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Introduction

Int those bright realms are Mind’s first forward sieps.
Ignorant of all but eager to know all,

Its curiouws slow enguiry there begins;

Ever searching it grasps ot shapes around,

Ever it hopes lo find out greater things.

..« Yet all it does is on an infant secalc.

Sri Aurobindo. Savitri, Book Two

A toric variety over C is an n-dimensional normal algebraic variety X containing the
complex algebraic torus T = (C*)" as a Zariski open set together with an action of T on X

which extends the natural action of T on itself.

A toric variety is naturally associated with a combinatorial object called a fan and the
geometric and topological concepts on the toric variety correspond to simple combinatorial
notions in the associated fan. This correspondence helps us to address problems on toric

varieties by translating them to the setting of fans.

Since the discovery of toric varieties in the early 1970 (see works of Demazure [20] and
Knudsen, Kempf, Mumford and Saint Donat [30]), the subject has developed immensely,
Some of the standard references on torie varieties are Fulton’s book [25], the survey article
by Danilov [18] and Oda's book '35] The recent survey article by Cox [17] also gives a

detailed account and update on the various developments in the subject,

In a slightly different context Davis and Januszkiewicz in their paper [21] have made a
detailed study of toric manifolds which are a topological generalization of smooth projective
toric varieties. What Davis and Januszkiewicz in [21] call a “toric manifold” is termed

in recenf literature a “quasitoric manifold”. The theory of quasitoric manifolds and their
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generalization to unitary toric manifolds have later been developed by Masuda [32] and also

by several other people (see [14]).

It is also of interest from the view-point of topology and geometry to study the real
valued points of the complex toric variety X. These real toric manifolds have been studied
earlier by Jurkiewicz in [27]. Davis and Januszkiewicz in [21] also consider the real part of
the quasitoric manifold which they have termed a “small cover” and describe its topology.
But unlike the complex case not much is known regarding the real toric manifold. Some

other papers on real toric varieties and “small covers™ are [40] and [22].

In this thesis we address two problems on toric varieties. We give a brief description of

them below,

In Chapter 1, we consider a locally trivial fibre bundle E(X) — B with ‘fibre type’
a smooth projective complex toric variety X and base an arbitrary topological space B
associated to a principal T-bundle. Our main purpose here is to deseribe (i) the singular
cohomology ring of E(X) as an H*(B; Z)-algebra, and (ii) the topological K-ring K*(E(X))
as a K*(B)-algebra when B is compact and Hausdorff. Further, when B is an irreducible,
nonsingular, noetherian scheme over C and p : £— B is algebraic we describe (iii) the Chow
ring A*(£(X)) as an A*(B)-algebra, and (iv) the Grothendieck ring K°(E(X)) of algebraic
vector bundles on £(X) as a K% B)-algebra.

Here we mention that the parts (ii) and (iv) of the above results are new even in the
case when the base B is a point since they give a complete description of the K-ring and the
Grothendieck ring of the smooth projective complex toric variety X in terms of generators
and relations. The analogous results for the singular eohomology ring and the Chow ring

are classical, due to Danilov and Jurkiewicz.( §5.2, p.106 of [25]).

When X is the projective space, such a description of the K-ring is due to Adams [1].
The case when X is a weighted projective space is more recent, due to Al Amrani [3]. We
refer the reader to [12], [33] for ather descriptions of the K-ring as well as the equivariant

K-ring of a toric variety.

We now briefly explain the method of proof of the results mentioned above:



Let #* denote either the singular cohomology ring, the K-ring, the Chow ring or the

Grothendieck ring depending on the context.

For the first three parts of the results, we use a Leray-Hirsch type theorem to obtain
the structure of H*(E(X)) as a module over #H*(B). Then we construct a #*(B)-algebra
homomorphism from the expected H*(B)-algebra to H* (£(X)) and verify that this algebra
homomorphism is an isomorphism of H*(B) -modules. The “Leray-Hirsch” theorem we need
in the context of Chow rings is due to D.Edidin and W.Graham [23]. However we give a
proof which is more suited to our specific situation. (See also [24].) The “Leray-Hirsch”
in the context of K-theory of complex vector bundles that we need is Theorem 1.3, p.181,
Chap. TV of [29] (also see Theorem 2.7.8, [5]). For part (iv) we use a result of Grothendieck

[9] to prove the analogue of the Leray-Hirsch theorem.

We were motivated by the work of Al Amrani (2] who has computed the singnlar colio-
mology ring of a weighted projective space bundle. Another motivation for us was the work
of H.Pittie and A.Ram [38] who established the Pieri-Chevalley formula in K-theory in the
context of an algebraic G /B bundle associated to a principal B bundle where G is a complex

simple algebraic group and B a Borel subgroup,

The first chapter of this thesis is devoted to the study of this problem where we state

and prove the above mentioned results. The above work has appeared in [41].

In Chapter 2, we consider Xz = X m(A) to be a smooth real toric manifold associated to
the fan A. A real toric manifold is for us the real part of a smooth complex toric variety.
The main problems dealt with here are (i) the determination of the fundamental group and
the universal cover of Xg, (ii) giving necessary and sufficient conditions on A under which
m1(Xg) is abelian, (iii) giving necessary and sufficient conditions on A under which Xg is
aspherical and (iv) giving necessary and sufficient conditions for Ca to be a K(w, 1) space

where Ca is the complement of a real subspace arrangement associated to A.

In §2 we describe the fundamental group and the universal cover of Xz(A), We were mo-
tivated by the paper [21] of Davis and Januszkiewicz (see Cor.4.5, p.415 of [21]), where they
prove the corresponding results for a “small cover” (or the real part of a toric manifold). We

show that the same results can be obtained for a rea] toric variety Xz(A) associated to any
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smooth fan A not necessarily complete. The basic tool for us is the theory of developments

of complexes of groups in Chapter 11.12 of [11].

In §6 we further give necessary and sufficient conditions on A for Xg(A) to be aspherical.
This too was motivated by the recent papers of Davis, Januszkiewicz and Scott (see Theorem
2.2.5, p.27 of [22]) where they prove similar results for a small-cover. For this purpose, we
rely primarily on the results of Davis [19]. However in many places we give different proofs

using the technique of development, consistent with the theme of our work.

Here we wish to remark that the structure of the fundamental group of a complex torie
variety is well known and is relatively simple (see §3.2 of [25]). But the methods used to
determine the fundamental group of a complex toric variety cannot be applied directly to
a real toric manifold, primarily because R* is not connected. The theory of development of

complexes of groups seems more naturally applicable in the setting of real toric manifolds.

Besides generalizing the previous results to the setting of a smooth real toric manifold
Xz(A), we give a presentation for the fundamental group 71 (Xr(A)) completely in terms of
the fan (see §3). Furthermore, in §5 we give necessary and sufficient conditions on A under

which 71 (X&(A)) is abelian. We also show that the torsion elements are always of order 2.

In §7, we relate Xz(A) to the complement of a certain real subspace arrangement (which
we denote by Ca) and give necessary and sufficient conditions for Ca to be a K(m, 1) space.
Finding K'(rr, 1) arrangements seems to be an interesting problem in topalogy (see [36] and

|28]). We get many such examples.

We mention here that Jurkiewicz in [27] has given a complete description of the coho-

mology ring of a real toric manifold with Z,—coefficients and also its first integer homology
group.

The second chapter of this thesis is devoted to the study of this problem where we state

and prove the above mentioned results. The above work has appeared in [42].
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CHAPTER 1

Cohomology of toric bundles

1. Basic definitions and statement of results

Let T'= {C*)" denote the complex algebraic torus. Let M = H oma(T,C ) = Z™ and
N = Homu,(C'.T) = Z" denote the group of characters and the group of l-parameter
subgroups of 1" respectively. Note that M = NY .= Hom(N;Z) under the natural pairing
()1 M x N—Z, given by x* o A(z) = 2" for all z € €. (Here y* € C(T) =
C[M] denotes the character corresponding to w € M and A, the I-parameter subgroup

corresponding to v € N.)

Let A be a fan in N such that the T-toric variety X = X(A) is complete and non-
singular. Let p : E—B be a principal bundle with structure group and fibre the torus
T over an arbitrary topological space B. When the bundle p : E— B is algebraic, it is

well-known that the bundle E—+B is Zariski locally trivial.

Consider the fibre bundle = : E(X)— B with fibre the toric variety X, where E(X)
is the fibre product £ x¢ X, and the projection map is defined as ([e, z]) = p(e). Note
that the bundle w : E(X)— B is Zariski locally trivial when p : E—B is algebraic. In
this chapter, we describe the integral singular cohomology ring H “(E(X);Z), and the K-
ring K(E(X)) when B is a compact Hausdorfl topological space. Also, when p: E—B

. is algebraic and B an irreducible nonsingular noetherian scheme over C, we describe the
Chow ring A*(E(X)), and the Grothendieck ring K°(E(X)) of algebraic vector bundles of

' the complex variety E(X).

Suppose that ¢ : V—X is a T-equivariant vector bundle over X, then we obtain a
‘vector bundle E(V') over E(X) with total space F x¢ V where the bundle projection is the
|
map [e,v] — [e,q(v)]. In case V is a T-equivariant line bundle associated to a character

x" : T—>C*, the bundle E(V') is isomorphic to the pull-back bundle w* (€, ) where £, — B is
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the line bundle got from E—=B5 by ‘extending’ the structure group via y*. After fixing an
isomorphism, T = (C*)", u € M corresponds to an element (a,--- ,a,) € Z". The bundle F
is then the principal bundle associated to the Whitney sum of line bundles &, 1 < i < n, and
E(V) can then be identified with the tensor product £ @ --- ® £%. (Here it is understood
that, when a < 0, £* = (£¥)™2.)

When B is a non-singular variety any line bundle € over B is isomorphic to Q(Y) for

some divisor ¥ in B. The divisor class Y] is the first Chern class ¢,(£) € A'(B) of £.
We use the notations of [25] throughout the chapter,

For k = 1, A(k) will denote the set of k dimensional cones in A. We let d = #A(1), and
write vy, -+ -, vy for the primitive elements of N along the edges in A. Let p; € A1) be the
edge R>ov;. Recall that our hypothesis that X is smooth is equivalent to the statement that

the set of the primitive vectors along the edges of any cone in A is part of a Z-basis for N,

For a cone o € A, U, denotes the affine toric variety defined by & and V(o) denotes the
closure in X of the variety whose local equation in U, is x* = 0 for all u ¢ o, u € 0¥, The

V{g),o € A, are the orbit closures for the action of T on X,

For 1 < j < d let L; denote the T-equivariant line bundle over X which corresponds
to the piecewise linear function 4; defined by v;(v;) = —08; 7. The line bundle L; admits a

global T-equivariant section s; whose zero locus is the variety V/( 2i).

Let oy, -+ 0,y be an ordering of the cones in A(n). Let 7; € A be the intersection with
g; of those cones oy, j > 1, such that dim(o;Me;) = n—1. Thus 7, = 0, and 7, = .

Consider the condition:
TR G =—r 1S ().
Set 7; < o; to be the cone such that »; N7/ = 0,dim(7;) +dim(7}) =n, 1 < i < m. Also
1 consider the condition -
f i ' i
o= j< (#')
Note that 77 is the intersection with o; of those cones o; with j < 1 and dim(e;) Ndim(e;) =

n—1 and so condition (+') is the same as () for the reverse ordering on A(n). It is well

known that when X is (nonsingular) projective, then there exisis an ordering of the cones
12




in A(n) such that both conditions () and (') hold. We shall assume that there exists an

ordering of A(n) such that property (*) holds. (See [25], §5.2.)

However, there are complete nonsingular varieties X (A) which are not projective such
that A(n) admits an ordering satisfying both (+) and ('), The following three dimensional
fan that corresponds to a complete non-projective toric variety (see p. 84 [35]) is one such

example.

EXAMPLE 1.1.Let N = Ze) @ Zey @ Zes. Let vy = €], Uy = g, U3 = €3, Up = —6] — €3 —E3,
v =wp U= —ey — €3, Uh =g+ 1y = —e; — ey, U3 = vg+ U3 = —€y — ey, Let A be the fan
in N consisting of the faces of the following ten three dimensional cones:
01 = (U1, Vo, v3), 03 = (v, v2, 1), 03 = (s, 15, va), oq = (U, vy, v4), 05 = (uy, 0!, ),
05 = (va, vh, v]), o7 = {u3, v§, v}), o = (vo, 1], V), o = (vg, vh, vh), o9 = (v, vy, v1).

It is easily seen that the ordering oy, a4, ..., ay; satisfies both (%) and (+').

By relabelling the v,'s if necessary, we assume that U, , U, € N are primitive vectors

along the edges of o,, and let wu,,--- y iy, be the dual basis of M.

DEFINITION 1.2. Let S be a ring with 1. Let Ti, 1 <7 < n, be in the centre of S. Consider
the polynomial algebra S[z,,- - - Tal. We denote by Is the two-sided ideal generated by the

following two types of elements

le"'IjH 1 EJpEd-. {”
where vj,, -+« v, do not span a cone of A, and,
Yu == Z (u, vj)z; — 7y (it)
1<j<d

where r, = 21-::'511 a;ri, Wou= Ziﬁﬁn aiuy € M. Define R = R(S,A) = S|z, -- ]/ Ts.

Assume further that the elements vy € S, 1 < i = n, are mnvertible. We denote by Te the

two-sided ideal generated by elements of type (i) above and the elements
= JI Q=g —ry J] -zt (i)
j,{u,'r.lJ-]I}u Jalu bl

where 7y = [[1cpen 1y Yu= Y icicn @itli € M. Define R = R(S,A) = S[zy, -+ , 24)/Ts.
13




Note that the S-algebras R and R depend not only on the fan A, but also on the the
isomorphism N = Z" resulting from the choice of 7, € A and the elements rr € 5. The

only non-commutative ring S we need to consider is the integral cohomology ring of B.

Note that for any cohomology theory H, H*(E(X)) is an H*(B)-algebra via the induced

map 7* : H*(B)—H*(E(X)). The following is our main theorem:

THEOREM 1.3. Let m : E—+B be a principal T-bundle over an arbitrary topological space
B. Assume that X is a smooth complete T-toric variety and that Af(n) has been ordered so
that (+) holds. With above notations,
(i) The singular cohomology ring of E(X) is isomorphic as an H*(B;Z)-ulgebra to
R(H*(B;Z), A), with vy = ¢1(£)) € H}B; Z).
(it) When B is compact and Hausdorff, the K -ring K*(E(X )) of complex vector bundles over
E(X) is isomorphic as a K*(B)-algebra to R(K*(B); A) where r; = Ele K(B),1<i<n.
Suppose p : E— B is algebraic where B irreducible, non-singular and noetherian over C.
Furthermore, assume that (+') alse holds. Then:
(it1) The Chow ring A*(E(X)) of E(X) is isomorphic as an A*(B)-algebra to R(A"(B), A)
where r; = e, (&) € AY(B), 1 <i<n,
() The ring K(E(X)) is isomorphic as a K(B)-algebra to R(K(B),A) where r; = [€Y] €
K(B).

We do not know if parts (iii) and (iv) of the main theorem remain valid without the
hypothesis that (+') hold. Neither do we know of an example where Afn) admits an ordering

satisfying (=) but no ordering that satisfies both (=) and (/).

REMARK 1.4. Examples of algebraic bundles E(X)—B that we consider include as

special cases the toric fibre bundles considered on p.41, [25].

2. The rings f and R

In this section we prove certain facts about the rings R and R which will be needed in

the proof of the main theorem.

14



We keep the notations of §1. We assume that A(n) has been so ordered that property ()

holds. Recall that v;,--- , vy are the primitive vectors along the edges of A, that vy, ---,wu,
are in oy, and that wy, -+, u, is the dual basis of M.

For any cone v € A, denote by z(v) the monomial T -1, € Slzy, -+, 14 where
Uj, -+, b, are the primitive vectors along the edges of «.

Recall from §1 the definition of the S-algebras R and . We shall denote by the same
symbol z(7), in R and R, the image of the monomial z(+) & Slzy, -+, x4) under the canonical
quotient map.

LEMMA 2.1. (i) If v € A(r) is spanned by v;,, Ujps w7 " 5 U5, Lhen

T2(v) = = > (u, ve)z() + ruz(y)
i
Jor some u € M, where the sum on the right is over those cones Ye it Ar + 1) which are
spanned by primitive vectors vy, Uy 4 Vgaa % iUy
(1) If « < v < § are cones in A then there exist cones Tt Y € A with @ < v such that
the v are not contained in 2, and

o(y) = > craln) + cx(a)

k

for some ¢, e, € 8.

(1ii) The monomials (%), 1 < i < m, span R as an S-module.

Proof: (i) Suppose v < g where ¢ is n-dimensional. Let Uiy, + vy, be the primitive
vectors which span o such that the first r elements span +, with 1 =7J. Let ue M be the
dual basis element such that (u,v;,) = d;,,. One has the relation:

Tjh T Z{?L, 'uk}:rk — Ty =1{.
k11

Multiplying both sides by z(7), and using the type (i) relations, we get

Ijl:r{r:“'] =~ Z{u: vR) T () + ruZ(7)

k
- where the sum on the right is over those cones = in A(r+1) which are spanned by primitive
the vectors v, v;,v5,,- -+ ,v;, where k £ j;,--- ,j,. This proves (i},
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(ii) Suppose vj,,--- , vy, spans 3 € A(l) such that the first 7 of these span ¢« and the first p
of these span -, p > r. Without loss of generality we may assume that 4 is an n dimensional
cone so that | = n, and v;,,--+ ,v;, is a basis for N. Now let u € M be the dual basis
element so that {u,v;,) = é,,. Then we have

Ty, + Z{u, Vi T — 1y, = 0. (1)

k#ip

Multiplying by @y, ---x; _, and observing that the coefficient of z; in the sum is zero for
k€ {j, - dn} and k # j,, we get z(7) + 3 (w, ve)x() — ruz(y) = 0 where 4" is the
cone spanned by vy« -+ vy, and the sum is over those cones 7, € A(p) which are spanned
bY Wiy Vst U,y Uy Kk # 1.0, Jn. Note that each of these 7 contains o but is not
contained in 4. If v = @, we are done. Otherwise, by an induction on the dimension of ¥
the statement is true for /. Substituting this expression for (7'} in (1), we see that (ii)

holds.

(iii) We now prove that the z(7;) span R. In view of (ii), it suffices to prove that for any
7 2(7y) is in the S-submodule spanned by the x(w). Property (#) implies that given any
7 € A, there exists a unique ¢ such that 7, < v < o,; indeed it is the smallest i for which
7 < 0. (See [25], §5.2.) We prove, by a downward induction on this i, that z(7y) is in the

S-span of z(7;), j > 4. If i = m, then v = o,, = 7, and there is nothing to prove.

Let < 9 < o for some ¢ < m. Now, using (i), we can write z(7y) as an S-linear
combination of z(7;) and x(v;) where 7; < 7;, and v, is not contained in ;. It follows that
each 7; is such that ., < 4; < o, for some r (depending on j) with r > 1. By inductive
hypothesis, each of the z(v;) is in the S-span of z(7;), @ = r. Tt follows that x(v) is in the

S-span of x(7.),7 > ¢, completing the proof, 0

Concerning the structure of R we have the following.

LEMMA 2.2. (i) Let oo < v < B be cones in A. Suppose that ~ is spanned DY W55 W
then
T, 2(7) = (1 — ry)z(7y) + Z apT ()

P
for some u € M ,where ap € 5, and v, € A are such that o < Ypr Tp 7€ not contained in 3

and dim(v,) > dim(y).
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(it) Let &« < v < 3 be cones in A. Then
2(y) =) byalp) + br(a)
P

for some by, b € S and suitable cones v, € A which contain o and are not coniained in 5.

(iti) The monomials z(r;),1 < i < m span R as an S-module.

Proof: (i) Without loss of generality, we may assume that § is an n-dimensional cone.
We prove this by descending induction on the dimension of 7. Suppose that vy, -+, v;, span
B, and that v;, ¢ a. Let u € M be the dual basis element such that {u,v;,) = 615 The

relation z, = () can be rewritten as

@-m) TT G-z [ (-myom

Fluy >0 il )<
Note that none of the z;,,2 < 7 < n occur in the above relation., Multi plying both sides by

(),
(2(7) = zji2(7) [ [ (1 = 7)) = roz(v) [T — &)t (2)
o q

where the product is over those p, (resp. g) such that Up, (TeSp. w,), vj, -~ - ,v,, span a cone
of A, (u,vpy) > 0, (resp. {u,v,) < 0). In particular, if 7 is n-dimensional, then the above
equation reads z; z(7y) = (1 — ry)z(y), which proves the lemma in this case. Assume that
k < n and that the statement holds for all higher dimensional cones. Then from equation
(2), we see that the lemma follows by repeated application of the inductive hypothesis and
by the observation that if 4/ < 4" and if 4 is not contained in 4, then neither is ~+".

Parts (ii) and (iii) follow from (i) just as in the proof of Lemma 2.1. O

REMARK 2.3. One can show that if r; = 0 for all i, 1 < ¢ < n, then gy =0, 1€7<d
m A and that =(r),1 < { < m, form a basis for R as a module over 5. Similarly, if r; = 1
for all 1 < i < n, then ;':;-H'1 =0for1 < j<dand z(r;),1 <4< m, form a basis for R as
an S-module.

3. Singular cohomology and Chow ring

In this section we shall prove parts (i) and (iii) of the Main Theorem 1.3.
| 17



Let A be a complete nonsingular fan in N. We assume that 01, -+~ , T, is an ordering of
A(n) such that property () holds. (See §1.) This implies that the toric variety X = X(A)
has an algebraic cell decomposition, namely, there exists closed subvarieties X = Z; 2 -+ - 3
Zm of X such that Z;\ Z;;) =: ¥; = €% for some integers k. In fact, with =; as in §1, the
closure of ¥; is just the variety V(7). See [25]. This yields the structure of a (finite) CW

complex on X' with cells only in even dimensions.
Notation: We shall denote V() by Vi. If (+') also holds, then we set V= V().

Assume that p : E— B is complex algebraic and B irreducible, nonsingular, and noether-
1an over C. Now since the varieties V; are stable under the T-action, one has the associated
bundles m; : E(V;)— B with fibre V;. Note that E(V;) is a smooth closed subvariety of
E(X). For any closed subvariety Z in an algebraic variety ¥ we denote by [Z] its rational
equivalence class in A,(Y). If Z and ¥ are smooth, we denote by [Z] the cohomology class
dual to Z in H*(Y; Z) as well as the element in the Chow cohomology group A™(Y) where

r is the codimension of Z in V.

In case property (+') also holds, then [ViL[V/] = 0if j < 4, and [V][V}] € H?"(X;Z) = &
is the positive generator with respect to the standard orientation coming from the complex
structure on X. Also, in the Chow ring, [Vi][V/] € A"(X) = A¢(X) = Z denotes the class of
the point [V (e;)] which generates Ay(X).

LEMMA 3.1. Let X be a complete nonsingular T-toric variety and suppose that property
() holds for an ordering of A(n). Let 7 : E—B be a principal T-bundle over any topolog-
teal space. Then:

(i) The bundle 7 : E(X)—B admits a cohomology extension of the fibre in singular coho-
mology with integer coefficients. H*(E(X);Z) is isomorphic to H'(B;Z)® H*(X:Z) as an
H*(B;Z)-module.

Assume m : E—B is complez algebraic where B an irreducible, nonsingular neetherian
variety over C. Suppose that properties (), (+") hold. Then:

(ii) The Chow group A*(E(X)) is isomorphic as an A*(B)-module to A*(B) @ A*(X).

Proof: We shall fix a base point by € B and identify X with the fibre (b)) € E(X).

(i). Since the X has a CW decomposition with only even dimensional cells, its integral
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cohomology is isomorphic to the free abelian group with basis labelled by its cells. Indeed
the dual cohomology classes [V;] € H% (X3 2Z), ; = dim(z;), form a Z-basis for "(X;Z).

Let n € A(r) spanned by the primitive vectors along Ujiseor 4 U5, Dencte by L(y)
the T-equivariant bundle Li, ® - & L;, where the L; are as defined in §1. The class
V(n)] € H™(X;Z) equals the the Chern class e(L(n)) = (L) - “~e1(L; ). The bun-
dle L(n) = E(L(n)) over E(X) restricts to L(y) over X. By the naturality of Chern
classes, ¢,(L(n)) € H*(B(X);Z) restricts to c(L(n)) = [V(n)] H*(X:Z). In partic-
ular, it follows that [V()],1 < i < m, are in the image of the restriction homomorphism

HY(E(X); Z)—H*(X; Z). The lemma follows by Leray-Hirsch theorem ([39], p.258).

(ii) Our proof follows that of Lemma 2.8 [24] closely. (See also Lemma 6, [23].) Clearly
the classes [E(1})] e A*(E(Vi)),1 < i < m, restrict to elements of a Z basis (namely
[Vi] € 4*(X)). Consider the A*(B)-linear map @ A*(B)@ AYX)—A*(E(X)), defined as

(D M) = 3 = m)(BW).

I<i<m 1<i<m
To prove (ii) we show that @ is an isomorphism, Suppose ®(3 b, ® [Vil) =0€ AY(E {X)}
Assume that k is the smallest integer such that & # 0. Since for J 2k Vjand ¥
disjoint unless j = k in which case they intersect transversally and V; NV} = V{a;) scheme
theoretically. We see that [E(VOLIE(V)]=0if j > k, and, E(V;) E[V ) intersect transver-
sally and so E(V;) n E(V) = E(V(o;)) scheme theoretically (where the subvarieties are
given the reduced scheme structure). Therefore, [B(V;)] LE(V]] = [(E(V(;))]. Note that
since V(o;) is a T-fixed point, E(V(o;)) 2 E/T = B. Denste by 7; the restriction of
T i B(X)—B to E(V(g;)). Also let ¢; be the inclusion E(V(o;)) ¢ E(X). Note that
[B(V (0))] = 1s.m3([B) € A.(E(X)).

Now since B e b @ [V5]) = 0, we get
0= [EVILO(Z jenbi @ [V)]) = Ligiem ™ B)EWV)LIEVD] = 7 0)(E(V(02))]
= 7' (be)-Le. i ([B]).

Applying 7, and using the projection formula we get
O =(m (b) .k ([B])) = by, g [B]) = by-meuwi([B]) = by.[B] = by.
‘This contradicts our hypothesis that b, £ 0. It follows that @ is injective.
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We now prove surjectivity of ®. One has the filtration B = E(Z,) C ---c E(Z,) =
E(X). We claim that @ defines surjections

®; 2 A"(B) @ A*(Z:)—A"(E(Z)))

for each ¢,1 < i < m. We prove this by downward induction on i. This is trivially true for

i = m, since in this case E(Z,,) 2 B. Consider the diagram

A'(B)® A" (Zin) — A'(B)@ A'(Z) — AY(B)@A'(Y) —0
Dipy L ;1 $
A(B(Zin))  —  A(E(Z) — A(EM)  —0
where the top horizontal row is obtained from tensoring with A*(B) the exact sequence
A*(Zi41)— A (Z;)— A*(Y:)—0. The homomorphism A*(B) & A" (Y;)— A (E(Y;)) is an
isomorphism by Prop. 1.9, ch. 1, [26]. Therefore the surjectivity of @; follows by a diagram
chase. O

REMARK 3.2, It follows from the proof of the above lemma that the classes el L;) €
H*(B(X);2),1 < j < d, generate H*'(E(X);Z) as an H*(B;Z)-algebra. Similarly, when
p: E—B is algebraic and B a complete nonsingular variety, then [E(V(p;)] € AE(X)),
1 < j £ d, generate A*(E(X)) as an algebra over A*(B). Indeed for every 1 < i < m,
E(V:) = ﬁj;;lEﬂf’(ﬂ,ﬁ}} (intersection is transversal and proper) where 7; is spanned by
Pivs Pigs -+ piy, and l; = dim(7;). (See p.100 of [25])

We now turn to the ring structure of H*(E(X); Z) and A*(E(X)).

Recall from §1 that the line bundle L; over X admits a T-equivariant section s i1 X—L;

‘whose zero locus is the divisor V(p;).

Suppose that v;,, -+ ,v; does not span a cone in A. Then s = (855,85 is a nowhere
vanishing T-invariant section of L;, & -+ @ L; . By taking associated construction, we see

that the bundle £;, & --- @ £, admits a nowhere vanishing section. This implies that

e(Ly) - er(L;,) =0 (3)

in H*(E(X); Z).
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When p : E—B is algebraic with B nonsingular, we see that

[E(V(pi))]--- [E(V(p;,))] =0 (4)
in the Chow ring A"(E(X)).

Now, let u € M be any element. Consider the T-equivariant line bundle L, on X corre-
sponding to the prineipal divisor Zlggd{u,vj}'[*’[pj} = div(x ). Clearly L, is isomorphic
as a T-equivariant bundle to [T, L_,E"‘f" " as both of these bundles correspond to the same
piecewise linear function —u : |A|—R. (See [25].) Hence BE(L,) = [ici<a ,[Zj."'”ﬂ, On the
other hand the bundle £, := E(L,) = E(x™™) is isomorphic to (€)™ et (£,)%, where
a; = (—u, ;). This yields the following relations:

E (w,vei(Ly) — Y (w,wer(n*(€)) =0 (5)
L=j<d 1=i=n

in H(E(X); Z). In the case when p : E—B is algebraic and B is nonsingular we obtain,
in the Chow group A'(E(X)),

> wudBV))] = 3 (wua(r(g)) =0. (6)
1<j<d L<i=n

Proof of Theorem 1.3 (i), (iii): We first consider part (iii). In view of equa-
tions (4) and (6) above we see that we have a well defined homomarphism of algebras:

¥ R(A*(B), A)—A"(E(X)) defined by v(z;) = [E(Vi{p;))1<5<d

Note that, by Remark 3.2, 1) is surjective. We need only prove that Yis1—1. In view of
Theorem 3.1, A*(E(X}) is a free A*(B)-module with basis [E(V(m:))], 1 <4< m. It follows

from Lemma 2.1(iv) that v is an isomorphism, completing the proof of 1.3(iii).

Proof of part (i) is similar. In view of equations (3), (5) above, x; ++ e1(L;) defines
a homomorphism R(H*(B), A)—H"(E(X); Z) which is indeed an isomorphism by 2.1{iv)
and 3.1. O

REMARK 3.3. If, instead of A being nonsingular, it is only assumed to be simplicial, then
the toric variety X is only an orbifold. In this case Lemma 3.1 holds provided we replace
integral homology by rational homology and the Chow group by the rational Chow group
throughout. In this case we note that [ViL.IV]] = ¢;[V(g;)] for a rational number g; and
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[V;l[V¢] = 0 for j > k. Computing the integral cohomology or Chow ring when the fibre X
15 only simplicial seems fo be much more difficult. When X is a weighted projective space

Al Amrani [2] has computed the integral cohomology of E(X) in a mare general setting.

4. K-theory

In this section we prove parts (ii) and (iv) of the main theorem.

In view of our assumption in 1.3 (iv) that both the base space 5 and the fibre X are
smooth, the Grothendieck ring K°(E(X)) of algebraic vector bundles may be identified, via
the duality isomorphism, with Grothendieck ring Ko(E(X)) of coherent sheaves on E (X).
We shall denote cither of them by K(E(X). Also if a smooth variety ¥ has an algebraic cell
decomposition the forgetful map K°(Y)— K (V) is an isomorphism of rings. In particular,

this holds when X is a complete nonsingular toric variety satisfying property (#) (see §1).

We begin with the following lemma:

LEMMA 4.1. Suppose (y,---,(, are compler line bundles over a finite CW com-
plez Y which has cells only in even dimensions such that H (Y3 Z) is generated by
c(G) e ealle) € HXYZ). Then the ring K*(Y) = K°(Y) is generated as a ring by
G-+, [G] € K(Y).

Proof: Let f; : Y—P" be a classifying map for the bundle ¢;, 1 < i < r where N >
1/2(dim(Y")). Consider the map f : ¥ —(P")" which is defined as Fy) = (fily), -, frlw).
Then f*: H*((FY); Z)— H*(Y; Z) is easily seen to be a surjection. By the naturality of the
Atiyah-Hirzebruch [7] spectral sequence it follows that {* induces a surjection of K groups
K((BY)"; Z)— K (Y'). Recall from [1] that K (P¥) = Z[2]/{z"+") where z = [w] =1, w being
the class of the tautological line bundle on PV, Hence K((PV)) = Zlzr,- -, 2]/ (=N, 1 <

1< ). Since f* is ring homomorphism and since f*(z;) = [¢;] — 1, the lemma follows. O

LEMMA 4.2. Suppose that ¥ is a complete nonsingular variety over C which has an

algebraic cell decomposition and that H*(Y;Z) is generated as a ring by H HY:Z). Then

there exist algebraic line bundles (i, -+, (i over Y such that K(Y') is generated as a ring by
:[{'_1],1 < i< k. In particular, the forgeiful map 8 : K( Y)—K(Y) is an isomorphism.
22
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Proof: Since V' has an algebraic cell decomposition, the Chow ring is isomorphic to the
cohomology ring H*(Y:Z), which is isomorphic as an abelian group to Z™ where m is the
number of cells in V. Since A*(Y) is free of rank m, it follows that X (Y7} is also free of rank

m. This can be seen as follows:

Recall that we have the “topological filtration” on K(Y) where FE(Y) is the sub-
group generated by [Oy] where V ranges over the subvarieties of codimension at least k.
Let Gr(K(Y') denote the associated graded group for this filtration (see 15.1.5 of [26]).
The map ¢ : A (Y )—Gr(K(Y)) defined as [V] = [Ov], is a surjective homomaorphism
of groups. Therefore, since A*(Y) is free abelian of rank m it follows that K(Y) is a
finitely generated abelian group of rank < m. Moreover, since the Chern character map
ch: K(Y)®@Q—A"(Y)®Qis an isomorphism, it follows that rank K(Y )= rank A*(Y).

Thus we conclude that K(Y) is a free abelian group of rank m.

Further, since Y has a cell decomposition with cells only in even dimensions, we have
HP(Y; L) = 0 for p odd, and hence the Atiyah-Hirzebruch spectral sequence collapses. More-
over, since H*(Y;Z) is torsion free, it follows that K{Y') is free abelian of rank m. (see p.
208 of [7]).

Let aj,--- ,a; be a Z-basis for H2(Y; Z). Let Dy,---,D; be divisors on ¥ such that
[D;] € AY) maps to a; € H*(Y;Z), 1 < i < k. Since the first Chern class of Q(D,) is
a; € H*(Y:Z), for 1 < i < m, it follows that [O(D;)] € K(Y) generate K(Y) as a ring. Thus,
the forgetful homomorphism 8 : & (Y)—K(Y) is surjective. Since K (Y7} is free abelian of
rank m it follows that @ is an isomorphism. In particular, K(Y') is generated as ring by
OD)) e K(Y), 1l <i<k. O

REMARK 4.3. Examples of varieties which satisfy the hypothesis of the above lemma are
(complete nonsingular) toric varieties X(A) where A satisfies (=) and SLn(C)/B. However
note that the conclusion of the lemma holds for all G /B where G is semi simple and B ¢ G
a Borel subgroup and smooth Schubert varieties in G/B. Indeed K(G/B) = K(G./B.) =
R(Gc/B.) = R(B.) ®rc,) & where, G, denotes the maximal compact subgroup of & and
B. = G.NB is the maximal torus of G,. Further, it is a free Z module of rank [W((G)| where
W(G) denotes the Weyl group of G (see [7] and [37]).
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Our next result gives a description of the K-ring of X. We keep the notations of the

introduction.

Recall the definition of R from §1.

PROPOSITION 4.4. Let X = X(A) be a nonsingular complete toric variety where A
satisfies the property (+). The following relations hold in K(X) and K(X):
(%) [Ov(p;)] - [Ovig, 3] = 0 if vy, - -+ yv;. do not span a cone of A,
(1) [11<j<al L] =1,
(iti) Set i =1 € Z, 1 < i < n. The homomorphism of rings 6 : R = R(Z,A)—K(X) =
K(X) defined by x; — [Ov(,] = (1 —[LY]) is an isomorphism.

Proof: Recall that [Oy].[Oz] = [Oynz] if Y, Z are closed irreducible subvarieties of X
which meet transversally. Relation (i) follows from the fact that Vigp)n---nV(p;,)=10
if vy, e iU, does not span a cone of A. Since for any u € M we have (=) =
VRl <pedlth, Up)Up(vy), it follows that one has a T-equivariant isomorphism of bundles
ngp{d L':" ") o [ where Ly is the line bundle corresponding to the piecewise linear
function —u : [A| = Ng—R. But L, is isomorphic to the trivial line bundle and so (i)

follows,

Now the section s; : X—L; vanishes to order 1 on V(p;). Hence we have an exact
sequence of coherent sheaves for 1 < § < o 0—LY—Oyx —+O0v(p,)—0. Thus [Oy,] =
(A=[L}]) in K(X), ie., (1—[Oy(,]) = LY. Hence z; + [Oy(,,] defines a ring homomorphism
0:R—IC(X). Since K(X) is free abelian of rank m and since by Lemma 2.2 R is generated
by m elements z(r;),1 < i < m, it follows that @ is an isomorphism, completing the proof,
o

REMARK 4.5. Suppose 1;,- - , 7 are line bundles over ¥ such that their Whitney sum
1 = @1cickni admits a nowhere vanishing section, then, applying the +*-operation, we
| obtain 7*(n — k) = 0. On the other hand, v*([n] — k) = ¥*(@1cice (] — 1)) = [T(Im] = 1).
\ Hence, [T(1 — [m]) = 0. Thus, one can avoid the use of the coherent sheaves in the proof of

1 (i) above in the case of K'(X(A)) since we know that the section s = (s,,,-«- .. s;,) of the

bundle &) <p<,Lj, is nowhere vanishing whenever v;,, -+ ,v,, does not span a cone of A.
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COROLLARY 4.6. (i) The elements [Oy )] € K(X),1 < i < m, form a B-basis for K{X).
(it) Let L(;) = H;‘,uJEJ—,- Lj for 1 <i < m. Then [L(%)],1 € i < m, form a B-basis for
K(X).

Proof: This follows from the proof of 4.4 (iii). O

Recall that £; = E(L;) is the line bundle over E(X) with total space £ % L;. Denote
by L(7;) the line bundle E(L(r:)) = L; @ --- ® L;,, where v, v, are the primitive
vectors along the edges of 7;. In view of proposition 4.6 (i), the restriction of the bundles
L(7), 1 <7 < m, to the fibre X form a Z-basis for K™ (X) = K(X). Further, since the base
B is compact and Hausdorff (hence locally compact), we can find a finite closed cover {W;}
of B such that o [;—tqw,): 77 (W;) — W is a trivial bundle for every j. Let ¥ be any closed
subset of W;. Then both ¥ and X are compact and 7~ (Y) =Y x X. Further, since K*(X)
s free abelian, by the Kiinneth theorem for compact spaces it follows that the restrictions of
L(r), 1 <i<m, to K*(x~1(Y)) form a basis of K*(r=(Y)) as a K*(Y) module (see [10]).
Thus the hypotheses needed for applying Theorem 1.3, p-181, Chap. IV of [29] are satisfied.
Hence it follows that K*(E(X)) is a free K*(B)-module with basis L{r), 1 <i<m. (See

Theorem 2.7.8 of [5] and also [6] for classical Kiinneth theorem for CW complexes).
Suppose v, , - -+, v;, do not span a cone of A. The T-equivariant section § = (s;,,- -+, %;,)

of L;y @+~ @ L;, is nowhere vanishing and extends to a nowhere vanishing section F(s) :

B(X)—L;, @---® L;,. Hence by Remark 4.5,

[[-2,)=0 (7)

1<p<r

Now assume that p : E—B is algebraic and B irreducible, nonsingular and noetherian
over C. Since the T-equivariant sections s; are algebraic, equation (7) holds in KC(E(X)) as

well.

For any u € M, the T-equivariant isomorphism of bundles [ L<i<d Lf,-"“"" = L, yields an

‘isomorphism of vector bundles [Ticj<a Ej-“'"“'j = E(L,). Since E(L,) = 1<i<n f;{u'”‘}, we
get
II £ == (e (8)
1£j<d
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where g‘u = Hlfiin fii:ulw}‘
We are now ready to prove the remaining parts of 1.3.

Proof of Theorem 1.3(ii), (iv): In view of equations (7) and (8), one has a well-defined
homomorphism of K(B)-algebras ¥ : R = R(K*(B), A)—K*(E(X)) defined by x;—(1—

Since the z(7),1 < i < m span R by Lemma 2.2 (iv) and since K*(E(X)) is a free

K*(B) module of rank m, it follows that ¥ is an isomorphism, completing the proof of {ii).

Now let B be an irreducible, nonsingular, noetherian variety over C and let p:BE—B
be algebraic. Equations (7) and (8) still hold in K({E(X)) since the equivariant sections 5;
are algebraic. Proceeding as above, we see that to complete the proof of 1.3 (iv), we need
only show that [Opy), 1 < ¢ < m, form a basis for K(E(X)) as a K(B)-module, where
Vistands for V(7). Let @ : K(B) ® K(X)—K(E(X)) be the K B)-linear map defined by
Yicicm b ® [Oy] — > i<icm T (0)[Opy), 1 <4 < m. In view of 4.6(i), we need only show

that @ is an isomorphism.

We first prove surjectivity of ®. This is proved by induction on the dimension of B,
assuming only that B is noetherian over C. Without loss of generality we may assume that
B is irreducible. If B is a point, then the result is obvious. Suppose that dim({B) > 0.
Let U be an affine open set in B over which the T-bundle p : E—B is trivial and let
Z = B\ U (with its reduced scheme structure). Note that Z may not be irreducible
but dim(Zy) < dim(B) for each irreducible component Z, of Z. By inductive hypothesis,
Ko(Z) @ K(X)—K(r~'(Z)) is surjective homomorphism of abelian groups. Consider the

commuting diagram of abelian groups and their homomorphisms:

Ko(Z) @ K(X) — Ko(B)®@K(X) — KolU)®K(X) —> 0
1 il f
Kolr™(2)) —  KG(B(X)) — Koo '(U) —s 0

where the horizontal rows are exact. The top horizontal row is got by tensoring with (X))

the exact sequence Ko(Z)—Ko(B)—Ko(U/)—0. By Prop. 2.13, c¢h. II, (Exp. 0-App.).
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p-60, [9], the homomorphism K(U) @ K(X)—K(x 1 (U)) is surjective. Tt follows that the
homomorphism @ : Kq(B) @ K(X)—Ks(E(X)) is a surjection.

Now we prove that @ is a monomorphism. Suppose @{ZJE;ET“ b;[O:]) = 0 where b; is
non-zero for some i. Let p > 1 be the least so that b, # 0. Then, writing vy for V(7)) we
have
0=108vp] (Cricicm ™ (0)-[O2i)]) = X cicm 7 (0)[Opvpnemy)]
= "T*fbp}[@ﬁ:{vwr,j]L

since A satisfies property (+').

Denote by @, the restriction of 7 to E(V{op)) and by ¢, the inclusion
E(V(op)) € E(X). Then the homomorphism e 1 K(E(V{g,)))—K(E(X)) maps
[Orvio,n] =1 € K{E(V(ay)) to [Opnie,p] € K(E(X)). Also, iy is an isomorphism of
varieties. Therefore, applying w. to the expression 0 = ™ (6p)[Or(v(s,))] and using the

projection formula (§15.1, [26]) we get

0= (7 (5p)[Orviom]) = bp-Tetpu ((Orviom]) = bp.7ipu (Orion]) = by O5] = b,

This contradicts our choice of p. Hence we conclude that @ is monomorphism. a

Concluding remark 4.6. Parts (iii) and (iv) of the main theorem also hold when the
base field C is replaced by any algebraically closed field k. Namely, let B be an irreducible
nonsingular noetherian variety over & and let 7 : E—8 be a principal T bundle where
T = Spec(k[M]). Since any toric variety is defined over the integers the fan A defines a
nonsingular complete k-scheme X = X(A), Again E(X)—B is a Zariski locally trivial
bundle with fibre X. Then X(E(X)) and A*(E(X)) are isomorphic to R and R respectively.




CHAPTER 2

Topology of real toric varieties

1. Basic definitions and statement of results

1.0.1. Notations:

NZZ" M = Hom(N,Z) and {, )= the dual pairing.

Ng =N @z R A = smooth fan in Ny ; ¢ and T denote cones in A.

Let o beaconein A, S, =e¢¥NM = {ue M:(uv)>0Vvea]

A(k) = cones of dimension k. A(1) are the edges and #A(1) = d,

A1) = {pr.p2,...,pa). Let v; be the primitive vector along gy then, {v; ,...,vy ) denotes the
cone spanned by {v;, ... v, ).

(Un)e = Homay(5,,0), Uy = Homyy(S,,R) and (U,)s = Hom,y(Ss.By) ¥ o € A where
R, = K" U {0}. Here, Hom,, denotes the semigroup homomorphisms which sends 0 to 1.

X = smooth real toric variety of dimension n associated to A.

K¢ = the complex toric variety whose real part iz X,

X, = the non-negative part of X

T = Hom(M,Es) = Ty := Uy = Hom(M,B*) ; Tg := Hom(M,C*) ; Ty := Hom(M, ).
Foreveryoe Az, €el, isa déstinguished point defined as:

1 Yuegt
Ty (1) =
0 otherwise

O = orbit of z; under the action of T =~ (R*)™ and V(r)= O,.

Stab(z. |= stabilizer of &, under the action of Ta.

(Or)+ = orbit of & under the action of (B*)" and V(+), = 05,

WA)={s:j=12..d | 2:1<j<d, {si8;)* whenever {v;,v;) € A ). Then, W(A)is
a right-angled Cozeter group associated to A. In many places when the context is clear, we shall
denote W(A) simply by W.

Sn = (Ng — {0}} /B~y be the sphere in Ng and let 7 - Ng — {0}— S be the projection.

Let A be a smooth fan in the lattice N & Z". Let Xc(A) be the complex toric variety

ciated to A. Let Xg(A) be the real valued points of Xc(A) which we call the real
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toric manifold associated to A. For the definition and basic facts on real toric manifolds

see Chapter 4. of [25] and §2 of [27]. We mainly follow [25] for notations and background

material on toric varieties.
Before we state the main theorems let us fix the following terminology:

Let A(1) denote the edges of A, d = #A(1), and let {v1, U9, ooy g} denote the primitive
vectors along the edges. We assume that {v;, vy, ..., vy} form a basis for the lattice N and

let {uy,...,u,} be the dual basis in M.

Let W(A) = (s5,,...85, | 83 : 1 < j < d, (s:5;)* whenever the cone spanned by {vi; v} is in
A) be the right-angled Coxeter group associated to A.

We call the fan A flag-like if and only if the following condition holds for every collection of

primitive edge vectors {v;,,...,v;. } in A: if forevery 1 < k,{ < r, {vi, ¥, } spans a cone in

A, then {wv;,..., v, } together spans a cone in A,

Let Ca be the real valued points of the total space constructed by Cox (see [16]) for which
the quotient under the action of (C*)* " is the complex toric variety X c(A). It is also the

complement of a coordinate subspace arrangement in .

Let A be a smooth fan and that the primitive vectors along A(1) span N @ Z, so that X (A)
is a smooth and connected real toric variety. (We shall see later that the condition that the

the primitive vectors along A(1) span N & Z, is the necessary and sufficient condition for

for X(A) to be connected.) We now state the main results.

TreorEM L.1. The fundamental group m(Xg(A)) is abelian if and only if one of the
following holds in A.

i) For every 1 < i,j < d, {v,v;} spans a cone in A. In this case, m(XNg(A)) is
{
tsomorphic to Eg‘“.
(ii) For each 1 < j < d there exists at most one i = i; with 1 < ¢, < n such that,

{vi,,v;} does not span a cone in A and (uy,v;) = 1 mod 2. Further, for each

n+1<k<d suchthat k # j we have, (u;,,v.) = 0 mod 2.

THEOREM 1.2. The real toric manifold Xg(A) is aspherical if and only if A is flag-like.
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THEOREM 1.3. Let Ca be the complement of the subspace arrangement relaled fo A as
above. Then, m (Ca) is isomorphic to the commutator subgroup of W(A). Further, Ca is

aspherical if and only if it is the complement of a union of codimension 2 subsprces.
We prove Theorem 1.1 in §5, Theorem 1.2 in §6 and Theorem 1.3 in &7,

2. The Universal Cover of X(A)

In this section we shall determine the universal cover and the fundamental group of X.

For this purpose, we primarily apply the contents of pages 367-386 of Chapter T1.12 of [11].

We begin with the elementary topological description of a real toric variety in the fol-
lowing proposition. The proof essentially follows from the proposition on p.79, Chapter 4.

of [25] by replacing X¢ by X and §' by 8'NR ~ &y. For details, also see p.36, §3 of [27].

PROPOSITION 2.1. ([25],(27]) There is a retraction, X, 4Xx 5 X. given by the

absolute value map, T lz| from By C R — R, which identifies Xy with the gquotient

‘space of X by the action of the compact real 2-torus, Ty = Hom(M,Z,). Further, there

18 a canonical mapping Ty % X. — X which realizes X as a quotient space, Ty x X,/ ~
\where, (t,z) ~ (#.2') if and only if = 2’ and t - (')~ € Stab(z,) where, z € (0,). .
The retraction X — X, maps O, to (0,), and Vi(7) to V(7)s and the fiber over (O, ). is

T i=Hom(r=N M, Zy) which is a compact real 9-torus of dimension n — dim(7).

We now observe the following property of X..

LEMMA 2.2, X is confractible.

Proof: Recall that T{o} 15 the distinguished point of (Ugoy )+ =~ (BT)™. We first show that
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Furthermore by definition, H,’s for & € A are compatible with the inclusiins (U:)s €
(U;)+ whenever 7 < ¢ in A. Therefore since X is the union of (Uz)s's for ¢ € A, we can

glue together the maps {H,},ca to get a strong deformation retraction H of X, to zqg.
Hence the lemma. O

PROPOSITION 2.3. Let A be a smooth fan. We then have the following.

(1) (Xo, (V(7)s)rea) is a stratified space with strata {V(7) s }sea indezed by the poset
A.

(2) Associated to this stratified space we have a simple complex of groups G(A) =
(GryWyr) where the local group at the stratum V(T)+ is G, = Stab(z,) under the
action of Ty = Hom (M, &y) and ¢, : G = G, ( for v < o in A) are canonical
inclusions and we have a simple morphism ¢ = () : G (A) = Ty =~ Z¥ injective at
the local groups.

(3) For the above simple complex of groups G(A) = (Gy, W), the direct limit m 08

isomorphic to W(A). We therefore have a canonical simple morphism t = () :
G(A) — W(A).

Proof:

Proof of (1). Since the orbit space decomposition of X. under the action of T, is obtained
b}' restriction of scalars from that of X under the action of Tg, it follows that (X Vi(T)4)
is a stratified space with strata V(7)s indexed by A.

Proof of (2). Let G, = Stab(z,) C T,. We then have canonical inclusions, ¥, : G.—=G,
Whenever 7 < o in A and, ¢, : G.=T; for every 7 € A. Then G(A) = (G, ts,) is a simple
complex of groups over (X, V(r).) where G, is the local group along the stratum V(7).
Further, ¢ = (i, )rea : G(A) — T, is a simple morphism injective at the local Eroups.

Proof of (3). m is by definition the free product of G, with the relations Wer (1)

—

:nfl\:f h € G, whenever 7 < ¢ in A. Thus, G(A) is simply the graph product of the vertex

ps G, = Zy over the graph Sy N A(2) where the vertices of the graph correspond to
\(1) and the edges correspond to A(2). Therefore m ~ W(A) and (3) follows. O
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Let G be a group for which there exists a simple morphism ¢ : G (A) = G injective at
the local groups. Then G x X,/ ~:= {(g,2):9€G, z€ X, : (g,%) ~ (¢',1) & z=
z;9:(¢) e G} where 7 is the unique cone such that r € O.. Let D(A ) =LepG/G-.
Then D(A, ¢) is a poset consisting of pairs (¢ - G,,7) where 7 € A and g -G, s a coset of
G in G and has the partial order (g - G,,0) < (g - G, 7) if and only if & < v in A and

.(g;}hi g€ G

LEMMA 2.4. X is a stratified space over D(A, w). Furthermore, the Ty action on X is

Strate preserving, with X as the sirict fundamental domain.

Proof : By definition, (T, x X,/ ~) is a stratified space over D(A, ) such that the
action of 7> on T, x X, / ~ is strata preserving where, # € T} takes the stratum (', Vi{r)+)
fo the stratum (#',V(7).). A strict fundamental domain for this action is the copy 1 x
X+ corresponding to the identity element 1 € 75. However, by Proposition 2.1 there is a
canonical Ty-equivariant isomorphism from (T x X L)/~ to X. Thus X gets a structure of

- a stratified space over D(A, ) in such a way that the action of Ty on X is strata preserving

“and the strict fundamental domain for this action is X, CcX O

THEOREM 2.5.

(1) Let D(Xy, ) and D(X,,1) denote the developments of X, with respect to o and ¢
respectively. Then D(X., @) = (To x Xy f~) = X and D(Xy, 1) = (W x X, /~) =
X. There are strata preserving actions of W oon D(X,,¢) and of Ty on D(X,, )
with sirict fundamental domain X .

(2) X is connected if and only if the primitive vectors along the edges of A span N @z Z,.
In particular, X is connected whenever the primitive vectors contain a 7, basis Jor
N.

(3) X = Wix X/~ is the universal cover of X and my(X) = ker(Z) where, : W —= T,
13 the canonical homomorphism induced by .

(4) Let h : W — W, ~ 24 be the surjective group homomorphism obtained by abeliani-
sation. Associated to the map h, we have a simple morphism a : G(A) — B¢ such
that &@ = h. Then D(X,,a) =~ Z§ x X./ ~ is a covering space over X with deck
transformation group ZS™", it is a covering space of X and m(D(X4, @) = [W, W],
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Proof : To prove this theorem we use Prop. 12.20 of [11].

Proof of (1). By Prop.2.3, the development D(X_, ) of A4 with respect to the simple
‘morphism ¢ from the simple complex of groups G(A) over X, ta Ty is a stratified space
over D(A, ) and is isomorphic to Ty x X,/ ~ in such a way that the induced action of
Tyon Ty x X/ ~ is identical to that in Lemma 2.4. Hence by Lemma 2.4, D(X,, ) is
isomorphic to X as a stratified space and further the isomorphism is equivariant under the
strata preserving action of T. Similarly the development D(X,¢) of X, with respect to
the canonical simple morphism ¢ from G(A) to W is isomorphic to (W x X, J ~), which is
astratified space over the poset D(A, 1) and further there is a strata preserving action of 1

on D(X, ) with strict fundamental domain X .

Proof of (2). From Lemma 2.2 X, is contractible, in particular it is connected. Hence
D(X.,y) is connected if and only if @ is surjective which is equivalent to the assumption
ﬁmt the image of the primitive edge vectors span N @y Z,. This certainly happens if a part

:ljf-'-the primitive vectors along A(1) form a Z-basis for V.

Proof of (3). From Lemma 2.2 it follows that X is simply connected and the strata
of X, are arcwise connected. Further, from Prop.2.3 we know that E{Ej ~ W. Therefore
(W X X./ ~) = D(X_,:) is the universal cover of X ~ D(X,,¢) and ker(3) ~ m(X)

where 3 is the canonical surjective homomorphism induced by i,

Proof of (4). Since @ = h o and T3 being abelian @ factors through W,,. Therefore

he simple morphism o is injective at the local groups and the development D(X ., a) =

,,,,

REMARK 2.6. (Connectedness of X) If the primitive edge vectors of A(1) do not span

N ®z Z,, then X is not connected and the number of connected components of X is equal




the primitive edge vectors should span N. For example, the real toric variety associated to

the fan A = {(2e; + 3ea), {e1), {0}} in N = Ze, & Ze, is smooth and connected but the edge

vectors {2e; + 3es, e} do not form a Z-basis for N,

3. A presentation for m,(X)

Let X be smooth and connected. In this section we shall give a presentation for (X)

~with generators and relations defined purely from the combinatorial structure of A.

Let {vi,...un} be primitive vectors along A(1) which form a basis for N @y Z» and let
{uy, ..., u,} be the dual basis. Let aji = (U, v;) mod Zofor 1 < j <dand 1 <i<n Then
A= (a;;) is the characteristic matriz of A with respect to {vy, ... v,}.

oltn) € Z3, let U] =t +aj; for 1 <4< nl < j<dandlet & =

t,+ apitagiforl <i<mn:1<pg<d Weshall denote the vector (bl )iz1, . .n by & and
Ithe vector ('),

For &1 = [

11111

In the following proposition we will give a presentation for (X using the above data.
PROPOSITION 3.1. The fundamental group 7 (X) has a presentation with generators

{yj1§11“_:_j'c_:d|£: [EI,...,tn]EE;}

¢ t: t
U {yﬂ{n,...,n} 4 yzf{n,a,,..,u} = ‘yn.fn,,,,_.su_hn}}
LETD

Ubne vwl1<i<d)
tELD

U {Upt - oar  Yporo ~ Ugo | (¥, ) € A}
tEZT

of: We know from Theorem 2.5 that 7y(X) is isomorphic to the kernel of the sur-

cetive homomorphism @ : W — Ty ~ Zj where W has the presentation (S | R) for

= {51,82,...,5a} and R = {s},5%,...,5%; (s:5;)* whenever {vi,v;} spans a cone in A}.
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We further have the following commuting diagram:

1 = F = F(S) - Z8 = 1
4 1y Il
1 = H = W = Z} — 1

where I(S) denotes the free group on S, ¢ denotes the canonical surjection from F(S) to
W, H denotes m (X) and F' = ¢~ 1(H).

Since 7= {si' - s -+ st | (t1,42,...,t,) € ZB} is a Schreier transversal for ' in F(8),

we can apply the Reidemeister-Schreier theorem (see [15],[31]) to obtain a presentation for
m1(X) from that of W. Let

Sy ={yj:1<j<dtel})
b= fog () ¥ u €T

R£={n:£(r}b’rER',§EEE}

.'_,'.ﬂre 0:=(0.0,...,0) € Z§, oy : F(S) — F(Sy) is defined recursively as follows:

(1) := 1; ay(s;) = y;,. Suppose that by induction we have defined as{w) for w € F(S)
hen a(w - ;) = oy (w) + ., (85) where t-s; € Z corresponds to the coset representative

p(w') € T of F' - w' where w' = 57 -+ st + 5,

Note that ¥ i = ({;,8s,...,1,) € Z7 we have

(i) ﬂu(s? T 3;'7 e @) = (00{31)]“ £ fﬂftl,u,_u.....njfﬁz]'}l’ e {ﬂ{tl,tz..“,tn_x,D}{Sﬂ”tﬂ'l

(i) eu(s?) = ayls;) - ap(s;),

(iii) o((sp - 84)%) = ay(Sp) + cp (5,) - Qo (5,) ap{s)V1<j<d.

follows from the definition (3.2) and from the identity (i) above that

By ={ ao(sr e -stt) | £= (koo t) €23 }.

. t H
1 it { {yltm,u“,_fg] '!i’z?{h.u\m‘u} £ 'y:;':{ght.h....g"_hmj | = (Gislayicila) € zy }
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Also the definition (3.3) and the identities (i) and (iii) above imply that

By = { (1), .-, 0u(s3) & (culsps,)?) whenever {vp vy} spans a cone in A }

Yipe: ?h,gh ''''' s Wdp - yu&" 1

Upt " Ugb? * Upgrw * Yguv whenever {v,, v,} spans a cone in A

Herel) = ti+a;V1<j<d: l<i<nand ¥ = Litauta;V1<i<n:1<pg<d
Let RY = Ugezp ;. Then from the Reidemeister-Schreier theorem it follows that m{X)
i1:-  the presentation (Sy | Ry, ; R%). O

LEMMA 3.2. The presentation can be simplified with lesser number of generators and

Proof: ay(s;) = si'- sl -5 (s - gln sj) where @(w) € T is the coset rep-

resentative of F' - w for w € W, Notice further that in W the {s;,--,s,} commute

-y n}. Hence we have (s} - st - 5;) =
fatay, tntdy,
- 8q o B

, ¥V (t1,ts,...,1,) € Z3. This implies that we have the following

() g0 = sp s gl (55) - 8% ~5§2-+-3;"+r-~3f: =lforalll £j <n;te i
(since, a;; = §;;forall1<j< n),
() g0 = aolsy) = s;-87" -5 P foralln+1<j < d,
() g = agls;) = sboshoign s 8" syt ) osl L st gt for all
n+l<j<d,
{iv] HJ:E = CEE [SJ] = EEI-HH'] _— .E:lﬂ-i-a—“" , [:'EJ'} 3‘;'1 5:111 = (3:1 gt ‘Siﬂ f [:3_7' b;;:’ S Sf‘-l'“} A
¢
st esp) T = (gt
Bt s, = ;-5 s

then from (ii) and (iii) above we see that the generators of m (X)
re | : 1;_-3._‘-;:’ stn S_; sPesPshVnrl<j<d Vie Z3}. Further, since R}, consists

dsin {y;pfor 1 < j<nandte Z%}, from (i) we see that RY = {1}. Furthermore,
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and they are: {y;, forn+1<j <d; t € Z?} and the non-trivial relations are of the form:
B = { Youtt) * Yowir) - Upelers) * Ygetr) whenever {vp, v} spans a cone in A} Vit € Z2.

Therefore the final presentation for (X)) is: (Sy, Ry ) where
S ={y;s where n+1 < j <dandt e 27}

.= Ypuelt) * Ygo(t?) * Ypso(ora) * Ygelsn) whenever {u, g} spans a cone in AlVteZ}

g = Upezg Ry.

Further, m,(X) is generated as a subgroup of W(A) by s vees - S5 st estn where
t€EZ) and §5; =s5;- 57" - 57" forn+ 1 <ji<s<d 0O

REMARK 3.3. Note that the fundamental group (X') and hence its presentation depends
only on the 2-skeleton A(2) of A.

3.1. Real toric surfaces.

3.1.1. Compact surfaces. By the classification of two dimensional smooth complete fans
(see p.42 of [25]) we observe that except the torus 8'xS' all other smooth complete real toric

surfaces correspond bijectively to the two dimensional compact non-orientable manifolds.

This can be seen as follows.

Let A be a smooth complete fan in N = Ze; & Ze,. Let U1, Vg, ..., Uy be the primitive
vectors along the edges of A. We can assume without loss of generality that v, = e; and

= gq.

If d = 3 then X is isomorphic to P2, If d = 4 then X is the real part of the Hirzebruch
surface F, = P(O @ O(a)). Hence it is isomorphic to the Klein-bottle if a is odd and 8! x §!
if a is even. This is because, they are both 8! bundles over §! and are determined upto

homeomorphism by the first Stiefel-Whitney class of the line bundle (Ofa))r, which is 0 if
aiseven and 1 if a is add.

We also observe here that the toric surface associated to the non-complete fan consisting
of the faces of the cones {e;, e;) and {e2, —ey + aes), is the total space of the line bundle
tﬂ(ﬂ]}g over 8'. Tt is therefore homeomorphic to the infinite Mébius strip if @ is odd and to
he infinite cylinder 8! x R if @ is even.
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If d > 5 then there exist a 7, 1 < j < d, such that vj—y and v,y generate a strongly
convex cone and v; = wj_; + vj4 (see p.43 of [25]). If o' = (vj-1,v;) and a” = (v, vj41)
then by the above observation we see that Uy U Uyn is an embedding of the Mabius strip in
the surface. Therefore it follows that the toric surface is non-orientable. Let X' be the toric
surface associated to the smooth complete fan A' obtained from A by removing the cones
pi, ¢ and ", and adding the cone o = (vj-1,¥551). Then X is homeomorphic to X 3
Thus x(X') = x(X’) + x(P&) — 2 (where y denotes the Euler -Poincaré ch aracteristic). Note
that if d = 5 then X' is the toric variety associated to a fan with 4 edges and is hence the
Klein bottle or the torus. In this case since y(X*) = 0. we have XX ) =3 (X +1-2=-1.
Therefore by induction on d we can see that the Euler characteristic of X is 4 — d. Hence
the number of cross-caps is d — 2. Thus X is homeomorphic to PE# - - - #P2 (d — 2 copies)

whenever it is non-orientable. And when it is orientable, it is homeomorphic to the torus
8! x'8sl.

3.1.2. Nen-Compact Surfaces. Let A be a smooth non-complete fan in N = Ze; & Fe..
Let vy, 192, . .., u4 be the primitive vectors along the edges of A. We can assume without loss
of generality that v; = e; and v, = ey. For simplicity we further assume that v; and v,
form a basis for N,V 1 <i < d (even if (v, vig1) does not belong to A(2)), and that the
support of A is not contained in any half space. Let A’ be a fan in N with A’ (1) =+=A(1)
and A'(2) = AQ2) U {{v,vin) | {vs,vi41) ¢ A(2)}. Then we see that A’ is a smooth
complete fan and A is a sub-fan of A’. Therefore if X* is the toric surface associated to A .
then X is obtained from the smooth compact toric surface X' by removing k points, where
k=#(A'(2) \ A(2)). This implies that X is orientable if and only if X' is orientable. Hence

the Euler characteristic of X' and the number of punctures will determine X,

REMARK 3.4. The classical presentation for the fundamental group of the compact toric
surfaces is apparently different from the presentation we have obtained, especially because
it has only one relation. In the cases when d = 3 and 4, where the spaces are P2, §! x §! or
the Klein -bottle ~ PE #P§ the presentations we give agrees with some of the classical ones.
We hope to simplify the above presentation in each case to reduce the number of generators

and relations, so that in general it agrees with one of the classical presentations.
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In the following example of a smooth compact torie surface which is non-orientable with
3 cross-caps, we illustrate how the above presentation simplifies to a presentation with 3

generators and a single relation.

EXAMPLE 3.5. Let N = Zey + Zes. Let vy 1= ey, vy 1= €2, Us = —€; + €3, U4 = —€4
and 15 = —ey. Let A be the smooth complete fan in N consisting of the following cones:

o = {:'Uhﬁz)f T3 = f'021 Ua};-ﬁa = {Uafm},(& = {1’4, Ua}.tr.g, — {U5, 'ul}. Thus we have n = 2,

W(A) = (51,80, 83,54, 85 | 87,83, 83, 83,83 5 (51-82)% (52 53)%, (85 - 80)%, (85~ 55)% (55 - 51)%)

and Z§ = {a; = (0,0), 05 = (1,0), a3 = (0,1), ayg = (1, 1)}. By applying Lemma 3.2 we get
the following presentation for sy (X) where the generators S and the relations R are as listed

below:

S={E|’:—:,a; v Waoe o Yo s Ya0q » W50y 5 yﬁ.ﬂ'z}

== ; . =1 b Tt R | -1 =1
Ro; = {¥3.0093,04 + Ysar Y5, + Yo ¥a,00V3.00 Y00, Va1 Y5,00¥4 03 Us a0,

= -1 -1 -1 -1
K, = {ya,azys,a, v YsaeWsa) + Y300 WMasVaa Y0 - y4r&]y5,&1y4,ﬂay5,ug}

= [y 5,1 -1 B S | ~1 -1 _~1
Boy = {Y3 0,501 5 Yoo V.01 » YoV, Vhion Viy Y005 00 Ve o Vs )

. =1 .=l =1 —1 e | i
;'Rﬁq = {yﬁ,mya,ag v YaaoUsar 1 Wao Mo ¥3.00 %0y o y&ir&syﬁ‘nly“‘ﬂlyﬁlﬂz}

Let R = UL | R, Then (S | R) is the presentation obtained for 7, (X). We can further
simplify this presentation in the following way:

Let @ :=ys o, bi= yga,, € := Ys0, and d := y5 ,,. The above relations can now be written
s words in @,a7",b,b7%,¢,e7,d,d™! as follows: ac™lab™', bde~1d~", a~lca~'h. b~'ded~!.
ab~'ac™!, ed~'b'd, a ha~le and ¢~'d~'bd. Therefore the only non-trivial relations that
remain are ac~'ab~" and b~'ded™. If we let A =ca™' ; B=1b; D = d-!, then the above
lations can be rewritten as a single relation A>BDB~'D~! in the generators A, B and
). Since X' is homeomorphic to the connected sum of the 8! x §' and F2, the presentation
-_;..:B,D | A*-[B, D]) is in fact one of the classical presentations for m1(X) (see pp. 133-135
f[34).
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4. The Coxeter group W(A)

In this section we prove some general results on right-angled Coxeter groups and in

particular for W(A). Let M = (m,;) denote the Coxeter matrix corresponding to W.

LEmMa 4.1. [W, W] is abelian if and only if for all 1 < j < d there exists at most one i
such that (v, v;) ¢ A,

Proof: If there exist i # k such that {v;, v;} and {vs, v;} does not span a cone in A then
[Si,.':'}'J - [Sk, Sj_i —jaé IH;;, E_.,;] * 13;.. S_?'] in [H"r., I"i»"']

Conversely if for each 1 < j < d there exists at most one i such that (v 0;) & A, then
by using the relations in W it is easy to see that for any word w € W, w-[s,s] - wt =
[sis 55] or [s5, 8. (It is [s;,85] iff either one of s; or §; but not both occurs in the reduced
expression of w.) Now [W, W] is the normal subgroup of W generated by the commutators
{lsi85] | (vi,v;) € A}. Therefore under the above assumption, {[5::85] | (vi,vy) € A} in
fact generate (W, W] as a subgroup of W. Further, since they commute among themselves

|W, W] is abelian. O

LEMMA 4.2. A word w € W is of finite order if and only if it is of order 2. Moreover
in this case, w is a conjugate in W to a word w' which is of the form w' = 84, +++ 85 with

5, 85, = 85, " 85, V1 =pg=L

Proof: Suppose w = v - w'- v~ where w' is as above and v € W. Then w is clearly of
order 2. On the other hand if w is not of the above form, then the reduced expression for
wis of the form w = s, ---5;, where §i, and 8;, do not commute for some 1 < p, g < k.
:..In-:leed by repeatedly using the relation s; - s; = s; - 5; whenever mi; = 2, we can assume
without loss of generality that upto conjugation w is of the form Siy * 85y -+ 5, where s,

and s;, do not commute. Then it follows that for any positive integer v, w" = (s ---5;,)

(8-~ 53,) -+ - (8, - -+ 5;,) is in fact a reduced expression in W. Hence w is of infinite order.
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LEMMA 4.3. Let w = s;; -+ 55, € W where (vy,,...,v;,) € A and let w' = 5, -+ +5;,
(Vg0 u5,) € A forall 1 < p,g <1 but {vy,,...,v;) € A. Then w ¢ N(w') where N(w') is the

normal subgroup generated by w' in W.

‘I'.l'..lh.!’il"'ﬁ

Proof: Suppose on the contrary that w = vy -w' v vp-w'- w3t w0’ v7! for some
U, Vg, ... U € W. By Lemma 4.2 we know that (w)* = 1. Hence the above expression can

be rewritten as

(1) w = [vg, w'] - [w', vg] - [vg, w'] - - [w',v,] if r is even

(2) w=[v,w'] - [w'v] - [vp, w'] - w' if r is odd.

This implies that w € [W, W] in the case r is even and w - w' = w - (w')~! € [W, W] in

the case r is odd.

Now let h : W — Z¢ be the abelianisation map which takes §; to the coordinate vector
e, =(0,0,...,1,...0) (with 1 at the jth position). Also by our choice of w and w' we observe
(that {s;,...,s,} and {s;,,...,s;} pairwise commute in W and the tuples (Z1y.--,%) and

i, ..., ) are distinct.

Therefore h(w) = Ef_ e;, # (0,...,0) when r is even and h{w-w’) = e eIl e #
(0,...,0) when 7 is odd. This is a contradiction since on the other hand, w & w - (w)~ "' e

W, W] when r is even and 7 is odd respectively. This proves the lemma, O

REMARK 4.4. The lemma 4.1 if phrased differently as, [W, W] is abelian if and only if
there exists at most one ¢ for every j such that m 4 # 2, holds not just for right-angled

;Guxeter groups but for more general class of Coxeter groups with m, i=2o0rm; =5V 4]

5. Criterion for 7;(X) to be abelian

Let X be smooth and connected. In the following theorem we give conditions on A
inder which 7;(X) is abelian. We shall follow the notations in §3 and further assume that
_i:?;ﬁﬂq} € A for every 1 < p,¢ < nas in Lemma 3.2.

THEOREM 5.1. my (X) is abelian if and only if one of the following holds in A.
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(1) For everyl <i,j <d, {u;, v;} spans a cone in A. In this case, mi(X) is tsomorphic
to 2.
2) For each 1 < j < d there exists at most one i = i; with 1 < i; < n such that,
J i l
{vi,,v;} does not span a cone in A and (ui,,v;) = 1 mod 2. Further, for each

n+1<k<d suchthat k # j we have, (u;,, vx) = 0 mod 2.

Proof: Recall that we have an exact sequence 1 — [W, W] = m(X) — zg-“ — 1 and
further [W, W] is generated as a normal subgroup of W by [8,: 81,) whenever {v,, vz, } does

ot span a cone in A.

Step 1. Since [W, W] is a subgroup of my (X), if m; (X) is abelian then [W, W] must be abelian.
By Lemma 4.1, [W, W] is abelian if and only if for every v; there exists at most one v, such

‘that {v;, v;} does not span a cone in A.

Further, (W, W] = {1} if and only if any two {v;, v} for 1 < i,j < d spans a cone in A
‘which implies that, W ~ Z4 and (X)) ~ g,

Step 2. On the other hand if [W, W] # {1}, then there exists {v;, vi} which does not span a
(tone in A. However since [W, W] is abelian, this i = i; is must be unique for every such 7§,

Thus in W, s; and s; do not commute but they both commute with s, for every 1 <k < n.

ep 3. Suppose now that for some n+1 < j < d we have n + 1 < i; < d, then m(X) is
‘non-abelian for if S; denotes the word s; - 7" -+ - s#™ in W then

- R e T S Tt L S T e 5.1 By Pyl s L ;
SJ JS'-‘J—'SJ .h-;j'El 8y 'El *8n :.fé‘sl-: 3]'"31 L 1 31 8y ‘--.SfJ’SJ-

Hence if m (X) is abelian then for every n +1 < j < d there is a unique index i; such
tha {'Uj., 'U,'J.} ﬁ‘é A and further 1 < i; < n.

Step 4. Now if for some n+1 < k < d with k # 7 we have a,;. = (u;, v;,) mod Zy = 1, then
m(X) is non-abelian. This is because, if w — [Sk, S;] € mi(X) then w # 1, which we can see
.:t]ie- following cases,

If ﬂ'k,ig =0 and ﬂj.ig = () then w = [S;J.,Sj] ?‘—' 1,

If g, =1 and a;;, = 1 then w = 8¢, 93] # 1

:‘_E".'ﬂ.'kl,'i =:1 a.nd 254, = ] thEl‘l w = [Sii,s_,-] % [5;_-,3;‘,] ?"—‘ 1
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If arq, = 0 and G4, =1 then w= [s,-j, s;] - sk, 8i,] # L.

(Here we omit the proofs of the assertion that w # 1 in each case, as it follows easily

from the relations in W),

Step 5. 1f aj;;, = 0 then again 7,(X) is non-abelian since, the elements s; R

and 5;]
do not commute in 71 (X). This is because by Lemma 4.2, [,,55] is an element of infinite

order in W' and hence (s;; - S; - s,) - S50 = [si;, 85] # [35,8,] = St (sy - 858

Step 6. Therefore if m (X) is abelian and [W, W] # 1 then it is necessary that the following

tonditions must hold:

For every 1 < j < d, there exists a unique index i with 1 < ¢; < n such that {Uj,'uij}
does not span a cone in A and a;4, = 1. Further, for every n+ 1 < k < d such that & # j,

we have ag,;, = 0.

We shall now prove that these conditions are in fact sufficient for m1(X) to be abelian,
Claim:
(i) S; and Sk commute for n +1 < j, k < d.

(if) w- S; - w™! and S; commute where w = st - -5t for every £ = (ty,...,1,) € Zi and

h+1<j<d.

Proof of the claim:

g (1 F3 [ (% - -
i) 5j-Sp=585-86-8"" o g%m. gt L gtk feinee a. . =0 by assumption
J i) 1 n 1 Ttk

Qs [/ i a '
=5k 88 s o5 B spt Lsinee k # 45}
LA 1 a5 5 . -
= 55+ 820 gk 85+ 87" v 5% {since aq; = 0 by assumption}

=S};'5j+

(i) Let w = s} - 5% such that (t,1s,...,2,) € Z2,

w8y w = (sft ool - (o s ) (s str) = 2

(a) If ¢;; = 0 then z = s;- 877" - - 57 = §; {since s, -w = w-s;}, Thus w-S;-w™' = S;.
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(b) Hty, =1 then z=1g; - &5+ sy oo™ 8y =3y 8;- si;- Further,

[ -1 — e "
{-uﬂl - S_‘J‘ = } - [‘.Sj] = “11:_-. Sj SI_-i S_'J"
- i1 P51 S =] ' o
= By By w8y e g vov§ph® < Su sinee ayy; = 1}
a
=8 88, =1

This implies that, w - 5; -w™! = 8§77,

Hence w - S; - w™' commutes with Si for all n +1 < j,k < d, since we have either

w-S;-w™ = §; or ;7' in each of the cases. Therefore since the generators commute among

themselves we conclude that m (X) is abelian. O

REMARK 5.2. If A is complete then the condition a;;. = 1 will be forced after Step 4.
in which case we shall skip Step 5. However this is not true in general. For example in the

non-complete fan A = {{0}, (), 2}, (~2¢; +e3)} in N = Ze, @ Zes,

REMARK 5.3. (Torsion elements) By Lemma 4.2, since m (X) is a subgroup of W the
torsion elements in mi(X) are always of order 2. In particular when 7 (X) is abelian,
S; = sjos oesp™ forn+1 < j < d is of order 2 iff (v;,1;) € A for all 1 < < n and
it is of infinite order iff there exists a unique 1 < ¢; < n such that (v, vi;) & A since in this

case a;;; = 1 and §F = [s;,8,] # 1in [W, W] C W.

REMARK 5.4. If m (X) is abelian then 7, (X) is generated by S; = &; - s+« s0" for
n+l1<i<d Let {§1,j2,...50-}=J={j|n+1<j<dand (vj,v,) € A for some 1 <
i < n}. Therefore if j ¢ J then (v, v;) € A for every 1 <4 < n. Thus my(X) =~ Z& " " @ 27

v 37" for 1 < p < r). Furthermore, [W, W] = ([8551 sit50] = S2,

¢ S [~ [
where Z" = (§;, = s;,-5,

for 1 <p <) C W is free abelian of rank r. We therefore have the following commuting
diagram,
1 — [WW] — m1(X) — Z — 1

| | I

1 — 28 X mrezitt — ezt — 1

REMARK 5.5. If m(X) is abelian then necessarily d < 2n, because to every n+1 <

J £ d we associate a unique ¢; with 1 < i; < n . Examples of toric varieties with abelian
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fundamental group are: (i) Produets of real projective spaces. (ii) Toric bundles with base
an aspherical toric variety with abelian fundamental group and fibre P2 for n > 2. (However
this is not true for a non-trivial bundle with fibre P} for example, , ((F, )z) is non-abelian

where (F; )z denotes the real part of the Hirzebruch surface F;).

6. Asphericity of X

Let Sy := (Ng — {0})/Rso and let 7 : Ng — {0}—= Sy be the projection. Let Sa denote
the simplicial complex associated to the smooth fan A, where each k-dimensional o € A
corresponds to a (k — 1)-dimensional spherical simplex 7 (o — {0}). If further we assume A

to be complete, then it gives rise to a triangulation of Sy. (see p. 52, [35]).

Recall that a simplicial complex S with vertices V = {u;} is called a flag compleg: if the
following condition holds for every finite subset {u, v, Up} of Vi If {u;, v} span a simplex

in & for all 4, j € {1,2,...n} then {#,vy,.....,1,} span a simplex of S .

Hence Sp is a flag complex if and only if for every collection of primitive edge vectors
{vigs oo oy b i {{vg,v) € AV 1 < kI <1} then (u,,...,v. ) € A. We shall say that A

is flag-like whenever S, is a flag complex.

THEOREM 6.1. X is aspherical if and only if A is flag-like.

Proof: If X is contractible then we claim that A is flag-like.

Suppose on the contrary that A is not flag-like. Then 3 {uj,,..., vy, } such that ¥ 1 <
pig <, {v5,,v;,) € A but {v;,,...,v;) € A.

Let w' = s;,---5;, € W and let N(w') be the normal subgroup of W generated by
w' as in Lemma 4.3. Also let § : W — W/N(w') be the canonical surjection. Clearly,
A= (A = B o) is a simple morphism from G(A) — W/N(w'). Further, Lemma 4.3.
implies that, A : G € T, — W/N(w') is injective ¥V 7 € A. Hence A is injective at the local
groups. Now the development D(X,, ) of X, with respect to A has D(X, ) ~ X as the
universal cover and its fundamental group m (D(X,, A) = N(w') has v’ as a torsion element.
This is a contradiction since D(X, A) is a K(7,1) space, because of our assumption that X
15 contractible.
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For proving the converse we apply Cor. 10.3 of the main result of [19] to the reflection
system (' = W,V = §) on M = X with fundamental chamber Q = X (which is contractible
by Lemma 2.2). Here for every 7' C 5, Qr = NyerV(p;)s. Let Wy be the subgroup

generated by T in W. Then the following statements are equivalent:

(1) Qr is acyclic for all T C 5§ with Wy finite.
(2) A is flag-like.

Proof of (1)=>(2): Let p;,,...,p; be edges such that 1P4,: P, } spans a cone in A for all
1 < p,qg < 1. Then (1) implies that @r = NL_,V(p;.)x = V(7); is nonempty since by
Lemma 4.2, Wi = (s, ... 5;,) is a finite subgroup of W. This implies that 7 = (p,,,..., ;)

s a nonempty cone in A.

Proof of (2)=(1): Let T'= {s;,,...,8;} C S be such that Wy is finite. Then in particular,
w' = 5y, -+ - 55 is an element of finite order in W. By Lemma 4.2, the edge vectors [
palrwise span cones in A. The assumption (2) further implies that Vi, .-+, Uy together span
a cone 7 in A, Thus Qp = M_,V(p;, )+ = V(7). is nonempty. Moreover V(r) being a
smooth toric variety, its non-negative part V(7). is contractible by Lemma 2.2 and is hence

acyclic if it is nonempty.

We therefore conclude from Cor. 10.3 of [19] that if A is a flag-like then M = X is

contractible. O

REMARK 6.2. In fact since (1) < (2) above, it is clear that Cor 10.3 of [19] also proves
the first implication of the above theorem. However, in our particular case (where W is a
right -angled Coxeter group) the argument given above is self contained and is an application

of the “method of development” which is consistent with the theme of this paper.

The following are some corollaries of the above theorem.

COROLLARY 6.3. If X is aspherical then V(r) is aspherical for every cone r.

Proof: This is immediate because V(7) is the toric variety associated to the fan Star(r)
which by definition (see page 52 of [25] ) is smooth and flag-like whenever A is smooth

and flag-like. A proof for this is as follows: Let B, ... , Bi, be edge vectors which pairwise
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span cones in Star(7). Therefore by the definition of Star(r), the edges of v and gy, ... p;,
pairwise span cones in A. Since A is flag-like, this implies that v = (7, 0;, ..., p.) is a cone

in A and hence 5 = (p,,..., 5, is a cone in Star(r). Thus Star(r) is flag-like. O

COROLLARY 6.4, Let X be smooth and complete. We can blow up X along a number of

T'-stable subvarieties to gel a smooth complete toric variety X' which is aspherical.
p Y P

Proof: Since A is a smooth and complete fan, S, is a simplicial decomposition of the sphere
Sn. It is known that the barycentric subdivision of any simplicial complex is a flag complex
(see [11] p. 210). Therefore if A’ is the refinement of A obtained by taking the cones over
the simplices in the barycentric subdivision of Sx then A’ is a flag-like fan. It is not difficult
to see that A’ is also smooth and complete. Hence the smooth complete toric variety X (A')

which is obtained by blowing up X along certain T-stable subvarieties is aspherical. O

REMARK 6.5. However in some cases we need lesser number of blow ups to arrive at an
aspherical space. For e.g (i) P§ blown up at a T-fixed point is the Hirzebruch surface (I, )z
(the Klein-bottle) and (F, )g is aspherical. (ii) P2 x §' needs to be blown up along a T-stable

g to get an aspherical space (Fy )z x S
7. Subspace arrangement related to A

Throughout this section we assume that A is a smooth and complete fan.

In this section we define a real subspace arrangement associated to A whose complement
in R? is denoted by Ca. Recall from [16] that, X ~ XL /(C* )4 " where X7 is the complement
of a complex subspace arrangement in C. By restricting scalars to & in the above gquatient
we show that X = Ca/(R*)*™ where Ca = Xj. We compute the fundamental group of Ca

and also give necessary and sufficient conditions for it to be a K(m,1) space.

DEFINITION T7.1. A collection P = {p;,0iys...,pi,} of edges in A is called a prim-
iive collection if {pi,, pi,...,pi} together does not span a cone in A but every proper
subcollection of P spans a cone in A. For the primitive collection P let A(FP) =

{(z1....5) €ER! | gy, =z, =+ =2, =0 }.

DEFINITION T7.2.



(i) The coordinate subspace arrangement in RY corresponding to a fan A denoted by Aa
is defined as follows: Ay = UpA(P), where the union is taken over ol primitive
collections P of edges in A.

(ii) Let Ca denote the complement of Ax in R, i.e. Ca =R — Ax

Let {P;, Pa,...,P.} be the set of all primitive collections in A consisting of two edges.

Let P; = {pi,,pi,} where 1 <4,,7, <dV1<i<r.

The following lemma generalizes the description of a smooth complete complex toric
variety as given in [16] and [8] to the corresponding real and non-negative parts. Although
this follows almost immediately from the complex case, we give a proof for it since we have

not seen the result mentioned anywhere explicitly.

LEMMA 7.3. The real toric variety X corresponding to a smooth complete fan A is the geo-
metric quotient of Ca by the real algebraic torus (R*)™™ and we have a locally trivial principal
bundle with tolal space Ca, buse X and structure group (B )" i.e., Ca — Ca /(R )4 ~ X,
Similarly, X, ~ (Ca), /(RF)27.

Proof: Let 0 = (v;...,u:) € A(n) be such that {v,...,v,} form a Z basis for N. Let
{u1,...,us} be the dual basis. Let N ~ Z4-™ . N' ~ Z9 and let {ef : 1 <5 <d},
{ef : 1 £k < d—n} denote the natural bases of N' and N” respectively. Further, let
g: N'"—= N map ej to v; for every 1 < j < d and let f : N"<+N" be the map which takes
€d_j1 to €5 — (B (uy, v;) - €f) for every n+ 1 < j < d. From the results of [16] we know

that there is an exact sequence of fans:
0—+(A", N") 5 (A", NY) 25 (A, N)—s0

where A" = {0} and A’ is the fan consisting of the cones 7' = (¢} ,... €'} corresponding
to every T = (vj,...,v5,) € A. Observe that the real toric varieties corresponding to A"
and A’ are X (A") ~ (R*)** and X(A') =~ R? — Z respectively, where Z is the zero locus in
R! of the monomials z; =[], z, for every ¢ € A, Moreover it is easy to see that RY — 7
is also isomorphic to the complement of the subspace arrangement B — As = Cx defined
above (see p. 130 of [14]). Hence from the above exact sequence of fans we see that, the

smooth complete real toric variety X is the base space of a principal bundle with total space
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(RY — Z) ~ (R? — An) ~ Cp and structure group (R*)¥"(see p. 59 of [35] and p. 27 of
[16]). Similarly by restricting to the non-negative parts we see that X, is the base space
of a principal fibre bundle with total space B{ — Z, and structure group (E+)4 ™. Thus we

have the following:

X o (RY - Z)[(R*)S™ = Caf(RT)*

Xy = RE — Z,/(RY)*™ = (Ca)4 /(R )

REMARK 7.4. Note that the only property of a smooth and complete fan which we use
in the above proof is that {v,--- ,v,} form a Z basis of N. Thus Lemma 7.3 is true even
for a smooth (not necessarily complete) fan A for which the primitive vectors along A(1)

contains a & basis for N.

LEMMA 7.5, m(Ca) 15 isomorphic to the commulator subgroup [W, W] of the Cozeter
group W defined in §2, which 1s generated as a normal subgroup of W by [s; sl farl s sy
where Py = {py,,pi,} V1< <.

Proof: From Lemma 7.3 we know that X ~ C,/(R*)¥ ™ Moreover, since (B4 ~
(RT)" x 257", X; =Ca/(RY)*™ is a regular covering space over X with deck transfor-
mation group Zg™". In fact it is the same covering space of X as in Theorem 2.5(4). Also
observe that Ca and X are of the same homotopy type since Ca is a fibre bundle over X,

with contractible fibre (R*)**, Therefore we have m,(Ca) = [W,W]. O

In the following theorem we shall find the necessary and sufficient conditions on A and

hence on the arrangement A, under which Ca is aspherical.

THEOREM T7.6. Ca is aspherical if and only if Aa is a union of precisely codimension 2

subspaces.

Proof: Since Ca is of the homotopy type of a finite regular covering space over X, it
follows that X is aspherical if and only if Ca is aspherical. From Theorem 6.1 the necessary
and sufficient condition for X to be aspherical is that A is flag-like. Therefore it suffices to

show that A is flag-like if and only if A, is 2 union of precisely codimension two subspaces.
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Now by Definition 7.1, the condition for A to be flag-like is equivalent to the condition
that in A there are no primitive eollections consisting of more than two edges. Also by
Definition 7.2, Ax = UpAp, where the union is over primitive collections P in A and where
Ap is a subspace in B of codimension precisely equal to the number of edges in P. Thus A
is flag-like if and only if Ax = Up, A(P;), where the union runs over the primitive collections
{P1,+++, Py} consisting of two edges or equivalently, 4 is a union of codimension two

subspaces. Hence the theorem, O

REMARK 7.7. (K (w, 1)-arrangements) The barycentric subdivision of any simplicial com-
plex is a flag complex. Hence given a smooth complete fan A, we can obtain several smooth
complete flag-like fans whose cones are the cones over the simplices of the repeated barycen-
tric subdivisions of §5. We therefore get several examples of K(m, 1) arrangements finding
which seems to be of interest in the topology of arrangements (see [36] and [28]). However
note that even if we start with a flag-complex, an arbitrary subdivision need not result in
a flap-complex. For example, let A be the fan consisting of the faces of o7 = {1, €2, €3) In
N = Ze| @ Zea @ Zey. If we refine A by adding the edge vector through v = e; +e;4 €3, then
the resulting fan A’ is not flag-like since, e;, €5, €4, v pairwise span cones in A’ but together

do not span any cone.

REMARK 7.8. Indeed both Lemma 7.5 and Theorem 7.6 follow directly from the
fact that Ca is the smooth non-complete toric variety associated to the fan A =
{(ej,,-.-,€;) for every cone T = (V... 05,) EAY M N' = Ze @ - -@Ze, (see Lemma 7.3)
and applying Theorem 2.5 and Theorem 6.1, However since Cs has been defined specifically
as the complement of real coordinate subspace arrangement related to a smooth complete
fan A, we therefore describe both its fundamental group and criterion for asphericity hy

using A.

REMARK 7.9.Since C, is the toric variety associated to the fan A', we can apply Theorem
3.1 and Theorem 4.1 respectively to give a presentation for m1(Ca) and give conditions on A'
for it to be abelian. In particular it follows from Theorem 7.6 and Theorem 4.1 that Ca is
K(m,1) with 7,(Ca) abelian if and only if it is the complement of subspaces of codimension
precisely 2 which pairwise intersect at {0}. Moreover it also follows from Lemma 4.2 that
T1(Ca) = [W, W] is always torsion free.
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