

b= =] +

(3.2.5)

I-\_Iliu o -

(14 w)a* [ Fyl ::r]J

factor o, where one expects the quantum effects ro be small, W = o and the
dynamical evolution is controlled by the classical Hamiltonian., However for small
galites of o the " differs from the classical w dramatically.

'-"Ihe numerator in the second terms of (3.2.5) vanishes as o & If 1 —win
the denominator dominates, then clearly w™ — —1. This would happen either

i+
i ; : g
because 1 — w = 0 ar it vanishes slower than ¢ 1-7. In the former case we already

2 violation of strong energy condition, It is possible to get constraints on the
behaviour of w as the scale factor vanishes, For instance. the conservation equation

kpressed in terms of the scale factor implies that if w — 1 then p ~ a=% This

equation is independent of the LOC modification and applies also to effective density,

Furthermore, from the definition it follows that 1 — w = 2—‘;—':” Thus; the | —w

i1
i the denominator will dominate if Vie(e)) a 7=7 diverges as a — (. This

dominance is ensured if either (i) the potential never vanishes during the evolution

V(g(a)) vanishes at the most as a power law, af. In the former case, o — —1

=i

i
.-='_'::ﬂ independent of the ambiguity parameter ¢ while in the latter case, for any
ven o we cian always choose (> -—5— so that w® — —1 is achieved. Note that this
6 not o fine tuning,
ljg't_:-r the special case of identically vanishing potential, we get w = 1 and the
spression for W simplifies to — ”T‘;*—’[fiﬂ- For small seale factor w* — —]—L. < —1

and violation of strong energy condition follows. Indeed, since wf < —1 holds,

e has a phase of super-inflation, In fact this feature corresponds to situation

psidered in [33. 56]. However this feature is rather special because even a tiny hut
pr-negative potential will force w™ to take the form (3.2.5) (see figure[3.1]).

: :-e=$pilc1:-!s in the figure correspond to the non-differentiability of the Filg) at
= 1. These can be removed bv a local smoothing of the function around g = 1

i thus have no physical significance,
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re 3.1: Plot of ™ as a function of a? and w for different constant values
=(0.9,0.33,0.0001. The ambiguity parameters are j = 3,1 = (.5 and a? is in units
_u[.f%,. For small scale factor, o™ alwavs approaches —1 from below while for

values it approaches w.
Discussions

mary, we find that if the scalar feld potential satisfies Vo) = (0 then irre-
ve of what values we choose for the ambignity parameters and irrespective of
conditions” for Lthe scalar field, there is always a violation of strong energy
dition in the small volume regime and of course a corresponding inflationary
. Furthermore since the effective equation of state variable approaches —1,
get to a phase of exponential inflation. If the potential has zeros which are ap-
hed as a power law for small scale factor, one can always choose a value of £ to
e same result. We emphasize that unlike the usual inflationary scenarios we
-'f."-;. need to invoke ‘slow roll conditions’ which constrain the potential as well as
al conditions for the scalar and effectively posit the equation of state variahle
—1. It is enough to have the evolution get to small volume regime to generate
exponential ) inflation.

A couple of remarks are in order. Firstly, if LQC modifications from LTAvItY
actar (quantum geometry potential) are also included [31], then the results regard-

g behaviour of the effective equation of state as a function of the scale factor; are
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mmchanged. These gravitational contributions to density and pressure violate the
strong energy condition by themselves. Their effective equation of state parameter
8 +1 but both the density and pressure are negative.

A second remark concerns the seales. There are two basic seales available: (i) (le

quantum geometry scale’. L2, == typoff = po [17] and (ii) the ‘inverse seale factor

e, I.ajE = éwn,t’%(? ) = 2jpy. The former sets the scale for non-perturbative

modifications in the gravitational sector while the latter does the same for the matter
sector. Clearly. Lo, < Ly It is casy to see [31] that the WKB approximation gets
poorer close to L,,. This is consistent with the physical expectation that below this

scale one is in the deep quantum regime. Furthermore, the effective model, including

 modifications in both gravity and matter sector, always shows a bounce ie a
fon-zero minimum scale factor at which 4 vanishes [36], This introduces a fhird
seale, L. which is smaller than L?. Clearly, Lf. . > Lz, must hold to remain

within the domain of validity of WKB approximation. In summary, a 3 L, is the

tlassical regime, while for @ < Lysunee o is strictly in the quantum domain in the
?-SEH&:’E‘- and the effiective Hamiltonian is not valid. The semi-classical regime for
:&_purposes of this paper has the scale factor between Lyoupee and Ly, This implies
that the suppressed term in the eq. (3.2.3), is vanishingly small in the semi-classical
egime thus Wt — —1,

‘The issue of whether the effective dynamics admits particle horizon or not. is
4 separate issue. In view of the generic bounce in the effective model [36], the
mniverse would have existed for infinite time in the past. The evolution could have
been oscillatory or there could have been just one bounce in the past. In the large
wlume regime, we have the usual decelerating evolution (modulo A-term) implying

that the scale factor will diverge at the most as linear power of the synehronous

time. For both possibilities, the conformal time integral would be infinite implving

SO
el

eence of particle horizon. However, independent of the non-existence of particle

horizon, inflation comes built-in with the LQT modifications.
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Chapter 4

Big Bounce is Generic

4.1 Introduction

It has been long expected that the existence of singularity in the classical general
telativity which has been shown to be quite generic thanks to the singularity theo-
rems, will be removed when classical framework of gravity is extended to a quantum
3i_=,| ework of gravity. The ssue of fate of classical cosmological singularities in
the cosmological context has been addressed head-on within the loop quantum cos-
wmology [10 11. 12, 13, 14, 15, 16, 17. 18, 19]. It has been shown that the isotropic
models (flat and closed }[22]. and more generally the diagonal Bianchi class A models
,24], are free of singularity.

Some of consequences of loop guantum cosmology corrected cosmologies have
:._.Efl.d}-' been noted. First, there is a natural mechanism for inflation (33, 34, 33]
within the context of isotropic models. Secondly, for the Bianchi IX madel there is
suppression of chaotie approach to singularity [30, 61]. Thirdly, there is indication
"!"" a bounce at the big crunch singularity as well [54. 57). All of these have been
wplored within the framework of an effective Hamiltonian which incorporates the
mest significant non-perturbative corrections. These modifications stem from the
non-trivial definition of the inverse triad operator in LQC [24, 23] which ensure
that the matter density, spin connection components remain bounded as universe

bipproaches zero volume,
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4.2 Big Bounce

discussed in chapter 2, the domain of validity of the continmum approximation has

en extended in [31], by exploiting the non-separable structure of the kinematical
Hilbert space of loop quantum cosmology [17] which has infinitely many solutions
0 f_t_he fundamental dillerence equation. Although each of these may not be slowly
varying at smaller volumes, one can choose linear combinations to construet solutions
ch are slowly varyving alinost every where. This amounts to an ad-hoe restriction
to & sub-class of solution. In the absence of any other criteria to limit the infinity of
utions, such as a physical Inner product, this restriction is treated as exploratory,
I? extraction ol effective Hamiltonian then follows the same method as before via
4 WKB approximation. The validity of the effective Hamiltonian is now limited
only by the validity of WKB approximation i.e. to ‘classically accessible regions’

effective Hamiltonian is derived in [31] and is given by,

1 ¢ : 4
LB A
H -ljJn 21‘5‘[}

He — + Wy +H (4.2.1)

where & = 167G, py = 24080, A 18 the extrinsic curvature (conjugate variable
bEp). Alp) = |p+ po|? — |p — pol. n tiakes values 0,1 for spatially fat. closed
10 els respectively, Bi(p) = Alp + 4py) + Alp — dpg), (3 = wh and W, =
:--».':n'.

gravitational kinetic term and the spatial curvature term. the effective Hamiltonian

) {B.(p)—2A(p)}. Apart from the modification of the coefficients of the

(4.2.1) differs from the classical Hamiltonian by a non-trivial potential tern referred
t0as guantum geometry potentiol and denoted as W,. It is odd under the reversal of
grientation of the triad (p — —p) and for p = 0, it 15 negative definite. The origin of
his potential term is necessarily guantum gravitational as it explicitly involves {p.
For large volime this potential falls-off as p=*2 while for small volume it vanishes
48 p. These small/large volume regions are delineated by the scale py.

For simplicity we consider a matter sector consisting of a single scalar field. Tts
' Hamiltonian is LQC corrected in the usual manner |33. 581 It is shown
in [35] that for small volume (p < 2jpy). with non-perturbative corrections, the

sealar field effectively behaves Hike an inflaton field since the effective equation of
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(or —32 il the triad variable p can get smaller than pq).

The matter Hamiltonian is related Lo the matter effective density [31, 35] as H., =

i p" and the conservation equation implies that for a constant ™, the effective
3 q wli 3 ) i h

sity goes as ~ a T One can see that in either ease of inflationary or
siper-inflationary regimes, the matter Hamiltonian alwavs goes as ~ p*'2.

Given the behaviours of the quantum geometry potential and the matter Hamil-
fonian during a {super) inflationary region and their opposite signs, it is clear that
0 3 H f ) T i y

e quantum geometry potential will always dominate the matter Hamiltonian im-
N

i

il

i ~. imaginary value for the extrinsic curvature i.e. existence of classically in-
toessible scale factors. The two necessarily cancel each other at a Anite. non-zero
value of the scale factor. This would be so even after including the contribution of
.::ﬂ_patial curvature (n). But this means that the extrinsic curvature vanishes at
that value of the scale factor implving a bounce. Thus we see that a bounce is quite
generic and the minimun scale factor defines a new length scale Ly,yee. Below this
f the elfective classical picture fails. A graphical illustration of the existence of
-J can be seen in the figure (4.1),

The bounce scale is obviously determined by the conditions H'T = 0 = K with
= hp®?, h being a constant, of proportionality. This is a transcendental equation

o p and the root(s) depend on the constant 7. We expect the bounce value to be

han 2jpy (above which we are in the classical regime). In this chapter we
S¢ geonetrized units instead of natural units. i geometrized units, & = 1 = ¢
pe will refer to all lengths to the scale /py. Thus. putting p := gpy the region of
merest is 0 < g << 2. This could be further divided into (i) 0 < ¢ < 1 and (i)

g < 2j. Since the equation of state variable is a dimensionless function of the

e factor, it is in fact a linction of ¢ The conservation equation can then he
ed as: p™(q) = poexp{—} Jl"_jﬂ{l 4.—.;;.:*”{@'}}%}. The constant h is proportional to

i=p(27). In summary, the equations determining the (non-zero) bounce seale.

B e ATE.
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Hulg) = Gﬁ—?fﬁ%p{—%[{1+u:““[q)j|%?} (4.2.2)
b 37
|

h (pod)

L1 =L}

= 32 — 2E(B.(g) - 24(q) (4.2.3)

Tpg

i the two regions (i) and (i), the eguations simplify. Tn the region (i) one has,

W= 37, 0. B, — 3(v5— v3Ip) 0.0 (q) — —% and we get.

& ¥ 3
= 1 (2 — 5+ /3) ]
""II(QI':IIUIJI:!EI.- = Qpnf.' [3":' - ‘;4;\{_1 é] . {*—1-25}

iregion (ii) one has A — pi*(3¢1/2— g9 B, — pgfﬂ{ﬁqu: — 82y ey
| and we et

4
”m':f?:' = .ﬁ'{f"[ﬁ?]'zr [i’gﬁ}

and the gounee Is determined as a root of the cubic equation,

. o 1 -I:‘l' !
3 ¥ 2 ¥
(Zpopiq” — 3nq _E(ﬁ) =0 (4.2.7)

ofe that pyj is dimensionless. It is easy to see that there is exactly ane real root
of this equation and in fact, get a close form expression for it.

n the region (i), h ~ g/ and the guuuee ~ (pof) ™ The solution has explicit
dependence. The inequality for region (1), Ghomnee << 1, implies that the effective
ensity at p = 2jpg (roughly where the inverse seale factor function attains its maxi-
) must be larger than /j times the Planck density ~ £5°. Also the bounce scale
_i':1_ll smaller than the Planck scale, This is indicative of the effective continunm
wodel becoming a poor approximation.

nregion (ii), k = p. For the fat model (1 = 0), guounce ~ (pop) 2%, For the close
model. such o simple dependence does not oceur. The inequalities, 1 < ¢ < 24,
mnslate into a window for pyp. Region (ii) bounce scale has no explicit dependence
o0 the ambiguity parameter j, the implicit dependence being subsumed in the value

',Whi{‘h can be treated as a free parameter. The bounce scale is larger than the

45




Planck scale and the density p is smaller than the Planck density., The relation
between: i and the bounce scale is displayed in figure (4.2).
Clearly. as hi — 0, the scale py — 0 and so does the bounce scale. It also vanishes

g8 — oo, However in the non-singular evolution implied by isotropic LOC (inverse

ale factor having a bhounded spectrun) implies that there is a maximum energy

density attainable and the density p can be thought of as this maximum energy
density. Correspondingly there is a minimum scale factor or minimm proper volume
siice in LOC the fiducial coordinate volume is absorbed in the definition of the triad.
;;‘-’ﬂlumes smaller than the minimum volume, the WKE approximation fails and
he effective classical picture cannot be trusted. The guantun geometry potential
jlays a cricial role in this result.

A remark about the physical justification for the approximations used is in order.
Ihe results use the effective Hamiltonian picture which is based an a continunm
Bpp oximation followed by the WKDB approximation. The physical justification thus
llinges on the physical justification for these two approximations. The continuum
approximation for the geometry is physically expected to be a pood approximation
_f;-}eugth scales larger than the discreteness scale set by dpy x4, the step size
":!-i" ludamental difference equation. The WKB approximation is valid in a sub-
Jomain of the continum approximation. determined by slow variation of amplitude
nd phase. Mathematically, the atuplitude variation begins to get stronger around
g [31] while the phase variation is stronger at the turning point which determines
the bounce scale. Thus, physically, the effective Hamiltonian (including the quantum
geometry potential) is trustworthy for the bounce scale larger than ~ py, As shown
-'.j'?- figure 2, there is a range of g < 4.’;2 such that the bounce scale is consistent
fith the physical domain of validity of the effective Hamiltonian. Note also that the
pehaviour of the matter Hamiltonian as _u%' is dependent on p <€ 27pg and hence the

binnce scale is also smaller than 2jp;.
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Discussions

will discuss now a possible implication of the minimum proper length on the
lonary cosmology, The standard inflationary scenario is considered a success-
paradigm not only because it can effectively solve the traditional problems of
andard classical cosmology, but also becanse it provides a natural mechanism of
rating classical seed perturbations from quantom fuctuations. These seed per-
furbations are essential in a theory of large scale structure formation but there is
echanism of generating the initial perturbation within the classical setup. A
tum field living in an inflating background quite generically produces scale-

wnt power spectrum of primordial density perturbations which is consistent
M

mith the current observations:

However. ane major problem that plagnes almost all potential driven inflation-
models is that these models generically predict too much amplitude for density
irbation [38, 391, Counsidering tlie fluctuations of quantum scalar field on an
pflating classical background, one can show that these models naturally predict
perturbations at horizen re-eniry ta be %:3 ~ 1 —10% But CMB anisotropy
ements indicates Ef ~ 107® Thus it is very difficult to get desired ampli-
for density perturbation from the standard inflationary scenarios unless one
_ uces some fine funing in inllaton potential [40].

An interesting suggestion to get an acceptable amount of density perturbation
.'._inﬂuliuum}' scenario was made by Padmanabhan [59, 60]. The basic idea of
suggestion i that any proper theory of quantum gravity should incorporate a
ro-point proper length, This in turns damps the propagation of modes with proper
- length smaller than the zero-point proper length. This mechanism reduces the
mplitude of density perturbation by an exponential damping factor. The compu-
tions of [59] show that with the energy density (Vg) attainable during inflation to
der of the Planck energy density and the introduced cutoff (L) of the order of

)12, one can indeed get the necessary amount of damping. In the picture

scussed above, we already have a correlation between p and the bounce scale.
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As discussed above, the effective model derived from semi-classical LOC already

ws the existence of a minimum proper length which can play the role of the zero-

it length. Furthermore, this scale is nof put in by hand but arises generically

0o
and naturally from the non-singularity of the effective mode! [31] and is correlated
.i::_i:_inﬁistenlly with the maximum attainable energy density whose existence is
guaranteed in a non-singular evolution. It has no explicit dependence on the
ization ambiguity parameter j. With the generieness of (exponential) inflation
min [35] one can expects that the effective LQC model has the potential to
.-j'i_‘.-,_’1- uce an acceptable primordial power spectrum as well as an aceeptable amplitude
';ﬁenﬁit}r perturbations. A detailed analysis for primordial density perturbations
ncorporating LOC modifications has been carried out [43] and will be deseribed in

hie chapter 5.

Apart from the possible phenomenological implications of the existence of a
imnce, there are some theoretical implications as well, Within the WKB approxi-
mation used in deriving the effective Hamiltonian, existence of bounce corresponds
dstence of classically in-accessible regions (volumes). This can also be inter-
d as limiting the domain of validity of continuum geometry or the kinematical
ewark of general relativity. Since the exact gquantum wave functions do connect
ftnrn regions of the triad variable, there is also the possibility of tunnelling to
ind from the oppositely oriented universe (p < 00) through these regions. Because
of this, the bounce can be expected to be Tuzzy’. If and how the tunnelling possi-
ility between oppositely oriented universe affects ‘discrete syminetries’ needs to be
ored.

.:inally. the bounce result has been derived using generieness of inflationary

ggme (p << 2jpo). It is reasonable to assume that the maximum energy density

S

d be comparable or Iess than the Planck density, In such a case the bounce
will be greater than p;. Thus, both the results regarding genericness of bounce
il genericness of inHation would follow even if the underlving assumption of slowly

rying wave functions is valid onlv down to the bounce scale,
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figure 4.1: For the small volume with non-perturbative corrections. the scalar mat-
miltonian along a trajectory is given by H,, = h.p%, Thus nou-perturhatively
ed scalar matter Hamiltonian vanishes at p = 0. If there were no quantum
gometry potential term, 15, in the effective Hamiltonian then for the spatially
af case (7 = 0) p = 0 point would have been accessible through the evolution,
mgh being a non-singular evolution it would have taken infinite coordinate
e to reach p = 0 nevertheless there would have been no minimum proper length
,_ given space-time. But ence we incorporate the effect of quantum geometry
tential W, then we can see that the combined effect of H,, and Wag will lead
g extrinsic curvature to become zero at a non-zero value of p. Since for small p,
 —p and H,, ~ p? then there will always be a region where W, dominates
e M, Naturally there will always exist a classically inaccessible region leading
ia generic big bounce, The shaded region in the figure represents the classically

den region.
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are 4.2: The plot shows how the dimensionless parameter hpg varies as a funetion
e bounce scale Guounee 85 determined by the equations (4.2.2, 4.2.3), py = .éf.’]%

en chosen for the plot,




Introduction

Ihe homogeneous and isotropic solution of general theory of relativity, namely the

friedmann-Robertson-Walker (FRW) solution appears to be an extremely good de-
ption of large scale spacetime dynamiecs of our universe. Extreme simplicity of
FRW solution nevertheless ignores some cricial features of the universe namely
'r‘ it has certain sub-structure as well. On large scale the deviation from homo-
jeneity and isotropy being small one can trear them as small perturbations around
omogeneous and isotropic backeround. The classical theory of large scale strue-
fire formation in principle can be used to ‘derive’ the observed structures of current
i rse but these models need to know the initial seed perturbations. In this sense
e lassical description of our universe is incomplete as there is no mechanism of
enernating the seed perturbations within the theory itself.

On the other hand quantum field fluctuations in an inflating background quite
cally produce density perturbations with scale-invariant power spectrum [37]
s consistent with current observations. This is certainly an attractive feature
the standard inflationary scenario. However, one major problem that plagues al-
aet all potential driven inflationary scenario that these models generically produce
oo large amplitnde for density perturbations. typically % ~ 1 — 10" at horizon re-

-_[3.81 39]. The cosmic microwave background (CMB) anisotropy measurements
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gther hand indicates % ~ 1077, Naturally to make these models viable it is
to fine tune the parameters of the field potential [40]. In the presence of
wntum fluctuations it is rather difficult to justify or sustain those fine tuning of
eld theoretical parameters,

_is worthwhile to mention that inflation was invented to solve some crucial
blems of the standard big bang cosmology. The most important of them is the
ealled particle horizon problem. The horizon problem is directly related with the
he standard model of cosmology contains an initial singularity where plysical
ties like energy density, spacetime curvature blow up leading to a breakdown
sical description. The initial singularity, however is viewed as an attempt
extrapolate the classical theory beyend its natural domain of validity. Near the
eal singularity one expects the evolution of the universe to be governed by a
m theory of gravity rather than the classical one.

E have mentioned earlier that density perturbations generated by guantum
Pl fluctuations in an inflating background are believed to be the seed perturbations
sponsible for the current large scale structures of the universe. Further in chapter 3,
ave discussed that non-perturbative modification of a minimally coupled scalar
Hamiltonian in loop quantun cosmology leads to a generic phase ol inflation
35 (see [110] for related discussions on other kinds of matter). Naturally it
il important question to ask whether the density perturbations generated by
antin fluctuations during loop quantum cosmology induced inflationary phase
satisfy the basic requirements of viability like scale-invariant power spectrum.
. it may leave some distinct imprint on the power spectrum which may be
gervationally detectable as well.

Being inhomogeneous in nature treatment of these density perturbations requires
ggeneous models of loop quantum cosmology. However the technology required
with inhomogeneity at fundamental level within loop guantum cosmology

yet available. Not having such technology. one needs to proceed rather in-

Iy, Let us recall that in the standard inflationary scenario lor computing

spectrum of density perturbations due to quantnm fluctuations, one uses

on
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fie techniques which broadly can be classified as Quantum Field Theory in Curved
ground [41, 42]. In this approach one treats the background seometry as clas-
object whereas matter fields living in it are treated as quantum entities. The
main justification for using such technigues comes from the fact the enerev scale as-
ted with inflationary scenario is few order of magnitude lower than the Planck
0, 5o one expects the geometry to behave more or less classically in this regime.
In loop quantum cosmology in principle one can think of using physical ob-
bles and physical inner produet to evaluate the physical expectation vahies 1o

find out the hehaviour of at least the homogeneous part of the geometrical gquan-

s, Unfortunately developments of physical observables. physical inner product

nd ‘time’ evolution in loop quantum cosmology are still in carly stage [13. 26, 27).

avertheless, one can construct an effective but elassical deseription of loop quantum
emology using WKB techniques. As discussed in chapter 2, effective loop quan-
um cosmology [31] incorporates important non-perturbative modifications and has
jeen shown to be generically non-singular as well [36, 54, 5T).

In the effective loop quantum cosmology it has been shown [31] that in the re-

i
1

gon of interest (exponential inflationary phase) gravitational part of Hamiltonian

taint becomes same as the classical one with small quantum corrections. How-
the scalar matter part of the effective Hamiltonian remains non-perturbatively
podified during this phase, In fact non-perturbative modification of scalar matter
itonian is what drives inflation in loop quantum cosmalogy. Having a modified
matter Hamiltonian the scalar field satisfies a modified Klein-Gordon equa-
:_'lnstaad of standard Klein-Gordon equation, Naturally the mode functions of
e scalar field which contain the necessary information about backgronnd geometry
volution and are essential to compute power spectriun of the density perturbations,
e expected 1o be different from the standard mode-funetions, Thus, although it
may be justificd to employ similar techniques to compute the power spectrum in
j we loop guantum cosmology but certainly one cannot borrow the same mode
mnctions used in the standard inflationary seenario.

- Here we will compute power spectrum of density perturbations using the direct
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an! [59]. In this method one directly uses operator expression of ‘time-time’
pmponent. of stress-energy tensor (which is classically energy density) to compute
pdim: denstty correlation function and then evaluates its Fourier transform to
pute power spectrinn of density perturbations. In the standard inflationary
i0 one generally avoids this direct computation as the two point density cor-
ation function in a pure classical background diverges badly for small coordinate
thseparation (i.e. wltra-viele! divergence). There usually one first computes the
spectrum of field Huctuations. Using this one reconstructs inhomogeneous
it classical field configuration which is then used to compute corresponding den-
: perturbations. However it is important to understand that this divergence is
ather unphysical becanse it arises when one tries to resolve any two spatial points
 arbitrary precision.

In a quantum svstent, the expectation value of an operator which is classically a
space function in general i not equal to the same function of the expectation
.-."='_+=., of basic phase space operators. Thus the use of direct method is preferable
he standard method as observational aspects deals with energy dengity directly
r than the field configuration. Further, in the standard method to relate the
er spectriun of field Auctnations with that of density perturbations, one needs to
mow the general expression of the stress-energy tensor. In this context, it is not vet
gsettled issue; how to obtain an effective action from a quantum theory of gravity
“on canonical gquantization.

In the context of standard inflationary scenario it was outlined and explicitly
m (59, 60| that one can in fact regularize this field theoretical divergence by using
e notion of zero-point proper length. Although it was used as an ad-hoc assertion
it it was argued that the notion of 2ero-poind proper length is expected from a
per theory of quantum gravity, The power spectrims of density perturbations
pmputed using these two different method in the relevant energy scale however are
ol very different. Nevertheless there one can avoid rather cumbersome indirect
elliod of computing power spectrum of density perturbations.

In effective loop quantum cosmology, it has been shown that the universe ex-
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5 & generic by bounce with a non-zero minimum proper volume [36]. This
irns implies a zero-point proper length for the isotropic spacetime. Since the
arization technique is naturally available in the effective loop quantum cosmal-
jscenario then it is quite appealing to use directly the operator expression of
time-time’ component of the stress-energy tensor to obtain the power spectrum of
ity perturbations due to quantum field finctuations. In this sense this exercise
i also be seen as an explicit example of quantum gravity motivated regularization
nique to cure the wlira-violet divergence of standard guantum field theory [62].
D section 5.2 and 5.3, we briefly recall the standard scenario of quantum feld
g in a DeSitter backpround and then obtain corresponding two point density
ation function. In the next section we review the basic infrastructures required
idescribe the inflationary phase in effective loop quantum cosmology. In particu-
e discuss about the properties of the effective equation of state lor the scalar
er field. The effective équation of state essentially summarizes the evolution of
ackground geometry. In the next section we derive the modified Klein-Gordon
uation which leads to a modified mode function equation. We obtain an analytic
plition for the maode funetion equation. This modified mode function reduces to
tandard mode function in the appropriate limit. Using the mode functions in
ext section we compute the power spectrimn of the density perturbations. We

fiseuss about the properties of the power spectrum and its observational implica-

Quantum field in a De-Sitter Background

omputing power spectrum of density perturbations in standard inflationary sce-
. one considers background geometry to be homogeneous and isotropic. The
riant distance element in such spacetime (using nature! wnits ie. ¢ = h = 1)
ven by famous Friedmann-Robertson-Walker metric ds? = — dt? + a?(1) dx?.
aft) is the seale factor. During inflationary period the scale factor srows al-

exponentially with coordinate time, The Hubble parameter defined as H 1= 2




ns almost constant during the period. For simplicity, in the intermediate pe-
ealeulation one treats Hubble parameter as constant ie. the evolution of
round geometry is considered to be De-Sitter like. One can approximately
ute the effect of small variation of Hubble parameter on power spectrum, sim-
considering the variation of the final expression of power spectrum. This is

a good approximation as the variation of Hubble parameter is rather very

In the standard scenario, inflation is driven by a scalar field known as inflaton
We will consider here the most simple single-field inflationary scenario. The

s of a minimally conpled scalar field is governed by the action

5, — /df‘rv"ﬁ [—ég“"ﬂ#g‘hﬂya— L’qr__f;jJ - [d'l,cw—gf.. (5.2.1)

ave mentioned carlier that we will be using the direct method Lo compute the
¢ spectrun. So it will be gquite useful to have the expression of the matter
-energy tensor due to the scalar field. The stress energy tensor corresponding
o the action (5.2.1) is given by
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Vg ogh

Tp].r — apd}apl,?;‘ -+ If;l'“_;_.-j: . (5-2.2]

omparing with the perfect fluid ansatz t.e. Ty = (p+P) uyuy + g, P, it is casy
hat Tho component represents energy density lor the scalar Leld. In canonieal
ation one treats Hamiltonian as a basic object. Thus, it is important here

the expression of the matter Hamiltonian

1 . 1 _ PO _
H¢=/d3¢' [Eu”dﬂi + EH{?EJ}E + a'Vi(a)| . (5.2.3)
B Te = . In deriving expression (5.2.3) it is assumed that the background
ry is homogeneous and isotropic but neot the scalar field itself. This approxi-
’; can be justified as long as the deviation [rom the homogeneity and isotropy

mains small. To make it more explicit we rewrite the sealar matter Hamiltonian

2.3 as

o [#a]5m] + o [eal3w07] 4@ [datvien. G20
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In loop quantum cosmology, the geometrical quantities like the scale factor a here
e represented through corresponding quantum operators. While deriving effective
al Hamiltonian from loop quantum cosmology, these operator expression ef-
vely get replaced by their corresponding eigenvalues. The kinetie term of the
matter Hamiltonian (5.2.4) involves inverse powers of the scale factor. In
op quantum cosmology the inverse scale factor operator has 4 bounded spectrum.
rly one can see that the kinetic term of the effective scalar matter Hamilto-
 will involve ndn-perturbative modifications due to loop quantization. Using
hie Hamilton's equations of motion for the scalar field ie.

dH, dH,
£ v qy = = (5.2.5)
do

ie can derive the second order cquation of motion for the scalar field. given by

A,

, 3
e (5> G L2 i) = 0, (5.2.6)
] a*

fhe equation of motion (5.2.6) for the scalar field is the standard Klein-Gordon
giation. It is worthwhile to emphasize that one could have obtained the standard
Gordon equation (5.2.6) simply by considering the variation of the scalar field
(5.2.1). However, one should remember that our nltimate aim is to com-
iile power spectrum in elfective loop quantum cosmology where non-perturbative
pification in the matter sectors comes through its Hamiltonian.

To quantize the scalar field one proceeds in the standard way i.e. by decomposing

field operator in terms of annihilation and creation operators é and af as

olx.t) = / atls [m. felt)e™* & aty i) e:-f‘“‘] ; (5.2.7)

(2r)”

fi(t) are the ‘properly normalized’ mode functions. Although one can quan-
g the scalar Lield analogous to that in Minkowski spacetime, one faces the well
problem ol defining vacuwum state in curved spacetime. In general, for curved
ound geometry there does not exist an unique choice for the vacuum state.
e needs to have some additional prescription to define it

the standard inflationary scenario one generally chooses the so called Bunch-

yies vacuum. It is defined as the state which gets anuihilated by a where the
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mode functions f; are so ‘normalized’ such that in ‘Minkowskian limit" e, H —
I the mode-function reduces to the flat space positive frequency mode function

= ¢, We will use analogous definition for the vacuum state for the calculation

f power spectrim in effective loop quantum cosmology as well. For simplicity we

sider the situation where the ficld potential is made of only the mass term (i.e.

) = 1m”a?), Then the mode functions are the solution of the equation
(6) = 2n, !

fe + 3(2) fr + (g+mﬁ;ﬁ) fi = 0. (5.2.8)

wde funetion equation (5.2.8) follows from the Klein-Gordon equation (5.2.6)
il the expansion of the scalar feld operator (5.2.7), For simplicity we consider the
fuation where the mass ternt cau be neglected (§ > my ) in the equation (5.2.8),

e ‘normalized’ mode-function solutions are then given by

H |EL' i
R — — F— bl 9
fi T (1 aHH) e Ha | (5.2.9)

The mode function (5.2.9) in the “Minkowskian limit’ £e. H — (0 limii reduces
lipto a constant phase) to flat space positive frequency mode function %.Ef"'“”_
Ll 7

.E defines the vacuum state [0) as al0) = 0,

“To compute the power spectrum of density perturbations using wndiree! method,
pie first computes the power spectrum of feld Auctuations te. Pu(k) = }ié F
Li5 easy to see from the expression of the normalized mode function (5.2.9) that

b

i he time of horizon crossing (a(t) = e the corresponding power spectriim is

geale invariant. In getting mode function solution (5.2.9), we have ignored the mass

e of the scalar field. For the mass dominating case {i_: << my §, the normalized’

2
mode functions are fi = L _a%e v “e"J Tt can be easily checked that

of 2t

it this case also the corresponding power spectrum is seale invariant at the time of

lnzon crossing. It is often argued that the seale invarianee 1s mainly determined
e fact that during inflationary period the Hubble horizon f{ 7 remains alimost
ant. The details of particular maodel of inflation has rather small effect on this

poperty of the power speetrum.




Two point density correlation function

g specified the vacuum state one can proceed to evaluate vacuum expectation

Vel
il

vilue of the two point density correlation funetion. Two point density correlation

rction can naturally be defined as
Clx+Laxt) = (0] TVx+ L) TP(x.t) 0} . (5.3.1)

the expression of the scalar field operator (5.2.7) and the expression of the
iress-energy tensor (5.2.2) one can evaluate the two point density correlation fune-
fion in terms of the mode-function, given by [59)

-!'.Ir:; i n;_.'s if 3

— e giprall
(2x)* (2r)?

| Clx+1,x.t) = f (5.8.2)

oy = (5 =) ol

I evaluating two point density correlation function (5.3.2), one ignores a space
]_[}i;'mnden’r. {formally divergent ) term as it would have contributed only tothe b =0
!j,y while taking Fourier transform. Having known the normalized mode function
Solution f; (5.2.9) one can explicitly caleulate the two point density correlation

finction (5.3.2), given by [59]

1 [2H? 12
Cl', 1) = Clx+Lxt) = — |—=+—=| . 5323
( } |:. X } A7 |:{[EP}“ [.mp':lﬂ‘| {'-:' :]
ghere ' = [1|. The expression (5.3.3) of two-point density correlation function

ppectedly diverges near I = (0. However, as shown in [39]. one can regularize this

liverzence using the notion of zero-point proper length, The expression (5.3.3) in

Minkowskian lmit" e H — 0 limit reduces to the flat-space two point density

wrrelation funetion.

5.4 Effective Isotropic Loop Quantum Cosmology

nisotropic loop quantum cosmology, the basic plase space variables are pauge con-
petion c and densitized triad p. In loop quantumn cosmology one redefines densitized
mad to absorh the fiducial coordinate volume componem. This makes the proper

::'-__1. me of the universe (1.1.1) to be [ d¥zy/—g = o'V = Pt [17].
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The effective Hamiltonian for spatially flat isotropic loop quantum cosmology

derived using WHKDB method [31] is given by

]
et — Bilpl
= ti )

o W+ HYT (5.4.1)
gk = 1676, py = t%-:aﬁ'fqm. % is the Barbero-Tmmirzi parameter, K is the
Eirinsic curvature | conjugate variable of p), Alp) = |p+ gl = lp — Pu]% B.{p) =
i+ 4po) + Alp — Apo). (3 = xh and 1 - (whp ) {B.(p)—2A(p)}. pg here is
d as a quantization ambiguity parameter and it is a order one number [17, §].
from the moditications of the gravitational kinetic term and scalar matter
netic term. the effective Hamiltonian (5.4.1) differs from the classical Hamiltonian
@ non-trivial potential terin referred to as quanium geometry potential Wy In this
er we will be interested in the regime (py << p) where the quantum geometry
ptential has natural interpretation of being perturbutive quantum corrections due to
pmogeneous quantum uctuations around FRW background. The effective scalar

iatter Hamiltonian is given by

HS = S 1Fp)Fpa? + piVie) . (5.4.2)

Mlu

pol= Vome) is the field momentum, F_,_;{p] is the eigenvalue of the inverse
nsitized triad operator p!and is given by I_TI',..-I,IE ) = (p;)7 Filp/p;) where p; =
';"::' ofl2: The j and | are two quantization ambiguity parameters [47, 48], The half
ger j is related with the dimension of representation while writing holonomy as
ultiplicative operators, The real valued I (0 < I < 1) corresponds to different,
assically equivalent ways of writing the inverse power of the densitized triad in

s of Poisson bracket of the basic variables. The function Fj(g) is given by [30)]

3 oo 4
Flg) = [2“_#2]“.;1”([E+l}{{r;+1)’ 2= lg=1] z}
(1+2)g {(g+ V™= sgnlg— 1)jg— 1"} )
— rg_] (g = 1)
. 3q L
— [m} (0< g&1). (5.4.3)

ression (5.4.3) it should be noted that for large values of the densitized triad

¢ in the large volume one has the expected classical belaviour for the inverse
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fensitized triad. The quantum behaviour is manifested for smaller values of the
sitized triad, Here the meaning of large or small values of the triad p is deter-
mined necessarily by the values of p;. The quantum mechanically allowed values
rthe ambiguity parameter [ is (0 < { < 1), Now one should also note that if one
ke the ambiguity parameter value | = 2 then the small volume expression (5.4.3)
nes same as the large volume expression. In other words, here taking ambignity
ameter value | = 2 i equivalent of taking large volume limit 1.¢. classical limit.
observation will be very uselul in fixing the cholce of vacuum while computing
oint density correlation function in this effective backerotme.

“In loop quantum cosmology py and p; represent two important (square of) length
e, py demarcate the strong quantum effect regime (non-perturbative regime) from
'-_’—_J quantum effect regime {perturbative regime) of the gravity seefor whereas 7
gemarcate the same [or the matter sector, Since ambiguity parameter j = 3, 80
{ follows from their respeetive definition that iy = pge Naturally, non-perturbative
gedification of matter sector can survive longer than the same for the gravity sec-

o depending on the value of the ambignity parameter j. We have mentioned

er that to compute power spectrum of density perturbations we will use similar
jechniques used in the standard inflationary scenario. In this approach one treats ge-
etry as a classical object whereas matter fields living in it are treated as quantum
ts. Thus sell-consistency of this framework requires that we should consider
egime where g > py in our caleulation. In this regime the gravitational part

the Hamiltonian constraint becomes same as the classical Hamiltonian with small

uantum correction. The reduced effective Hamiltonian in this regime is given by

i
S i
Ht'ﬁ' - _ 5 R 3 — =]
2 YBI— SecP

=4

b=

+ HIF, (5.4.4)

4

e loop quantum cosmology induced inflationary scenario persist as long as den-
d triad p remains less than p;. Thus we will be interested in computing
giwer: spectrum of density perturbations in the regime (py << p < p;). In this
gime the effective energy density and pressure are given by o = p- :JEH;” and

GHER . . .
& t(2p ==} [31], It can be checked ecasily using relation between scale
fp

=

for and densitized triad that these definition satisfy standard conservation equa-

| i
525/




.-i.'i_a = =3(p" + P"). Furthermore one can recover standard expression of
density and pressure using the standard scalar matter Hamiltonian H, in
f the modified scalar matter Hamiltonian 57 in these definition. Tt is shown
that the effective equation of state w™ 1= P/ cun be expressed as a

on of standard equation of state w and the densitized triad p

g 3 dF, yip)
1 T ¥ __L_Lp
ey, Gt (1- g ee)

s (5.4.5)
[1 +l.lJ:]j'J‘j [f‘_.lllfl:.:p}]i -+ [1 —u.-']

' g the expression (5.4.3) it is easy to sce that for the large values of the
ized triad p, where one expects the quantum effects to be small, w = W
5 for small values of p the w7 differs from the classical w dramatically. In

eff

apter we will be interested in the situation where W™ = ~1 (for p < p;),

requirement will automatically be satisfied if at the end of loop quantum cos-
induced inflation the radiation or matter domination or even another phase
felassical acceleration (i.ew = 1,0.< —3) begins. Thus, during loop quantum

plogy induced inflationary period one can express the matter Hamiltonian as

4

H 2 mpr (5.4.6)

¢ ¢ is a constant of integration. Phyvsically g corresponds to the mazimum
density that can be ‘stored’ in the effective spacetime. This also defines

energy scale associated with the loop quantum cosmelogy induced inflationary

It has been shown in [36] that the effective loop quantum cosmology exhibits a

eric bounce with non-zero minimum proper volume. It follows from the equation

and the equation (5.4.6) that the minimum value of the proper distance Lg,
85 L := Prin = plHT = 0: K = 0), is given by

ey

L-”‘Z P
1+ 3|I'-j

(5.4.7)

lonsistency of the expression (5.4.7) requires py << Prn < By
tandard cosmology one uses the seale factor as geometric variable. In izotropic

pquantum cosmology, the basic variable is densitized triad p defined as p? =
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} V=g = 'V, where 1} is fiducial coordinate volume. Clearly the densitized
P-‘hﬂre is a dimensionful gquantivy whereas the scale factor a is dimensionless.
o, absolute value of the scale factor is physically irrelevant. Rather what matters
atio of scale factor at two different period. Naturally there is a freedom left
ng the scale factor with the densitized triad, We define the relation between
e factor and the cigenvalues of densitized triad operator such that for small
e limit

i i) = gy ge) (5.4.8)
wve mentioned earlier that taking ambiguity parameter value | = 2 is eqquivalent
-_r_-:ln; large volume limit of the inverse densitized triad spectrinn. Clearly in our
of definition the scale factor takes the value @ = 1 at the transition point
non-perturbatively modified matter sector to the standard matter sector. For
STEgImE p < py one can approximate the effective equation of state (5.4.5) as

|

(1+w) ~ ¢ (#) g?t-m (5.4.9)

O, = 2(1) and n = —3(1 + &), The last two terms in the effective
pmiltonian constraint (5.4.4) are comparable near bounce point. However once
ensitized triad p starts increasing then it is clear from the equation (5.4.4) that
i contribution from quantum geometry potential quickly drops out compared to
atter Hamiltonian (5.4.6). Naturally for the region away from the bounce

oint one can write down the Hamiltonian constraint (H™ = 0) in terms of the

factor as
. 2
it
3 (—) ~ Bwl3 7, (5.4.10)
s
fiere we have used the Hamilton's equation of motion p = ’:ﬂj{{u The equation

10} is nothing it the usual Friedmann equation. Using the equation (5.4.7)

equation (5.4,10) we can define a dimensionless quantity

2 1
2r\® f p 3 _
ol—] 'j'.l'i" = 47w + -
g = 2aHLj 1 (3) (,”r;) . (5.4.11)

e G = M 2. This will be a useful quantity in caleulation of power spectrum.

we consider the sitnation where py << Lf, < pj i€, bounce occurs at a time
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then proper volume of the universe is much larger than the Planck volume. Thus
clear that ¢ is much smaller than unity (o << 1) during the loop quantum
gsmology induced exponential inflationary phase.

TFrom the definition of FRW metric (1.1.1) it follows that the proper distance
quare say d”(a. '), between iwo points separated by coordinate distance ' on a
i spatial slice (dt = 0) is simply d*(a, ') = (a I')2. In other word, in the classi-
il '.’.g_mmﬂtr}' the proper distance hetween two points i simply ‘coordinate distance
imies the scale factor’. In classical case one can choose coordinate distance separa-
bitrarily small. Naturally the proper distance between twa points can become
arily small, In loop quantum cosmology the basic variable is a densitized triad
stead of the usual metric variable. Further in loop guantum cosmology, one rede-
fies the densitized triad by absorbing component of the fiducial coordinate volume.
fiis makes the proper volume of the universe to be just p%, In case of eflective loop
gantum cosmology, we have seen that there exist a non-zero minimum value for
e densitized triad p. To incorporate such feature in the definition of the proper
ce in effective loop quantum cosmology, we introduce the notion of effective
gordinate length (*“(a,!'). The proper distance between two points separated by

jordinate distance I is defined as
nﬂ“:”} = (a f-‘rff:lf-! 2ot L%_._ (1 fI]E ) (5.4.12)

_.-effe::tive coordinate length keeps the usual notion of proper distance e, ‘vo-
dinate distance times scale factor’ intact and incorporate feature like zero-point
'}'::'-- length, Although. it is an ad-hos notion but it allows one to use the stan-
‘machinery while computing power spectrum of density perturbations and acts
fan ultra-violet regnlator of standard quantum field theory. For large volune (ie.
:'.large]l this definition is virtually equivalent to the standard definition of proper

gtance as Ly is very small (a few Planck units).
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Modified Klein-Gordon Equation

pave mentioned carlier that the kinetic term of the sealar matter Hamiltonian
non-perturbative modification as its classical expression invalve inverse powers
densitized triad. The effective scalar matter Hamiltonian obtained as outlined in
e previous section is given by

Vol Fral)] / d's [H +Vy Sph f d's Efwf] LV / &z V()] .

' ' ‘ (5:5.1)
s Inuld be noted that we have now kept the gradient term in the effective Hamil-
n. Earlier while computing background evolution the gradient term was ne-
ed as one assumes that the background evolution is mainly determined by the
ngencous and isotropic contribution of the matter Hamiltonian, I other words
g inhomogeneity 1s assumed to be small, Using the Hamilton's equations of mo-
pn for the effective Hamiltonian (9.5.1) one can derive the corresponding modified

lein-Gordon equation, given by

iy ¥ ]- {Il k I"J._,__-'I_ ?_)fﬂ Y ‘
o — a3 m E (o I o A —'—L_E_E—-Fif ftﬂ = “:15.2]

we have substituted eigenvalue of the inverse triad operator by scale factor
g the deflinition (5.4.8). It is easy to see that if one takes the value of the
ilguihy parameter [ = 2 then the modified Klein-Gordon equation (5.5.2) goes
ek to the standard Klein-Gordon equation (5.2.6),

‘The non-perturbative modification of the scalar matter Hamiltonian which is
s studied here, comes from the bounded spectrum of the inverse scale factor
erator. Since the modification affects the kinetic term of the scalar matter Hamil-
guian, it essentially atfects all the modes. It can be seen from the equation (5.5.2)
iwell. This modification is distinet from the other Planck scale effects studied in
jefiterature. For example, in the context of trans-Planckian inflation [63, 64], one
s the passible effects of Planck scale modification of the dispersion relation or

possible effects of the space-time non-commurativity [65, 66).
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=6 Modified Mode Functions

Wsing the expression for the quantized scalar feld (5.2.7) like in standard case one

tan derive the modified mode funetion equation for the scalar field

i 1 g o j2 me 3
fk = 3 (m) (;) f.l' T “‘j-l-ji.' = (W—F H_Iz) f}; =) 'L_}[rl:l

One can easily check that for | = 2 (i.e. the classical casc) the modified mode

jon equation goes back to the standard mode-function equation (5.2.8). To
gompute the power spectrum it is essential to know the solutions of the mode Tune-
fon equation (5.6.1). For simplicity we will neglect the mass term e, we will
G {Tfrﬂ >> =2, To simplify the mode function equation (5.6.1] further, we

make change of variables as follows
fei=a"fi; dt = ady (5.6.2)

with the value of n = —1{1+7%). Inloop quantum cosmology allowed values for the

ambiguity parameter is (0 < [ < 1) whereas the classical situation can be obtained

* by taking 1 = 2. In terms the new parameter n, the classical situation

grresponds to n = 1 and quantum situation is described for (—o¢ < n < —2). One

ey note here that for n = 1 the new variable n = —— hﬁu,, is nothing but conformal

fme, In terms of these new variables (5.6.2) the mode function equation {(5.6.1]
HINES

3 = EAD rqy AAE

an? 2n n dy ik

llie equation (5.6.3) is a modified expression of Bessel differential equation and

inits analytical solution of the form [67]
fi = nis [a‘lik.n]J_“.- 2ytAm) + B[k.n}lf[i_p%][ltf-r”] : (5.6.4)

here Ageqy and By, are two constants of integration corresponding to second
der differential equation of the mode-funetion.
To fix these constants of integration we require that for large valumes (n = 1) the

podified mode function reduces to the standard ‘normalized’ mode fuuction (5.2.9).

G6



= . ' i i . 1% "
iee the standard mode function (5.2.9) are already ‘normalized” to pick out the
-Davies vacuum then this requirement will automatically fix the choice of

seuum in effective loop quantum eosmology, This fixes the mode function solution

—_

(5.6.5)

b n+2 I
j;. — |:—'|"!H ‘||'.' 4&! 't"r.-lr J'I 1,1 [ 1--:,,15:'{#”” -+ i II]—%}‘.’E’I?J

cos{z) and

g Bessel function identities J, (214 J,i(2) = %.}_.,[;r]i J_1=
E sin(r) one can easilv check that for n = 1 the modified mode function
5) reduces to the standard mode funetion (5.2.9).

.. shonld be emphasized here that in the expression (5.6.5) we have specifically
osen the power of ( “+ | to be L 5+ However, it is clear that for any arbitrary power
n_’—"a}—j, the mode function would reduce to the standard mode function. We have
this cheice precisely to absorh similar term coming from the effective equation
e(5.4.9) that appears in the final expression of power spectrum, In other words
e have chosen the vacuum state such that it satisfies Bunch-Davies prescription

mdthe computed power spectrum is free from trivial ambiguity parameter dependent

mltiplicative factor.

Power Spectrum

living known the exact solution of the mode function in principle one can eval-
he two-point density correlation function using the expression (5.3.2). Let
precall that we are mainly interested in finding out the power spectrum at the

me of horizon crossing i.e. ﬁ = 27. The argument of the Bessel [unction

k al—n . . o - . .
i ( = ) << | during horizon crossing. For super-horizon scale above in-
ty holds naturally: even for sub-horizon scale upto reasonable extent the same
.il.}‘ will hold since for effective loop quantum cosmology (—0c <= n < —2).
fice the asvmplotic form of the Bessel function is J,, (1) = NTJFTEFJF” forz << 1

en clearly the dominating contribution in the mode function (5.6.5) comes from
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term. So we will approximate the mode function as

n+_

fi —nH‘l\/hd (kn)'=% [J_1 4 m«.;ﬂ] , (5.7.1)

for further evaluation and will use its asvmptotie form for explicit caleulation.

'r|.

Using the cxpression of two-point density correlation function (5.3.2) and ex-
on of mode function (5.7.1) one can simply follow the similar steps as in [59]

o derive the expression of two point density correlation function

_ ’ g4 2 dil—m} ol H1—-n)
o) = (”T'__) 1 ”q | {:H_+ﬂ ]
3 225 (2r)7 (1 — E]_”]' (al’)® {al')®

i e iving the above expression (5.7.2), it is quite helpful to use the Bessel function

fentity = [x™J (7)) = —a"Ji_p(z) while evaluating time derivative of the mode
.“ (5.7.1). Now it is easy to check that for n =1 (i.e. classical mode function)
‘exprossion becomes qualitatively same as (5.3.3). However, we may note that it
ant:’ﬁaﬁucfy slightly different than (5.3.3). The source of this difference can be

‘back to the approximation that we have made. In the case of loop quantum

gmology the argument of the Bessel function &y = f?—” (“l ") << | at the time of

n crossing. Clearly the same does not hold for the standard case (n = 1).

e two point density correlation function (5.7.2) diverges as the “coordinate
;h"' [' goes to zero. This feature is rather expected from a calculation based on
rd quantum feld theory, However as we have mentioned that one can regu-
rize this expression using the notion of zero-point proper length which is naturally
ple in effective loop quantum cosmology. In section IV, we have introduced the
of effective coardinate length. This basically allows one to use the available
ehinery used in the standard case. Essentially this step summarizes the ultra-
et regularization of two point density correlation function. We define effective
i point density correlation function as the regularized form of the standard two

pitib density correlation function as
ceH(r ) = oy . (5.7.3)

Now we can evaluate the Fourier transform of the effective two point density

tis




gorrelation in usual way
los(t)* = / e G )

O a*i-n) 2H? gt
_ : Lo+ L] (574
( 3 ) 2% (92T = L) [ at a® 2} R

In
where the integrals [y and [ can be evaluated using method of contonr integration.

They are given hy

. / Bled! pledt ( o )’* Ly Ko
e I:‘n'z -p L_r'l'l}d a 4 .L[_] il '

; :[ dle*! et g\ Lo ko 1 (kL 3 —
S (12 4 13y 8 \lg a 3\ a '

The power spectrimn of density perturbations generated during inflation however

=]
b

§not directly observable. Rather the observed power spectrum corresponds to the
jensity perturbations at the time of horizon re-entry in the post-inflationary period.
i the intermediate period between horizen exit and horizon re-entry the density
ontrast 6(:= %f] remains almost constant for the super-horizon modes. Nevertheless
fiie to the change in equation of state of the total matter feld leads to a scaling of
lie amplitude of density perturbations. Super-horizon evolution in Bardeen's gauge
mvariant formalism [G8] of density perturbations leads to a rather simple formnla
or the evolution of density contrast

i
1+ w

—
i |
|
e |

S

Ok
I4+w

- ‘
t=ty =t

ihere &), 1= p"r.i“ 1 and ¢ ; are initial and final time respectively. The power spectrum

density perturbations at the time of re-entry is given by

B, . g oyt
I 'P.E“'} = ?nl_ztdk' reeenlty — A® ]+FU(EF}.ET) [5?8)
ere () = ;—;"1 + ,_ff’—::m] and the A? is given by
ar e Ut il to)e (5.7.9)

()2 T g2-Ern — L)

2n
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The quantity o, defined in (5.4.11), is given by & = dm ()" ({;—1)1 For the

ﬁ; << 1) the second term in the expression (5.7.8) is negli-

-hnri:mn modes (
compared to unity for the effective loop quantum cosmology (—oc < n < —2),
5 it is clear from the expression (5.7.8) that power spectrum of density per-

furbations is broadly scale-invariont as during the inflationary period the Hubhle

mbiguity parameter dependent, the expression of the power spectrum (5.7.8) de-
ds on ambignity parameter. However, it should be noted that this dependence
Srather weak. The ambiguity parameter dependent term in the power spectrum
5] — f;r ,'I'I varies only between 1 to 1.3499 for the range of ambiguity parameter
e (—oc < n < —2).

‘An important property of the power spectrum (5.7.8) is that A% ~ H? (& be-
small (1 + o} 7 = 1). This behaviour is exactly similar to the behaviour of
e power spectrum in standard inflationary seenario. This property of the power
jectrum will be very useful in comparison of spectral index between standard in-

flionary scenario and eflective loop quantum cosmology scenario.

7.1  Amplitude of Density Perturbation

ton [V, we have shown that the self-consistency of the framework that we
"mg; requires @ << 1. This requirement can be physically understood in the
lowing way. The effective continuum (classical geometrical) description is an
ent description in the loop quantum cosmology framework in which underlyving
gnietry is lundamentally discrete, Naturally the effective Hamiltonian description

W

| has been used in the chapter has a restricted domain, In 36,1t has been
: 4

gwn that the dynamics described by the effective Hamiltonian respects it own
1 of validity provided the permissible values of p is chiosen to be significantly
1 than unity when written in Planck units. In other words the requirement
<< 1, essentially defines the domain of validity of the effective Hamiltonian.

hcontrary, in a purely classical geometrical description (standard inflationary
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seenario) such restriction dees not arises as the description itself a fundamental
description of wature within the setup of general relativityv. Thus it is clear from
the expression (5.7.9) that in this scenario the amplitude for the power spectrum of
fensity perturbations is nafurally small. In other words, the small amplitnde for the
primordial density perturbations is a prediction of the framework of effective loap
quantum cosmology.,

1t should be noted from the equation (5.7.7) that if the equation of state is Very
to —1 during inflationary period then the amplitude of the density perturba-

s

ions gets a large multiplicative factor at the time of horizon re-entry. In the case of
iop quantuimn cosmology induced inflation the equation of state (5.4.9) indeed very
flose —1 as @ << 1 during its inflationarv period. However in this scenario, still ane
an produce small amplitude for the primordial density perturbations without fine
iming. One of the reasons behind this is the presence of the small factor o'~ in
wo-point density correlation funetion (5.7.2). The presence of this erucial small
fictor in the expression of the two-point density correlation funetion simply follows
he modified mode Tunetions of the scalar field.

nother interesting property of the amplitude (5.7.9) is that it containg an expo-
,.53-., damping term ¢, The damping term is insignificant hiere as @ is required
pbesmall. However if one naively takes the energy scale to be order of Planck scale
e then amplitude of the density perturbations will remain small as the exponen-
@l term becomes siguificant in that seale. In fact this was the main motivation lor
papers [59, G

:Eﬂﬁﬁﬂtifr,'rdf;r,r the small amplitude of the primordial density perturbations is read-
ipredicted but to have gquantitative estimate one needs to choose some value for
ssociated energy scale. Assuming density perturbation is adiabatic e it is
e as curvature perturbation, one can relate amplitude of the power spectrum of
- nsity perturbations to the CMB angular power spectrum as [ollows [69]

; 3N ¢ Ii+1)Ccw .
A = (5) 3T ETF , (5.7.10)

e | i3 the nultipole nunber of the angular power spectrum. We have also as-
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sumed that the relevant modes re-enter horizon during radiation dominated era.
The COBE data implies that &1_;;‘3 =~ 107", Using the expression (5.7.9) one
can easily deduce that o = 5.5 % 107 (we have assumed here that at the end of loop
guantum cosmology induced inflation, the radiation domination begins ie. €, = 4;
value of the ambignity parameter [ is chosen to be %]. It follows from the expres-
sion of o (5.4.11) that the corresponding encrgy density is p= (2.0 x 1074 ML) =
12,0 x 108 Gu"»’]l'l. The associated energy seale comes down slightly if one assume
it the end of loop guantum cosmology induced inflation is followed by o stan-
:,_ d accelerating phase [ For example, il one takes €, = f (w'= —,1“,} then the
worresponding energy density is g2 (0.8 % 1079 ML) = (0.8 x 1099GeV)),

The energy scale required to produce observed amplitude of density perturba-
fions in the effective loop quantum cosmology is not very different from the standard
tionary scenario where associated energy density s p = (2.0 x 10'°GeV)* [69].
[hen it is quite important to understand why is it necessary to fine fune field the-
gretical parameters in standard scenario to produce small amplitude. Here we have
ansidered a massive scalar field as the matter source. The energy density during
tandard inflationary period is p = 5 mZ ¢ In standard inflationary seenaria to
_}_Z,';-- sufficient. amount of expansion (to solve horizon problem and others) one
jeeds to choose the values of field to be ¢* = 104 IJ:? [69]. This in turns forces one
¢ the mass parameter to be my = 107°A,, in order to produce small ampli-
ide for primordial density perturbations. These fine tunings of field strength and
s term are not only severe but also extremely difficult to sustain under standard
antum field theory. Speeifically, sustaining such low mass parameter from loop
mections often requires new ingredients |70

In other words, in the standard inflationary scenario to get correct amplitude of
v perturbations, the required fine tunings are directly related with the method
pwhich inflation is realized namely the imposition of slow-roll condition. One the
hand. in loop quantum cosmology the inflationary phase is realized generically

nd not by imposing slow-roll condition. There is a physical understanding of

from the fundamental point of view. The famous singularity theorems tell us that
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in the cosmological set-up one cannot avoid initial singularity if the matter contents
always satisly the strong energy condition (equation of state w } Naturally to
avoid initial singularity the quantum gravity effects must drive the matter contents
fio effectively violate the strong energy condition, at least for small enough volume,
It has been shown that in loop quantum cosmology ane generically avoids singularity
gt the quantum level [22] as well as the effective classical level [36, 54, 57, Using
Raychaudhuri equation it is then easy to see that the violation of strong energy con-
.I:_'mls e w —% immediately implies an accelerating phase, In particular in [35],
it has been proved that for any positive definite scalar potential loop quantum cos-
mology indueced accelerating phase undergoes near exponential expansion. Thus, in
oo p quantum cosmology the realization of an early accelerating phase is intimately
lated with the removal of mitial singularity, In this scenario, the inHation is es-
sentially driven by the non-perturbative modification of the scalar field dynamics
mamely via the spectrum of the inverse scale factor operator. This inflationary phase
s as soon as the system gets into the small volume regime (non-perturbative
domain). Therefore, one does not require to fine tune feld strength to sufficiently
ill as done in the standard seenario. Consequently, one does not require to fine
une field theoretical parameters to produce small amplitude of density perturba-
ous. Rather, as is shown in this chapter, the small amplitude is a prediction of the
mmework that has been used in the caleulation.

:Nevm‘ihﬂieﬁs: one can impose sell-consistency requirement on the mass param-
#ter in this caleulation, Let us recall that in simplifving mode function equation

5.6.1) we have neglected the mass term 22 H compared to the term <, Since we are

f
flerested in caleulating power spectrum at the time of horizon crossing 2.e. h’;—u =2
fen to be self-consistent we must require that mg < 27 H. This in turns implies
Bt the maximum value of the mass parameter to be m, -~ = (;}_ﬁ. We may
ention here that in effective loop quantum cosmology 7 in fact is the maximum
ey density ie. (,{:‘u}% is precisely the cut-off scale. It should be emphasized that
e restriction on mass parameter here is a self-consistency requirement of the cal-

lation as solving the modified mode function equation (5.6.1) including the mass
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turns out to be not so easy a task,

2 Spectral Index

ar in the caleulation we have assumed that during inflationary period energy
sity is strictly constant. However, this was rather an approximation to simplify
he calculation. We can in fact compute the effect of small variation of enerey
ty. The small variation of Hubble parameter leads to a small deviation from
seale-invarignt power spectrutn. The scale dependent property of the power
trum is conveniently deseribed in terms of spectral inder, From the conservation
ation it follows that ﬁf = —3{1+uw) = —CL(n+2)a*""™. Using this relation

can compute spectral index at horizon crossing

: i d InPi(k)
M. — A B,
: dlnk
i M=) 2 11—m}
= Cal=n— 2}(ﬁ) + dey(l —-n](m) {8711

may note here that the spectral index n. is ertremely close to unity and the
grence (1. — 1) depends non-trivially on the ambiguity parameter, However.
ost important property of the spectral index (5.7.11) is (n, — 1) = 0 for all
llowed values of the ambiguity parameter (0 < [ < 1 de. —oo < n < —2). This
i complete contrast to the standard single-field inflationary scenario. We have
entioned earlier that the power spectrm for both the scenarios varies as H°. Far
ngle-field standard inflationary scenario the leading contribution to the spectral
‘deviation comes from the variation of Hubble parameter during inflationary

griod. So for the standard scenario the spectral index is given by

d InPs{k)
-1l == — = - TR
e — 1 Tk 6e, (5.7.12)

rpn 2 i
£ = m+r* (%) =47z % is the slow roll parameter of standard inflationary
genario. In fact due to the time variation of € there will be additional contributions
15.7.12). However, those will be sub-leading for single-field inflationary scenario.

for single-field standard inflatiomary seenario the spectral index satisfies (n, —
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In the standard method (indirect method) of obtaining power spectrum of the
density perturbations, one first computes the power spectrum of the field fluctua-
tions. Using the expression (5.7.1), one can compute the power spectrum of the field

fluctuations at the horizon exit

: e 1\ [n+2 0?2 :
Pslk) = =lfl = (—) , s H*, (5.7.13)
2m? 2m it I'{- 51;;)

ich is scale invariant. In the standard inflationary scenario, this would have lead
10 & scale invariant power spectrum of densify perturbations, However, we have
1. mentioned that this is not straightforward in the effective loop guantum
tosmology. This is due to the fact that it is not yvet well settled; how to obtain a
general effective action. consequently an effective stress-energy tensor from a canon-
uantum theory of gravity. This prevents one to compute the power spectrum
:.ausit.;,' perfurbations using standard method, as one needs to know the expres-
sion of the general effective siress-cnergy tensor, to relate the power spectrums of
feld fluctuations to the density perturbations. Nevertheless, one may naively as-
e that the power spectrum of field fluctuations and that of density perturbations
ill have similar relation, In that case. the computed power spectrum of density
urbations using divect and indirect method wonld differ from each other by an
gtremely weak & dependence. This difference would then be similar in nature to
e results of [59] in the context of the standard inflationary scenario. However
difference would at most affect the quantitative nature (that too by a vanish-

TE

jr:smﬂll amount) but net the qualitative nature of the spectral index (5.7.11)
itsoever.

‘Thus it is clear that for effective loop quantum cosmology induced infationary
mario the spectral index has a qualitatively distinet feature compared to that of
gle-field driven standard inflationary scenario. In the next sub-section we discuss

sobservational consequences.




7.3 Observational Implications

Ihe power spectrum of deusity perturbations generated during inflationary era is not
eetly observable. Rather the observed power spectrum corresponds to the density
perturbations at the time of re-eniry in the post-inflationary period. At the time
re-entry larger wavelength (20k71) enters the horizon at later time compared
0 the smaller wavelength. Tt is clear {rom the expression (5.7.7) that if there is
;f: nge in the equation of state of the universe during re-entrv then there will
e an additional modification of the power spectrum. Since we are interested in
mating the original power spectrum generated during inflationary era then its
uite important to avoid additional modification of the power spectrum coming from
possible sources.

' The observed anisotropy in the CMDB sky corresponds to the density perturba-
ions on the last scattering surfoce. The last scattering surface broadly demarcate
nd of radiation domination era to the beginning of matter domination era. Nat-
pally during this period (1+w) changes from § to 1. While deriving the expression
_,1'1] of the spectral index we have assumed constant equation of state during re-
.s'; . Thus for the purpose of comparison with ohservations, one must consider only
modes for which the equation of state was almost constant during re-entry.
scattering surface they will corresponds to the modes which are well inside
horizon at the time of decoupling. Being smaller in wavelength these mode will
-j_'. nd smaller angle in present day sky. Naturally these mode will corresponds
gthe higher multi-pole number. Also if one considers sufficiently narrow bands in
se part of spectrum then one can avoid additional modification coming from the

i-horizon evolution of density perturbations in the period between their re-entry

I

the decoupling,

To infer the property of primordial densitv perturbations from the observed an-
lar power spectrum of CMB. one needs to know the evolution of the universe for
ieriod between the decoupling and the present day universe. Since major frac-
n of today’s energy density is believed to be coming from mysterious dark matter

0 dark energy then it is quite obvious that there will be a considerable influence
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._-them on the inferred primordial power spectrum, The current observational esti-
mate of spectral index based on WMAP+SDSS data is n, = 0098 +£0.02 [71, 72, 73].
This estimate is based on the entire part of the observed angular power spectrum
gevertheless this agrees (rather marginally) with the expression of the spectral in-
':. {5.7.11) whicl is strietly valid only for the part of the spectrum in the ligher
multipole region. For this purpoese, it may be more convenient to reconstruct the
primordial power spectrum using observed CMB angular power spectrum (for ex-
ple as done in [74, 75, 76, 77]) and then consider the higher wavemumber part of
I‘l SpRCETUnL

Discussions

.summar}'. we have computed the power spectrum of density perturbations gen-
rated during loop quantum cosmology induced inflationary phase. The resulting
er spectrumm is broadly seale-invariant. Further it is shown that the small ampli-
1 _ for primordial density perturbations is a natural prediction of the framework of
ifective loop quantum cosmology. Unlike standard inflationary scenario, here one
iloes not require to fine tune field theoretical parameters to produce small amplitude
ensity perturbations, The resulting power spectrum also has a qualitatively dis-
it feature compared to the standard single-field inflationary scenario. The spec-
:__'index in the effective loop quantum cosmology scenario satisfies (n, — 1) > 0
hereas for the standard inflationary scenario it satisfies (n, — 1) < 0.

Naturally, the spectral index of power spectrum for density perturbations gen-
during the loop quantum cosmology induced inflation and the standard in-
ftion differs from each other in a non-trivial and non-overlapping way. This is a
ansequence of the fact that during loop quantum cosmology induced inflation the
fubble horizon shrinks marginally whereas in the standard inflationary scenario the
fubble horizen expands. This feature leads to the power spectrum for the corre-
monding density perturbations to be tilted in opposite directions to each other. We

e argued that this feature is a generic property of the corresponding scenario
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and not a property of some particular model. We have also pointed out the part of
the observed CMB angular power spectrum that may be better suited for testing
tlis particular feature observationally, namely the part corresponding to the higher
imultipole numbers of the CMB angular power spectrum.

The computational techniques used here are analytic within the adopted frame-
work and the approximations used here are mostly justified. Nevertheless one should
tkeep it in mind that this calenlation itself should not be considered as the first princi-
ple caleulation of density perturbations within loop quantum cosmology, Rather this
walculation Is based on effective loop guantum cosmaology. Here we have cousidered
the non-perturbative modification of kinetic term of the scalar matter Hamiltonian,
fnafirst principle caleulation (using inhomogeneous model), one may naively expect
et corrections also in the gradient term of the matter Hamiltonian. This mod-
:_'!_-’ ation should depend on some ambiguity parameter similar to that of {. Here if
§shown that the ambiguity parameter | dependence of the amplitude of the power
spectrum is very weak. So the effect of such possible modifications on the amplitude
af the power spectrum is expected to be rather small. The effect on spectral index
Balso expected to be small as it is mainly determined by the background evolution.
1IL it is very likely that the caleulation presented here should be a sood approx-
imation of what is expected from a first principle calculation in the energy scale
pncerned,

- We have nsed direct method to compute the power spectrum of density perturba-
;_':’n . This method uses the techniques of standard quantum field theory. Naturally,
e needs to have some kind of ultra-violet divergence regularization prescription.
[o regularize the ultra-violet divergence we have used the method outlined and ex-
plicitly shown in (59, 60]. This method relies on the assertion that a proper theory
;j;u antun gravity should contain a zero-point proper length. In the effective loop
itum cosmology such length scale s naturally available. In this method, regnlar-
gation is essentially carried out by adding a zera-point proper length to the standard
fefinition of proper length. In this chapter the procedure was notationally simpli-

pd by using the notion of effective coordinate length. Nevertheless regularization
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procedure was carried out by hand. However, this was expected as the caleulations
here were done using standard quantum field theory, On the other hand one would
gipect that in a first principle caleulation these regulator should come buslt-in as it
s been argued in the contest of full theory [62]. The erncial result of the chap-
ter namely the properties of the spectral index are insensitive to the regularization
method as it is dominantly determined by the nature of the effective equation of
ate during its inflationary phase.

In standard imHationary scenario one is also interested in computing power spec-
tm for tensor mode of the metric fluctnations ©.e. gravitational waves, However,
s we have mentioned that the technology required to deal with inhomogeneity at
findamental level in loop guantum cosmelogy is not vet available. In loop quantum
vitv approach geometry is quantized in non-perturbative way, Thus it is not easy
o'zuess’ the structures of the quantum fluctuations of geometry until one carries
gut explicit computations within the framework: One would naively expect that the
gower spectrum for tensor mode perturbations should be similar to the standard
enario as the structure of the effective gravity sector Hamiltonian is similar to the
tassical Hamiltonian in the relevant length seale. Also, the energy scales of the
wrresponding inflationary periods are similar.

Now belore we discuss the implications of possible outcomes of mentioned obser-
gtional test, let us have a comparative study of standard inflationary scenario and

jop quantum cosmology induced inflationary scenario. In order to have a successful

.f:_'i: in the standard scenario, generally one requires multi-level of fine tuning
iifield parameters. In other words one faces several kind of naturalness problems
pachieve a successful infation.

The firsi one is to start inflation. In standard inflationary scenario it is needed

hoose initial field velocity to be sufficiently small so that the equation of state
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the initial field configuration sufficiently wphill in the potential. In other words, one
sequires 1o fine tune initial field configuration. The fourth one is to end fnflation. In
many cases this requires sort of potential engineering to have a long flat platean and
then u fast foll-off in the potential profile. The fifth one is to produce small ampli-
tude for primordial density perturbations. To produce observed small amplitude of
density perturbations one needs to fiue tune parameters of the field potential. This
fine tuning is basically required to compensate the ‘third’ fine tuning.

On the other hand, to achieve the first, second and fourth requirements in loop
iuantin cosmology induced inflationary scenario one does not require to fine tune
fhe parameters.  These requirements arve naturally achieved as they simply follow
fom the spectrum of the inverse scale factor operator. The fifth requirenient ¢ e
mall amplitude, as shown in this chapter, is a natural prediction of effective loap
quantuin cosmology. The situation regarding the third problem also gets improved
:}-u ificantly. In the loop quantum cosmology, the senerated amount of EXPalsion
B controlled by the ambiguity parameter . (.‘-inar]_}f to produce sulliciently laree
mpansion, using loop quantum cosmology alone, one will require to choose the
ive of j 1o be large. Thus it i5 very likely that only the initial part of the inflation
s driven by loop quantum cosmology modification. It has been argued in [34, 56,
B, 111, 112] that the loop quantum cosmology induced inflat ionary pliase can lead
secondary standard inflationary phase. This follows from the fact that the in-
jilt inflationary period of loop quantum cosmology can produce favourable initial
ditions for an additional standard inflationary phase. In [56], the authors have
150 studied the possible effects of the above mechanism on CMB angular power
peetrum generated during the standard inflationary phase that follows the LQC
diced inflationary phase and shown that it can lead to suppression of power in
e low CMB multipoles. Since the ohserved part of CMB angular power spectrim
gierally corresponds to early period of inflation then it may well be the situation
here the observed part of the CMB angular power spectrum corresponds to the
bp quantum cosmology driven inflationary period.

At is worthwhile 1o emphasize that high amount of expansion in this scenario is
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required not Lo solve horizon problem (being non-singular this model avoids horizon
problem 35]) rather to avoid a different kind of problem. We have seen that the
fpitial size’ of universe was typically order of Planck units and the corresponding
gnergy scale was also typically order of Planck units, During relativistic particle
(radiation) dominated era energy scale falls of typically with inverse power of the
associated length scale. 1t is then difficult to understand why the universe is so large
[~ 10°0L,) today but still it has relatively very high energy scale (~ 107004, ).
During inflationary period. on the other hand, the energy scale remains almast
tonstant whereas the length scale grows almost exponentially with coordinate time,
It is clear that we can avoid this discrepancy between eneray scale and length scale
he universe provided there existed an inflationary period with sufliciently long
fliration in early universe.

Now if the observed power speetrum turns out to be not in agreement with
the computed power speetrun, then one should conclude that the phase of inflation
wrresponding to the observed window could not possibly be driven by loop quantum
smology modifications alone, It mav then restrict the allowed choices for the
:__iguir.j.' parameter j. Consequently it will be an important issue to understand
.':-. the framework of iselropic loop quantum cosmology with minimally coupled
matter field, why the cbserved universe todav is so large but still it has

ulficiently high energy seale.
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Chapter 6

Energy Conditions and Stability

6.1 Introduction

i general theory of relativity, dynamics of a spacetime is influenced by matter
shress-energy tensor. Naturallv, many properties regarding spacetime evolution can
.mncluded.assuming some general properties of the matter stress-energy tensor,
without having to know the details of the individual contributions from different
patter sources, These requirements on the matter stress-energy tensor, widely called
nergy conditions, have been used to prove several important theorems in classical
general relativity. One such theorem, the Hawking-Ellis conservation theorem [1, 44]
= that if the matter stress-enersy tensor is conserved, satisfies dominant energy
pndition and vanishes on a closed, achronal (no two points can be connecied by
imelike curves) set S then it also vanishes in the domain of dependence (complete
it of events for which all conditions are determined by specifying conditions on 5)
DS) of the set. Physically, this theorem ensures the stability of classical vacuum. As
mentioned. the conservation theorem stands true provided the matter stress-energy
insor satisfies the deminant energy comdition. This condition requires local energy
finsity to be non-negative for all time-like observer and the energy-momentum 4-
irrent Lo bie non-spacelike t.e. the speed of energy-flow should not be exceeding the
eed of light. Naturally, the violation of dominant energy condition raises concern

bout the causality and the stability of the system, However, it is worth pointing
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ut that the above theorem does nof have the converse i.e. although the dominant
inerpy condition satisfying matter ensures causality and stability of the system
but violation of this condition does not necessarily imply that the system violates
pausality or is unstable (sce for example [45]). In such a situation, these issues shonld
be considered for the specific context, as dominant energy condition violation and
e Hawking-Fllis conservation theorem no longer vouch for the causality and the
ity of the svsten.

1n the cosmological context, the issue of dominant eneray condition violation has
lequired significant importance in recent literature. The observational evidences
-,-E{}] seent to suggest that in our universe major fraction of the energy density is
ontributed by some kind of mysterious dark energy that exerts negative pressure,
The experimental data in this context not only allows but often favours the values
i the equation of state parameter to be less than —1 for the dark energy component
8l, 82, 83, 84, 85, &6, 87, 88, 89, 90, 91, 92]. Such values of the equation of state
parameter require violation of dominant energy condition. This makes the problem
if the dark energy even mare severe which is otherwise itself a major theoretical
thallenge in the present dav cosmology (93, 94. 95, 96, 97, 98]. A popular proposed
model for dominant energy condition violating dark energy is so called phantom
matter [81. 99, 100, 101, 102]. The phantom matter is essentially a minimally coupled
palar field model but with relatively negative kinetic term ( but see [103, 104,
05, 106, 107] for other possibilities), Naturally, the classical Hamiltonian for the
hantom matter becomes unbounded from below. Such unbounded Hamiltonian
sentially leads 1o a classically unstable system, as ground state of such system
pushed to negative infinity,

‘Apart from the mentioned observational indication of violation of energy con-
fition, there are in fact theoretical reasons to argue that some of these Cnergy
pnditions in general relativity, should be violated in appropriate regime. One such
sson behind this, is the existence of another important set of theorems, so called
mgularity theorems, These theorems tell us that if the evolution of a globally Liy-

gtholic spacetime satisfies Einstein equation and the matter stress-tensor satisfies
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0 called strong energy condition then the backward evolution of such an expanding
spacetimie is necessarily singular, in a sense that the spacetime is geodesically in-
complete. However, the appearance of singularity in a classical theory is generally
considered as an attempt to extrapolate the classical theory beyvond its natural do-
‘main of validity, rather than considering it as a property of nature. Near the classical
singularity one expects the evolution of the spacetime to be governed by a quantum
theary of gravity, as classical description signals its own breakdown. Further, one
aso believes that a proper theory of quantum gravity should resolve the singularity
that appears in the classical general relativitv. Naturally, one wonld naively ex-
:_t that the quantum effects of such theory should force the matter contents to
effectively violate the strong energy condition when its dynamics is viewed as an
molution of pseudo-Riemannian spacetime,

In effective loop quantum cosmology, non-perturbatively modified dynamics of a
minimally conpled scalar field violates weak, strong and dominani energy conditions
when they are stated in terms of equation of state parameter. The violation of
strong energy condition helps to have non-singular evolution by evading singularity
__1‘131115 thus leading to a generic inflationary phase. However, the violation of
weak and dominant energy conditions raises concern, as in general relativity these
nditions ensure causality of the system and stability of vacnum via Hawking-Ellis
tonservation theorem. In fact several important features of loop quantum cosmalogy.
iave been showit in literature, crucially rely on the effective classical description.
aturally, in the effective loop quantum cosmology, the violation of dominant energy
wndition raises concern. In particular, whether such effective classical deseription
gspects causality. In the cosmological context, any communication across spatial
tances introduces inhomogeneity. So it is a natural concern to check whether
e propagation of inhomogeneous modes respects causality. Also, whether sucl
bminant energy condition vielating effective description ean ensure stability of the
enum, as the Hawking-Ellis conservation theorem no longer guarantees for the
wme (see also [113. 114] for related discussions).

n section 6.2, we briefly review the definitions of relevant energy conditions used
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'_ general relativity. In particular. for the cosmological context, we discuss the re-
guirements on the equation of state parameter due to these energy conditions, In
the next section, we discuss the properties of the equation of state parameters for a
minimally coupled scalar field and also for the so-called phantom matter model of
_‘_k energy. In the section 6.4, we study the properties of the effective scalar mat-
'_ Hamiltonian, In particular, we show that the kinetic term due to the modified
dynamics, contributes negative pressure even though it contributes positive energy
density. This crucial feature essentially leads to violation of dominant energy condi-
tion iu terins of the equation of state parameter but it also ensures a hounded (from
E]m;:ar} scalar matter Hamiltonian, In the next section, we derive a modified disper-
sion relation for the inhomogeneous modes due to the modified dynamics. Then we
show that the group velocity for the relevant inhomogeneous modes remains sub-
dnminal thus ensuring eausal propagation across spatial distances. We also compute
he quantum corrections to the group velocity for a massless free scalar field at large

yolume.

6.2 Energy Conditions in General Relativity

The energy conditions, often regarded as sacred principles [115], were mostly pos-
lated to prove several important theorems in classical general relativity, A few
mportant armong them are the so called singularity theorems and conservation the-
rem. In this section, we will briefly recall the delinitions of some of these energy
nditions. In the cosmological context, these energy conditions can be essentially

ated in terms of the energy density and its relation to the pressure component e

e equation of stale parameter. We will mainly follow the convention of Wald [1].

2.1 Weak Energy Condition

o 4 given matter stress-energy tensor T, the quantity 7,,6'6" physically rep-
wents local energy density for an observer whose 4-velocity is £¥ at a spacetime

pint. The weak enerqy condition is physically interpreted as the requirement of
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non-negativity for the classical energy density, Naturally, the weak energy condition

is stated as

T €' >0, (6.2.1)

for all time-like £, Assuming that the stress-energy tensor can be diagonalized ¢
can be written as Ty = p by + P 2,0, + P gy + Py 2,2 where {89, 20y, 21}
isan orthogonal set of basis and # is time-like, the weak energy condition requires
p=>0and p+ P > 0for i = 1.2,3 where P is the principal pressure. For the
Bomogeneous and isotropic spacetime these requirements can be conveniently stated
i terms of the equation of state parameter w = P/p as w > —1 and the energy

densitv o =10,

6.2.2 Strong Energy Condition

A crucial requirement on the matter stress-energy tensor, for the singularity theo-
iems to hold, is that it should satisfy so called strong energy condition. This energy

gondition requires matter stress-energy tensor to satisfy
T .ghgy ! a7
T8 = _ET : (6.2.2)

or.all unit time-like €4, Assuming diagonal form of the stress-energy tensor, the
drong eneray condition requires p -+ ZL‘ Pizland p4+ P =0for:= 1,2 3. For
e homogencous and jsotropic spacetime, these requirements in terms of the energy
ity and equation of state parameter can be stated as p > 0, w > —1. One
liay note here that the violation of strong energy condition which is necessary for
pn-singular cosmological evolution., implies an aceelerating phase in its evolution

fie Ravehaudhuri equation.

(2.3 Dominant Energy Condition

e Hawking-Ellis conservation theorem requires matter stress-energy tensor to sat-
iy s0 called domanant energy condition. This condition requires local energy density

) be non-negative for all time-like observer and loeal energy-momentum 4-current
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e =18 to be future directed, non-spacelike for all future directed, time-like £4.

So the dominant energy condition is stated as
T € 20 1 T,&THe? <0 . (6.2.3)

The second requirement can be physically interpreted as the requirement on matter

ess-energy tensor such that the speed of energy-flow does not exceed the speed of

light. Assuming diagonal form of the stress-energy tensor, the dominant energy con-
dition requires p > |F| for 1 = 1,2.3. In other words. the energy density is required
0 dominate the pressure components. For the homogeneons and isotropic space-
_e. these requirements can be stated in terms of the equation of state parameter
is lw| < 1 and energy deusity p > 0.

Apart from the above enerev conditions, there are few more energy conditions
it can be seen in the literature. For example, so called nuwll energy condition

fquires matter stress-energy tensor to satisfly T, ntn” = 0, for all null vector n*,

§,3 Classical Scalar Matter Hamiltonian

In the cosmological scale, our universe appears to be spatially flat, homogeneons
and isotropic with a very sood precision, The invariant distance element in such

gpacetime (using naturel units de. ¢ = k= 1) is given by Friedmann-Robertson-

el as the matter source. The dynamics of such scalar field is governed by the action
52.1). Let us recall that we are mainly interested in studying the effects on the
field dynamics, due to the non-perturbative modification coming from loop
pantum cosmology. In the canonical guantization, as in loop quantum cosmology,
ge treats Hamiltonian as a basic object that governs the dynamics of the system.
s, for our purpose it is necessary to have the expression for the scalar matter
familtonian

- -

B —a ./.d:";r H?rg] + /d3xr [;{?rﬁ;]g] 4 g° l/.d“:f[lf(::h]] . 16.3.1)
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where a(f) is the scale factor and field momentum density 7, = a*o. In deriving
expression (G.3.1), it is assuwmed that the background geemetry is homogenenus,
isotropic and deseribed by the metrie (1.1.1). However, we have assumed that the
scalar field itself need nof be homogeneous. This approzimation greatly simplifies

the analvsis. Nevertheless, one should keep it in mind that it is trustworthy as long

s the deviation from homogeneity and isotropy remains small.

In loop guantum cosmoelogy, the geometrical quantities like the scale factor a here,
are represented through corresponding quantum operaters. While deriving effective
classical Hamiltonian from loop quantum cosmology, these geometrical quantities
effectively get replaced by the cigenvalues of their corresponding quantinm operators.
e kinetic term of the scalar matter Hamiltonian (6.3.1) involves inverse powers of
the scale factor, In loop guantum cosmology, the inverse scale factar operator Lias a
hounded spectrum. Clearly one can see that the kinetic term of the effective scalar
matter Hatuiltonian will involve non-perturbative modifications.

Given an arbitrary inhomogeneous scalar field in a spatially flat space. one can
deconipose it in terms its Fourier modes, In this case, the dynamics of the kb = 0
mode e, the spatially homogeneous mode will essentially drive the evolution of the
fomogeneous background geometry, as the contribution from non-zero & modes are

gsstmed to be small. So for the purpose of determining the background evolution, it

i sufficient to consider only the homogeneous mode. In other words, we will neglect

the contribution from the gradient term while evalnating the background evolution.

Naturally, the sealar matter Hamiltonian (6.3.1) reduces to

a1 I ”
Ho=p % 5p + p2V(9) . (6:3:2)

Where [ d*zy "G = a’Vu i= p? and pa(= Vim,) is the field momentum. It is
mportant to note here that we have absorbed the fidueial coordinate volume Vq (of
given finite cell) in the definition of the variable p, In loop guantum cosmology,
ke variable p is known as redefined densitized triad and it is one of the basic phase

‘© variables,
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6.3.1 Classical Energy Density and Pressure

In the Lagrangian formulation, one can obtain the expression for the general stress-

energy tensor by considering the variation of the action with respect to the spacetime

metric. Naturallv, one can use the general expression of the stress-energy tensor, to
obtain the reduced expression for the energy density and the pressure component for
the homogeneous and isotropie spacetime. On the other hand, in the Hamiltonian
formulation such direct method is not available. However, one can define the ex-
pression for the energy density and the pressure component m terms of the classical

Hamiltonian as

L ew ey B pus D32 s 1 (2pBH,
pi= E(,: +Vie)=p:H, . P:= :—zl::' - Vig)=—p2 (E Bp {5.33}

16.3.3) in terms of the scalar matter Hamillonian immediately ensure the matter

\onservation equation p= —3 (%) (p+ P) along the classical trajectories..

3.2 Classical Equation of State

In the cosmological context, the equation of state parameter is defined as the ratio

if the pressure componenl to the energy density as

- 142 3y
i e e 1“—{@-} (6.3.4)
! 0% + Vi)
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6.3.3 Phantom Matter Equation of State

As we have mentioned, in the phantom matter model of dark energy energy [81],
one consider a minimally coupled scalar field but with relatively negative kinetic
term. Thus, the energy density and the pressure component for the phantom feld

are given by

1. . 1 . .
MPhantom +— _E':’“ + 1‘ (U:I y PI"‘IHthDt:l e -'i;':p? e ] |:I‘l"-|]' 1 [{JJE}

%l_eeu:l:,i, the equation of state for the phantom field wWppamem (= Prhantam/ 2Phantom )
can take value less than —1. In other words, the phantom matter field violates
the dominant energy condition. Naturally. the Hawking-Ellis conservation theorem
does not guarantee for the stability of the ground state. In particular, using the
corresponding Hamiltonian for the phantom matter, one can easily see that it uo
1| remaing bounded from below. The unbounded (from below) Hamiltanian
rinu: ediately implies that there does not exist a classically stable ground state for

the systen.

6.4 Effective Scalar Matter Hamiltonian

'::'isut.rupif' loop quantum cosmology, the basic phase space variables are Ashrekar
gnnection and densitized triad. The geometrical property of the space is encoded
i the densitized triad p whereas the time variation of geometry is encoded in the
wnection. In loop quantum costology one redefines densitized triad to absorb
he fiducial coordinate volume component. This makes the proper volume of the
miverse (1.1.1) to be [dPzy—=g = d*V, = -p*l [17]. The effective scalar matter
Bamiltonian for the classical system whose dynamics is governed by the Hamiltonian

6.3.2), is given by [31]

. 5 i .
HT = ~|Fulp)|®pe” + p2Vi(o) . (6.4.1)

B2 ] =

here Fi(p) is the eigenvalue of the inverse densitized triad operator p—! and is

iven by Fi(p) = (p;) "' Fip/p;) where p; = $ofls. The pg is an order of unity
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|

E-parﬂnmt:rr that appears while quantizing the Hamiltonian constraint operator in
| loop quantum cosmology [17]. The j and ! are two quantization ambiguity parani-
|+ eters (47, 48]. The half integer j is related with the dimension of representation
| while writing holonomy as multiplicative operator. The real valued [ (0 < | < 1}
| corresponds to different, classically equivalent ways of writing the inverse power of
|

the densitized triad in terms of Poisson bracket of the basic variables. The function

'Fn[q) is approximated as [30]

= 3 A +2 _q |42
! = [EUHJ{&H);{“ 1 g+ 1) = g — 1)
(14 2)q {(g+ 1)~ sgn(g —1)lg— 11} ) ]
— g (g 1)
|
Efj‘ T |
— [H—J <g=l). (6.4.2)

It is clear from the expression (6.4.2) that for the large values of the densitized
friad i.e. in large volume one recovers the expected classical behaviour for the

dnverse densitized triad. The guantum behaviour is manifested for smaller values
5

\of the densitized triad. Here the meaning of large or small values of the triad p is
“determined necessarily by the values of p;. We will follow this convention throughourt

the chapter unless explicitly stated.

(4.1 Efective Energy Density and Pressure

Inthis chapter, we are interested in studying the effects on the energy conditions due
10 the non-perturbative modification coming from loop quantum cosmology and its
further implications. In the cosmological context, the energy conditions are stated in
=_-.| ns of the energy density and its relation to the pressure 1.e. the equation of state
rameter, In loop quantum cosmology, one obtains non-perturbative modification
at the level of the effective Hamiltonian but not at the level of an effective action.
‘I‘h prevents oue to directly obtain the expression of the effective stress-encrgy

tensor. On the other hand. in classical general relativity the energy conditions are

defined in terms of the stress-energy tensor. Naturally, the issue ol energy condi-
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tions violation in the effective dynamics, is crucially related to the definitions of the
effective energy density and pressure. In the classical sitnation we have seen that it
15 possible to write down the reduced standard expressions of the energy density and
the pressure (6.3.3) purely in terms of the reduced Hamiltonian. These definitions
of the energy density and the pressure immediately ensure the matter conservation
equation along the classical trajectories. Naturallv, one can use the same definitions
for the effective energy density and the pressure just replacing the standard Hamilto-
nian in terms of the effective Hamiltonian. So we define the effective energy density
“and the effective pressure, following the definitions of classical energy density and

pressure (6.3.3), as
o=y %H;ﬂ v P g | 22| (G.4.3)

It is worth paointing out that to define the effective energy density and the pres-
sure, one could have proceeded as done in [31]. In this approach one first obtains
the Hamilton's equations of motion for the matter degrees of freedom az well as
the gravitational degrees of freedom. Then one rewrites these equations of mo-
tion, by suitable manipulations such that a part of these equations matches with
the gravitational part of the standard Friedman equation and the Ravchaundhuri
equation. In the next step, one then reads off the expressions for effective energy
density and the pressure by comparing with standard equations. These expressions
of the energy density and the pressure agree with the definitions (6.4.3) when the
tontributions due to the non-perturbative modification of the grawty sector become
negligible. Since the effective Hamiltonian description is strictly valid in the region
where background geometry is essentially classical i.e. non-perturbative maodifica-
tion of geometry is negligible. Clearly, in such situation these two set of definitions
geree with each other. Tt is important to emphasize here that although the non-
perturbative modification of the gravify sector becomes negligible in the region of
interest but the non-perturbative modification of the matter sector can still survive.
In fact we are interested in studying the effects of non-perturbative modification of

sealar matter d}-’l‘!ﬂllﬂ[‘.h‘.
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6.4.2 Effective Equation of State

Having knowu the expressions of the effective energy density and the pressure (6.4.3).
one can easily define the effective equation of state parameter w7 .= P/ The
evolution of the effective equation of state parameter depends on the effective Hamil-

'trmiml. However, as shown in [33]. one can eliminate the explicit appearance of the

ceffective Hamiltonian and can express the effective equation of state parameter in

termis of the classical equation of state parameter w, as

i el ¢y )
(1 + w)pE[Fiip)]2 (] . ?Tfﬁ_ff;l_p)

(L+w)pd [Fa@] + (1 - w)

Using the expression (6.4.2), it is easy to see that for the large values of the densitized
triad p, where one expects the quantum cffects to be small, w0 ~ .. On the other
hand, for small values of p, W™ differs from the classical w dramatically. Using the
small volume (small triad) expression of the inverse densitized triad (6.4.2), one may
note that the effective equation of state satisfies (w1} < 0. for all allowed values of
the ambiguity parameter . Let’s recall that in terms of equation of state paramoeter,
;hn weak energy condition requires (w4 1) = 0, the strong energy condition requires
{u. i+ ,f_} = 0 and the dominant energy conditions requires [w| < 1. So it is clear that
in loop quantum cosmology, the effective equation of state parameter violates all of
these energy conditions due to the non-perturbative modifications,

|

6.4.3 Kinetic Contribution to Pressure

The allowed values for the classical equation of state (6.3.4), are restricted to be
| < 1. Naturally, it is an important question to ask how is it then possible
for the effective equation of state to take values less than —1, instead of the facts
that in both cases one beging with a mindmally coupled sealar field and uses the
e definition for the equation of state parameter in terms of their corresponding
Hamiltonian, The answer to this guestion lies in the fact that in eflective loop
guantnm cosmology, although one begins with a stenderd minsmally coupled scalar

field but for small volume this coupling gets altered dramatically,. The effective
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coupling remains menemal in a sense that it couples only through the geometrical
variables but not through curvatures. However, it is clear that the gravity coupling
to the sealar matter no langer remains standard minimal coupling as the spectrim of
the inverse triad operator differs from the classical expression dramatically for small
volume., To understand this issue better, let us have a look at the contributions due
|

' to the kinetic term to the pressure component Fig for both cases
B P I 4 TP il
Pep=—p 2 [— -"].—l-l_"i] . PR — 5 [~ 2}—
! SJU{.‘- dp ‘Jr KE P .dFJ:J ap

t is evident from the equation (6.4.5) that in the standard case, the kinetic term

(Fuw)] - (043)

contributes posifive pressure. This is what one would intuitively expect from our
understanding of ordinary thermo-dynamical system. However, in the effective loop
quantum cosmology, using the expression of the inverse densitized triad (6.4.2), it
s easy to see that the kinetic term contributes negative pressure for small volume
even though for large volume it contributes positive pressure like in standard case.
This erucial ‘extra’ negative pressure from the kinetic term is what essentially leads
the effective aquation of state to violate dominant energy condition. Clearly, the
hounded spectrum of the inverse densitized triad plays a major role in this.

On the other hand, in the plhantom matter model of dark energy. to obtain the
values of the equation of state parameter to be less than —1, one makes the kinetic
term relatively negatiwe by hand. This step essentially forces the kinetic term to
gontribute negative pressure. However, it also leads the kinetic term to contribute
tegative energy density, This step essentially jeopardise energy density expression
I8 its posttiity is no longer remain guaranteed. Clearly, a relatively negative kinetic
term in the scalar matter Hamiltonian, makes it unbounded from below. In other
words, the ground state of such system gets pushed to negative infinity. Naturallv.
Haive quantization of such system can lead to a catastrophic decay of vacuum [100],
(n contrary, in the effective loop quantum cosmology scenario, the kinetic term
gives negative contribution ouly in the pressure expression but not in the energy
gensity expression.  Thus, although the equation of state parameter in effective
lbop quantiun cosmology violates dominant energy condition but it also necessarily

msures the positivity of the energy density. It is also evident from the expression
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of the scalar Hamiltonian (6.4.1) that it remains bounded from below signifving a

stable ground state.

;'6.4.4 Example: Massive Scalar Field

Now we take an explicit example to illustrate the dyvnamics of the scalar field at
‘small volume regime where non-perturbative modification plays a significant role.
;EFDI' simplicity, we consider the dynamics of a massive free scalar leld. In other
words, the scalar potential is consist of cnly the mass term re. V(o) =
To simplify further, we choose the value of the ambiguity parameter to be | — 0+,

Wil these assumptions the effective matter Hamiltonian for small valume becomes

1 |
H;Erz : {E (Bnp )p + Em;:pl} . (6G.4.0G)

Using the Hamilton's equations of motion, one can obtain analytical solutions for

the feld equations, given by

2; _ 55
o= —‘L: sin (ﬂp% + cr]) P Pa = —an'p—S Cos (:’I;IJ% + :‘.'1) : (6.4.7)
L ' (33p;7)

[ iad =932
@3p Wmg) : ; ; ;
where o = \/ sizes - @ and ¢y are two constants of integration. Using the field

solutions (6.4.7). one can easily see that along any trajectory H;" e p% g, One
may note here that the energy density contribution due to the scalar field dynamics
siiectively looks a like contribution from a cosmological constant. The constant of
integration 7 physically corresponds to the energy density during its evolution. This
also implies an exponential inflationary phase. This is of course expected behaviour,
85 the effective equation of state parameter in loop quantum cosmology generically

2= —1 at small volume [35]. This simple example clearly shows that

beconies o
tassical dynamics of the system is essentially stable, as we have argued for a general

svstern with the modified scalar field dynamics.




6.5 Propagation of Inhomogeneous Modes

We have mentioned earlier that the second part of the dominant energy condition
requires the speed of energy propagation not to exceed the speed of light, Naturally.
the violation of dominant energy condition also raises the concern, whether such
system can prohibit super-luminal flow of energy. In other words, whether such
systent can respect eausality. In classical cosmology, one beging by postulating so
called cosmological principle L. on large scale there is neither o preferred divection
nor a preferred place in our universe. This principle is imposed by asswming that on
costnological scale our universe is spatially homogeneous and isotropic, The strict
imposition of spatial homogeneity will prohibit any kind of spatial How of energy
as it will violate spatial homogeneity, However, this assumption undonbtedly is an
idealisation and is made to rather situplily background dynamics. Naturally, if we
want to allow some kind of spatial flow of energy then we must relax the spatial
homogeneity. While relaxing this assumption nevertheless one should be careful
'so that we can still use the available machinery of the cosmological set-up. This
s generally achieved by considering the deviation from spatial homogeneity to be
small, Small spatial inhomogeneity in the matter feld configuration will also lead to
small inhomogeneity in the background geometry, For simplicity, however, we will

treat the background geometry as homogeneous.

6.5.1 Modified Klein-Gordon Equation

We have seen earlier that the kinetic term of the scalar matter Hamiltonian gets
non-perturbative modification, as its clagsical expression involves inverse powers of

ﬁwsitized trind. The effective scalar matter Hamiltonian, obtained as outlined in

/da:r {;lj{?r;}]z} TN v [rfgﬁ‘ (Vig)]

(6.5.1)

[‘1-3]? is given by

[T

—_— 1o] -t
g = vib* [ e 1] -yt

ne may note here that we have now kept the gradient term in the effective Hamil-

nian. The gradient term was neglected earlier while computing background evo-
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lution, as one assumes that the background evolution is mainly determined hy the
homogeneous and isotropic contribution of the matter Hamiltonian. The gradient
term of the equation (6.5.1) having the correct sign, the corresponding dynamics
does not suffer from the so called gradient instability [116, 117]. another patho-
Jogical feature of the phantom matter models. Using the Hamilton’s equations of
‘motion for the effective Hamiltonian (6.5.1), one can derive the corresponding maod-
ified Klein-Gordon equation

p i) (n) 6 o s
3l =52 )@ + [Eulp)lp
Fialp) U .

b

(_?Q+Vm0 =0, (652

i?

R ] _ dJ':"-_,a[_p)
where £ (p) = =4

. Using the expression for the spectrum of the inverse triad
(6.4.2), it is casy to see that the modified Klein-Gordon equation (6.5.2) reduces to
the standard Klein-Gordan equation at large volume,

In a given spatially flat spacetime backgronnd, an inhomogeneous scalar field can
be decomposed in terms of its Fourier modes. The dynamics of the k= 0 mode 1.¢.
the spatially homogeneous mode essentially drives the evolution of the backeground
geomelry as the contributions from non-zero k modes are assumed to be small,
However., as we have argued that to study the energy propagation across spatial
distance in the cosmological background, it is essential to consider the dynamics of
mhomogeneous modes i.e. non-zero & modes. The Fourier decomposition of the

mhomogeneous sealar field is defined as

o{x.t) = f fg—kg [ou(t) %] (6.5.3)
here op(t) are the Fourier components. For simplieity, we will consider the dyv-
ies of a massless free scalar te. we will assume V{¢) = 0. Using the madified
Klein-Gordon equation (6.5.2) and the equation (6.5.3), one can derive the modified
uation for the Fourier modes

- e F:_E{P:I ay - : 5 i = -
@elt) — 3 m (E) erl(t) + [Flp)lp (F) op(t) = 0. (6.5.4)

n the small volume regime where the spectrum of the inverse triad operator can

; = =8 ; :
approximated as F(p) ~ p7 7 and the effective equation of state parameter as
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w™ = —1, one can obtain an analytical solution for the equation (6.5.4) [43], given

by
énft) = pi*e [-’lﬂ-.n|J_“.._ﬁ3{k?]}+ By dony .-_.'.-.-1“"?”] . (6.5.5)

where J, () are the Bessel lnnctions, A,y and By, are two constants of integra-
tion corresponding to second order differential equation. The variable 1 is defined
as diy := a "dt. where the parameter n = —%{l - I—L} i loop quantum eosmology
allowed values for the ambiguity parameter [ is (0 < [ < 1). Naturally. the new
parameter i takes values as (—o0 < n < —2). The argument of the Bessel function
kn can be conveniently expressed in terms the scale factor as kn = F*u ("'_—_n") . where
H(= 2] is the Hubble parameter.

At first let's study the large wavelength (k — 0) behaviour of the general so-
lntion (6.5.5). For the general solution (6.5.5) when both constants of integration
Atpmy and By gy are present then using the agymptotic form of the Bessel function
Intx) = m{gj*” for @ << 1, it is casy to see that o (t) becomes approximately
cconstant and becomes proportional to Ay . For the special case when Ay, is
| .
dentically zoro then o (f) remains time dependent but its thne dependence is non-
pscillatory. These features of the Fourier modes @i (t) can also be seen divectly
{ from the differential equation (6.5.4). For the larger wavelength maodes the third
termn in the equation (6.5.4) can be neglected. The approximated second order
differential equation then admits a constant solution and a non-oscillatory time-
dependent solution, as expected. Clearly, the second term which is a {anti)friction
term, plays a major role for the larger wavelength modes. Since, our main inter-
est is 1o study the energy transmission across spatial distances then clearly the
larger wavelength modes are not relevant for this purpose. On the other hand, for
smaller wavelength (F — o¢) modes, the general solution become ascillatory, as
the asymptotic form of the Bessel function is Jo(x) = \/gma {1" e %} for
r>> 1. Naturally, the smaller wavelength modes are the potential carriers for the
energy |ransimission across spatial distances, For smaller wavelength modes, the

effects of the (anti)friction tern is negligible. Thus, for simplicity we will neglect

the (anti)iriction term in Lhe equation (6.5.4) for further analysis. The inforniation
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regarding assumed small inhomogeneity are encoded in the amplitudes of the mode

functions @(t), Since propagation speed of linear waves does not depend on their
amnplitudes, the causal properties of the propagating inhomogeneous modes are quite

insensitive to the exact details of their amplitudes.

6.5.2 Modified Dispersion Relation

[n the cosmological context. any spatial transmission of energy will introduce inho-
mogeneity, So to investigate causality of the system, it is natural to study the group
velocity for the inhomogeneous modes. One may recall that in a medium where ab-
sorption (friction) or emission (anti-friction) is small, the group velocity essentially
determine the speed of signal propagation [118]. To compute the group velocity it
is convenient to find out the relation between its frequency and wave-number e
the dispersion relation. Using the governing equation for the inhomogeneous mades
(6.5.4), neglecting the (anti)friction term, and making the ansatz op(l) ~ ™', one
Can easily derive the modified dispersion relation in eflective loop quantum cosmol-
ogy as
a - 2 1y iz

@~ Bt (5) (6:5.6)
In the classical situation ‘inverse triad’ is just the inverse of triad t.e p x F},r (p)=1.
The dispersion relation (6.5.6) then becomes same as the standard Minkowskian
(dispersion relation between [requency and physical wave number (F/a). In loop
quanturn cosmology the spectrum of the inverse triad operator is bounded. Hence
the dispersion relation in effective loop quantum cosmology differs dramatically for
small volume compared to the standard dispersion relation.

The modification in the dispersion relation that is being studied here, arises
hecause of the bounded spectrum of the inverse triad. This modification is distinet
from the different types of modification generally considered in the literature. For
example, in the context of quantum gravity scenario [119, 120, 121, 122, 123] or in the
context of trans-Planckian inflationary scenario [63, 641, one cansiders modification

of standard dispersion relation by introducing appropriate non-linearity.




6.5.3 Group Velocity

~ The group velocity determines the speed of signal propagation only if the absorption
or amplification of the signal remains small. In other words, ‘signal transmission”
makes sense only if the original signal reaches its target without major distortion
while propagation (see [118] for related discussion). In the effective loop quantum
cosmology seenario. we have argued that the relevant modes for energy transmission
across spatial distances, are the smaller wavelength modes and for these modes the
(antiyriction term plays very little role in their evolution. Using the dispersion
relation (6.5.6). one can easily compute the group velocity for the inhomopeneous

| modes as
di
Vg i—m ———
" d(kfa)
In the classical situation right hand side of the expression (6.5.7) 15 identically equal

. 3 =5
= |Fp)|*p+ . (6.5.7)

to unity. Physieallv, this implies that for the massless free scalar field, the inhomo-
sencous modes transmit signals at the speed of light. However, in the effective loop
quantum cosmology it is no longer the case. Using the expression for the spectrum
cof the inverse triad (6.4.2), it is easv to see that in the small volume regime, the
speed of signal propagation is in fact much slewer than the speed of light (in classical
vacuwm ). The group velocity for the inhomogencous modes gradually increases and
approaches the speed of light towards the end of the non-perturbatively modified
dvnamics.

It should be emphasized here that the actual spectrum of the inverse seale [actor
‘operator is fundamentally non-differentiable. However, to study the qualitative con-
sequences of it within an effective analysis, one uses a peace-wise analytic function
Filg) (6.4.2) which approximates the spectrum of the inverse scale factor operator.
This is a good approximation provided the scale p; is sufficiently large. However, he-
ing peace-wise analytic this approximation is good as long as (p << p;) or (p >> p;)
but not near the transition regime, as the approximation function Fi(q) (6.4.2) is
not analvtic at ¢ = 1 (g = p/p;). So the governing equation of the mode functions
(6.5.4) which involves Fi(g) as well as its derivative, is not defined near p = p,.

Thus, the derivation and the subsequent expression of the group velocity (6.5.7)
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are valid as long as (p << p;) ar (p == p;) but not in the neighbouring regime of
p = p,. However, there still exist a significant small volume regime even excluding
the regime near p = p;, as the validity of approximation for the spectrum of the
inverse scale factor operator, requires p; to be large.

Thus, in effective loop guantum cosmology although non-perturbatively madi-
fied dynamics violates dominant energy condition in terms of the equation of state
parameter but the underlying modified dynamics restricts the group velocity for the
mhomogeneous modes to remain sub-luminal. In the cosmological context we have
argued that any spatial transmission of energy will introduce spatial inhomogeneity,
Here in the efféetive loop quantum cosmology, we have shown that the group veloeity
for the inhomogeneons modes remains sub-luminal due to the non-perturbative -
Jification. Clearly, in eflective loop quantuin cosmology. non-perturbatively modified
dynamies of a minimally coupled scalar field respects cousality, The violation of
dominant energy condition is essentially dictated by the & = [} mode but this mode
s not relevant for the purpose of signal transmission across spatial distances.

The speed of light” in this context is meant to imply the speed of electromagnetic
wave propagation in the classical vacuum that determines the causal structure of the
spacetime. This is important to emphasize because in loop quantum cosmology. one
expects to ger similar non-perturbative modification even to the electromagnetic
wave propagation. Then the actual speed of light in the effective loop quantum
cosmology itsell may become slower compared to the speed of light in the classical
vaciiun, Intuitively, one may consider the small volume effective background geom-
etry, coming from loop quantum cosmology, as a refractive medium with a value of
j:he group inder n,(= e/v,) Is greater than unity. In this context, the group index

is sarme as the refrective index. as the phase velocity is same as the group velocity.




6.6 Quantum Corrections To Group Velocity at
Large Volume

Using the spectrum of the inverse triad operator (6.4.2), it s easy to see that al-
though at large volume the leading term is just the inverse of triad but there are
sub-leading terms also in its expression. Naturally, in the effective loop quantum
cosmology, the group velocity for the inhomogeneons modes is not exactly equal to
unity even at the large volume. Using the expression (6.4.2}, for a massless free

scalar field. one can compute the group velocity with quantum corrections as

. 3(2—1) (P} .

It is clear from the expression (6.6.1) that the corrections to the group velocity at
large volume is eetremely small but positive as (0 < [ < 1), The group velocity
becomes equal to unity as the volume of the system goes to infinity. To have some
mumerical estimate of this finite vohune quantim correction, let us choose say p; ~
10° 2. The observed size of universe today is \/p ~ 105 [, Then the correction to
the group velocity due to modified spectrum of the inverse triad operator, today is
~ 10°#1 ] It is extremely unlikely that such small correction will have any significant
| effect. Even for the cosmological context (time scale ~ 10" see) such small deviation

of group veloeity, may be completely irrelevant.

6.7 Discussions

To summarize, in effective loop quantum cosmology, non-perturbatively modified
dvnamics of & minimally coupled scalar field violates weak, strong and dominant en-
ergy conditions when they are stated in terms of equation of state parameter. The
violation of strong energy condition although helps 1o have non-singular evolution
by evading the singularity theorems but the vielation of weak and dominant energy
conditions raises concern. In classical general relativity, these energy conditions are
used to prohibit super-luminal How of energy and to ensure the stability of classi-

cal vacuum via the Hawking-Ellis conservation theorem. Naturally, the violation
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of these energy conditions in terms of effective equation of state parameter, raises
concern about the causality and the stability of the svstemn. In this chapter, we
have shown that although at face value these energy conditions are violated. under-
Iving modified dynamics in effective loop quantum cosmology nevertheless ensures
positivity of energy density, as scalar matter Hamiltonian remains bhounded from
below. Considering the modified dynamics for the inhomogeneous modes, we have
shown that group velocity for the relevant modes remains sub-luminal in small vol-
ume regime, thus ensuring causal propagation across spatial distances. We have
also computed the large volume quantum corrections to the group velocity of the
inhomogeneous modes for the massless [ree scalar field.

Now, let us try to understand the physical phenomena behind this rather un-
usual feature of the non-perturbatively modified dynamics, In the case of classical
dvnamics of a minimally coupled scalar feld, the values of the equation of state
paratueter are restricted to be |w| < 1, However, in the case of modified dynamics,
the effective equation of state can take values less than —1. This is rather surprising
given the facts that one hegins with a minimally coupled sealar feld and uses the
same <lefinition of equation of state for both the cases. This ‘anomalous’ behaviour
[ollows from the fact that at the small volume, non-perturbatively modified gravity
beeomes repulsive although it remains attractive for the large volume. This feature
pan be easily seen by considering a classical trajectory of a massless free scalar field.
‘The non-perturbatively modified scalar matter Hamiltonian, along any trajectory,
increases with the increasing scale factor for small volume but decrease for large vol-
ume, Naturally, the gravitational Hamiltonian, tosatisfy the Hamiltonian constraint
(Hs+ Hyraw = ), must decrease with increasing scale factor for small volume. Later.
in the large volume it starts increasing with increasing scale factor. This immedi-
ately implies that modified gravitational interaction is repulsive for small volume
whereas for large volume, as one expeets, it is attractive. This repulsive nature of
the gravitational interaction manifest itself through the non-standard gravity cou-
p]mg to the sealar matter Hamiltonian via bounded spectrum of the inverse triad

operator.




For a standard minimally coupled scalar feld, the kinetie term contributes pos-
itive pressure.  Of course, this is what one would intuitively expect from our un-
derstanding of ordinary thernio-dynamical system. However, in the effective loop
quantum cosmology, the kinetic term contributes negative pressure for small volume
even though for large volume it contributes positive pressure like in standard case,
This erucial ‘extra’ negative pressure from the kinetic term is what essentially leads
the effective equation of state to violate dominant energy condition, Clearly, the
bounded spectrum of the inverse densitized triad plays a major role in this, On the
other hand, in phantom matter model of dark energy, to obtain the values of the
equation of state parameter io be less than —1, one makes the kinetic term rela-
tively negative by hand. This change of sign essentially forces the kinetic term to
contribute negative pressure. However, it also leads the kinetic term to contribute
negative energy density. This step badly affects the energy density expression, as its
positivity is no longer certain. ln other words. a relatively negative kinetic term in
the scalar matter Hamiltonian, makes it unbounded from below. This implies that
the systemn does not have a stable classical sround state. On contrary, in the effoctive
loop quantum cosmology scenario, the kinetic term gives negative contribution only
(in the pressure expression but not in the energy density expression. Thus. although
the equation of state parameter in effective loop quantum cosmology vielates domi-
nant energy condition but it necessarily ensures the positivity of the energy density.
It is also evident from the expression of the scalar Hamiltonian (6.4.1) that it remains
bounded from below, signifying a stable elassical ground state.

The bounded spectrum of the inverse triad (seale factor) operator plays the
central role in violating the energy conditions. The violation of energy conditions
although leads to a generic inflationary phase and allows to have a non-singular
evolution but it also makes the causality and the stability of the systein uncertain.
However, as shown in this chapter, the same bounded spectrum in fact acts as
a saviouwr to ensure the causalitv and the stability of the system. It should be
emphasized liere that the gquantization of the inverse triad was nol invented to

obtain the bounded spectrum such that these physical features follow. Rather it was
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quantized following the techniques used in the full theory of loop quantum gravity.
The quantization of the inverse triad involves ambiguities but these crucial features
are insensitive to their precise values. It may be worth emphasising that althongh
the exercise presented here is not directly related witl the dark energy scenario. one
may learn au important lesson from here that if one wants to construct a dominant
energy condition violating yet well behaved scalar field model of dark energy then
one should look bevond the standard minimal coupling.

It is now important to discuss some subtleties of the analysis presented here.
Inn classical general relativity, the definitions of the energy conditions are generally
covariant. However, in the cosmological context, the energy conditions are stated
with respeet to a preferred frame namely the so-called comoving frame. Thus, one
must be careful while interpreting the results in more general context. Secondly, in
the Lagrangian formulation one obtains the reduced expression of the energy den-
sity and pressure for the homogeneous and isotropic spacetime, using a generally
covariant expression of the stress-energy tensor. In the Hamiltonian formulation
such & spacetime covariant method is not available. Naturally, one needs to de-
fine the expression of energy density and pressure, in terms of the scalar matter
Hamiltonian, In the classical situation although they are equivalent but with the
non-trivial quantum corrections this issue is rather subtle, In the analysis presented
ere, we have assumed the background geometry as homogeneous although we have
allowed the scalar field living in it to become inhomogeneous. This approximation
s trustworthy as long as the deviation from the homogeneity remains sufficiently
small, Further, we have considered the non-perturbative modification of the kinetic
term only. Using slightly different quantization strategy, one could obtain a factor
of ‘triad times inverse triad’ also in the gradient term. However, such modification
would change only the quantitative nature of the results shown here but not the gual-
dative nature. Naturally, the features of the non-perturbatively modified dynamnics

shown here, are robust under this quantization ambiguity,




Chapter 7

Discussions

7.1 Summary

In this thesis we have demonstrated that it is possible to infer the consequences
of the dyvnamics implied by loop quantum cosmology in a more familiar classical
spacetime picture in termns of an effective Hamiltonian., It is derived for a class
of solutions of the fundamental difference equation of isotropic loop quantum cos-
mology, using WKB techniques. The effective Hamiltonian incorporates important
non-perturbative modification coming from loop quantum cosmology, The effective
dynamics approximates the classical dynamics for large valumes,

The non-perturbative modification coming from loop guantum cosmology to the
scalar matter sector is known to imply inflation. We further prove that loop quantum
cosmology modified scalar field generates near exponential inflation in small scale

factor regime, for all positive definite potentials, independent of initial conditions
and independent of ambiguity parameters ie. inflation is generic in loop quantum
eosmology.  Genericness of inflation also means that, in small scale factor resime,
non-perturbatively modified scalar matter dvnamics leads to a generic violation of
strong energy condition. While violation of stromg energy condition helps to bypass
the singularity theorems but that does not necessarily imply a non-singular evalution.
Nonetheless, we showed that the absence of isotropic singularity in loop guantum

cosmology can be understood in the effective classical deseription as the universe

106




exhibiting a big bounce and this is alse generic. In particular, we show that with
scalar matter field the big bounce is generic in the sense that it is independent of
quantization ambiguities and details of scalar field dynamics.

In the context of inflationary scenario, it is widely believed that gquantum field
fluctuations in an inflating background create the primordial seed perturbations
which through subsequent evolution lead to the observed large scale structures of the
universe. In particular, quantum field fluctuations in the inflating background qnite
generically produce density perturbations with a scale-invariant power spectrum [37]
which is consistent with current observations. Using similar techniques in the context
of effective framework of loop quantum cosmology, it is shown that loop quantum
cosmology induced inflationary scenario not only can prodoce seale invariant power
spectrum but also small amplitude for the primordial density perturbations without
any fine tuning. Further its power spectrum has a qualitatively distinet feature which
is in principle falsifiable by observation and can distinguish it from the standard
inflationary scenario.

In the effective framework of loop quantum cosmology, non-perturbatively mod-
ified dynamics of a minimally coupled scalar field violates weak, strong and domi-
nant enersy conditions when they are stated in terms of equation of stale parameter,
While the violation of strong energy condition is desirable to permit a non-singular
evolution, vielation of weak and dominant energy conditions raises concern about
the causality and stability of the effective model, since in general relativity pre-
cisely these conditions ensure causality of the system and stability of vacunm via
Hawking-Ellis conservation theorem. We show that the kinetic term due to the
non-perturbative modification, contributes negative pressure although it contributes
|__ positive energy density. This erucial feature leads to the violation of energy condi-
fions in the effective loop quantum cosmology. In other words, although the non-
perturbatively modified dynamics leads to vielation of energy conditions but it still
ensures positivity of energy density, as scalar matter Hamiltonian remains bounded
om below. FPurther, considering small inhomegeneities around the homogeneous

hackground. it is shown that the modified dynamics restricts group velocity for in-
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homogeneous modes to remain sub-luminal thus ensuring cansal propagation across

spatial distances.

7.2 Anisotropic models

Use of highly symmetric cosmological (homogeneous and isotropic) space in loop
auantum cosmology makes the system much simpler to study and it allows explicit
caleulations to be carried out. This is certainly an attractive aspeet of the symmetric
systen. However, such svmmetry assumption ignores some crucial feature of our
universe that it has inhomogeneities even on the large seale. Inhomogeneities on
the large scale average are very small, nevertheless, their presence is qualitatively
significant.  Naturally, to make a more realistic model of our universe one must
consider the inclusion of inhomogeneities at the fundamental level in loop quantum
cosmology. While dealing with fully inhomogeneous system is very much an open
issue at present, the techniques of loop guantum gravity has been applied to less
symmetric homogeneous but amsofropic diagenal models. The basic conclusion
about non-singular nature of loop quantum cosmology continues to hold for the
these models as well.

As mentioned earlier that according to the singularity theorems, the space-time
deseribing the backward evolution of an expanding universe is necessarily singular
in the sense of geodesic incompleteness.  While singularity theorems ensure the
senerality, it does not shade light on the specific nature of such a singularity for
example in terms of curvature invariants. On the other hand, the so-called BKL
(Belinskii-Khalatnikov-Lifshitz) approach to the issue of singularities asks [124]: In
aneighbourhood of a presnmed singularity, is there a general solution of the Einstein
gquation such that at least some curvature invariants diverge? In this formulation of
the question, one also obtains information about the possible nature of the presiumed
singularity described in terms of the approach to the singularity. The conclusion of
the long and detailed analysis is summarized in the BKL scenario: Generically, as

the singularity is approached. the spatial geometry can be viewed as a collection of
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small patches each of which evolves essentinlly independently of the others according
to the Bianchi IX evolution {for recent numerical evidence see [125]). The Bianchi
IX evolution towards its singularity is described by an infinite succession of Kasner
evalutions (two directions contracting while third one expanding) punctuated by
permutations of the expanding/contracting directions as well as possible rotations
af the three directions themselves. The qualitative analvsis of these permutations
and rotations (‘oscillations’) i1s done very convenientlv in terms of a billiard ball
bouncing off moving walls and has been analyzed for a possible chaotic behaviour
[126]. It may be recalled that the Kasuer solution is the solution of Einstein's
equation for vacuum Bianchi-1 model.

However, it has been well recognised that the conclusion of ad infinitum oseil-
lations of the BKL singularity, a consequence of unbounded growth of the spatial
curvature, cannot be trusted very close to the singularity where the classical Einstein
equations themselves are expected to break down. Presumably the eguations will be
superseded by some quantum extensions. In the absence of any specific and detailed
enough quantum theory the questions of the fate of the classical singularity vis a vis
the behaviour of space-time near such a region, could not have been addressed. The
focus therefore has been to include qualitatively expected quantum modification.
For example, in the Kaluza-Klein picture and mare recently the stringy picture,
the minimal expected modification is the matter content -~ notably the dilaton and
p-form felds. Higher derivative corrections in the effective action are also expected,
Another qualitative implication of string theory namely the brane world scenarios is
also a candidate to study implications of modified Einstein equations. All of these

have been explored with varying conclusions regarding the BKL behaviour, e.g,
(127, 128]. However. they still contain the singularity and hence all these modified
pquitions must break down near the singularity raising questions about the validity
of the conclusion.

Naturally, it is meaningful to ask if and how the BKL behaviour is modibied when
modifications coming from loop quantum cosmology are included. There is in fact a

hint of what mav be expected. For larger volumes, one can trust the classical picture:
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Then, in the general inhomogeneous cosmological context, one can approximate
smaller patches of the spatial geometry by the homogeneous Bianchi IX models.
As the volume is decreased, the patches have to be made smaller to sustain the
approximation. If the BKL behaviour were to continue for these individual patches,
then the fragmentation into smaller patches must continue ad infinitun. But the
underlying diserete structure cannot support such infinite fragmentation. Therefore,
the quantum geometry which is responsible for singularity removal, must also ensure
that Bianchi IX hehaviour may at the most have finitely many oscillations. This is in
fact a self consistency requirement on the procedures of loop quantum cosmology, It
is shown through a detailed proof [30] that modifications coming from loop quantum
costology lead to a non-chaotic effective hehaviour [61]. On the other hand. it has
been shown that the non-singular nature of effective dynamics of loop quantum

cosmology holds also for Bianchi-T model [130. 129].

7.3 Open issues and future outlook

In ordinary quantum mechanies, generally one obtains physically relevant quanti-
ties in terms of physical expectation values of appropriate physical observables of a
oiven system. We have mentioned earlier that loop quantum cosmology 1s a min-
superspace quantization ie. it is essentially a gquantum mechanical description.
However, in loop quantum cosmology the issue of physical observables and physical
inner product are still in early stages of development. In fact this was the main mo-
tivation to look for an alternative route to explore the consequences of the quantum
modifications. This exploration using WKB methods has lead to the results which
form the main contents of the thesis.

However, very recently [29], a significant progress has been made towards con-
structing physical observables and physical inner product in loop quantum cosmol-
ogv. In this construction. one considers a free massless scalar field as matter degree

of freedom. The classical evolution of such scalar field is monotonic with respect

to the coordinate time. This motivates one to consider the scalar field itself as an




mnfernal time. With the scalar field taken as ‘clock’ variable, the difference equa-
tion of loop quantum cosmology can also be viewed as a Klein-Gordon equation
in a static spacetime. This in turns allows the standard procedure to be carried
out. for constructing appropriate physical observables and physical inner product
for the systenn, Then one considers the evolution of a given semi-classical states un-
der the dynamics of loop guantum cosmology, Using this method, it is shown that
the semi-classical states exhibit its non-singular nature via a bounce in the small
volume regime, Oue of the key results of this thesis iz that the eflective dvnamics
of loop quantum cosmaology exhibits bounee in the small volume regime. The metl-
ods and details used in the recent approach differ fundamentally from the approach
presented in the thesis. However the qualitative nature of results regarding the way
non-singular nature is realized in loop quantum cosmology, agrees very much with
each other.

In small volume regime, the modilications coming from loop quantum cosmol-
ogy that play leading roles, are mainly non-perturbative in nature. This leads the
effective dynamics to differ significantly from the elassical dynamics in small vol-
ume regime,  On the other hand, in large volume regime the effective dyvnamics
approximates classical dynamics very well. Nevertheless, there are quantunt eor-
rections to it and it turns ont these are perturbnotive in nature. 1t was noted [131]
that one of these perturbative quantum corrections has striking resemblances with
gravitational Casimir energy computed using technigques of perturbative quantum
sravity. The perturbative approach of quantum gravity is known to lead o a non-
renormalizable quantun field theory. So further explorations of this issue might shed
some light on the issue of renormalizibility in the context of both perturbative and
non-perturbative approaches of quantum gravity., Currently, further investigations
in this direction is heing carried out,

In the thesis, small inhomogeneities have been introduced around the effective
background and their properties have been studied. However, the analysis presented
is an effective one in nature, So it is guite reasonable to expect that the effective

analvsis may not capture all features of quantum dynamics specially the quantitative
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aspects. Naturally, one would like to carry out an analysis that ineludes inhomo-
geneities at the fundamental level in loop quantum cosmology, While there Las
been some restricted attempt [132] towards this direction full fledged analysis is still
lacking. 1t would be quite interesting to explore the consequences of the inclusion
of inhomogencities at the fundamental level in loop quantum cosmology.  Finally,
we conclude this thesis with the quote; “It is easter to perccive error than to find
truth, for the former lies on the surface and 15 easily seen. while the latter lies n

the depth, where few ave willing to search for .7 — Johann Wolfgang von Goethe.
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