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Foreword

This volume consists of papers presented at the Fifteenth
conference on Theoretical Aspects of Rationality and
Knowledge (TARK) held at Carnegie Mellon University,
Pittsburgh, USA from June 4 to 6, 2015.

It has been my pleasure to be part of the TARK com-
munity since the first conference at Asilomar, California, in
1986, principally due to the encouragement of Rohit Parikh,
one of the founders of TARK. This conference is uniquely
situated as one that brings together researchers from a wide
variety of fields, including Artificial Intelligence, Cryptogra-
phy, Distributed Computing, Economics and Game Theory,
Linguistics, Philosophy, and Psychology. It has played an
important role in our understanding of interdisciplinary is-
sues involving reasoning about rationality and knowledge.

This year we had 63 submissions out of which 18 were
accepted as contributed talks and 9 as poster presentations
for the programme. I am very grateful for having the co-
operation and advice of 17 other members of the multidis-
ciplinary program committee: Eleonora Cresto (CONICET,
University of Buenos Aires, Argentina), Clare Dixon (Uni-
versity of Liverpool, UK), Edith Elkind (Oxford University,
UK), Amanda Friedenberg (Arizona State University, USA),
Sujata Ghosh (Indian Statistical Institute, India), Andreas
Herzig (IRIT, Toulouse, France), Bettina Klaus (Univer-
sity of Lausanne, Switerland), Kevin Kelly (Carnegie Mellon
University, USA), Yoram Moses (Technion, Tel Aviv, Israel),
Andrés Perea (Maastricht University, The Netherlands), So-
phie Pinchinat (IRISA, Rennes, France), Francesca Rossi
(University of Padova, Italy), Olivier Roy (Bayreuth Univer-
sity, Germany), Burkhard Schipper (University of California
at Davis, USA), Hans van Ditmarsch (LORIA, France), Yan-
jing Wang (Peking University, China) and Michael Wooldridge
(Oxford, UK). I thank them for their hard work in provid-
ing careful reviews and for the detailed discussions about
the submissions. When papers are read across disciplines,
there can be keen differences in what is considered good and
important; I thank the committee members for trying their
best to listen to other viewpoints.

We have four eminent invited speakers in this year’s TARK:
Robin Clark of the University of Pennsylvania, USA, bring-
ing a viewpoint from Psychology and Cognition to epistemic
reasoning; Simon Huttegger, of the University of California,
Irvine, USA, a philosopher’s look at observational process
and inductive logic; Sarit Kraus of Bar-Ilan University, Is-
rael, on desiging computational agents for interacting with
people, based on insights from game theory and logic; Mar-
ciano Siniscalchi, Northwestern University, USA, on founda-
tions of rationality in sequential games. In addition, we have
a tutorial on causal inference and causal discovery, jointly
by Peter Spirtes of Carnegie Mellon University, USA, and
Kun Zhang of Max Planck Institute for Intelligent Systems,
Tübingen, Germany.

The organizing team at Carnegie Mellon University has

been doing excellent work for putting everything in place
for the conference, and I thank them for all the hard work.
I am extremely grateful to Kevin Kelly, the chair of the
organizing committee, for his terrific coordination job.

I thank the Easychair conference system for providing this
important service, easing the Programme committee’s job
truly easy. I thank my colleagues Vaishnavi Sundararajan
and S. P. Suresh of the Chennai Mathematical Institute for
help with the Proceedings volume, and Anantha Padman-
abha of my Institute for help with the conference web page.
I thank the Institute of Mathematical Sciences, Chennai, to
which I belong, for hosting the conference page and acting
as publisher.

Finally, I thank Joe Halpern, for his comforting presence
and guidance all along, providing inspiration to TARK.

R. Ramanujam

Institute of Mathematical Sciences, Chennai, India
Programme Chair, TARK 2015





Quine’s Topiary:
Coordination and Change in an Artificial Society

Robin Clark
University of Pennsylvania Philadelphia, USA

rclark@sas.upenn.edu

ABSTRACT
This talk reports the results of a large Agent-Based model
of phonetic variation; each agent in the society has its own
unique representation of the signal space, yet the agents are
able to coordinate their signaling behavior. We show a num-
ber of results: First, agents in a segregated but egalitarian
society will blend their signals overtime if they signal to each
other; agents in a segregated, but bigoted, society will main-
tain stable variation. Second, if the artificial society contain
high status leaders—that is, the society is not egalitarian—
then the signal space will actually move apart, creating vari-
ation where none existed before. We will analyze the source
of this variation and show that it is a potential source of
language variation and language change. Finally, we will
discuss the relationship between private knowledge and so-
cial convention.

General Terms
Coordination

Keywords
Signaling behavior, artificial society, private knowledge
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The Problem of Analogical Inference in Inductive Logic

[Extended Abstract]

Simon M. Huttegger
Department of Logic and Philosophy of Science

University of California, Irvine
Social Science Plaza A
Irvine, CA-92697, USA
shuttegg@uci.edu

ABSTRACT
We consider one problem that was largely left open by Rudolf
Carnap in his work on inductive logic, the problem of ana-
logical inference. After discussing some previous attempts to
solve this problem, we propose a new solution that is based
on the ideas of Bruno de Finetti on probabilistic symmetries.
We explain how our new inductive logic can be developed
within the Carnapian paradigm of inductive logic—deriving
an inductive rule from a set of simple postulates about the
observational process—and discuss some of its properties.

Keywords
Inductive logic; Carnap; de Finetti; Analogy; Partial Ex-
changeability

1. INTRODUCTION
The logical empiricist movement is often associated with

using deductive logic to understand scientific reasoning. But
Rudolf Carnap actually favored an inductive approach, start-
ing with his work on inductive logic in the 1940s. Carnapian
inductive logic can be thought of as a branch of proba-
bility theory that is especially concerned with predictive
probabilities—the probability of future observations given
past observations. Carnap spent much of the last thirty
years of his life on developing an inductive logic, but even in
his posthumously published works he considered the subject
to be wide open to further investigations. The open prob-
lem that I wish to consider in this paper is the problem of
analogical inference, which hasn’t received a satisfactory an-
swer in Carnap’s original system. I shall review some of the
attempts to develop an analogical inductive logic in §4. In
order to set the stage, I briefly describe Carnap’s program
in §2 and point to its connections with de Finetti’s theory
of inductive inference in §3. Considering de Finetti is par-
ticularly important since he provides an alternative route to
analogical inference. In §5 I discuss an especially interesting
probabilistic symmetry that allows for a certain form of ana-
logical inference. Finally, in §6 I introduce a new analogical
inductive logic based on that symmetry and discuss some of
its properties.

2. CARNAP’S PROGRAM
Carnap’s program for developing an inductive logic as de-

scribed in his ‘Logical Foundations of Probability’ [2] was
brought to a tentative conclusion in the posthumously pub-
lished ‘A Basic System of Inductive Logic’ [4, 5]. Carnapian

inductive logic aims at finding rational foundations for the
kind of inductive inferences that are used in scientific inves-
tigations. The classic example of such an inference in the
tradition of Bayes and Laplace is the predictive probability
of events, such as future coin flips based on past observations
of coin flips. Carnap viewed all inductive inference problems
as being essentially reducible to this type of inference [2].1

Of particular importance for Carnap are predictive prob-
abilities based on the relative frequencies of events. For
example, after observing a number of throws of a die, the
predictive probability of observing a six with the next throw
usually is judged to be approximately equal to the relative
frequency of sixes. In his systems of inductive logic, Carnap
tries to explicate the foundations of this simplest kind of
inductive inference.

Independently of Carnap’s program, a similar approach
was developed more than two decades earlier by the Cam-
bridge logician W. E. Johnson [21, 22]. Johnson’s main con-
tribution was only published posthumously and contained
a number of gaps, which were closed by Sandy Zabell [33],
who also generalized Johnson’s approach to a theory that is
essentially equivalent to Carnap’s basic system of inductive
logic. I’m going to follow Zabell’s elegant treatment because
it ties in neatly with the work of Bruno de Finetti (see the
next section).2

The basic postulate in this theory of inductive inference is
a symmetry requirement known as ‘exchangeability’ (called
the ‘permutation postulate’ by Johnson). Suppose that there
is a finite sequence of random variables X1, . . . , Xn repre-
senting observations (e.g. coin flips), and let their proba-
bility law be P. Like Carnap, we assume that the random
variables can take on only a finite number of values. Then
P is exchangeable if it is invariant under permutations of
outcomes; that is,

P[X1 = x1, . . . , Xn = xn] = P[X1 = xσ(1), . . . , Xn = xσ(n)]

for every permutation σ of {1, . . . , n}. This allows us to de-
fine exchangeable probabilities of infinite sequencesX1, X2, . . .
as those for which every finite initial sequence is exchange-
able. For simplicity, the sequence of random variables is
often called exchangeable without referring to its probabil-
ity law.

Both Johnson and Carnap use a requirement for predic-

1See [36] for an excellent overview for the development of
Carnapian inductive logic.
2Kuipers [24] gives an overview of the mathematical aspects
of Carnap’s theory.
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tive probabilities that is often called ‘Johnson’s sufficientness
postulate’. This postulate says that predictive probabilities
for i basically only depend on the past relative frequency of
i; i.e., there is a function f such that

P[Xn+1 = i|X1, . . . , Xn] = fi(ni, n). (1)

Johnson’s sufficientness postulate judges information about
types other than i to be irrelevant for the predictive prob-
ability of i—a point that is going to be important for the
problem of analogical inference.

Finally, in order for conditional probabilities to be well
defined, a regularity postulate is assumed to the effect that
each finite initial sequence of outcomes has positive probabil-
ity. It is then possible to show that the predictive probabil-
ity of any outcome is equal to its relative frequency modulo
some prior parameters. More specifically, if trials are not in-
dependent, then there exist parameters αj for each outcome
j such that for all n and i

P[Xn+1 = i|X1, . . . , Xn] =
ni + αi

n+
∑
j αj

. (2)

(If trials are independent, then there is no learning from
experience.) Here ni is the number of times outcome i is
observed in the first n trials. The parameters αj are either
all positive or all negative; they must be positive if the se-
quence of observations is infinite exchangeable (see [33] for
a thorough discussion). The rule given by (2) is called a
‘generalized rule of succession’ (after Laplace’s special ‘rule
of succession’). A generalized rule of succession expresses a
mode of learning from experience. Experiences are given by
past observations of outcomes, and past observations lead
to predictive probabilities for future outcomes.

The inductive logic given in (2) is equivalent to Carnap’s
mature basic system of inductive logic, also known as the
‘λ− γ-continuum of inductive methods’. The system cham-
pioned in his 1950 book is much more restricted [2]. It re-
quires that all αj = 1, meaning that all outcomes are judged
to be equally probable prior to any observations. In his later
‘A Continuum of Inductive Methods’ [3], Carnap generalized
this restricted system to one with a weight λ which regulates
the effect of the equally probable prior weights. The basic
system (2) extends this to arbitrary prior weights.

Especially in his early work on inductive logic, Carnap
thought of symmetry principles such as exchangeability as
requirements of rationality. The idea—familiar from justifi-
cations for Laplace’s principle of indifference—is that certain
probabilistic symmetries should hold whenever one does not
have any knowledge about the relevant underlying structure.
For instance, in the absence of any evidence concerning the
order of outcomes you should assume exchangeability. We
will see that interpreting symmetry principles in this way
puts significant constraints on how to include analogy ef-
fects into inductive logic, while the approach discussed in
the next section allows for a greater variety of inductive log-
ics.

3. DE FINETTI’S PROGRAM
Bruno de Finetti is famous for his foundational work on

probability theory and inductive inference. The latter is of
special importance to us here. The most fundamental result
in this arena is de Finetti’s representation theorem for ex-
changeable sequences [9]. Exchangeability is important be-

cause it captures one of the classic situations of statistics—
i.i.d. trials with unknown parameters. This is what is shown
by de Finetti’s representation theorem. Suppose, for exam-
ple, that Xi records whether the ith toss of a coin flip came
up heads or tails, and that the infinite sequence X1, X2, . . .
is exchangeable. de Finetti proved that this is equivalent to
the probability of finite sequences of heads and tails being
a mixture of i.i.d. binomial trials with unknown bias of the
coin:3

P[X1 = x1, . . . , Xn = xn] =

∫ 1

0

ph(1− p)n−hdµ(p) (3)

(Here, p is the bias for heads, µ is a uniquely determined
prior over biases and h is the number of heads in the first
n trials.) This theorem has profound consequences for the
philosophy of probability and for inductive inference [34].
Specifically, if the prior µ in the representation is a Beta
distribution (or, in the more gneral case of finitely many
types of outcomes, a Dirichlet distribution), then

P[Xn+1 = i|X1, . . . , Xn] =
ni + αi

n+
∑
j αj

,

where αi, αj are nonnegative parameters determining the
Dirichlet distribution. This is equivalent to the Carnapian
inductive logic given in (2). One difference between the
two approaches lies in the underlying axiomatic founda-
tions. In de Finetti’s case, it is given by (i) the assumption
of exchangeability and (ii) the assumption that the mixing
prior in the representation µ is a Dirichlet distribution. In
the Johnson-Carnap approach there is no appeal to the de
Finetti representation.

There is also an important interpretive issue that sepa-
rates the early work of Carnap from de Finetti’s probabilis-
tic epistemology (in his later work Carnap is closer to de
Finetti’s views). de Finetti did not view exchangeability or
other symmetry requirements as postulates of rationality.
According to him, exchangeability is a personal judgement
of an epistemic agent as to the basic structure of a learning
situation. Such a judgement does not arise from the lack of
knowledge but presupposes knowledge about an epistemic
situation.

This view of symmetry assumptions has two important
consequences, one epistemological and one formal. In the
first place, for de Finetti and his followers the justification
of generalized rules of succession is only a relative one. An
agent should make inductive inferences provided that she
assumes certain underlying symmetries about the learning
situation. This is unlike the objective Bayesian tradition—
which includes Bayes, Laplace, Keynes, the early work on
inductive logic by Carnap, and others—where symmetry as-
sumptions themselves are viewed not just as assumptions
that one may make, but as principles every rational agent
has to make under certain conditions.

de Finetti’s probabilistic epistemology is thus distinctly
non-foundationalist. There is no bedrock of initial epis-
temic judgements that would endow all their consequences
with full rationality because they are themselves require-
ments of rationality. For de Finetti, rationality is instead
to be found in the interplay of inductive assumptions, such
as Johnson’s sufficientness postulate or exchangeability, and
rules for learning from observations. If you use such an

3For finite forms of this result, see [13].
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inductive rule but deny its underlying assumptions, you are
simply inconsistent. So, de Finetti requires a kind of relative
rationality: learning from experience should be compatible
with those inductive assumptions that are judged to be true.

The second consequence of de Finetti’s view of symme-
try assumptions lifts constraints from inductive logic. If
assumptions such as exchangeability are not thought of as
requirements of rationality but as personal judgements, then
one might consider other kinds of symmetries whenever ex-
changeability does not seem appropriate. This led de Finetti
to study ‘partial exchangeability’ [10, 11, 13]. One kind of
partial exchangeability, known as ‘Markov exchangeability’,
allows outcomes to depend on previous trials [14, 16, 17, 25,
30, 35]. The type of partial exchangeability most relevant to
our analogical inductive logic was investigated by de Finetti
himself [10, 11]. Consider a situation where outcomes can be
of different types; e.g., coin flips with two coins, or medical
trials with men and women. Then one may not be willing
to judge outcomes to be exchangeable across types but only
within types. There is a representation theorem for this kind
of partial exchangeability, from which predictive conditional
probabilities can be derived [10]. The representation is very
similar to (3). Probabilities are again mixtures of indepen-
dent trials, but now trials need not be identically distributed;
they are identically distributed within types, but need not
be so be across types.

de Finetti viewed partial exchangeability as a type of ana-
logical inference. Take the example of flipping two coins.
The coins are judged to be similar but not indistinguishable
from each other. Because of the analogy between the two
coins, observations from one coin should have some influence
on predictions for the other coin. The analogy comes from
particular prior distributions on the chances in the mixture
of the representation theorem. The biases of the two coins
may be chosen dependently, but then trials are independent.
Thus this kind of analogy influence does not persist for very
long. This is also a feature of some analogical inductive
logics considered in the next section.

4. THE PROBLEM OF ANALOGICAL IN-
DUCTIVE INFERENCE

Carnap’s basic system of inductive logic can express ana-
logical influences only to a limited degree [6, 28, 29]. There
have been many attempts to extend Carnap’s original sys-
tem, and the literature on analogical inductive logic includes
many valuable contributions [1, 5, 8, 15, 18, 19, 23, 26, 27,
12, 28, 29, 31, 32]. I am going to discuss some of those
contributions in order to motivate my own.

The biggest obstacle to analogical inference in Carnap’s
system is Johnson’s sufficientness postulate (1). Johnson’s
sufficientness postulate makes it impossible that counts nk
of outcomes k other than i influence the predictive proba-
bility of i. Skyrms [31] suggests an extension of Carnapian
inductive logic that keeps exchangeability but drops John-
son’s sufficientness postulate. Skyrms’ proposal is further
studied and extended in [15] and [19], and a similar model
is developed for a different context (two families of predi-
cates) in [29]. The basic idea is to use mixtures of induc-
tive methods (2) in order to account for initial analogies
between outcomes. This is equivalent to considering mix-
tures of Dirichlet distributions instead of Dirichlet distri-
butions in the de Finetti representation. Skyrms discusses

this idea in terms of a wheel of fortune, where observations
of an outcome should also increase the predictive probabil-
ity of nearby outcomes. Using an appropriate mixture of
Dirichlet priors makes this possible. The resulting proba-
bility distributions are exchangeable but violate Johnson’s
sufficientness postulate.

The analogy influence exhibited by these kinds of induc-
tive systems is transient. This is due to the fact that the cor-
responding prior probabilities are exchangeable. Exchange-
ability implies that the counts of one outcome can only have
an indirect effect on the predictive probabilities of other out-
comes. To see this, suppose that an outcome k is followed
by an outcome i. Then exchanging i with some arbitrary
outcome in the past does not affect the joint probability.
Thus, the effect of counts of k outcomes affects the proba-
bility of i outcomes indirectly via the initial parameters in
the mixture of Carnapian inductive logics.

In order to get systems that exhibit a more permanent
analogy influence, exchangeability has to be dropped in ad-
dition to Johnson’s sufficientness postulate. The inductive
systems of Costantini [8], Kuipers [23], Niiniluoto [28] and,
to a certain extent, Spohn [32] develop inductive logics of
this type. In these models, the predictive probabilities for
outcome i do not just contain the counts ni but may also
have terms with counts nk of other outcomes. Each of these
systems is interesting in its own right, but for none of them
is it clear what the underlying symmetry assumptions are,
or whether they exhibit interesting symmetries at all, and
thus they seem a bit ad hoc.

Another criticism of some of these inductive methods was
put forward by Spohn [32] and is also expressed by Costan-
tini [8]. Because counts of all outcomes may explicitly in-
fluence the predictive probabilities of an outcome i, the
corresponding inductive logics generally violate a postulate
known as ‘Reichenbach’s axiom’. Reichenbach’s axiom says
that predictive probabilities have to converge to limiting rel-
ative frequencies of sample outcomes, provided that the limit
exists. That is, if X1, X2, . . . is an infinite sequence of out-
comes such that the limit ni/n exists as n→∞, then

lim
n→∞

P[Xn+1 = i|X1, . . . , Xn] = p.

Besides Spohn’s own system, Carnap’s basic system and
Skyrms’ analogical system meet Reichenbach’s axiom.

I think this critique misses the point of certain forms
of inductive inference. The inductive logics of Costantini
and Niiniluoto may be appropriate when there are under-
lying probabilistic dependencies between the outcomes. If
these dependencies are persistent, then Reichenbach’s ax-
iom should not hold. The dependencies will not be reflected
in relative frequencies of outcomes, while predictive proba-
bilities should make use of known dependencies. I discuss
this point further in the context of our analogical inductive
logic.

It is not known whether the inductive methods discussed
so far can be derived from a set of axioms analogous to
those underlying the Johnson-Carnap system. This is a sig-
nificant gap in our knowledge. The set of axioms from which
the Johnson-Carnap continuum of inductive methods (2) is
derivable completely specifies inductive assumptions at the
observational level, making it easy to determine whether
one’s priors conform to them. None of the above models of
inductive inference has been treated within this Carnapian
paradigm. Maher’s inductive logic is something of an excep-
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tion [26, 27]. He presents a set of axioms for an inductive
logic with two families of predicates. Maher himself dis-
cusses problems for the extension of the inductive logic to
predicate families containing more than two predicates [27],
so I confine my attention to the case of two predicates. I
think that already in this case one point is in need of clari-
fication.

Here is a brief overview of Maher’s proposal. Suppose we
have two families with two predicates. In the language of
random variables, this means that we have two sequences
of random variables V1, V2, . . . and W1,W2, . . ., where each
random variable can take on two different values (the pos-
sible values being different for the V ’s and the W ’s). For
instance, the first sequence might record whether the coin
lands heads and tails, and the second sequence may state
whether the coin is flipped with the right or the left hand.
Maher then considers the so-called ‘Q-predicates’ (‘state de-
scriptions’ in Carnap’s terminology). The Q-predicates are
all possible combinations of basic predicates from the two
families. Again in the language of random variables, this
means that we consider the sequence of pairs Zn = (Vn,Wn).
The random vector Zn takes on pairs of values. Since the
random variables Vn and Wn are binary, Zn can take on four
values.

Maher [26] assumes that the infinite sequence Z1, Z2, . . .
is exchangeable. It follows from this that its probability
distribution has a de Finetti representation. Maher’s ba-
sic idea can then be described as follows. The de Finetti
representation implies that we can construct the probabil-
ity distribution of Z1, Z2, . . . by putting a prior distribution
over the set of possible chances. Since the Zn can take on
four different values, the set of possible chances is the three-
dimensional simplex ∆4 = {(x1, . . . , x4) ∈ R4|x1, . . . , x4 ≥
0, x1 + . . .+ x4 = 1}. Following an idea by Carnap [6], Ma-
her considers the subset of probability distributions in ∆4

where the two families of predicates are probabilistically in-
dependent. This is the set of all (x1, . . . , x4) ∈ ∆4 such that
x1 = (x1 + x2)(x1 + x3), which defines a two-dimensional
surface in ∆4 that is known as the ‘Wright manifold’ in
population genetics.4

If the prior on ∆4 is a Dirichlet distribution, as in Car-
nap’s basic system, then any two-dimensional surface in ∆4

has probability zero, since the Dirichlet distribution is ab-
solutely continuous with respect to Lebesgue measure on
∆4. Thus, the Wright manifold has probability zero. Now,
Carnap and Maher propose to look at a mixture between a
Dirichlet distribution and a distribution that puts full weight
on the Wright manifold. The resulting inductive logic is a
mixture of Carnap’s basic system on the random variables
Zn and the product of Carnap’s basic systems on the ran-
dom variables Vn and Wn. The former terms correspond to
the hypothesis that the two predicate families are dependent
and the product of the latter two terms to the hypothesis
that they are independent. Using the de Finetti represen-
tation, Maher also provides an axiomatic basis from which
this inductive method can be derived. He also shows with
the help of examples that the resulting system seems to lead
to plausible numerical results that capture certain analogy
influences.

What type of analogy influences is this model supposed to

4After the population geneticist Sewall Wright. The Wright
manifold is the set of probabilities that make the alleles at
different genetic loci independent.

capture? Maher wants to say that some of the Q-predicates
are more similar than others, namely those that share at
least one underlying predicate from the two families. If
we denote the four combinations of values by Q1 = (0, 0),
Q2 = (1, 0), Q3 = (0, 1) and Q4 = (1, 1) then Q1 is similar
to Q2 and Q3, Q2 to Q1 and Q4, Q3 is similar to Q1 and
Q4, and Q4 is similar to Q2 and Q3. Maher’s goal is to have
an inductive logic that respects the analogies based on these
similarities. But it is difficult to see the reason why plac-
ing positive prior probability on the Wright manifold should
achieve this. There is no straightforward relationship be-
tween considering the two predicate families as independent
and the intended analogies.

The one reason I can see is the following. The similar-
ity relationships between the Q-predicates described in the
previous paragraph yield four edges in ∆4 between the ver-
tices that are considered similar. These edges are part of
the Wrigth manifold. If one wishes to reflect the analogies
between the Q-predicates in one’s prior, then one’s prior
distribution over ∆4 should, presumably, place a sufficient
amount of probability weight close to the four edges. One
way to achieve this is by distributing probabilities in an ap-
propriate way on the Wright manifold. But this is neither
necessary nor sufficient. We can endow the Wright manifold
by assigning positive probability only to the barycenter of
∆4 (which is an element of the Wright manifold) and prob-
ability zero to all the other points in the Wright manifold.
In this case, the overall prior over ∆4 may not place the
required probability weight close to the four edges. On the
other hand, we may do exactly that without having to as-
sign positive probability to the Wright manifold. Thus, even
though it may work in some cases, assigning positive prob-
ability to the Wright manifold does not seem to be a prin-
cipled solution to the analogy problem, which would char-
acterize priors over ∆4 that assign a sufficient probability
weight to the four edges between analogous Q-predicates.

5. EXTENDING PARTIAL EXCHANGEABIL-
ITY

The brief discussion in the previous section should make
it clear that there are many forms of analogical inference.
Each form of analogical inference merits study, and exist-
ing inductive logics vary in their degree of solving analogical
inference problems successfully. In the remainder of this pa-
per I would like to propose one form of analogical inductive
inference that is based on de Finetti’s ideas about partial ex-
changeability and that can be solved within the Carnapian
paradigm.

Recall that partial exchangeability looks at situations with
outcomes of different types. This inductive situation can be
illustrated with an example that Achinstein used to criti-
cize Carnap’s original inductive logic [1]. In this example
we observe whether or not different types of metal conduct
electricity. We might, for instance, look at osmium, plat-
inum and rhodium. These three metals are the types in de
Finetti’s setup. Each type may or may not conduct elec-
tricity. This defines two outcomes. The analogy between
types comes from the fact that they share certain significant
chemical properties. Because of the analogy between types,
it is reasonable to think that instances where osmium and
rhodium where observed to conduct electricity are relevant
for predictions of whether platinum conducts electricity. In
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this case, de Finetti’s theory of partial exchangeability may
be applied with a prior that reflects these analogies.

Partial exchangeability has a similar effect on analogical
inferences as exchangeability: analogy is transient and van-
ishes in the limit. This makes sense in the example of flip-
ping two coins. The similarity between the two coins may
influence one’s early judgements, but if there are no under-
lying dependencies between the coins the influence of sim-
ilarity judgements will diminish. This is reflected by the
fact that Reichenbach’s axiom holds for predictive probabil-
ities. But what if there are persistent dependencies between
types? This might arguably be the case in the example
of whether different metals conduct electricity, since there
presumably is an underlying common cause for the relevant
outcome. Another example can be constructed by consider-
ing the success of medical trials among males and females.
The types are male and female, and the outcomes (in the
simplest case) are whether the trial was successful or not.
Now, there might be an underlying chancy dependency be-
tween types that is influenced by environmental and other
factors. If this dependency is permanent, this should be
reflected in the analogical inductive logic.

How might such an inductive logic look like? The basic
setup has a sequence of outcomes X1, X2, . . . and a sequence
of types Y1, Y2, . . .. Suppose, for simplicity, that there are
only two types. Predictive probabilities concern future out-
comes and not future types. The predictive probability of
observing outcome i given that it is of type 1 and given past
observations may be given by

P[XN+1 = i|XN ,YN , YN+1 = 1] =
ni1 + βni2 + αi1

N1 + βN2 +
∑
j αj1

.

(4)
In this formula, Xn = (X1, . . . XN ),YN = (Y1, . . . , YN ) are
the past observations of outcomes and types; nij is the num-
ber of outcomes i of types j; and N1 and N2 are the total
number of observations of type 1 and 2. The α parame-
ters have the same meaning as in Carnap’s basic system (2).
The β parameter expresses the analogy influence of obser-
vations of type 2 on observations of type 1. If β is positive,
then i observations of type 2 will have a positive influence
on the predictive probability. This indicates a judgement
of positive analogy between types. Moreover, analogy is
permanent—since β is a constant, the analogy influence of
type 1 on type 2 does not vanish as n increases.

There are many ways in which the qualitative features of
the predictive probability (4) could be formalized. Is (4) just
a formula that exhibits some resemblance to Carnap’s orig-
inal system? Or is there some underlying rationale? To see
what is going on, notice, in the first place, that de Finetti’s
notion of partial exchangeability will not in general allow
predictive probabilities to be of the form as given in (4).
Partial exchangeability implies the following. Suppose that
XN+1 = i,XN+2 = k,XN+3 = j. The predictive probability
of this sequence of outcomes, given the past and the sequence
of types YN+1 = 1, YN+2 = 2, YN+3 = 1, is equal to the
predictive probability of the sequence XN+1 = j,XN+2 =
k,XN+3 = i (in order to get from the first sequence of out-
comes to the second we only exchange two outcomes within
the same type). Now suppose that k = j. Then the first
sequence of outcomes is XN+1 = i,XN+2 = j,XN+3 = j
and the second is XN+1 = j,XN+2 = j,XN+3 = i. It is
difficult to see how in this case counts of outcome j of type

2 can have a constant influence on the predictive probability
of outcomes j of type 1. If it had, its effect would have to be
balanced exactly against the joint probability for the second
sequence, which may not work in general.5

The same issue does not arise if k 6= i, j. Thus, it seems
reasonable to weaken partial exchangeability in order to al-
low for persistent analogical influences. We let pnikj,st =
P[XN+1 = i,XN+2 = k,XN+3 = j|Xn,Yn, YN+1 = s, YN+2 =
t, YN+3 = s]. Then generalized partial exchangeability re-
quires, in the first place, that

pnikj,st = pnjki,st

whenever k 6= i, j (if k = i or k = j, equality may but need
not hold). Furthermore, let pnij,s = P[XN+1 = i,XN+2 =
j|Xn,Yn, YN+1 = s, YN+2 = s]. Then generalized partial
exchangeability requires, in the second place, that

pnij,s = pnji,s

The next section is devoted to showing that generalized
partial exchangeability, together with some further assump-
tions, leads to an interesting analogical inductive logic.

6. A NEW ANALOGICAL INDUCTIVE LOGIC
The most important additional assumption that we need

is a modification of Johnson’s sufficientness postulate:

P[XN+1 = i|XN ,YN , YN+1 = j] = fij(ni1, ni2, N1, N2)
(5)

For simplicity, we continue assuming that there are only
two types (for a generalization to a finite number of types,
see [20]). The modified sufficientness postulate says that
predictive probabilities for an outcome i depend on i, its
type, as well as on the observed counts of i outcomes of
both types. This is a natural way to allow for analogical
influences between types.

We also need two technical postulates. The first one is a
regularity assumption to the effect that all finite sequences
of types and outcomes have positive probability; i.e., every
finite pair of sequences X1, . . . , XN , Y1, . . . , YN has positive
probability. Finally, we assume that future types do not
give information about the outcome of the next trial. More
specifically,

P[XN+1 = i|X1, . . . , XN , YN+1 = j] (6)

= P[XN+1 = i|X1, . . . , XN , YN+1 = j, YN+2 = k]

= P[XN+1 = i|X1, . . . , XN , YN+1 = j, YN+2 = k, YN+3 = l].

This condition is a significant restriction for the applicabil-
ity of our inductive logic. For example, think of types as
different medical treatments (as in a bandit problem) and of
outcomes as success or failure. Then a success on the next
trial might not be probabilistically independent of future
treatments.

Suppose now that X1, X2, . . . and Y1, Y2, . . . are two in-
finite sequences of outcomes and types for which the fore-
going assumptions hold (generalized partial exchangeability,
modified sufficientness postulate, regularity, and conditional
independence (6)). Suppose, in addition, that trials within
types are not independent, and that there are at least three
outcomes.6 Then the following theorem is true:

5For a precise statement, see my [20], especially Corollary
2.
6Assuming independence has the same reason as in the case
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Theorem 1. There exist positive constants αij and non-
negative constants β, γ such that N1 + βN2 +

∑
i αi1 6=

0, N2 + γN1 +
∑
i αi2 6= 0 and

P[XN+1 = i|XN ,YN , YN+1 = 1] =
ni1 + βni2 + αi1

N1 + βN2 +
∑
i αi1

P[XN+1 = i|XN ,YN , YN+1 = 2] =
ni2 + γni1 + αi2

N2 + γN1 +
∑
i αi2

for all N and all 0 ≤ nij ≤ Nj.

This theorem follows from a more general result in my [20]
where I prove these assertions for more than two types and
allow the total number of trials to be finite.

The sequence of predictive probabilities can be generated
by an urn model (just like the predictive probabilities of
Carnap’s basic system are generated by a Polya urn). Since
the predictive probabilities of our new inductive logic do not
fix the probabilities of types, we may first choose a sequence
of types at random from a distribution that assigns positive
probability to each finite sequence of types. Assume that
we also have an urn for each type containing balls labelled
by the outcomes. The initial distribution of balls in urn j
depends on the prior parameters αij . We now start choosing
balls from urns following the sequence of types. Whenever
we choose a ball from an urn, we put it back together with
another label. If the urn is of type 1, we put a ball with
weight β into the urn associated with type 2.

The most important difference between our new inductive
logic and Carnap’s basic system (2) are the parameters β, γ.
Are there any good reasons to think that they are analogy
parameters? Let me mention two. First, it can be shown
that β is positive if

P [X2 = i|X1 = i, Y1 = 2, Y2 = 1] > P[X1 = i|Y1 = 1].

Furthermore, β increases as P [X2 = i|X1 = i, Y1 = 2, Y2 =
1] approaches 1.7 This means that we have analogy effects of
type 2 on type 1 if observing an outcome of type 2 makes it
sufficiently more likely to observe the same outcome of type
1. This is what one would expect of an analogical inference.

The second reason becomes relevant if there are more than
two types. Consider the analogy parameters of two types
with respect to a third one. If one parameter is larger than
the other, then observing outcomes of the former type raises
the probability of outcomes of the third type more than
observing outcomes of the second type.8

The inductive logic of Theorem 1 is open to various inter-
pretations. If we interpret the parameters β and γ as anal-
ogy parameters, then it is plausible to require that β, γ ≤ 1
since, arguably, every type is maximally analogous to itself.
This idea can be captured by another postulate:

P[X2 = i|X1 = i, Y1 = j, Y2 = j]

≥ P[X2 = i|X1 = i, Y1 = k, Y2 = j]

This says that an observation of an outcome i of type j
never has a lower effect on the predictive probability of that

of the Johnson-Carnap continuum—independence means
that there is no inductive learning. Since the sufficientness
postulate is empty if there are only two outcomes, this case
has to be treated separately, for example by assuming addi-
tivity of predictive probabilities. An alternative approach is
proposed in [7].
7Similar relations hold for γ; see [20].
8See Proposition 1 in [20].

outcome when it is of type j than observing an outcome i of
another type. It is easy to see that this forces the analogy
parameters β, γ to be between zero and one.

But we may also think of types in terms of different in-
formation sources that are used to predict probabilities of
outcomes. In this case, β and γ express judgements about
the reliability of the two sources. Consequently, if β > 1 the
agent believes that the second information source is more
trustworthy than the first one and that, accordingly, infor-
mation from type 2 observations should have more weight.

One feature of the inductive logic of Theorem 1 was al-
ready discussed earlier in a different context. Our new induc-
tive logic violates Reichenbach’s axiom whenever the anal-
ogy parameters β and γ are positive. In this case, predictive
probabilities converge to a convex combination of relative
frequencies of outcomes of the two different types. As re-
marked earlier, if the underlying process is not assumed to
be essentially independent, this is what one should expect.
Our inductive logic allows types to be probabilistically de-
pendent throughout the process of observation, and so ob-
servations from other types don’t necessarily cease to be
relevant for predictive probabilities of one particular type.
Thus, Reichenbach’s axiom should not be postulated for this
case.

7. CONCLUSION
One of the biggest advantages of our inductive logic is

that there is a precise set of conditions from which it can be
derived. These conditions can be thought of as the inductive
assumptions that make the use of our analogical inductive
logic adequate, provided that they are thought to be true.
For most other analogical inductive logics the underlying
assumptions are not as clear, which makes it difficult to
apply them.

What I wish to emphasize is that there are different ways
to reason analogically. Accordingly, there is going to be
a variety of legitimate analogical inductive logics, and not
just the one inductive logic that fully captures analogical
reasoning. One basic distinguishing feature is suggested by
the foregoing discussion. There are, on the one hand, in-
ductive logics where analogies reflect initial similarities but
are washed out with increasing information. On the other
hand, there are permanent analogical inferences such as in
our inductive logic. Here, analogy persists with increasing
information. Which type of analogy is appropriate depends
on one’s inductive assumptions.
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ABSTRACT
Extensive work has been conducted both in game theory and
logic to model strategic interaction. An important question
is whether we can use these theories to design agents for
interacting with people? On the one hand, they provide
a formal design specification for agent strategies. On the
other hand, people do not necessarily adhere to playing in
accordance with these strategies, and their behavior is af-
fected by a multitude of social and psychological factors. In
this paper we will consider the question of whether strate-
gies implied by theories of strategic behavior can be used by
automated agents that interact proficiently with people. We
will focus on automated agents that we built that need to
interact with people in two negotiation settings: bargaining
and deliberation. For bargaining we will study game-theory
based equilibrium agents and for argumentation we will dis-
cuss logic-based argumentation theory. We will also consider
security games and persuasion games and will discuss the
benefits of using equilibrium based agents.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Miscellaneous

Keywords
Intelligent Agents

1. INTRODUCTION
Agents that interact proficiently with people may be use-

ful for training [27], supporting [23, 12, 11, 1] and even re-
placing people in many applications [10, 22].

We are considering the agent-human interactions as being
a strategic activity [14]. That is, we assume that when the
automated agent engages in the interaction, it should act
as best it can to realize its preferences. Game theory is the
mathematical theory of strategic decision-making [28] and
thus it seems that game theory might be an appropriate an-
alytical tool for understanding how a strategic agent can and
should act, and might also be useful in both the design of au-
tomated agents and protocols for the interactions. However,
game theory assumes that all players will act as best they
can to realize their preferences. Unfortunately, humans tend
to make mistakes, and they are affected by cognitive, social
and cultural factors [8, 25, 4]. In particular, people’s ob-
served behavior does not correspond to game theory-based
equilibrium strategies [13, 29].

Another approach for the development of automated agents
is the (non-classical)-logic approach. The agent is given
a logical representation of its environment and its desired
goals, and it reasons logically in order to generate its activ-
ities. When interacting with people, the environment con-
sists also of the human model. Yet, modeling people’s be-
havior is a big challenge. We have incomplete information
about the person’s preferences, and we have to cope with the
uncertainties inherent in human decision-making and behav-
ior. Human behavior is diverse, and cannot be satisfactorily
captured by a simple abstract model. In particular, human
decision-making tends to be very noisy: a person may make
different strategic decisions in similar situations.

In this paper we survey briefly a few of the agents that we
built over the years that interact proficiently with people. In
most of the cases, deploying only a game-theory approach
or logical-based approach was not beneficial. Heuristics and
machine-learning techniques were augmented into the for-
mal models to lead to agents that interact proficiently with
people. We will discuss three negotiation settings: multi-
issue negotiations, games where the players interleave nego-
tiations with resource exchange while attempting to satisfy
their goals and argumentation settings. Finally, we will dis-
cuss security games.

2. MULTI-ISSUE NEGOTIATIONS
Over the years we designed and implemented several au-

tomated agents for multi-issue negotiations. In multi-issue
negotiations the players need to reach an agreement on sev-
eral issues. Each issue is associated with a set of possible
values and the players need to agree on a specific value for
each issue. The negotiations can end with the negotiators
signing an agreement or with one of the sides opting out
of the negotiations. In addition, if the crisis does not end
within a pre-specified deadline then the status quo is imple-
mented. Each outcome of the negotiations is associated with
a utility score for both players. A summary of our agents is
presented in Table 1.

2.1 EQH agent
The first agent, EQH, that we developed was for crisis sce-

narios and the setting was quite complex [24]. In addition to
the message exchange in a semi-structured language, players
could take actions during the negotiations and agreements
were not enforceable. In particular, opting out in a crisis is
a stochastic action and thus the agents are uncertain about
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Table 1: Multi-issue negotiations

Settings Agent Agent Properties Scenarios Significance
Name vs people

Bilateral, single-issue, full information, EQH SPE with manually fishing One role
complex actions, agreements not enforceable designed heuristics dispute
Bilateral, uncertainty, multi-issue QO-agent Qualitative decision-making job interview One role

Non-deterministic behavior
tobacco

KBAgent Machine learning, job interview Both roles
qualitative decision-making tobacco
non-deterministic behavior

NegoChat KBagent algorithms, AAT job interview Both roles
Anchoring, NLP module

the result. In addition to the main issue of the negotiation or
opting out, there are various other parameters of an agent’s
action. These parameters influence the utility of the nego-
tiators from the crisis. Time plays an important role in the
crisis [42]. The specific scenario we used for the experimen-
tal study was a fishing dispute between Canada and Spain.
We formalized the crisis scenario as a game and identified
a subgame-perfect equilibrium. We ran preliminary experi-
ments when the automated agent followed its subgame per-
fect equilibrium strategy. However, the human negotiators
who negotiated with it became frustrated and the negoti-
ation often ended with no agreement. The frustration of
the human negotiators was mainly due the lack of flexibility
of the agent. Since the proposed and accepted agreements
of the subgame perfect negotiation did not change over the
negotiation time, the agent did not compromise.

To address this limitation of the equilibrium-based agent,
we incorporated several heuristics to the EQH agent. We
allowed the owner of the agent to determine the way the
agent will deviate from the equilibrium strategies by deter-
mining parameters that influence the agent’s behavior which
are instantiated before the beginning of negotiations. In or-
der to provide the agent with some flexibility when playing
against people, we allowed the agent to consent to agree-
ments that have a lower utility than it would have obtained
according to the relevant subgame perfect equilibrium strat-
egy agreement. Therefore we added the margin parameter
that determines the largest number of points lower than the
desired utility value to which the agent will agree.

An additional parameter is the number of negotiation
units by which the agent will increase or decrease its first
offer from the agreement specified in its equilibrium strat-
egy. Human negotiators usually begin negotiations with an
offer higher (or lower, depending on the negotiator’s role)
than the value they would eventually like to reach at the
end of negotiations. This leaves bargaining space and our
agent uses this type of strategy. Another parameter indi-
cates whether the agent will send the first message in the ne-
gotiation or will wait for its opponent to make the first offer.
The default value of this parameter, following some litera-
ture recommendations [16], was that the agent will send the
first offer, since we wanted a trigger to initiate negotiations
with the other agent.

Another heuristic concerns opting out. Given our assump-
tions, while rational agents will not opt out, people may opt
out. If the agent’s expected utility from opting out is higher
than its expected utility from its opponent opting out, it will

try to predict whether its opponent is going to opt out. If
so, it will opt out first. The heuristic for the prediction of
whether an opponent will opt out is based on the messages
sent by the opponent. For example, when a threatening
message is received, or when a comment message indicating
that the negotiations are heading in a dangerous direction
is received, the estimation that the opponent may opt out
increases.

We ran extensive experiments for evaluating the equilib-
rium agent with the heuristics (EQH agent) [24]. We com-
pared the results of the humans to those of the agents and
concluded that the EQH agent received a higher utility score
playing both roles, but the results were only statistically sig-
nificant when the agent played just one of the roles. Fur-
thermore, when an agent participates in a negotiation, the
sum of the utilities are significantly higher than when two
humans play since the agent always proposes Pareto-optimal
offers while people reach agreements that are not.

While the EQH agent was based on the subgame perfect
equilibrium strategies, it required the introduction of many
heuristics, and its success compared with people was only in
one role. The main open question is whether it is possible
to provide formal methodology that will lead to an agent
that is similar to the EQH without the need to manually
design the EQH heuristics. Furthermore, we are aiming for
an agent that can achieve a significantly higher utility score
than people in both roles. Toward this challenges, we next
tried to use a qualtative approach, to introduce incomplete
information into the environment and to improve the agent’s
results in both roles.

2.2 QOagent and KBagent
The QOagent was designed to interact with people in

environments of bilateral negotiations with incomplete in-
formation when the agreements consist of multiple issues
[26]. With respect to incomplete information, each nego-
tiator keeps his preferences private, though the preferences
might be inferred from the actions of each side (e.g., offers
made or responses to offers proposed). Incomplete informa-
tion is expressed as uncertainty regarding the utility pref-
erences of the opponent, and it is assumed that there is a
finite set of different negotiator types. These types are asso-
ciated with different additive utility functions (e.g., one type
might have a long term orientation regarding the final agree-
ment, while the other type might have a more constrained
orientation). Lastly, the negotiation is conducted once with
each opponent. The experiments were run on two distinct

12



domains. In the first domain, England and Zimbabwe ne-
gotiate in order to reach an agreement evolving from the
World Health Organization’s Framework Convention on To-
bacco Control, the world’s first public health treaty. In the
second domain a negotiation takes place after a successful
job interview between an employer and a job candidate.

We first formalized the scenario as a Bayesian game and
computed the Bayesian Nash equilibrium. Though we did
not run simulations of the Bayesian Nash equilibrium agent
against human negotiators, we ran two humans negotiations.
We found out that the opponent’s utility score from the of-
fers suggested by the equilibrium agent are much lower than
the final utility values of the human negotiations. By also
analyzing the simulation process of the human negotiations,
we deduced that without incorporating any heuristics into
the equilibrium agent, the human players would not have
accepted the offers proposed by it which will lead to low
utility scores for the equilibrium agent, similar to the low
score of the equilibrium agent in the fishing dispute.

Therefore, we developed the QOAgent. For the decision-
making process, the approach used by the QOAgent tries
to take the utility of both sides into consideration. While the
QOAgent’s model applies utility functions, it is based on a
non-classical decision-making method, rather than focusing
on maximizing the expected utility: the maximin function
and a qualitative valuation of offers. Using these methods,
the QOAgent generates offers and decides whether to ac-
cept or reject proposals it has received. As for incomplete
information, the QOAgent tackles this problem using a
simple Bayesian update mechanism. After each action, this
mechanism tries to infer which negotiator type best suits the
opponent.

The effectiveness of this method was demonstrated through
extensive empirical experiments by [26].

The results of the experiments showed that the automated
agent achieved higher utility scores than the human coun-
terpart. This can be explained by the nature of our agent
both in reference to accepting offers and generating offers.
Using the decision-making mechanism we allow the agent to
propose agreements that are good for it, but also reasonable
for its opponent. In addition, the automated agent makes
straightforward calculations. It evaluates the offer based on
its attributes, and not based on its content. In addition, it
also places more weight on the fact that it loses or gains as
time advances. This is not the case, however, when analyz-
ing the logs of the people. It seems that people put more
weight on the content of the offer than on its value. This was
more evident in the Job Candidate domain with which the
human subjects could more easily identify. Yet, this does
not explain why, in both domains, similar to the EQH agent
experiments, these results are significant only for one of the
sides. In the England-Zimbabwe domain, the results are sig-
nificant when the agent played the role of England, while in
the Job Candidate domain these results are significant when
it played the role of the job candidate.

In order to improve the QOAgent, we extended it by
using a generic opponent modeling mechanism, which allows
the agent to model its counterpart’s population and adapt its
behavior to that population [32]. The extended agent, called
KBAgent, is an automated negotiator that negotiates with
each person only once, and uses past negotiation sessions of
others as a knowledge base for generic opponent modeling.
The database containing the a relatively small number of

Figure 1: The negotiation system’s interface for NegoChat.

past negotiation sessions is used to extract the likelihood of
acceptance of proposals and which proposals may be offered
by the opposite side. The performance of KBAgent in
terms of its counter-offer generation and generic opponent
modeling was tested against people in the Tobacco and the
Job interview domains.

The results of these tests indicate that the KBAgent ne-
gotiates proficiently with people and even achieves higher
utility score values than the QOAgent. Moreover, the
KBAgent achieves significantly better agreements, in terms
of utility score, than the human counterparts in both roles.
These results indicate that integrating general opponent mod-
eling into qualtative decision-making is beneficial for auto-
mated negotiations.

2.3 NegoChat Agent
All the agents we discussed so far negotiated with the hu-

man counterpart either using a structured language or using
a menu-driven interaction. They lack the natural language
processing support required to enable real world types of
interactions. To address this challenge we first developed
an NLP module that translates the free text of the hu-
man player to the agent’s formal language. We modified
the KBagent by adding this module without changing the
KBagent strategy and ran an experiment in which the mod-
ified KBagent played with people in a chat-like environment
(see Figure 1 for the negotiation system’s interface for chat-
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based negotiations). We found that simply modifying the
KBagent to include an NLP module is insufficient to cre-
ate a good agent for such settings and the revised agent
achieved relatively low utility scores. The main observa-
tion was that people in chat-based negotiations make and
accept partial agreements and follow issue-by-issue negotia-
tions while the KBagent proposes full offers and has difficul-
ties reaching partial agreements. To address this limitation,
we developed NegoChat, which extended the KBagent fo-
cusing on strategies that allow for partial agreements and
issue-by-issue interactions. NegoChat’s algorithm is based
on bounded rationality, specifically anchoring and Aspira-
tion Adaptation Theory (AAT). The AAT was used for de-
ciding on the order in which the issues will be discussed.
The agent begins each negotiation interaction by proposing
a full offer based on the KBagent’s strategy, which serves as
its anchor. Assuming this offer is not accepted, NegoChat
then proceeds to negotiate via partial agreements, propos-
ing the next issue for negotiation based on people’s typical
urgency (according to AAT).

We evaluated the NegoChat agent in extensive experi-
ments negotiating with people in the job interview domain.
We compared its performance to the performance of the
KBAgent that also negotiated with (different) people us-
ing the same NLP module. The NegoChat agent achieved
significantly better agreements (i.e., higher utility score) in
less time. However, people playing against KBAgent, on
average, did better. This implies that some of NegoChat’s
success is evidently at the cost of the person’s score and
consequently the social welfare score of this agent is not sig-
nificantly better than that of KBAgent. As our goal is to
maximize the agent’s utility score this should not be seen
as a fault. However, future generations of automated agents
may decide to implement different strategies to maximize
social welfare.

3. NEGOTIATIONS AND ACTIONS INTER-
LEAVING

In most situations, negotiation is not done in isolation but
is associated with agreement implementation and other ac-
tivities. We developed agents that can interact with people
in such settings. These studies were carried out in a con-
figurable system called Colored Trails (CT)1. It is a game
played by two or more participants on a board of colored
squares. CT is an abstract, conceptually simple but highly
versatile game in which players negotiate and exchange re-
sources to enable them to achieve their individual or group
goals. It provides a realistic analogue to multi-agent task do-
mains, while not requiring extensive domain modeling [15,
18]. A summary of the agents we developed are specified in
Table 2.

3.1 Revelation games
We considered negotiation settings in which participants

lack information about each other’s preferences, often hin-
dering their ability to reach beneficial agreements [34]. Specif-
ically, we studied a particular class of such settings we call
“revelation games”, in which two players are given the choice
to truthfully reveal private information before commencing
two rounds of alternating negotiation. Revealing this in-
formation narrows the search space of possible agreements

1See http://www.eecs.harvard.edu/ai/ct.

and may lead to agreement more quickly, but may also cause
players to be exploited by others (see examples of such games
in Figure 2). Revelation games combine two types of inter-
actions that have been studied in the past in the economics
literature: Signaling games [39], in which players choose
whether to convey private information to each other, and
bargaining [31], in which players engage in multiple negoti-
ation rounds.

We were hopeful that, for revelation games, equilibrium-
based agents will interact well with people since behavioral
economics work has shown that people often follow equilib-
rium strategies [7] when deciding whether to reveal private
information to others. The question is whether this obser-
vation will be stronger than our previous observations re-
ported above that people’s behavior in bargaining settings
does not adhere to equilibrium strategies. We formalized the
setting as a Bayesian game and computed two types of per-
fect Bayesian equilibrium: a separating equilibrium where
both players reveal their type, and a pooling equilibrium
where none of the players reveal their types.

We compared the equilibrium agents with people playing
with other people and with the Sigmoid Acceptance Learn-
ing Agent (SIGAL) that we developed [34]. The SIGAL
agent used classical machine learning techniques to predict
how people make and respond to offers during negotiation,
how they reveal information and their response to potential
revelation actions by the agent. This model is integrated
into the agent’s decision tree. We conducted an extensive
empirical study spanning hundreds of human subjects.

Results show that the SIGAL agent was able to outper-
form people and the equilibrium agents. Furthermore, peo-
ple outperformed the equilibrium agents. It turned out that
the negotiation part of the game was more important (with
respect to the utility score) than the revelation part. The
equilibrium agent made very selfish offers in the last round
of the negotiations. Most of these offers were rejected. In
the first round, it made offers that were highly beneficial to
people and most of these offers were accepted, but the small
benefit it incurred in these proposals did not aid its perfor-
mance. The SIGAL agent, on the other hand, (i) learned
to make offers that were beneficial to people while not com-
promising its own benefit; and (ii) incrementally revealed
information to people in a way that increased its expected
performance. We were able to adjust SIGAL to new, similar
settings that varied rules and situational parameters of the
game without the need to accumulate new data. However,
moving to a completely new setting requires a lot of work
collecting data and adjusting the machine learning module
to the new setting.

3.2 Non-binding agreements
We also studied CT settings of two players in which both

participants needed to complete their individual tasks by
reaching agreements and exchanging resources, the number
of negotiation rounds were not fixed in advance, and the ne-
gotiation protocol was an alternating offers protocol that al-
lowed parties to choose the extent to which they kept each of
their agreements during the negotiation [19]. That is, there
are three phases in each round of the game: negotiation,
transfer and movement. The negotiation phase consisted of
two rounds of alternating offers in which the players could
reach an agreement on resource exchange. After each phase
of negotiations, the game moved to the “transfer phase” in
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(a) Symmetric Board Game (b) Asymmetric Board
Game

(c) A possible proposal

Figure 2: Two CT revelation games

Table 2: CT games

Settings Agent Name Agent Properties Significance vs people
Bilateral, Uncertainty, Revelation Game PBE agent Bayesian perfect equilibrium No roles
two-phases: revelation, bargaining SIGAL decision theory, machine learning Both roles
Bilateral, full information, agreements PAL decision theory: Influence Diagram Both roles
not enforceable, multiple rounds, three phases: machine learning
bargaining, resource exchange, movement
Contract game, three players SPE agent subgame-perfect equilibrium CS role
two-phases: bargaining, movement SP-RAP subgame-perfect equilibrium

bounded rational model of opponent SP role
risk averse

Figure 3: An example of a CT Board for multiple negotiation
games with unenforceable agreements.

which both players could transfer resources to each other.
The transfer action was done simultaneously, such that nei-
ther player could see what the other player transferred until
the end of the phase. A player could choose to transfer more
resources than it agreed to, or any subset of the resources it
agreed to, including not transferring any resources at all. In
the “movement phase” both players could move their icons

on the board one step towards the goal square, provided
they had the necessary resources. Then, the game moved
to the next round, beginning again with negotiation phase.
The game ends when one of the players reaches his goal or
does not move for two rounds (see an example of one such
game in Figure 3).

The most important decision of a player in such settings
is whether or not to keep the agreements. Another impor-
tant decision is whether to accept an offer given by the other
player. In subgame perfect equilibrium, the players should
not keep the agreements. Different equilibria may specify
various strategies for the acceptance decision. We ran pre-
liminary experiments and observed that such strategies are
not beneficial when the equilibrium agent interacts with peo-
ple. Most of the time the agent was not able to reach its
goal, yielding a low utility score.

Galit et al. [19] present the Personality Adaptive Learning
(PAL) agent for negotiating with people from different cul-
tures for the CT game where agreements are not enforceable.
The methodology was similar to that of SIGAL (Section 3.1),
combining a decision-theoretic model using a decision tree
with classical machine learning techniques to predict how
people respond to offers, and the extent to which they fulfill
agreements.

PAL was evaluated empirically in the Colored Trails (CT)
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Figure 4: An example of a CT Board for the Contract game.

environment by playing with people in three countries: Lebanon,
the U.S., and Israel, in which people are known to vary
widely in their negotiation behavior. The agent was able to
outperform people in all three countries.

3.3 Contract Game
We studied commitment strategies in a three-player CT

game. The game is called Contract Game and is analo-
gous to a market setting in which participants need to reach
agreements over contracts and commit to or renege from
contracts over time in order to succeed [20]. The game com-
prises three players, two service providers and one customer.
The service providers compete to make repeated contract of-
fers to the customer consisting of resource exchanges in the
game (see an example of one such game in Figure 4). We
formally analyzed the game to compute subgame perfect
equilibrium strategies for the customer and service provider
in the game that are based on making contracts containing
commitment offers. To evaluate agents that use the equi-
librium strategies, we conducted extensive empirical studies
in three different countries, the U.S., Israel and China. We
ran several configurations in which two human participants
played a single agent participant in various role configura-
tions in the game. Our results showed that the computer
agent using subgame Nash equilibrium strategies for the cus-
tomer role was able to outperform people playing the same
role in all three countries and obtained statistically signifi-
cant, higher utility scores than the humans. This was very
surprising since it was the first EQ agent after trying many
equilibrium agents that was able to achieve such results.

In particular, the customer agent made significantly more
commitment type proposals than people did, and requested
significantly more resources from service providers than did
people. It was quite surprising that people playing with it
accepted these offers; in other settings (such as the revela-
tion games) such unfair offers were rejected by people. We
hypothesize that the competition between the two service
providers made such offers more acceptable. In addition,
while in the revelation games the EQ agent had only one
opportunity to make an offer, in the contract game it could
make offers several times (off the equilibrium path) which
we believe also increased the acceptance rate. Also, the cus-
tomer agent reached one of the goals in all its games and
was able to reach the goal significantly more often than peo-
ple. This is again quite surprising since at the beginning of
the game the customer has enough resources to reach both
goals. Since reaching one of the goals is very beneficial to
the customer it is difficult to understand why human players
hadn’t always reached the goal.

While the customer EQ agent outperformed people, peo-

ple outperformed the EQ agent when it played the role of
one of the service providers. We believe that this is mainly
due to people playing the customer role not reaching the
goal even when they have all the needed resources to do so.
To face this problem we then developed an agent termed
SP-RAP which extended the EQ agent in the following two
ways to handle the uncertainty that characterizes human
play in negotiation: First, it employed a risk averse strategy
using a convex utility function. Second, it reasoned about a
possibly bounded rational customer (CS) player by assign-
ing a positive probability p > 0 for the customer player not
reaching the goal. We assigned a separate value for p for
each country by dividing the number of times the CS player
reached the goal by the total number of games played. Con-
sequently, SP-RAP outperformed people playing the SP role
in all three countries.

4. ARGUMENTATION AGENT
An automated agent can help a human when engaging in

an argumentative dialog by utilizing its knowledge and com-
putational advantage to provide arguments to him. Argu-
mentation was studied extensively using the well-established
Argumentation Theory (see [41] for a summary). Therefore,
in the first step in the development of an automated agent
that advised people in such settings, we considered the abili-
ties of Argumentation Theory to predict people’s arguments.
In [38] we presented extensive studies in three experimen-
tal settings, varying in complexity, which show the lack of
predictive power of the existing Argumentation Theory. Sec-
ond, we used Machine Learning (ML) techniques to provide
a probability distribution over all known arguments given a
partial deliberation. That is, our ML techniques provided
the probability of each argument to be used next in a given
dialog. Our model achieves 76% accuracy when predicting
people’s top three argument choices given a partial delib-
eration. Last, using the prediction model and the newly
introduced heuristics of relevance, we designed and eval-
uated the Predictive and Relevance based Heuristic agent
(PRH). Through an extensive human study, we showed that
the PRH agent outperforms other agents that propose ar-
guments based on Argumentation Theory, predicted argu-
ments without heuristics or only the heuristics on both axes
we examined: people’s satisfaction from agents and people’s
use of the suggested arguments.

5. SECURITY GAMES
The last several years have witnessed the successful appli-

cation of Bayesian Stackelberg games in allocating limited
resources to protect critical infrastructures. These inter-
esting efforts have been led by Prof. Milind Tambe from
USC. The first application is the ARMOR system (Assistant
for Randomized Monitoring over Routes) that has been de-
ployed at the Los Angeles International Airport (LAX) since
2007 to randomize checkpoints on the roadways entering the
airport and canine patrol routes within the airport terminals
[33, 35]. Other applications include IRIS, a game-theoretic
scheduler for randomized deployment of the US Federal Air
Marshal Service (FAMS) requiring significant scale-up in un-
derlying algorithms, which has been in use since 2009 [40];
and PROTECT, which requires further scale up, is deployed
for generating randomized patrol schedules for the US Coast
Guard in Boston, New York, Los Angeles and other ports
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around the US [2, 3]. Furthermore, TRUSTS has been eval-
uated for deterring fare evasion, suppressing urban crime
and counter-terrorism within the Los Angeles Metro Sys-
tem [44, 21, 9] and GUARDS was earlier tested by the US
Transportation Security Administration (TSA) for security
inside the airport [37].

The evaluation of these systems could be quite limited.
The only system that was truly evaluated in the field is
TRUSTS. We were able to conduct controlled experiments
of our game theoretic resource allocation algorithms. Be-
fore this project, the actual evaluation of the deployed se-
curity games applications in the field was a major open
challenge. The reasons were twofold. First, previous ap-
plications focused on counter-terrorism, therefore controlled
experiments against real adversaries in the field were not
feasible. Second, the number of practical constraints related
to real-world deployments limited the ability of researchers
to conduct head-to-head comparisons

In TRUSTS we were able to address this challenge and run
the largest scale evaluation of security games in the field in
terms of duration and number of security officials deployed.
We evaluated each component of the system (Fare Evasion,
Counter Terrorism and Crime algorithms) by designing and
running field experiments. In the context of fare evasion, we
ran an extensive experiment, where we compared schedules
generated using game theory against competing schedules
comprised of a random scheduler, augmented with officers
providing real-time knowledge of the current situation. Our
results showed that our schedules led to statistically signif-
icant improvements over the competing schedules, despite
the fact that the latter were improved with real-time knowl-
edge.

In addition, extensive human experiments in the lab were
conducted [36, 30]. These experiments showed that incor-
porating bounded rational models of the adversaries to the
Stackelberg games improves the performance of the defend-
ers. These results were observed both when the role of ad-
versaries was played by novices and when it was played by
security experts.

6. PERSUASION GAMES
A persuasion game involves two players: a sender who at-

tempts to persuade another agent (the receiver) to take a
certain action [17]. Persuasion games are similar to both
negotiation games and security games [43]. They are simi-
lar to negotiation and argumentation games since one player
tries to convince another player to do something, as in ne-
gotiations. They are also similar to security games in the
asymmetry between the players: the sender and the defender
are trying to influence the activities of the receiver and the
attacker, respectively. So, it is interesting to check if equilib-
rium strategies will be beneficial in persuasion games. Fur-
thermore, the incorporation of a bounded rational model
of the receiver will be beneficial to the sender as the in-
corporation of bounded rational models of the attacker was
beneficial to the defender in security games.

We focused on information disclosure games with two-
sided uncertainty [5, 6]. This is a special type of persua-
sion game in which an agent tries to lead a person to take
an action that is beneficial to the agent by providing him
with truthful, but possibly partial, information relevant to
the action selection. We first computed the subgame perfect
Bayesian Nash equilibrium of the game assuming the human

receiver is fully rational. We developed a sender agent that
follows the equilibrium strategy (GTBA agent).

We also developed a machine learning-based model that
effectively predicts people’s behavior in these games and we
called it Linear weighted-Utility Quantal response (LUQ).
The model we provide assumes that people use a subjective
utility function which is a linear combination for all given
attributes. The model also assumes that while people use
this function as a guideline, they do not always choose the
action with the greatest utility value, however, the higher an
action’s utility value is, the more likely they are to choose
that action. We integrated this model into our persuasion
model and built the LUQA agent.

We ran an extensive empirical study with people in two
different games. In a multi-attribute road selection game
with two-sided uncertainty, the LUQA agent obtained sig-
nificantly higher utility points than the GTBA agent. How-
ever, in the second game, the Sandwich game, there was no
significant advantage to the machine learning-based model,
and using the game theory-based agent, GTBA, which as-
sumes that people maximize their expected monetary values
is beneficial. We hypothesize that these different results are
due to the nature of the domains. The monetary result plays
an important role in the sandwich game. This is because
the game is played in an environment where a person’s goal
is to make a profit. However, in the road selection game
the utility scores are associated with time. Thus, it seems
that maximizing expected monetary utility is easier for peo-
ple than maximizing utility scores that are associated with
time.

7. DISCUSSIONS
The state-of-the-art agent, NegoChat, for multi-issue ne-

gotiations integrates methods from several disciplines: quali-
tative decision-making, machine learning and heuristics based
on psychological theories. None of the equilibrium agents
that were developed were successful when interacting with
people. The reliance on heuristic and machine learning makes
the transfer of NegoChat from one scenario to the other and
from one culture to the other problematic. This was evident
recently when we tried to run experiments with NegoChat,
which was developed based on data collected in Israel and
Egypt. We had to spend a lot of time and effort until this
transfer was possible.

Similarly, in most of the cases, the equilibrium agent was
not successful in the CT game settings. The only exception
is the contract game. We believe that the success of the
equilibrium agent in the contract game has to do with the
specifics of the game: the competition between the two SPs.
In the contract game, it was extremely difficult to predict
people’s behavior, thus the success of the equilibrium agent
is even more significant.

The same observations were seen in argumentation – the
argumentation theory-based agent was not very successful.
Therefore, in all these cases the development of new negoti-
ation agents to new settings requires the collection of data
and the adjustment of the agent to the new settings. There-
fore, we strongly believe that the development of theoretical
models for the design and implementation of agents that ne-
gotiate in multi-issue negotiation settings can be very useful.
However, this is still an open question.

On the other hand, it seems that in security games the
deployment of Stackelberg equilibrium is beneficial (possi-
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bly with the incorporation of a bounded rational model of
the attacker) and similarly in persuasion games where using
subgame perfect Baysian equilibrium is beneficial (possibly
with the incorporation of a bounded rational model of the
receiver).

We hypothesize that this is the case since in security
games and persuasion games the interactions between the
agent and the human is quite limited. The attacker or
the receiver needs to choose one action compared to many
decision-making activities that are required from a human
negotiator. Nevertheless, even in security games and to some
extent in persuasion games it was shown that taking the lim-
itations of the other player into consideration is beneficial.
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1. EXTENDED ABSTRACT
Sequential rationality is the prevalent notion of best re-

sponse for dynamic games; it is an essential part of the defi-
nition of sequential equilibrium [9], perfect Bayesian equilib-
rium [6], and extensive-form rationalizability [11]. Abstract-
ing from notational and other minor differences, a strategy
si of player i is sequentially rational if, beginning at any
information set where i moves, si specifies a sequence of ac-
tions that is optimal given the beliefs that i holds at that
information set about the play of her opponents.

While this notion is central to the theory of dynamic
games, it raises both practical and methodological concerns.
From a practical standpoint, it is not obvious how to reliably
ascertain which strategy a player follows in a given dynamic
game, and a fortiori whether it is or isn’t sequentially ra-
tional. Consider a three-stage Centipede game [13], played
by Ann (who moves at the first and third nodes) and Bob.
Suppose that, as predicted by backward induction, Ann ends
the game at the first node by moving Down. Then, we are
unable to observe Bob’s intended choice at the second node.
Furthermore, to determine whether such a choice would have
been optimal, had Ann chosen Across instead, we need to
consider Bob’s beliefs conditional upon an event that Bob
does not expect to occur—a zero-probability event. While
formally we can represent such beliefs, it is not clear how an
experimenter might elicit them in practice.

Reinhard Selten’s strategy method [16] is a widely used
experimental procedure that is intended to elicit players’
intended strategy choices in dynamic games. There is ev-
idence that the strategy method is an effective elicitation
procedure: see, e.g., [3]. But this finding actually raises fur-
ther questions. The strategy method essentially asks players
to simultaneously commit to a strategy, which is then im-
plemented by the experimenter without possibility of subse-
quent intervention by the subjects. This reduces the original
dynamic game to one in which players face non-trivial moves
only in the initial stage; furthermore, such moves are simul-
taneous. Standard solution concepts such as sequential or

perfect Bayesian equilibrium predict that players will max-
imize ex-ante expected payoffs when the strategy method
is employed; therefore, such solution concepts do allow sub-
jects to commit to strategies that are not sequentially ra-
tional in the original game. Refinements that incorporate
the notion of invariance [8] do imply that subjects will only
commit to strategies that are sequentially rational in the
original game. However, there is ample experimental evi-
dence that contradicts the invariance hypothesis [5, 15, 4,
7]. Thus, the received theory cannot at the same time ex-
plain the effectiveness of the strategy method, and account
for violations of the invariance hypothesis.

These practical issues hint at a deeper methodological con-
cern. Economics has long embraced the revealed-preference
approach: assumptions about agents’ tastes and beliefs should
be testable, or elicitable, on the basis of observable choices in
suitably designed problems. To date, rationality and beliefs
in dynamic games have not been subject to analysis from
the revealed-preference perspective. Formal definitions of
sequential rationality build upon expected-utility maximiza-
tion. However, the revealed-preference foundations for ex-
pected utility [14, 1] concern atemporal, or one-shot choices.
Furthermore, extensions of expected-utility theory to dy-
namic choice problems are wholly silent about behavior con-
ditional upon ex-ante zero probability events. Of course, the
analysis of intended choices following unexpected moves is
at the heart of dynamic game theory. Thus, the received
decision theory is insufficient to provide foundations to the
analysis of dynamic games.

The objective of this project is to provide such a foun-
dation. This entails two contributions. The first is to de-
fine a novel choice criterion for dynamic decision problems
and games, sequential preference, so as to satify two crite-
ria. First, the proposed criterion implies sequential ratio-
nality. Second, it allows preferences over strategies to be
elicited from ex-ante choices, using a version of the strategy
method. In particular, sequential preferences provide a the-
oretical rationale for the use of this common experimental
procedure, as well as a method to elicit conditional beliefs
following zero-probability events.

Building on the finding that sequential preferences are in-
deed elicitable, the second contribution of this project is to
provide a behavioral, or axiomatic, characterization of the
proposed choice criterion. This is based on a suitable adap-
tation of the Anscombe-Aumann [1] axioms.

Finally, in the analysis of sequential preferences, there are
natural connections to conditional probability systems [12,
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10] and lexicographic probability systems [2]. These are ex-
plored, and their implications for game-theoretic analysis
are discussed.

The project is carried out in two papers. The first, [18], in-
troduces sequential preferences, and analyzes elicitation and
the strategy method. The second, [17], provides behavioral
foundations.
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[12] A. Rényi. On a new axiomatic theory of probability.
Acta Mathematica Hungarica, 6(3):285–335, 1955.

[13] R. Rosenthal. Games of Perfect Information,
Predatory Pricing and the Chain-Store Paradox.
Journal of Economic Theory, 25(1):92–100, 1981.

[14] L. Savage. The foundations of statistics. Dover Pubns,
1972.

[15] A. Schotter, K. Weigelt, and C. Wilson. A laboratory
investigation of multiperson rationality and
presentation effects. Games and Economic behavior,
6(3):445–468, 1994.

[16] R. Selten. Ein oligopolexperiment mit preisvariation
und investition. Beiträge zur experimentellen
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ABSTRACT
This paper aims to give a broad coverage of central con-
cepts and principles involved in automated causal inference
and emerging approaches to causal discovery from i.i.d data
and from time series. After reviewing concepts including
manipulations, causal models, sample predictive modeling,
causal predictive modeling, and structural equation models,
we present the constraint-based approach to causal discov-
ery, which relies on the conditional independence relation-
ships in the data, and discuss the assumptions underlying its
validity. We then focus on causal discovery based on struc-
tural equations models, in which a key issue is the identifi-
ability of the causal structure implied by appropriately de-
fined structural equation models: in the two-variable case,
under what conditions (and why) is the causal direction be-
tween the two variables identifiable? We show that the inde-
pendence between the error term and causes, together with
appropriate structural constraints on the structural equa-
tion, makes it possible. Next, we report some recent ad-
vances in causal discovery from time series. Assuming that
the causal relations are linear with non-Gaussian noise, we
study two problems which are traditionally difficult to solve,
namely, causal discovery from subsampled data and that in
the presence of confounding time series. Finally, we list a
number of open questions in the field of causal discovery and
inference.
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1. INTRODUCTION
The goal of many sciences is to understand the mecha-

nisms by which variables came to take on the values they

have (i.e., to find a generative model), and to predict what
the values of those variables would be if the naturally occur-
ring mechanisms in a population1 were subject to outside
manipulations. For example, a randomized experiment is
one kind of manipulation, which substitutes the outcome of
a randomizing device to set the value of a variable, such as
whether or not a particular diet is used, instead of the nat-
urally occurring mechanism that determines diet. In non-
experimental settings, biologists gather data about the gene
activation levels in normally operating systems, and seek to
understand which genes affect the activation levels of which
other genes, and seek to predict what the effects of interven-
ing to turn some genes on or off would be; epidemiologists
gather data about dietary habits and life expectancy in the
general population and seek to find what dietary factors af-
fect life expectancy and to predict the effects of advising
people to change their diets. Finding answers to questions
about the mechanisms by which variables come to take on
values, or predicting the value of a variable after some other
variable has been manipulated, is characteristic of causal
inference. If only observational (non-experimental) data is
available, predicting the effects of manipulations typically
involves drawing samples from one density (of the unmanip-
ulated population) and making inferences about the values
of a variable in a population that has a different density (of
the manipulation population).

Many of the basic problems and basic assumptions re-
main the same across domains. In addition, although there
are some superficial similarities between traditional super-
vised machine learning problems and causal inference (e.g.,
both employ model search and feature selection, the kinds
of models employed overlap, some model scores can be used
for both purposes), these similarities can mask some very
important differences between the two kinds of problems.

1.1 History
Traditionally, there have been a number of different ap-

proaches to causal discovery. The gold standard of causal
discovery has typically been to perform planned or random-
ized experiments [10]. There are obvious practical and eth-
ical considerations that limit the application of randomized

1Here, the “population” is simply a collection of instantia-
tions of a set of random variables. For example, it could con-
sist of a set of satellite readings and rainfall rates in different
locations at a given time, or the readings of a single satellite
and rainfall rate over time, or a combination of these.
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experiments in many instances, particularly on human be-
ings. Moreover, recent data collection techniques and causal
inference problems raise several practical difficulties regard-
ing the number of experiments that need to be performed in
order to answer all of the outstanding questions [8, 9].

2. MANIPULATING AND CONDITIONING
Conditioning maps a given joint density, and a given sub-

population (typically specified by a set of values for random
variables) into a new density. The conditional density is a
function of the joint density over the random variables, and
a set of values for a set of random variables.2 The estima-
tion of a conditional probability is often non-trivial because
the number of measurements in which the variables condi-
tioned on that take on a particular value might be small.
A large part of statistics and machine learning is devoted
to estimating conditional probabilities from realistic sample
sizes under a variety of assumptions.

More generally, suppose the goal is to find a “good” pre-
dictor of the value of some target variable Y from the values
of the observed covariates O, for a unit. We will refer to this
as Problem 1, described more formally below. Ultimately,
the prediction of the value of Y is performed by some predic-
tion function Ŷn(O). One traditional measure of how good

the predictor Ŷn(O) is in predicting Y is the mean squared

prediction error (MSPE), which is equal to E[(Y −Ŷn(O))2],
where the expected value is taken with respect to the density
p(O, Y ) [1].3

Problem 1: Sample predictive modeling

Input: i.i.d. samples from a population with density
p(O, Y ), background assumptions, and a target variable
Y whose value is to be predicted.

Output: Ŷn(O), a predictor of Y from O that has a small
MSPE.

In addition to predicting future values of random variables
from the present and past values, conditional probabilities
are also useful for predicting hidden values at the current
time.

2.1 Manipulated Probabilities
A manipulated density results from taking action on a

given population – it may or may not be equal to any ob-
servational conditional density, depending upon what the
causal relations between variables are. Manipulated proba-
bility densities are the appropriate probability densities to
use when making predictions about the effects of taking ac-
tions (“manipulating” or “doing”) on a give population (e.g.,
assigning satellite readings), rather than observing (“seeing”)
the values of given variables. A manipulation M specifies a
new conditional probability density for some set of variables.
If X and O are sets of variables with density p(X|O), a
manipulation M changes the density to some new density
p′(X|O). Manipulated probabilities are the probabilities
that are implicitly used in decision theory, where the dif-

2In order to avoid technicalities, we will assume that the set
of values conditioned on do not have measure 0.
3Other measures of prediction error, such as the absolute
value of prediction error or optimizing certain decision prob-
lems could be used, but would not substantially change the
general approach taken here.

ferent actions under consideration are manipulations.4 We
designate the density of a set of variables V after a manipu-
lation M as p(V||M). Each manipulation is assumed to be
an ideal manipulation in the following senses:

1. Each manipulation succeeds, i.e., if the manipulation
is designated as setting the density to p′(X|O), then
the post-manipulation density is p′(X|O).

2. There is no fat hand, i.e., each manipulation directly
affects only the variables manipulated.

A probability model specifies a density over a set of ran-
dom variables O. A causal model specifies a set of densities
over a set of random variables O, one for each possible ma-
nipulation M of the random variables in O, including the
null manipulation. Hence a probability model is a member
of a causal model.

Given a set of variables V, the direct causal relations
among the variables can be represented by a directed graph,
where the variables in V are the vertices, and there is an
edge from A to B if A is a direct cause of B relative to V.

We will refer to the problem of estimating manipulated
densities given a sample from a marginal unmanipulated
density, a (possibly empty) set of samples from manipulated
densities, and background assumptions, as Problem 2; it is
stated more formally below. In contrast to conditional prob-
abilities, which can be estimated from samples from a pop-
ulation, typically the gold standard for estimating manipu-
lated densities is an experiment, often a randomized trial.
However, in many cases experiments are too expensive, too
difficult, or not ethical to carry out. This raises the question
of what can be determined about manipulated probability
densities from samples from a population, possibly in com-
bination with a limited number of randomized trials. The
problem is even more difficult because the inference is made
from a set of measured random variables O from samples
that might not contain variables that are causes of multiple
variables in O.

Problem 2 is usually broken into two parts: finding a
set of causal models from sample data, some manipulations
(experiments) and background assumptions, and predicting
the effects of a manipulation given a causal model. Here, a
“causal model” (Section 3) specifies for each possible manip-
ulation that can be performed on the population (including
the manipulation that does nothing to a population) a post-
manipulation density over a given set of variables.

Problem 2: Statistical causal predictive modeling

Input: i.i.d. samples from a population with density
p(O, Y ), a (possibly empty) set of i.i.d. samples from ma-
nipulated densities p(O, Y ||M1), ..., p(O, Y ||Mn), a ma-
nipulation M , background assumptions, and a target vari-
able Y whose post-manipulation value is to be predicted.

Output: Ŷ (O||M), a predictor of the value of Y from O
after manipulation M that has a small MSPE.

4Here, p′ is not a derivative of p; the prime after the p merely
indicates that a new function has been introduced. The use
of manipulated probability densities in decision theory is
often not explicit. The assumption that the density of states
of nature are independent of the actions taken (act-state
independence) is one way to ensure that the manipulated
densities that are needed are equal to observed conditional
densities that can be measured.
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Problem 2a: Constructing Causal Models from
Sample Data

Input: i.i.d. samples from a population with density p(O),
a (possibly empty) set of i.i.d. samples from manipu-
lated densities p(O||M1), ..., p(O||Mn), and background
assumptions.

Output: A set of causal models that is as small as possible,
and contains an approximately true causal model.

Problem 2b: Predicting the Effects of
Manipulations from Causal Models

A set C of causal models over a set of variables O and Y ,
a manipulation M , and a target variable Y .

Output: Ŷ (O||M) if one exists, and an output of “no
function” otherwise.

The reason that the stated goal for the output of Problem
2a is a set of causal models, rather than a single causal model
is that it is in some cases it is not possible to reliably find
a true causal model given the inputs. Furthermore, in con-
trast to predictive models, even if it a true causal model can
be inferred from a sample from the unmanipulated popula-
tion, it generally cannot be validated on a sample from the
unmanipulated population, because a causal model contains
predictions about a manipulated population that might not
actually exist. This has been a serious impediment to the
improvement of algorithms for constructing causal models,
because it makes evaluating the performance of such algo-
rithms difficult. It is possible to evaluate causal inference
algorithms on simulated data, to employ background knowl-
edge to check the performance of algorithms, and to conduct
limited (due to expense, time, and ethical constraints) ex-
periments, but these serve as only partial checks how algo-
rithms perform on real data in a wide variety of domains.

3. STRUCTURAL EQUATION MODELS
The set of random variables in a structural equation model

(SEM) can be divided into two subsets, the “error variables”
or “error terms,” and the substantive variables (for which
there is no standard terminology in the literature). The sub-
stantive variables are the variables of interest, but they are
not necessarily all observed. Each substantive variable X is
a function of other substantive variables V, and a unique
error term εX ; i.e., X := f(V, εX). We use an assignment
operator, rather than an equality operator because the equa-
tions are interpreted causally; manipulating a variable in V
can lead to a change in the value of X.

Each SEM is associated with a directed graph whose ver-
tices include the substantive variables, and that represents
both the causal structure of the model and the form of the
structural equations. There is a directed edge from A to B
(A → B) if the coefficient of A in the structural equation
for B is non-zero. In a linear SEM, the coefficient bB,A of A
in the structural equation for B is the structural coefficient
associated with the edge A → B. In general, the graph of
a SEM may have cycles (i.e., directed paths from a vari-
able to itself), and may explicitly include error terms with
double-headed arrows between them to represent that the
error terms are dependent (e.g., εA ↔ εB); if no such edge
exists in the graph, the error terms are assumed to be inde-
pendent. If a variable has no arrow directed into it, then it
is exogenous; otherwise it is endogenous. In SEM K(θ) de-

picted in Figure 1(i) (where θ is the set of parameter values
for K) A is exogenous and B and R are endogenous. If the
graph has no directed cycles and no double-headed arrows,
then it is a directed acyclic graph (DAG).

Given independent error terms in SEM K, for each θ,
SEM K entails both a set of conditional independence re-
lations among the substantive variables, and that the joint
density over the substantive variables factors according to
the graph, i.e., the joint density can be expressed as the prod-
uct of the density of each variable conditional on its parents
in the graph. For example, p(A,B,R) = p(A)p(B|A)p(R|A)
for all θ. This factorization in turn is equivalent to a set of
conditional independence relations among the substantive
variables [21].
Ip(X,Y|Z) denotes that X is independent of Y condi-

tional on Z in density p, i.e., p(X|Y,Z) = p(X|Z) for all
p(X|Z) 6= 0. (In cases where it does not create any ambigu-
ity, the subscript p will be dropped). If a SEM M with pa-
rameter values θ (represented by M(θ)) entails that X is in-
dependent of Y conditional on Z, we write IM(θ)(X,Y|Z). If
a SEM with fixed causal graphM entails that IM(Θ)(X,Y|Z)
for all possible parameter values Θ we write IM (X,Y|Z). In
that case we say that M entails I(X,Y|Z). It is possible to
determine whether IM (X,Y|Z) from the graph of M using
the purely graphical criterion, “d-separation” [26].

A Bayesian network is a pair 〈G, p〉, where G is a directed
acyclic graph and a p is a probability density such that if X
and Y are d-separated conditional on Z in G, then X and
Y are independent conditional on Z in G. If the error terms
in a SEM with a DAG G are jointly independent, and p(V)
is the entailed density over the substantive variables, then
〈G, p(V)〉 is a Bayesian network.

3.1 Representing Manipulations in a SEM
Given a linear SEM, a manipulation of a variable Xi in a

population can be described by the following kind of equa-
tion: Xi =

∑
Xj∈PA(Xi)

bi,jXj+εi, where all of the variables

are the post-manipulation variables, PA(Xi) is a new set of
causes of Xi (which are included in the set of non-effects of
Xi in the unmanipulated population). A simple special case
is where Xi is set to a constant c.

In a causal model such as SEMK(θ), the post-manipulation
population is represented in the following way, as shown in
Figure 1. The result of modifying the set of structural equa-
tions in this way can lead to a density in the randomized
population that is not necessarily the same as the density
in any subpopulation of the general population. (For more
details see [27, 36].) See Figure 1 for examples of manipula-
tions to SEM K.

A set S of variables is causally sufficient if every variable
H that is a direct cause (relative to S∪ {H}) of any pair of
variables in S is also in S. Intuitively, a set of variables S is
causally sufficient if no common direct causes (relative to S)
have been left out of S. If SEM K is true then {A,B,R} is
causally sufficient, but {B,R} is not because A is a common
direct cause of B and R relative to {A,B,R} but is not in
{B,R}. If the observed set of variables is not causally suf-
ficient, then the causal model is said to contain unobserved
common causes, hidden common causes, or latent variables.

4. ASSUMPTIONS
The following assumptions are often used to relate causal
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Figure 1: (i) Unmanipulated causal graph K; (ii) B
Manipulated to 5; (iii) A Manipulated to 5

relations to probability densities.

4.1 The Causal Markov Assumption
Causal Markov Assumption: For causally sufficient

sets of variables, all variables are independent of the their
non-effects (non-descendants in the causal graph) conditional
on their direct causes (parents in the causal graph) [36].

The Causal Markov Assumption is an oversimplification
because it basically assumes that all associations between
variables are due to causal relations. There are several other
ways that associations can be produced.

First, conditioning on a common descendant can produce
a conditional dependency. For example, if sex and intelli-
gence are unassociated in the population, but only the most
intelligent women attend graduate school, while men with
a wider range of intelligence attend graduate school, then
sex and intelligence will be associated in a sample consisting
of graduate students (i.e., sex and intelligence cause grad-
uate school attendance, which has been conditioned on in
the sample.) See [37] for a discussion of selection bias. Sec-
ond, logical relationships between variables can also pro-
duce non-causal correlations (e.g., if GDP yearly is defined
to be the sum of GDP January, GDP Februrary, etc.,
GDP yearly will be associated with these variables, but
not caused by them.) For a discussion of logical relations
between variables, see [38]. Third, it does not have any way
of dealing with instantaneous symmetric interactions (like
classical theories of gravity).

4.2 The Causal Faithfulness Assumption
Consider SEMO in Figure 2. Suppose we have IK(B,R|A),

where SEM K is shown in Figure 1(i), whereas it is not the
case that IO(B,R|A). However, just because O does not en-
tail IO(B,R|A) for all sets of parameter values β, that does
not imply that there are no β for which IO(β))(B,R|A). For
example, if the variances of R, A, and B are all 1, for any β
for which covO(β)(A,B) · covO(β)(A,R) = covO(β)(B,R),
it follows that covO(β)(B,R|A) = 0. This occurs when
(bB,R · bA,R + bA,B) · (bB,R · bA,B + bA,R) = bR,B . So if
Ip(B,R|A) is true in the population, there are at least two
kinds of explanation: any set of parameter values for SEMs
K (in Figure 1(i)), L, or M (in Figure 2) on the one hand,
or any parameterization of SEM O for which (bB,R · bA,R +
bA,B) · (bB,R · bA,B + bA,R) = bR,B . There are several argu-
ments why, although O with the special parameter values

is a possible explanation, in the absence of evidence to the
contrary, K, L, or M should be the preferred explanations.

First, K, L, and M explain the independence of B and R
conditional on A structurally, as a consequence of no direct
causal connection between the variables. In contrast O ex-
plains the independence as a consequence of a large direct
effect of B on R cancelled exactly by the product of large
direct and indirect effects of B and R on A.

Second, this cancellation is improbable (in the Bayesian
sense that if a zero conditional covariance is not entailed,
the measure of the set of free parameter values for any DAG
that lead to such cancellations is zero for any “smooth” prior
probability density,5 such as the Gaussian or exponential
one, over the free parameters).

Finally, K, L, and M are simpler than O. K, L, and M
have fewer free parameters than O.

The assumption that a causal influence is not hidden by
coincidental cancellations can be expressed for SEMs in the
following way. A density p is faithful to the graph G of a
SEM if and only if every conditional independence relation
true in p is entailed by G.

Causal Faithfulness Assumption: For a causally suf-
ficient set of variables V in a population P , the population
density pP (V) is faithful to the causal graph over V for
P [36].

The Causal Faithfulness Assumption requires preferring
K, L, and M to O, because parameter values β for which
IO(β))(B,R|A) would violate the Causal Faithfulness As-
sumption. Recently, there have been a number of search
algorithms that are consistent, but have substituted other
kinds of assumptions in place of the Causal Faithfulness As-
sumption.

4.3 The Output of a Search for Causal Models
The following sections describe several different possible

alternatives that can be output by a reliable search algo-
rithm.

4.3.1 Markov Equivalence Classes
A trek between A and B is either a directed path from

A to B, a directed path from B to A, or a path between A
and B that does not contain a subpath X → Y ← Z. SEMs
K, L, and M are Markov equivalent, in the sense that their
respective graphs all entail the same set of conditional in-
dependence relations. If K is true, any SEM with a graph
that contains no path between A and R can be eliminated
from consideration by the Causal Markov Assumption (e.g.,
N in Figure 2). SEM P also violates the Causal Markov
Assumption. O is incompatible with the population condi-
tional independencies by the Causal Faithfulness Assump-
tion. However, neither of these assumptions implies L or
M is incompatible with the population conditional indepen-
dencies.

Since K, L, and M entail the same set of conditional in-
dependence relations, it is not possible to eliminate L or M
as incompatible with the population conditional indepen-
dence relations without either adding more assumptions or
background knowledge, or using features of the probability
density that are not conditional independence relations. In
the case of linear SEMs with Gaussian error terms (and for
multinomial Bayesian networks) there are no other features

5A smooth measure is absolutely continuous with Lebesgue
measure.
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Figure 2: Alternative SEM models

of the density that distinguish K from L or M . However,
as we will illustrate later, for other families of distributions,
there are non-conditional independence constraints that can
be entailed by a graph that do distinguish K from L or M .

4.3.2 Distribution Equivalence
K and L are distribution equivalent if and only if for any

assignment of parameter values θ to K there exists an as-
signment of parameter values θ′ to L that represents the
same density, and vice versa. If all of the error terms are
Gaussian with linear causal relations, then K and L are dis-
tribution equivalent as well as Markov equivalent. In such
cases, the best that a reliable search algorithm can do is
to return the entire Markov equivalence class, regardless of
what features of the marginal density that it uses.

In contrast, for linear causal models with at most one
error term is non-Gaussian, SEMs K and L are Markov
equivalent, but they are not distribution equivalent.

When Markov equivalence fails to entail distribution equiv-
alence, then using conditional independence relations alone
for causal inference is still correct, but it is not as informative
as theoretically possible. For example, assuming linearity,
causal sufficiency, and non-Gaussian errors [32], conditional
independence tests can at best reliably determine the correct
Markov equivalence class, while using other features of the
sample density can be used to reliably determine a unique
graph [32].

4.4 Constraint-Based Search
The number of DAGs grows super-exponentially with the

number of vertices, so even for modest numbers of vari-
ables it is not possible to examine each DAG to determine
whether it is compatible with the population density given
the Causal Markov and Faithfulness Assumptions. The PC
algorithm, given as input an oracle that returns answers
about conditional independence in the population and op-
tional background knowledge about orientations of edges,
returns a graphical object called a pattern that represents a
Markov equivalence class (or if there is background knowl-
edge a subset of a Markov equivalence class) on the basis
of oracle queries. If the oracle always gives correct answers,
and the Causal Markov and Causal Faithfulness Assump-
tions hold, then the output pattern contains the true SEM,
even thought the algorithm does not check each DAG. In
the worse case, it is exponential in the number of variables,
but for sparse graphs it can run on hundreds of thousands
of variables [34, 35, 23].

5. DIFFERENCES BETWEEN CLASSIFICA-
TION AND REGRESSION AND CAUSAL
INFERENCE

The following is a brief summary of some important dif-
ferences between the problem of predicting the value of an
variable in an unmanipulated population from a sample, and
the problem of predicting the post-manipulation value of a
variable from a sample from an unmanipulated population.
In an unmanipulated population P , the predictor that min-
imizes the MSPE is the conditional expected value.

1. E(Y |O) (the expected value of Y conditional on O)
is a function of p(O,Y ), regardless of what the true
causal model is.6 In contrast, a manipulated expected
value is a function of p(O, Y ) and a causal graph.

2. In order to determine whether EP (Y ||p′(O)) (the ex-
pected value of Y after a manipulation to p′(O)) is a
function of p(O, Y ) and background knowledge, it is
necessary to find all of the causal models compatible
with p(O, Y ) and background knowledge, not simply
one causal model compatible with p(O, Y ) and back-
ground knowledge.

3. Determining which causal models are compatible with
background knowledge and a p(O, Y ) requires making
additional assumptions connecting population densi-
ties to causal models (e.g., Causal Markov and Faith-
fulness).

4. Without introducing some simplicity assumptions about
causal models, for some common families of densities
(e.g., Gaussian, multinomial), no EP (Y |O′||p′(O)) are
functions of the population density without very strong
background knowledge.

5. The justification for using simple statistical models is
fundamentally different than the justification for us-
ing simple causal models. At a given sample size, the
use of simple statistical model can be justified even if
causal relations are not simple. However, the assump-
tion that the simplest causal model compatible with
p(O, Y ) and background knowledge is a substantive
assumption about the simplicity of mechanisms that
exist in the world.

6. For many families of densities (e.g., Gaussian, multi-
nomial), there is always a statistical model without
hidden variables that contains the population density.
For those same families of densities, a causal model
that contains both the population probability density
and the post-manipulation probability densities may
require the introduction of unobserved variables.

6This ignores the problem of conditioning on sets of measure
zero.
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7. Given a population density, and the set of causal mod-
els consistent with the population density and back-
ground knowledge, calculating the effects of a manip-
ulation can be difficult because:

a. There may be unobserved variables (even if only
a single causal model is consistent with p(O, Y )
and background knowledge).

b. There may be multiple causal models compatible
with p(O, Y ) and background knowledge.

8. For non-experimental data, a post-manipulation den-
sity is different than the population density from which
the sample is drawn. The post-manipulation values of
the target variable Y are not directly measured in the
sample. Hence, it is not possible to estimate the error
in EP (Y |O′||p′(O)) by comparing it to the values in a
sample from the p(O, Y ).

6. SEMS CAN HELP IN CAUSAL DISCOV-
ERY FROM I.I.D. AND TIME SERIES DATA

As discussed in Section 4.4, the constraint-based approach
to causal discovery involves conditional independence tests,
which would be a difficult task if the form of dependence is
unknown. It has the advantage that it is generally applica-
ble, but the disadvantages are that faithfulness is a strong
assumption and that it may require very large sample sizes
to get good conditional independence tests. Furthermore,
the solution of this approach to causal discovery is usually
non-unique, and in particular, it does not help on deter-
mining causal direction in the two-variable case, where no
conditional independence relationship is available.

What information can we use to fully determine the causal
structure? A fundamental issue is given two variables, how
to distinguish cause from effect. To do so, one needs to find
a way to capture the asymmetry between them. Intuitively,
one may think that the physical process that generates ef-
fect from cause is more natural or simple in some way than
recovering the cause from effect. How can we represent this
generating process, and in which way is the causal process
more natural or simple than the backwards process?

Recently several causal discovery approaches based on
structural equation models (SEMs) have been proposed. A
SEM represents the effect Y as a function of the direct causes
X and some unmeasurable error:

Y = f(X, ε;θ1), (1)

where ε is the error term that is assumed to be independent
from X, the function f ∈ F explains how Y is generated
from X, F is an appropriately constrained functional class,
and θ1 is the parameter set involved in f . We assume that
the transformation from (X, ε) to (X,Y ) is invertible, such
that N can be uniquely recovered from the observed vari-
ables X and Y .

For convenience of presentation, let us assume that both
X and Y are one-dimensional variables. Without precise
knowledge on the data-generating process, the SEM should
be flexible enough such that it could be adapted to approx-
imate the true data-generating process; more importantly,
the causal direction implied by the SEM has to be identi-
fiable in most cases, i.e., the model assumption, especially
the independence between the error and cause, holds for only

one direction, such that it implies the causal asymmetry be-
tween X and Y . Under the above conditions, one can then
use SEMs to determine the causal direction between two
variables, given that they have a direct causal relationship
in between and do not have any confounder: for both direc-
tions, we fit the SEM, and then test for independence be-
tween the estimated error term and the hypothetical cause,
and the direction which gives an independent error term is
considered plausible.

Several forms of the SEM have been shown to be able to
produce unique causal directions, and have received prac-
tical applications. In the linear, non-Gaussian, and acyclic
model (LiNGAM [32]), f is linear, and at most one of the er-
ror term ε and cause X is Gaussian. The nonlinear additive
noise model [15, 44] assumes that f is nonlinear with ad-
ditive noise (error) ε. In the post-nonlinear (PNL) causal
model [45], the effect Y is further generated by a post-
nonlinear transformation on the nonlinear effect of the cause
X plus error term ε:

Y = f2(f1(X) + ε), (2)

where both f1 and f2 are nonlinear functions and f2 is as-
sumed to be invertible.7 The post-nonlinear transformation
f2 represents the sensor or measurement distortion, which is
frequently encountered in practice. In particular, the PNL
causal model has a very general form (the former two are
its special cases), but it has been shown to be identifiable in
the generic case (except five specific situations given in [45]).
It is worth noting that it is not closed under marginaliza-
tion, even if there are not confounders. In the subsequent
sections, we will discuss the identifiability of various SEMs,
how to distinguish cause from effect with the SEMs, and the
relationships between different principles for causal discov-
ery, including mutual independence of the error terms and
the causal Markov condition, respectively.

Another issue we are concerned with is causal discovery
from time series. According to [13], Granger’s causality
in time series falls into the framework of constraint-based
causal discovery combined with the temporal constraint that
the effect cannot precede the cause. The SEM, together with
the above temporal constraint, has also been exploited to
estimate time-delayed causal relations possibly with instan-
taneous effects [44]. Compared to the conditional indepen-
dence relationships, the SEM, if correctly specified, is able
to recover more about the causal information. In this pa-
per, when talking about causality in time series, we assume
that the causal relations are linear with non-Gaussian er-
rors. In Section 10, after reviewing linear Granger causality
with instantaneous effects, we focus on two problems which
are traditionally difficult to solve. In particular, we present
the theoretical results which make it possible to discover
the temporal causal relations at the true causal frequency
from subsampled data [12], that is, one can recover monthly
causal relations from quarterly data or estimate rapid causal
influences between stocks from their daily returns. More-
over, even when there exist confounder time series, theoret-
ical results suggested that one can still identify the causal

7In [42] both functions f1 and f2 are assumed to to invert-
ible; this causal model, as a consequence, can be estimated
by making use of post-nonlinear independent component
analysis (PNL-ICA) [39], which assumes that the observed
data are component-wise invertible transformations of linear
mixtures of the independence sources to be recovered.
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relations among the observed time series as well as the in-
fluences from the confounder series [11].

7. SEVERAL SEMS AND THE IDENTIFIA-
BILITY OF CAUSAL DIRECTION

When talking about the causal relation between two vari-
ables, traditionally people were often concerned with the
linear-Gaussian case, where the involved variables are Gaus-
sian with a linear causal relation, or the discrete case. It
turned out that the former case is one of the atypical situa-
tions where the causal asymmetry does not leave a footprint
in the observed data or their joint distribution: the joint
Gaussian distribution is fully determined by the mean and
covariance, and with proper rescaling, the two variables are
completely asymmetric w.r.t. the data distribution.

In the discrete case, if one knows precisely what SEM
class generated the effect from cause, which, for instance,
may be the noisy AND or noisy XOR gate, then under mild
conditions the causal direction can be easily seen from the
data distribution. However, generally speaking, if the pre-
cise functional class of the causal process is unknown, in
the discrete case it is difficult to recover the causal direction
from observed data, especially when the cardinality of the
variables is small. As an illustration, let us consider the sit-
uation where the causal process first generates continuous
data and discretizes such data to produce the observed dis-
crete ones. It is then not surprising that certain properties
of the causal process are lost due to discretization, making
causal discovery more difficult. In this paper we will focus
on the continuous case.

7.1 Causal Direction Is Not Identifiable with-
out Constraints on SEMs

In the SEM (1), the error term is assumed to be indepen-
dent from the cause. If for the reverse direction, one cannot
find a function to represent X in terms of the hypothetical
cause Y and an error term which is independent from Y ,
then we can determine the true causal direction, or distin-
guish cause from effect. Unfortunately, this is not the case
if we do not impose any constraint on the function f , as
explained below.

According to [17], given any two random variables X and
Y with continuous support, one can always construct an-
other variable, denoted by ε̃, which is statically independent
from X. In [47] the class of functions to produce such an
independent variable ε̃ (or called independent error term in
our causal discovery context) was given, and it was shown
that this procedure is invertible: Y is a function of X and
ε̃.

This is also the case for the hypothetical causal direction
Y → X: we can also always represent X as a function of Y
and an independent error term. That is, any two variables
would be symmetric according to the SEM, if f is not con-
strained. Therefore, in order for the SEMs to be useful to
determine the causal direction, we have to introduce certain
constraints on the function f such that the independence
condition on the error and the hypothetical cause holds for
only one direction. Below we focus on the two-variable case,
and the results can be readily extended to the case with an
arbitrary number of variables, as shown in [28].

7.2 Linear Non-Gaussian Causal Model

The linear causal model in the two-variable case can be
written as

Y = bX + ε. (3)

It is nice that if at most one of X and ε is Gaussian, the
causal direction is identifiable, due to the ICA theory [16],
or more fundamentally, due to the Darmois-Skitovich theo-
rem [20]. This is known as the linear, non-Gaussian, acyclic
model (LiNGAM [32]).

7.2.1 On the Ubiquitousness of Non-Gaussianity in
the Linear Case

According to the central limit theorem, under mild con-
ditions, the sum of independent variables tends to be Gaus-
sian as the number of components becomes larger and larger.
One may then challenge the non-Gaussianity assumption in
the LiNGAM model. Here we argue that in the linear case,
non-Gaussian distributions are ubiquitous.

Cramér’s decomposition theorem states that if the sum
of two independent real-valued random variables is Gaus-
sian, then both of the summand variables much be Gaus-
sian as well; see [6, page 53]. By induction, this means
that if the sum of any finite independent real-valued vari-
ables is Gaussian, then all summands must be Gaussian. In
other words, a Gaussian distribution can never be exactly
produced by linear composition of variables any of which
is non-Gaussian. This nicely complements the central limit
theorem: (under proper conditions) the sum of independent
variable get closer to Gaussian, but it cannot be exactly
Gaussian, except all summand variables are Gaussian. This
linear closure property of the Gaussian distribution implies
the rareness of the Gaussian distribution and ubiquitous-
ness of non-Gaussian distributions, if we believe the rela-
tions between variables are linear. However, the closer it
gets to Gaussian, the harder it is to distinguish the direc-
tion. Hence, the practical question is, are the errors typically
non-Gaussian enough to distinguish causal directions in the
linear case?

7.3 Nonlinear Additive Noise Model
In practice nonlinear transformation is often involved in

the data generating process, and should be taken into ac-
count in the functional class. As a direct extension of LiNGAM,
the nonlinear additive noise model represents the effect as a
nonlinear function of the cause plus independent error [15]:

Y = fAN (X) + ε. (4)

It has been shown that the set of all p(X) for which the
backward model also admits an independent error term is
contained in a 3-dimensional affine space. Bearing in mind
that the space of all possible p(X) is infinite dimensional, one
can see that roughly speaking, in the generic case, if the data
were generated by the nonlinear additive noise model, the
causal direction is identifiable. This model is a special case
of the PNL causal model, which is to be discussed below,
and the identifiability results for the PNL causal model also
apply here.

7.4 Post-Nonlinear Causal Model
If the assumed SEM is too restrictive to be able to ap-

proximate the true data generating process, the causal dis-
covery results may be misleading. Therefore, if the specific
knowledge about the data generating mechanism is not avail-
able, to make it useful in practice, the assumed causal model
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should be general enough, such that it can reveal the data
generating processes approximately.

The PNL causal model takes into account the nonlinear in-
fluence from the cause, the noise effect, and the possible sen-
sor or measurement distortion in the observed variables [45].
See (2) for its form; a slightly more restricted version of the
model, in which the inner function, f1, is also assumed to be
invertible, was proposed in [42] and applied to causal analy-
sis of stock returns. It has the most general form among all
well-defined SEMs according to which the causal direction
is identifiable in the general case. (The model used in [24]
does not impose structural constraints but assumes a certain
type of smoothness; however, it does not lead to theoretical
identifiability results.) Clearly it contains the linear model
and nonlinear additive noise model as special cases. The
multiplicative noise model, Y = X · ε, where all involved
variables are positive, is another special case, since it can be
written as Y = exp(logX + log ε), where log ε is considered
as a new noise term, f1(X) = log(X), and f2(·) = exp(·).

The identifiability conditions of the causal direction ac-
cording to the PNL causal model was established by a proof
by contradiction [45]. We assume the causal model holds
in both directions X → Y and Y → X, and show that this
implies some very strong conditions on the distributions and
functions involved in the model. Suppose the data were gen-
erated according to the PNL causal model in settings other
than those specific conditions; then in principle, the back-
ward direction does not follow the model, and the causal
direction can be determined.

Assume that the data (X,Y ) are generated by the PNL
causal model with the the causal relation X → Y . This data
generating process can be described as (2). Moreover, let us
assume that the backwards direction, Y → X also follows
the PNL causal model with independent error. That is,

X = g2(g1(Y ) + εY ), (5)

where Y and εY are independent, g1 is non-constant, and g2
is invertible.

Equations (2) and (5) define the transformation from (X, ε)ᵀ

to (Y, εY )ᵀ; as a consequence, p(Y, εY ) can be expressed in
terms of p(X, ε) = p(X)p(ε). The identifiability results were
obtained based on the linear separability of the logarithm of
the joint density of independent variables, i.e., for a set of
independent random variables whose joint density is twice
differentiable, the Hessian of the logarithm of their density
is diagonal everywhere [22]. Since Y and εY are assumed to
be independent, log p(Y, εY ) then follows such a linear sepa-
rability property. This implies that the second-order partial
derivative of log p(Y, εY ) w.r.t. Y and εY is zero. It then
reduces to a differential equation of a bilinear form. Un-
der certain conditions (e.g., p(ε) is positive on (−∞,+∞)),
the solution to the differential equation gives all cases in
which the causal direction is not identifiable according to
the PNL causal model. Table 1 in [45] summarizes all five
non-identifiable cases. The first one is the linear-Gaussian
case, in which the causal direction is well-known to be non-
identifiable. Roughly speaking, to make one of those cases
true, one has to adjust the data distribution and the in-
volved nonlinear functions very carefully. In other words,
in the generic case the causal direction is identifiable if the
data were generated according to the PNL causal model.

8. DETERMINATION OF CAUSAL DIREC-
TION BASED ON SEMS

A commonly used approach to distinguishing cause from
effect with nonlinear SEMs consists of two steps. First, one
fits the model (e.g., the nonlinear additive noise model or the
PNL causal model) on the data for both hypothetical causal
directions. The second step is to do independence test be-
tween the estimated error term and hypothetical cause [15,
45]. If the independence condition holds for one and only
one hypothetical direction, the causal relation between the
two variables X and Y implied by the corresponding SEM
has been successfully found. If neither of them holds, the
data-generating process may not follow the assumed SEM,
or there exists some confounder influencing both X and Y .
If both hold, the cause and effect can not be distinguished by
the exploited SEM; in this case, additional information, such
as the smoothness of the involved nonlinearities, may help
find the causal model with a lower complexity. We adopted
the Hilbert Schmidt information criterion (HSIC) [14] for
statistical independence test in the first step. Below we dis-
cuss how to estimate the function as well as the error term
in the first step.

For the nonlinear additive noise model, the function fAN
is usually estimated by performing Gaussian process (GP)
regression [15]. For details on GP regression, one may refer
to [29].

Estimation of the PNL causal model (2) has several in-
determinacies: the sign, mean, and scale of the error term
varepsilon, and accordingly, the sign, location, and scale of
fi1 are arbitrary. In the estimation procedure, one may im-
pose certain constraints to avoid such indeterminacies in the
estimate. However, we should note that in principle, we do
not care about those indeterminacies in the causal discovery
context, since they do not change the statistical indepen-
dence or dependence property between the estimated error
term and the hypothetical cause.

It is well known that for linear regression, the maximum
likelihood estimator of the coefficient is still statistically con-
sistent even if the error distribution is wrongly assumed to
the Gaussian. However, this may not be the case for gen-
eral nonlinear models. As shown in [47, Section 3.2], if the
error distribution mis-specified, the estimated PNL causal
model (2) may not be statistically consistent, even when the
above indeterminacies in the estimate are properly tackled.
Therefore, the error distribution should be adaptively esti-
mated from data, if the true one is not known a priori. It
has been proposed to estimate the PNL causal model (2)
by mutual information minimization [45] with the involved
nonlinear functions represented by multi-layer perceptrons
(MLPs). Later, in [47] the PNL causal model was estimated
by extending the framework of warped Gaussian processes
to allow a flexible error distribution, which is represented by
a mixture of Gaussians (MoG).

9. ON THE RELATIONSHIPS BETWEEN DIF-
FERENT PRINCIPLES FOR MODEL ES-
TIMATION

One usually use maximum likelihood to fit the SEM to-
gether with a directed acyclic graph (DAG) to the given
data. Not surprisingly, the negative likelihood (with the dis-
tribution of the error term adaptively estimated from data)
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is equivalent to the mutual information between the esti-
mated error terms, as stated in Theorem 3 in [47]. The
higher the likelihood, the less dependent the estimated er-
ror terms. (Note that the root variables in the DAG are also
counted as error terms.)

On the other hand, the constraint-based approach to causal
discovery exploits conditional independence relationships of
the variables to derive (the equivalence class of) the causal
structure [36, 27]. How are these principles, including mu-
tual independence of the estimated error terms and the causal
Markov condition, related to each other? Below we will an-
swer this question, and the results in this section hold for
an arbitrary number of variables.

Let us consider optimization over different DAG struc-
tures to find the causal structure. Assume the we optimally
fit the nonlinear functions fi according to the given candi-
date DAG structure. First consider the situation where we
fit the nonlinear additive noise model, i.e.,

Xi = fAN,i(PAi) + εi, (6)

to the data. It has been shown that mutual independence of
the error terms and conditional independence between ob-
served variables (together with the independence between
εi and PAi) are equivalent. Furthermore, they are achieved
if and only if the total entropy of the disturbances is mini-
mized [44]. More specifically, when fitting the model (6) with
a hypothetical DAG causal structure to the given variables
X1, · · · , Xn, the following three properties are equivalent:

(i) The causal Markov condition holds (i.e., each variable
is independent of its non-descendants in the DAG con-
ditioning on its parents), and in addition, the error
term in Xi is independent from the parents of Xi.

(ii) The error terms Ni are mutually independent.

(iii) The total entropy of the error terms, i.e.,
∑
iH(εi), is

minimized, with the minimum H(X1, · · · , Xn).

Let us then consider the PNL causal model. When one
fits the PNL causal model

Xi = fi2(fi1(PAi) + εi), (7)

to the data, the scale of the error terms as well as fi1 is arbi-
trary, since fi2 is also to be estimated. Consequently, unlike
for the nonlinear additive noise model, in the PNL causal
model context it is not meaningful to talk about the total en-
tropy of the error terms (see condition (iii) above). However,
as shown in [45], when fitting the PNL causal model with a
hypothetical DAG causal structure to the data, we still have
the equivalence between conditions (i) and (ii) above.

Given more than two variables, one way to estimate the
causal model based on SEMs is to use exhaustive search:
for all possible causal orderings, fit SEMs for all hypothet-
ical effects separately, and then do model checking by test-
ing for independence between the estimated error and the
corresponding hypothetical causes. However, note that the
complexity of this procedure increases super-exponentially
along with the number of variables. Smart approaches are
then needed.

The above result concerning the relationship between mu-
tual independence of the error terms and the causal Markov
condition combined with the independence between each
error term and its associated parents suggests a two-step

method to find the causal structure implied by the PNL
causal model. One first uses the constraint-based approach
to find the Markov equivalent class from conditional inde-
pendence relationships with proper nonparametric condi-
tional independence tests (e.g., [46]). The PNL causal model
is then used to identify the causal directions that cannot be
determined in the first step: for each DAG contained in
the equivalent class, we estimate the error terms, and deter-
mine whether this causal structure is plausible by examining
whether the disturbance in each variable Xi is independent
from the parents of Xi. Consequently, one avoids the ex-
haustive search over all possible causal structures and high-
dimensional statistical tests of mutual independence of all
error terms.

10. CAUSAL DISCOVERY FROM TIME SE-
RIES

Both the constraint-based and SEM-based approaches to
causal discovery are directly applicable to find causal rela-
tions from time series; moreover, one can benefit from the
temporal constraint that the effect cannot precede the cause,
which helps reduce the search space of the causal structure.
Below we assume linearity of the causal relations and con-
sider three problems, namely, linear Granger causal analysis
with instantaneous effects, causal discovery from systemat-
ically subsampled data, and that in the presence of hidden
time series.

10.1 Linear Granger Causality and its Exten-
sion with Instantaneous Effects

For Granger causal analysis in the linear case [13], one fits
the following VAR model [33] to the data:

Xt = AXt−1 + εt, (8)

where Xt = (X1t, X2t, ..., Xnt)
ᵀ is the vector of the observed

data, εt = (ε1t, ..., εnt)
ᵀ is the temporally and contempo-

raneously independent noise process, and causal transition
matrix A contains the temporal causal relations.

In practice it is found that after fitting the VAR model,
the residuals are often contemporaneously dependent. To
account for such dependence, the above VAR model has
been extended to allow instantaneous causal effects between
Xit [18]. Let B0 contains the instantaneous causal relations
between Xt. Equation (8) changes to

Xt = B0Xt + AXt−1 + εt,

⇒(I−B0)Xt = AXt−1 + εt,

⇒Xt = (I−B0)−1AXt−1 + (I−B0)−1εt. (9)

To estimate all involved parameters in Granger causality
with instantaneous effects, two estimation procedures have
been proposed in [18]. The two-step method first estimate
the errors in the above VAR model and then apply inde-
pendent component analysis (ICA) [16] on the estimated
errors. The other is based on multichannel blind deconvolu-
tion, which is statistically more efficient [44].

10.2 Causal Discovery from Subsampled Data
Suppose the original high-resolution data were generated

by (8). We consider low-resolution data generated by sub-
sampling (or systematic sampling) with the subsampling fac-
tor k. Here we are interested in finding the causal transition
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matrix A which generated the data from the subsampled
data. Traditionally, if one uses only the second-order infor-
mation, this suffers from parameter identification issues [25],
i.e., the same subsampled (low-frequency) model may disag-
gregate to several high frequency models, which are obser-
vationally equivalent at the low frequency.

10.2.1 Effect of Subsampling (Systematic Sampling)
Suppose that due to low resolution of the data, there is an

observation every k time steps. That is, the low-resolution
observations X̃ = (X̃1, X̃2, , ..., X̃t) are (X1,X1+k, ...,X1+(t−1)k);
here we have assumed that the first sampled point is Xx1.
We then have

X̃t+1 = X1+tk = AX1+tk−1 + ε1+tk

= A(AX1+tk−2 + ε1+tk−1) + ε1+tk

= ...

= AkX̃t +

k−1∑

l=0

Alε1+tk−l

︸ ︷︷ ︸
,~εt

. (10)

According to (10), subsampled data X̃t also follows a vec-
tor autoregression (VAR) model with the error term ~εt, and
one can see that as T →∞, the discovered temporal causal
relations from such subsampled data are given by Ak. As
k →∞, Ak tends to vanish, and the subsampled data will be
contemporaneously dependent. (We have assumed that the
system is stable, in that all eigenvalues of A have modulus
smaller than one.)

Misleading Granger causal relations in low-resolution
data: An illustration.

Suppose A =

[
0.8 0.5
0 −0.8

]
. Consider the case where k =

2. The corresponding VAR model for the subsampled data
is

X̃t = A2X̃t−1 + ~εt =

[
0.64 0

0 0.64

]
X̃t−1 + ~εt.

That is, the causal influence from X2,t−1 to X1t is missing
in the corresponding low-resolution data (with k = 2).

10.2.2 Identifiability of the Causal Relations at the
Causal Frequency

It has been shown that if the distributions pNi are non-
Gaussian and different for different i, together with other
technical assumptions, the transition matrix associated with
the causal-frequency data, A, is identifiable from the sub-
sampled data X̃. As a by-product, the result also indicates
that the subsampled data, although contemporaneously de-
pendent, actually do not follow the model of linear Granger
causality with instantaneous effects [12].

Let the distributions of the noise terms be represented
by the MoG. An EM algorithm and a variational EM (with
mean field approximation) were then proposed to estimate
A from subsampled data.

10.3 Causal Discovery with Hidden Time Se-
ries (Confounders)

In practice it is usually difficult and even impossible to
collect all relevant time series when doing causal analysis
on given ones. We approach this problem as follows. We

assume that the (multivariate) measurements are a sample
of a multivariate random process Xt, which, together with
another random process Zt, forms a VAR process. That is,

[
Xt

Zt

]
=

[
B C
D E

]
·
[
Xt−1

Zt−1

]
+ εt, (11)

where Zt is not measured and can be considered as con-
founder time series, B is the causal transition matrix for
the observed process Xt, and C contains the the influence
from Zt to the observed process Xt. The theoretical issue is
whether B and C are identifiable from solely the observed
process Xt.

10.3.1 Practical Granger Causal Analysis Can Go
Wrong

In practical Granger causal analysis, one just performs
a linear regression of present on past on the observed Xt

and then interpret the regression matrix causally. While
making the ideal definition practically feasible, this may lead
to wrong causal conclusions in the sense that it does not
comply with the causal structure that we would infer given
we had more information. Let us give an example for this.
Let Xt be bivariate and Zt be univariate. Moreover, assume

[
B C
D E

]
=




0.9 0 0.5
0.1 0.1 0.8
0 0 0.9


 ,

and let the covariance matrix of εt be the identity matrix.
To perform practical Granger causal analysis, we proceed as
usual: we fit a VAR model on only the observable process
Xt, in particular calculate the VAR transition matrix by

BpG = E(XtX
ᵀ
t−1)E−1(XtX

ᵀ
t ) =

(
0.89 0.35
0.08 0.65

)
.

(up to rounding) and interpret the coefficients of BpG as
causal influences. Although, according to B, the true time-
delayed causal relations in Xt, X2t does not cause X1t, BpG
suggests that there is a strong causal effect X2,t−1 → X1t

with the strength 0.35. It is even stronger than the relation
X1,t−1 → X2t, which actually exists in the complete model
with the strength 0.1.

10.3.2 Identifiability of B and Almost Identifiability
of C

Assume that all components of εt are non-Gaussian and
that the dimensionality of the hidden process Zt is not higher
than that of the observed process Xt. Together with some
further technical assumptions, it has been shown that B is
identifiable from Xt; furthermore, the set of columns of C
with at least two non-zero entries is identifiable from up to
scaling of those columns [11].

One can then use a MoG to represent the distributions of
the components of εt and develop a variation EM algorithm
to estimate B and C from solely Xt.

11. CONCLUSION AND OPEN PROBLEMS
We have reviewed central concepts in and fundamental

methodologies for causal inference and discovery. The con-
cepts include manipulations, causal models, sample predic-
tive modeling, causal predictive modeling, structural equa-
tion models, the causal Markov assumption, and the faith-
fulness assumption. We have discussed the constraint-based
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causal structure search and its properties. In the second part
of the paper, we have given a survey of structural equation
models which enable us to fully identify causal structure
from observational data. We focused on the two-variable
case, where the task is to distinguish cause from effect. We
have reviewed the linear non-Gaussian causal model, non-
linear additive noise model, and the post-nonlinear causal
model, listed from the most to the least restrictive. We ad-
dressed the identifiablility of the causal direction: for those
three models, in the generic case the backwards direction
does not admit an independent error term and, as a conse-
quence, it is possible to distinguish cause from effect. We
have also briefly discussed the procedure to do so, which
consists of fitting the structural equation model and doing
independence test between the estimated error term and the
hypothetical cause.

In the last three decades, enlightening progress has been
made in the field of causal discovery and inference. However,
there are still many fundamental questions to be answered:8

• What new models are appropriate for different combi-
nations of kinds of data, e.g., experimental and obser-
vational [4, 7, 40, 8, 41, 9]?

• What new models are appropriate for different kinds of
background knowledge, and different families of densi-
ties?

• What kind of scores can be used to best evaluate causal
models from various kinds of data? In a related vein,
what are good families of prior distributions that cap-
ture various kinds of background knowledge?

• How can search algorithms be improved to incorporate
different kinds of background knowledge, search over
different classes of causal models, run faster, handle
more variables and larger sample sizes, be more reliable
at small sample sizes, and produce output that is as
informative as possible?

• For existing and novel causal search algorithms, what
are their semantic and syntactic properties (e.g., sound-
ness, consistency, maximum informativeness)? What
are their statistical properties (pointwise consistency,
uniform consistency, sample efficiency)? What are their
computational properties (computational complexity)?

• What plausible alternatives are there to the Causal
Markov and Faithfulness Assumptions? Are there other
assumptions might be weaker and hold in more do-
mains and applications without much loss about what
can be reliably inferred? Are there stronger assump-
tions that are plausible for some domains that might
allow for stronger causal inferences? How often are
these assumption violated, and how much do violations
of these assumptions lead to incorrect inferences?

• There are special assumptions, such as linearity, which
can improve the strength of causal conclusions that
can be reliably inferred, and the speed and sample ef-
ficiency of algorithms that draw the conclusions. What
other distribution families or stronger assumptions about

8The content and organization of the following open ques-
tions are largely due to suggestions from Constantin Aliferis,
whom I thank for his suggestions.

a domain are there that are plausible for some domains
and how can they be used to improve causal inference?

• Can various statistical assumptions be relaxed? For
example, what if the sample selection process is not
i.i.d., but may be causally affected by variables of in-
terest [2, 37, 5, 3, 30]?

In addition, there is also a number of open problems con-
cerning SEM-based causal discovery and the asymmetry be-
tween cause and effect.

• First, one can consider structural equation models as a
way to represent the conditional distribution of the ef-
fect given the cause. Can we then find hints as to the
causal direction directly from the data distribution?
In other words, can we find a general way to directly
characterize the causal asymmetry in light of certain
properties of the data distribution? If we managed to
do so, it would hopefully put the causal Markov con-
dition, the independent noise condition (in the SEMs),
and the independent transformation condition in the
nonlinear noiseless case [19] under the same umbrella.
To this end, an attempt has been made by exploiting
the so-called “exogeneity” property of a causally suffi-
cient causal system [48]. But it is not clear whether
this property is able to bring about computationally
efficient and widely applicable causal discovery meth-
ods.

• Secondly, note that nonlinear structural equation mod-
els are usually intransitive. That is, if both causal
processes X1 → X2 and X2 → X3 admit a particu-
lar type of structural equation model, say, the nonlin-
ear additive noise model, the process X1 → X3 does
not necessarily follow the same model. (Linear models
are transitive.) This could be a potential issue with
structural-equation-model-based causal discovery: it
may fail to discover indirect causal relations. (Here
by direction causal relations, we mean the causal rela-
tions in which only a single noise variable is involved.)
On the other hand, this may be a benefit of using struc-
tural equation models for causal discovery, in that it is
possible to detect the existence of causal intermediate
variables and further recover them. But how to do so
is currently unclear.

• We have discussed how different types of independence,
including conditional independence in the causal Markov
condition and statistical independence between the er-
ror term and hypothetical cause in structural equa-
tions models, help to discovery causal information from
data. On the other hand, it has been demonstrated
that this type of independence (which is, loosely speak-
ing, the independence between how the cause is gen-
erated and how the effect is generated from cause)
is able to facilitate understanding and solving some
machine learning or data analysis problems. For in-
stance, it implies that when the feature causes the la-
bel (or target), unlabeled data points will not help in
the semi-supervised learning scenario [31], and inspired
new settings and formulations for domain adaptation
by characterizing what information to transfer [43]. It
is under investigation whether other machine learning
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methods including “adaptive boosting” can be under-
stood from the causal perspective. In addition, it is
unclear whether the learning guarantees for supervised
learning actually depend on the causal relationship be-
tween the feature and target (or label), i.e., the causal
role of the feature w.r.t. the target.

• Finally, developing efficient methods for causal discov-
ery of more than two variables based on structural
equation models is an important step towards large-
scale causal analysis in various domains including neu-
roscience and biology. To make causal discovery com-
putationally efficient, one may have to limit the com-
plexity of the causal structure, say, limit the number of
direct causes of each variable. Even so, a smart opti-
mization procedure instead of exhaustive search is still
missing in the literature.
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ABSTRACT
Distributed knowledge is the sum of the knowledge in a group; what
someone who is able to discern between two possible worlds when-
ever any member of the group can discern between them, would
know. Sometimes distributed knowledge is referred to as the poten-
tial knowledge of a group, or the joint knowledge they could obtain
if they had unlimited means of communication. In epistemic logic,
the formula DGϕ is intended to express the fact that group G has
distributed knowledge of ϕ, that there is enough information in the
group to infer ϕ. But this is not the same as reasoning about what
happens if the members of the group share their information. In
this paper we introduce an operatorRG, such that RGϕ means that
ϕ is true after G have shared all their information with each other
– after G’s distributed knowledge has been resolved. The RG op-
erators are called resolution operators. Semantically, we say that
an expression RGϕ is true iff ϕ is true in what van Benthem [8,
p. 249] calls (G’s) communication core; the model update obtained
by removing links to states for members of G that are not linked
by all members of G. We study logics with different combinations
of resolution operators and operators for common and distributed
knowledge. Of particular interest is the relationship between dis-
tributed and common knowledge. The main results are sound and
complete axiomatizations.

1. INTRODUCTION
In epistemic logic [3, 5, 12] different notions of group knowledge

describe different ways in which knowledge can be associated with
a group. Common knowledge is stronger than individual knowl-
edge: that something is common knowledge requires not only that
everybody in the group knows it, but that everybody knows that ev-
erybody knows it, and so on. Distributed knowledge, on the other
hand, is weaker than individual knowledge: distributed knowledge
is knowledge that is distributed throughout the group even if no
individual knows it.

More concrete informal descriptions of the concept of distributed
knowledge abound, but they are often inaccurate descriptions of the
concept as formalized in standard epistemic logic. A misconcep-
tion is that something is distributed knowledge in a group if the
agents in the group could get to know it after some (perhaps un-
limited) communications between them1. To see that this interpre-

1Some examples of informal descriptions of distributed knowledge
from the literature include “A group has distributed knowledge of a
fact ϕ if the knowledge of ϕ is distributed among its members, so
that by pooling their knowledge together the members of the group
can deduce ϕ” [3]; “.. it should be possible for the members of
the group to establish ϕ through communication” [11, 7]; “.. the
knowledge that would result of the agents could somehow ’com-
bine’ their knowledge” [11]. These descriptions can at least give a

tation must be incorrect, consider the formula D{1,2}(p ∧ ¬K1p).
In this formula, DGϕ and Kiϕ mean that ϕ is distributed knowl-
edge in the group G, and individual knowledge of agent i, re-
spectively. Thus, the formula says that it is distributed knowledge
among agents 1 and 2 that p is true and that agent 1 does not know
p. This formula is consistent (also when we assume that knowledge
has the S5 properties). However, it is not possible that agents 1 and
2 both can get to know that p is true and that agent 1 does not know
that p is true (assuming the S5 properties of knowledge), no mat-
ter how much they communicate (or “pool” their knowledge). The
“problem” here is that in a formula DGψ, ψ describes the possible
states of the world as they were before any communication or other
events took place, so a more accurate reading ofD{1,2}(p∧¬K1p)
would perhaps be that it follows from the combination of 1 and
2’s knowledge that p ∧ ¬K1p were true before any communica-
tion or other events took place. More technically, the “problem” is
due to the standard compositional semantics of modal logic: in the
evaluation of DGϕ, the DG operator picks out a number of states
considered possible by the group G (actually the states considered
possible by all members of the group), and then ϕ is evaluated in
each of these states in the original model, without any effect of the
DG operator.

But we don’t really consider this a problem. There are other
interpretations of distributed knowledge where the consistency of
the mentioned formula makes perfect sense, such that distributed
knowledge being the knowledge of a third party, someone “outside
the system” who somehow has access to the epistemic states of the
group members. It shows, however, that it does not make sense to
interpret distributed knowledge as something that is true after the
agents in the group have communicated with each other – with the
standard semantics.

In this paper we introduce and study an alternative group modal-
ity RG, where RGϕ means (roughly speaking) that ϕ is true after
the agents in the group have shared all their information with each
other. We call that resolving distributed knowledge, and the RG
operators are called resolution operators.

Semantically, we say that an expression RGϕ is true iff ϕ is true
in what van Benthem [8, p. 249] calls (G’s) communication core;
the model update obtained by removing links to states for members
of G that are not linked by all members of G. See Fig. 1 for
an illustration. In this paper we capture that model transformation
by the new resolution operators, and study resulting logics. For
example, the formulaR{1,2}(p∧¬K1p) will be inconsistent in the
resulting logics. R{1,2}(p ∧K1p) is true in state t in the model in
Fig. 1.

This model transformation abstracts away from the issue of how

reader the impression that distributed knowledge is about internal
communication in the group of agents.
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Figure 1: Example taken from [8, p. 248]. Model on the left,
its communication core (for the set of all agents {1, 2}) on the
right. Reflexivity, symmetry and transitivity are implicitly as-
sumed.

the agents share their information; whether they communicate di-
rectly with each other and if so in which language, whether they are
informed by some outsider about the information other agents have
and if so how, and so on. As noted by van Benthem [8, p. 249],
the communication core cannot always be obtained by public an-
nouncements using the epistemic language. Similarly, as noted by
several researchers [11, 4, 7], standard distributed knowledge does
not always follow logically from the knowledge of the individual
agents expressible in the epistemic language. Our model, like that
of standard distributed knowledge, is purely semantic: we assume
that if an agent can discern between two different worlds, then there
exists some mechanism that results in other members of the group
being able to make the same distinction. This is further discussed
Section 5.

This model transformation models a particular kind of internal
group information sharing event. Exactly which kind depends on
what we assume about what other agents, i.e., agents that are not
in the group G that resolve their knowledge, know about the fact
that this event is taking place. In this paper we will assume that
it is common knowledge among the other agents that G resolve
their knowledge – but not what the agents in G actually learn. This
corresponds to a natural class of events: publicly observable private
resolution of distributed knowledge. An example is a meeting in a
closed room, where it is observed that a certain group meets in the
room to share information.

We want to make it clear that we do not consider distributed
knowledge with standard semantics to be “wrong”; the important
thing is to be clear about its meaning. In particular, the resolution
operators are not intended as a “replacement” of distributed knowl-
edge operators, but as a complement: they express different things.
The logics we study contains both types of operators, as well as
common knowledge. The main results are sound and complete ax-
iomatizations.

Technically, the model transformation, which amounts to remov-
ing certain edges, is similar to those found in the simplest dynamic
epistemic logics [12] such as public announcement logics [6]. [8]
has also pointed out the close connection between the communi-
cation core and sequences of public announcements. Public an-
nouncement logics with distributed knowledge have been studied
recently [13]. In the absence of common knowledge, we get reduc-
tion axioms for public announcement logic with distributed knowl-
edge. This turns out to be the case for resolution operators as well.
It is not the case in the presence of common knowledge, however.

There is a close connection between the communication core and
common knowledge [8]. By studying complete axiomatizations of
logics with the resolution operators we make some aspects of that
connection precise and give an answer to the question “when does

distributed knowledge become common knowledge?” – under cer-
tain assumptions.

The rest of the paper is organized as follows. In the next sec-
tion we review some background definitions and results from the
literature, before we introduce logics with the new resolution op-
erators in Section 3, where we also look at some properties of the
operators. In Section 4 we prove completeness of resulting logics;
the most interesting case being epistemic logic with common and
distributed knowledge and resolution operators. We discuss related
and future work and conclude in Section 5.

2. BACKGROUND
In this section we give a (necessarily brief) review of the main

background concepts from the literature.
We henceforth assume a countable set of propositional variables

PROP and a finite set of agents AG. We let GR be the set of all
non-empty groups, i.e., GR = ℘(AG) \ ∅.

An epistemic model over PROP and AG (or just a model) M =
(S,∼, V ) where S is a set of states (or worlds), V : PROP → 2S

associates a set of states V (p) with each propositional variable p,
and ∼ is a function that maps each agent to a binary equivalence
relation on S. We write ∼i for ∼(i).
s ∼i t means that agent i cannot discern between states s and

t – if we are in s she doesn’t know whether we are in t, and
vice versa. Considering the distributed knowledge of a group G
– a key concept in the following – we define a derived relation
∼G=

⋂
a∈G ∼a (it is easy to see that ∼G is an equivalence re-

lation). Intuitively, someone who has all the knowledge of all the
members of G can discern between two states if and only if at least
one member of G can discern between them. We will also con-
sider common knowledge. A similar relation modeling the com-
mon knowledge of a group is obtained by taking the transitive clo-
sure of the union of the individual relations: vCG= (

⋃
i∈G ∼i)∗.

DEFINITION 1. Below are several languages from the litera-
ture.

(ELD) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | DGϕ
(ELCD) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | DGϕ | CGϕ
(PACD) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | DGϕ | CGϕ | [ϕ]ϕ,

where p ∈ PROP, i ∈ AG and G ∈ GR. We use the usual proposi-
tional derived operators, as well as EGϕ for

∧
i∈GKiϕ.

ELD and ELCD are static epistemic languages with distributed
knowledge, and with distributed and common knowledge, respec-
tively. These are the languages we will extend with resolution oper-
ators in the next section. We will also be interested in PACD, the
language for public announcement logic with both common knowl-
edge and distributed knowledge, when we look at completeness
proofs.

Satisfaction of a formula ϕ of any of these languages in a state
m of a model M, denoted M,m |= ϕ, is defined recursively by the
following clauses:

M,m |= p iff m ∈ V (p)
M,m |= ¬ϕ iff M,m 6|= ϕ
M,m |= ϕ ∧ ψ iff M,m |= ϕ & M,m |= ψ
M,m |= Kaϕ iff ∀n ∈ S. (m ∼a n⇒M, n |= ϕ)
M,m |= DGϕ iff ∀n ∈ S. (m ∼G n⇒M, n |= ϕ)
M,m |= CGϕ iff ∀n ∈ S. (m(

⋃
i∈G ∼i)∗n⇒M, n |= ϕ)

M,m |= [ψ]ϕ iff M,m |= ψ ⇒M|ψ,m |= ϕ.

where R∗ denotes the transitive closure of R and M|ψ is the sub-
model of M restricted to {m ∈ M |M,m |= ψ}. Validity is
defined as usual: |= ϕ means that M,m |= ϕ for all M and m.
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We now define some axiom schemata and rules. The classical
“S5” proof system for multi-agent epistemic logic, denoted (S5),
consists of the following axioms and rules:

(PC) instances of tautologies
(K) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)
(T) Kiϕ→ ϕ
(4) Kiϕ→ KiKiϕ
(5) ¬Kiϕ→ Ki¬Kiϕ
(MP) from ϕ and ϕ→ ψ infer ψ
(N) from ϕ infer Kiϕ.

Axioms for distributed knowledge, denoted (DK):

(KD) DG(ϕ→ ψ)→ (DGϕ→ DGψ)
(TD) DGϕ→ ϕ
(5D) ¬DGϕ→ DG¬DGϕ
(D1) Kiϕ↔ Diϕ
(D2) DGϕ→ DHϕ, if G ⊆ H .

Axioms and rules for common knowledge, denoted (CK):

(KC ) CG(ϕ→ ψ)→ (CGϕ→ CGψ)
(TC ) CGϕ→ ϕ
(C1) CGϕ→ EGCGϕ
(C2) CG(ϕ→ EGϕ)→ (ϕ→ CGϕ)
(NC ) from ϕ infer CGϕ.

The system that consists of (S5) and (DK) over the language
ELD, denoted S5D, is a sound and complete axiomatization of all
ELD validities. The system that consists of (S5), (DK) and (CK)
over the language ELCD is a sound and complete axiomatization
of all ELCD validities.

3. RESOLVING DISTRIBUTED KNOWLEDGE
We want to model the event thatG resolves their knowledge. An

immediate question is: whenever the group G is a proper subset of
the set of all agents, what do the other agents know about the fact
that this event takes place? Here we will model situations where it
is common knowledge among the other agents that the event takes
place, but not what the members of the group learn. As discussed in
the introduction, this corresponds to a natural class of information
sharing events, namely publicly observable private communication,
such as a meeting in a closed room that is observed to be taking
place. This is captured by a global model update: in every state,
remove a link to another state for any member of G whenever it is
not the case that there is a link to that state for all members of G.

Formally, given a model M = (S,∼, V ) and a group of agents
G, the (global) G-resolved update of M is the model M|G where
M|G = (S,∼|G, V ) and

(∼|G)i =

{ ⋂
j∈G ∼j , i ∈ G,
∼i, otherwise.

We consider the following new languages with resolution opera-
tors.

DEFINITION 2 (LANGUAGES).

(RD) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | DGϕ | RGϕ
(RCD) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | DGϕ | CGϕ | RGϕ,

where p ∈ PROP, i ∈ AG and G ∈ GR.

The interpretation of these languages in a pointed model is de-
fined as usual, with the following additional clause for the resolu-
tion operator:

M, s |= RGϕ iff M|G, s |= ϕ.

A couple of observations. Recall that we write∼H for
⋂
i∈H ∼i.

Thus,

(∼|G)i =

{
∼G, i ∈ G,
∼i, i /∈ G. (∼|G)H =

{
∼H , G ∩H = ∅,
∼G∪H , G ∩H 6= ∅.

Also note that (∼|G)i = (∼|G){i}.

3.1 Some Validities
Let us start with a trivial validity: resolution has no effect for a

singleton coalition.

PROPOSITION 3. The following is valid, where i ∈ AG and
ϕ ∈ RCD: R{i}ϕ↔ ϕ.

More interesting are the following properties.

PROPOSITION 4 (REDUCTION PRINCIPLES). The following
are valid, where G,H ∈ GR, p ∈ PROP and ϕ ∈ RCD:

1. RGp↔ p

2. RG(ϕ ∧ ψ)↔ RGϕ ∧RGψ
3. RG¬ϕ↔ ¬RGϕ
4. RGKiϕ↔ DGRGϕ, when i ∈ G
5. RGKiϕ↔ KiRGϕ, when i 6∈ G
6. RGDHϕ↔ DG∪HRGϕ, when G ∩H 6= ∅
7. RGDHϕ↔ DHRGϕ, when G ∩H = ∅.

These properties are reduction principles, of the type known from
public announcement logic: they allow us to simplify expressions
involving resolution operators. If we have such principles for the
combination of resolution with all other operators we can eliminate
resolution operators altogether. There are two cases missing above:
RGCH and RGRH 2. We consider them next.

3.1.1 Common Knowledge
First, after the grand coalition have resolved their knowledge,

then all the distributed information in the system is common knowl-
edge: there is no longer a distinction between distributed and com-
mon knowledge:

PROPOSITION 5. For any ϕ ∈ RCD: RAGCAGϕ↔ RAGDAGϕ.

PROOF. 5. Given a model M = (S,∼, V ) and s ∈ S,

M, s |= RAGCAGϕ
iff M|AG, s |= CAGϕ
iff ∀t ∈ S. (s(∼|AG)CAG t⇒M|AG, s |= ϕ)
iff ∀t ∈ S. (s ∼AG t⇒M|AG, s |= ϕ) (†)
iff M|AG, s |= DAGϕ
iff M, s |= RAGDAGϕ,

where for (†) we show that (∼|AG)CAG =∼AG. This is easy: by
definition we can verify that for all i ∈ AG, (∼|AG)i =∼AG; hence
(∼|AG)CAG = (

⋃
i∈AG(∼|AG)i)

∗ = (∼AG)∗ =∼AG.

For the general case, as in the case of distributed knowledge, we
have that the resolution operators and common knowledge opera-
tors commute when the groups are disjoint:

PROPOSITION 6. Let i be an agent, G and H groups of agents
and ϕ ∈ RCD. The following hold:

1. If G ∩H = ∅, then |= RGCHϕ↔ CHRGϕ

2The lack of a reduction axiom for the general RGRHϕ case does
not mean we cannot get a reduction in the language RD: we can
simply do the reduction “inside-out”.
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2. If G ⊇ H and i ∈ G, then |= RGCHϕ ↔ RGKiϕ ↔
DGRGϕ.

PROOF. See the appendix.

However, this does not hold for overlapping groups G and H .
In general, we have that (see the proof of the proposition above)
M, s |= RGCHϕ iff M|G, t |= ϕ for any (s, t) ∈∼∗′H , where
∼∗′H= (

⋂
i∈G ∼i ∪

⋃
i∈H\G ∼i)∗. This does not seem to be

reducible.

3.1.2 Iterated resolution
What about RGRHϕ? In extreme cases, we have:

PROPOSITION 7. The following are valid, where G,H ∈ GR
and ϕ ∈ RCD:

1. RGRHϕ↔ RHRGϕ, if G ∩H = ∅
2. RGRGϕ↔ RGϕ.

However, in the general case there does not seem to be a reduc-
tion axiom in this case. In particular, RGRHϕ is not equivalent to
RG∪Hϕ.

Let us consider an example of iterated resolution.

EXAMPLE 8 (TRIPLE UPDATE). Let M = (S,∼, V ) and
M|G1 |G2 |G3 = (S,∼|G1 |G2 |G3 , V ). For any agent i, for any
number x, we writeGx for “i ∈ Gx”, andGx for “i /∈ Gx”. Then

(∼|G1 |G2 |G3)i =





if G1G2G3 : ∼i
if G1G2G3 : ∼G1

if G1G2G3

{
G1 ∩G2 = ∅ :
G1 ∩G2 6= ∅ :

∼G2

∼G1∪G2

if G1G2G3 : ∼G1∪G2

if G1G2G3 : ∼G3

if G1G2G3 : ∼G1∪G3

if G1G2G3

{
G1 ∩G2 = ∅ :
G1 ∩G2 6= ∅ :

∼G2∪G3

∼G1∪G2∪G3

if G1G2G3 : ∼G1∪G2∪G3

In general we get the following (the proof is straightforward from
the semantic definition).

PROPOSITION 9. Let M = (S,∼, V ) and M |G1 | · · · |Gn =
(S,∼|G1 | · · · |Gn , V ). Then, following the notation of Example 8,
for any i ∈ AG,

(∼|G1 | · · · |Gn)i =





∼i, if G1 · · ·Gn
∼G1∪Θ, if starting with G1G2 and

G1 ∩G2 6= ∅
∼Θ, otherwise

where Θ is the union of all Gx such that i ∈ Gx.

3.2 Reduction Normal Form for Individual
and Distributed Knowledge

As we see from the previous section, the reduction axioms for
individual knowledge and distributed knowledge both contain two
distinct cases, and the principles of iterated resolution become more
complicated. In this section we give a unique form for such reduc-
tions, which will be of use later when we prove completeness. We
shall call it reduction normal form for individual and distributed
knowledge.

DEFINITION 10 (δ FUNCTION). Given an agent i, a groupH ,
and a sequence of groups G1, . . . , Gn, we define a function δ as

follows:

δ0 =

{
Gn ∪H, Gn ∩H 6= ∅
H, Gn ∩H = ∅

δx =

{
Gn−x ∪ δx−1, Gn−x ∩ δx−1 6= ∅
δx−1, Gn−x ∩ δx−1 = ∅

δ(H,G1, . . . , Gn) = δn.

Clearly δ(H,G1, . . . , Gn) ⊆ H ∪ G1 ∪ · · · ∪ Gn. We simply
write δ instead of δ(H,G1, . . . , Gn) when its parameters are clear
in the context.

PROPOSITION 11. Let i ∈ AG, G1, . . . , Gn, H ∈ GR, M =
(S,∼, V ) and M |G1 | · · · |Gn = (S,∼|G1 | · · · |Gn , V ). Then,

1. |= RG1 · · ·RGnKiϕ↔ Dδ({i},G1,...,Gn)RG1 · · ·RGnϕ;
2. |= RG1 · · ·RGnDHϕ↔ Dδ(H,G1,...,Gn)RG1 · · ·RGnϕ;
3. (∼|G1 | · · · |Gn)i =∼δ({i},G1,...,Gn);
4. (∼|G1 | · · · |Gn)H =∼δ(H,G1,...,Gn).

PROOF. Straightforward: the recursive steps in the definition of
the δ function matches exactly the reduction axioms. Note that
clauses 1 and 3 can be treated as special cases of clauses 2 and 4
respectively.

4. AXIOMATIZATIONS
We construct sound and complete axiomatizations of the logics

for the two languagesRD andRCD.

4.1 Resolution and Distributed Knowledge
Consider the language RD. Let RD be the system defined in

Figure 2, where (S5) and (DK) are found in Section 2 and (RR)
stands for the following reduction axioms for resolution:

(RA) RGp↔ p
(RC) RG(ϕ ∧ ψ)↔ RGϕ ∧RGψ
(RN) RG¬ϕ↔ ¬RGϕ
(RD1) RGDHϕ↔ DG∪HRGϕ, if G ∩H 6= ∅
(RD2) RGDHϕ↔ DHRGϕ, if G ∩H = ∅.

Note that (RR) contains most of the validities in Proposition 4, ex-
cept for the reduction principles for individual knowledge – they
are provable with RD1, RD2 and D1. In addition, we need the rule
NR for making a reduction to S5D. With the rule NR we can easily
show that the rule of Replacement of Equivalents (RoE) is admis-
sible in RD. RoE allows us to carry out a reduction even without
having a reduction axiom for iterated resolution.

(S5) classical proof system for multi-agent epistemic logic
(DK) characterization axioms for distributed knowledge
(RR) reduction axioms for resolution
(NR) from ϕ infer RGϕ

Figure 2: Axiomatization RD.

THEOREM 12. AnyRD formula is valid if and only if it is prov-
able in RD.

4.2 Resolution, Distributed and Common
Knowledge

Consider the languageRCD. Let RCD be the system defined in
Figure 3, which extends RD with (CK), found in Section 2, and an
induction rule for resolved common knowledge (RRC ).
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(S5) classical proof system for multi-agent epistemic logic
(CK) axioms and rules for common knowledge
(DK) characterization axioms for distributed knowledge
(NR) from ϕ infer RGϕ
(RR) reduction axioms for resolution
(RRC ) from ϕ→ (EHϕ ∧RG1 · · ·RGnψ) infer

ϕ→ RG1 · · ·RGnCHψ

Figure 3: Axiomatization RCD

4.2.1 Soundness
For soundness it suffices to show that the rule RRC preserves va-

lidity (we know that the other axioms/rules are valid/validity pre-
serving from soundness results for the logics based on the sublan-
guages ofRCD).

LEMMA 13 (RRC -VALIDITY PRESERVATION). For allRCD
formulas ϕ and ψ, all G1, . . . , Gn, H ∈ GR, if |= ϕ → (EHϕ ∧
RG1 · · ·RGnψ), then |= ϕ→ RG1 · · ·RGnCHψ.

PROOF. Suppose |= ϕ → (EHϕ ∧ RG1 · · ·RGnψ). Given a
model M and a state s, suppose M, s |= ϕ, we must show that
M, s |= RG1 · · ·RGnCHψ, i.e., M|G1 | · · · |Gn , s |= CHψ. Thus,
for all H-paths s0(∼ |G1 | · · · |Gn)i0 · · · (∼ |G1 | · · · |Gn)ix−1sx,
where s = s0, we need to show that M|G1 | · · · |Gn , sx |= ψ.

From |= ϕ→ (EHϕ ∧RG1 · · ·RGnψ) and M, s0 |= ϕ we get
M, s0 |= (EHϕ ∧RG1 · · ·RGnψ), which entails:

M, s1 |= ϕ and M|G1 | · · · |Gn , s0 |= ψ.

From M, s1 |= ϕwe get M, s1 |= (EHϕ∧RG1 · · ·RGnψ), which
entails:

M, s2 |= ϕ and M|G1 | · · · |Gn , s1 |= ψ.

By similar reasoning, for all y = 0, . . . , x, we have

M, sy |= ϕ and M|G1 | · · · |Gn , sy |= ψ,

which entails M|G1 | · · · |Gn , sx |= ψ as we wish to show.

COROLLARY 14 (SOUNDNESS). For anyRCD formula ϕ, if
ϕ is provable in RCD, then it is valid.

4.2.2 Completeness
As already discussed, RCD is similar to PACD (axiomatiza-

tion for public announcement logic with common and distributed
knowledge; see [13]): both logics extend epistemic logic with com-
mon and distributed knowledge with dynamic operators with up-
date semantics that remove states. There does not seem, however,
to be a trivial relationship between the two types of dynamic oper-
ators. We are nevertheless able to make heavy use of the complete-
ness proof of PACD in [13] when proving completeness of RCD.
That proof is again based on the completeness proof for public an-
nouncement logic with (only) common knowledge found in [2, 12],
extended to deal with the distributed knowledge operators (which
is non-trivial since intersection is not modally definable). In the
following completeness proof we tweak the PACD proof to deal
with resolution operators instead of public announcement opera-
tors. The general proof strategy is as follows: define a finite canoni-
cal pseudo model, where distributed knowledge operators are taken
as primitive, and then transform it to a proper model while preserv-
ing truth. For the last step we can use a transformation based on
unraveling and folding in [13] directly.

The most important difference to the PACD completeness proof
in [13], and indeed the crux of the proof, is the use of the induction

rule for resolved common knowledge (RRC ). No corresponding
rule is needed in the PACD completeness proof. The rule is used
in the proof of Lemma 29(8).

Pseudo Semantics.

DEFINITION 15 (PRE-MODELS[13]). A pre-model is a tuple
M = (S,v, V ) where:
• S is a non-empty set of states;
• v is a function which maps every agent and every non-empty

group of agents to an equivalence relation; we write vi and
vG for v(i) and v(G) respectively;
• V : PROP → ℘(S) is a valuation.
vCG is defined as the reflexive transitive closure of

⋃
i∈G vi,

just as for a model.

A pre-model is technically a model with a bigger set of agents
(all groups are treated as agents in a pre-model). More precisely,
if we make the set of agents A explicit in a pre-model, e.g., M =
(A,S,v, V ), then M is in fact a “genuine” model (S,v, V ) where
the set of agents is A ∪ (℘(A) \ ∅).

DEFINITION 16 (PSEUDO MODELS[13]). A pseudo model is
a pre-model M = (S,v, V ) such that for any agent i and any
groups G and H ,
• v{i}=vi, and
• G ⊆ H implies vH⊆vG.

A pointed pre-model (resp. pointed pseudo model) is a tuple (M, s)
consisted of a pre-model (resp. pseudo model) M and a state s in
M.

DEFINITION 17 (PSEUDO SEMANTICS). Given a pre-model
M = (S,v, V ), let m be a state in M . Satisfaction at (M, s) is
defined as follows:

M, s |=p p iff s ∈ V (p)
M, s |=p ¬ϕ iff M, s 6|=p ϕ
M, s |=p ϕ ∧ ψ iff M, s |=p ϕ & M, s |=p ψ
M, s |=p Kiϕ iff (∀t ∈M)(s vi n⇒M, t |=p ϕ)
M, s |=p CGϕ iff (∀t ∈M)(s vCG t⇒M, t |=p ϕ)
M, s |=p DGϕ iff (∀t ∈M)(s vG t⇒M, t |=p ϕ)
M, s |=p RGψ iff M|G, s |=p ϕ,

where M|G = (S,v|G, V ) such that

(v|G)i =

{
vG, i ∈ G
vi, i /∈ G and (v|G)H =

{
vH∪G, H ∩G 6= ∅
vH , H ∩G = ∅

Satisfaction in a pre-model M (denoted by M |=p ϕ) is defined
as usual. We use |=p ϕ to denote validity, i.e. M, s |=p ϕ for any
pointed pre-model (M, s). We write |= instead of |=p when there is
no confusion.

PROPOSITION 18. Let M be a pseudo model, G a group of
agents. Then M|G is a pseudo model.

PROOF. See the appendix.

PROPOSITION 19. Propositions 9 and 11 still hold for pseudo
models.

When we regard a pre-model as a genuine model, classical (in-
dividual) bisimulation becomes an invariance relation. To make
this clear, we first elaborate the definition of bisimulation for pre-
models, and then introduce its invariance results.
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DEFINITION 20 (PRE-MODEL BISIMULATION). Let two pre-
models M = (S,v, V ) and M′ = (S′,v′, V ′) be given. A non-
empty relation Z ⊆ S × S′ is called a bisimulation between M
and M′, denoted by M � M′, if for all τ ∈ AG ∪ GR, all s ∈ S
and s′ ∈ S′ such that sZs′, the following hold.
(at) For all p ∈ PROP, s ∈ V (p) iff s′ ∈ V ′(p);
(zig) For all t ∈ S, if s ∼τ t, there is a t′ ∈ S′ such that s′ ∼′τ t′

and tZt′;
(zag) For all t′ ∈ S′, if s′ ∼′τ t′, there is a t ∈ S such that s ∼τ t

and tZt′.
We say that pointed pre-models (M, s) and (M′, s′) are bisimilar,
denoted (M, s) � (M′, s′), if there is a bisimulation Z between
M and M′ linking s and s′.

PROPOSITION 21.Resolution preserves pre-model bisimulation.
I.e., for all pointed pre-models (M, s) and (M′, s′), if (M, s) �
(M′, s′) then (M|G, s)� (M′|G, s′).

PROOF. See the appendix.

COROLLARY 22. For any pre-models M and M′, if (M, s)�
(M′, s′) then M, s |=p ϕ iff M′, s′ |=p ϕ for anyRCD formula ϕ.

As introduced in [13], we can also consider a kind of bisimula-
tions between genuine models and pre-models.

DEFINITION 23 (TRANS-BISIMULATION [13]). Let a model
M = (M,∼, V ) and a pre-model N = (N,v, ν) be given. A non-
empty binary relation Z ⊆ M × N is called a trans-bisimulation
between M and N, if for all m ∈M and n ∈ N with mZn:
(at) m ∈ V (p) iff n ∈ ν(p) for all p ∈ PROP,
(zigag) For all m′ ∈ M and all i ∈ AG, if m ∼i m′ (and so

m ∼{i} m′), then there is an n′ ∈ N such that m′Zn′ and
n vτ0 · · · vτx n′ with each of τ0, . . . , τx being “i” or “G”
such that i ∈ G;

(ziggr) For all m′ ∈ M and all G ∈ GR with |G| ≥ 2, if
m ∼G m′, then there is an n′ ∈ N such that m′Zn′ and
n vG1 · · · vGx n

′ with G ⊆ G1 ∩ · · · ∩Gx;
(zag) For all n′ ∈ N and all τ ∈ AG∪GR, if n vτ n′, then there

is an m′ ∈M such that m′Zn′ and m ∼τ m′.
We write Z : (M,m) �T (N, n) if Z is a trans-bisimulation be-
tween M and N linking m and n. We say a pointed model (M,m)
and a pointed pre-model (N, n) are trans-bisimilar, denoted by
(M,m) �T (N, n), if there is a trans-bisimulation Z such that
Z : (M,m)�T (N, n).

To make the notation symmetric, we call Z a trans-bisimulation
between N and M if it is a trans-bisimulation between M and N,
and we regard Z : (N, n) �T (M,m) just as Z : (M,m) �T

(N, n).

(Pseudo) satisfaction of RCD formulas is invariant under trans-
bisimulation. We will not prove that directly at this point: it follows
from a stronger result we prove later (Lemma 33).

THEOREM 24 (PSEUDO SOUNDNESS). All theorems of RCD
are valid in the class of all pseudo models.

PROOF. See the appendix.

Finitary Canonical Models.

DEFINITION 25 (CLOSURE). Given a formula ϕ, the closure
of ϕ is given by the function cl : RCD → ℘(RCD) which is
defined as follows:

1. ϕ ∈ cl(ϕ), and if ψ ∈ cl(ϕ), so are all of its subformulas;
2. If ϕ is not a negation, then ϕ ∈ cl(ϕ) implies ¬ϕ ∈ cl(ϕ);
3. Kiψ ∈ cl(ϕ) iff D{i}ψ ∈ cl(ϕ);
4. CGψ ∈ cl(ϕ) implies {KiCGψ | a ∈ A} ⊆ cl(ϕ);
5. RG1 · · ·RGn¬ψ ∈ cl(ϕ) implies RG1 · · ·RGnψ ∈ cl(ϕ);
6. RG1 · · ·RGn(ψ ∧ χ) ∈ cl(ϕ) implies
{RG1 · · ·RGnψ,RG1 · · ·RGnχ} ⊆ cl(ϕ);

7. RG1 · · ·RGnKiψ ∈ cl(ϕ) implies
Dδ({i},G1,...,Gn)RG1 · · ·RGnψ ∈ cl(ϕ);

8. RG1 · · ·RGnDHψ ∈ cl(ϕ) implies
Dδ(H,G1,...,Gn)RG1 · · ·RGnψ ∈ cl(ϕ);

9. RG1 · · ·RGnCHψ ∈ cl(ϕ) implies all of the following:
• Dδ(H,G1,...,Gn)RG1 · · ·RGnCHψ ∈ cl(ϕ),
• {Dδ({i},G1,...,Gn)RG1 · · ·RGnCHψ | i ∈ H} ⊆ cl(ϕ),
• RG1 · · ·RGnψ ∈ cl(ϕ).

It is not hard to verify that the closure of a formula is finite.

We use Γ as shorthand for
∧
ϕ∈Γ ϕ when Γ is a finite set of

formulas.

DEFINITION 26 (CANONICAL PSEUDO MODEL). Let α be a
formula. The canonical pseudo model Mc = (S,v, V ) for cl(α)
is defined below:
• S = {Γ | Γ is maximal consistent in cl(α)};
• Γ vi ∆ iff {Kiϕ |Kiϕ ∈ Γ} = {Kiϕ |Kiϕ ∈ ∆};
• Γ vG ∆ iff {DHϕ | DHϕ ∈ Γ} = {DHϕ | DHϕ ∈ ∆}

whenever H ⊆ G;
• V (p) = {Γ ∈ S | p ∈ Γ}.

PROPOSITION 27. The canonical pseudo model for any cl(α)
is a pseudo model.

PROOF. See the appendix.

LEMMA 28. Let S = {Γ | Γ is maximal consistent in cl(α)}
with α a formula. It holds that ` ∨Γ∈S Γ and ` ϕ ↔ ∨

ϕ∈Γ∈S Γ

for all ϕ ∈ cl(α).

PROOF. See [12, Exercise 7.16] for the first result (although
cl(α) is different in our case the proof is exactly the same). We
give a proof of the second result in the appendix.

Let (S,v|G1 | · · · |Gn , V ) be an update of a canonical pseudo
model, and P = 〈Φ0 �τ0 · · · �τn−1 Φn〉 where � stands for
v|G1 | · · · |Gn and every τx is an agent or a group. If all agents in
τ0, . . . , τn−1 appears in H , we call P a 〈G1 · · ·Gn〉-resolved H-
path (from Φ0); if a formula ϕ is such that ϕ ∈ Φi for all 0 ≤ i ≤
n, we call P a canonical ϕ-path.

LEMMA 29. If Γ and ∆ are maximal consistent in cl(α), then
1. Γ is deductively closed in cl(α), i.e., Γ ` ϕ ⇔ ϕ ∈ Γ for any
ϕ ∈ cl(α);

2. If ¬ϕ ∈ cl(α), then ϕ ∈ Γ⇔ ¬ϕ /∈ Γ;
3. If ϕ ∧ ψ ∈ cl(α), then ϕ ∧ ψ ∈ Γ⇔ ϕ ∈ Γ & ψ ∈ Γ;
4. If Γ ∧ K̂i∆ is consistent, Γ vi ∆; if Γ ∧ D̂G∆ is consistent,

Γ vG ∆;
5. If Kiϕ ∈ cl(α), then KiΓ ` ϕ⇔ KiΓ ` Kiϕ;
6. If DGϕ ∈ cl(α), then DGΓ ` ϕ⇔ DGΓ ` DGϕ;
7. If CGϕ ∈ cl(α), then CGϕ ∈ Γ⇔ ∀∆(ΓvCG ∆⇒ ϕ ∈ ∆);
8. If RG1 · · ·RGnCHϕ ∈ cl(α), then RG1 · · ·RGnCHϕ ∈ Γ

iff every 〈G1 · · ·Gn〉-resolved H-path from Γ is a canonical
RG1 · · ·RGnϕ-path.
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PROOF. We give the proof of the clause 8 in the appendix. Other
clauses are the same as in [13, Lemma 49] which can be traced back
to [12, Chapter 7].

LEMMA 30 (PSEUDO TRUTH). Let Mc = (S,v, V ) be the
canonical pseudo model for cl(α). For all groups G1, . . . , Gn, all
Γ ∈ S, and all RG1 · · ·RGnϕ ∈ cl(α), it holds that

RG1 · · ·RGnϕ ∈ Γ iff Mc|G1 | · · · |Gn ,Γ |= ϕ.

PROOF. We show this lemma by induction on ϕ.
• The base case. RG1 · · ·RGnp ∈ Γ iff p ∈ Γ (Proposition 4(1))

iff Mc,Γ |= p iff Mc,Γ |= RG1 · · ·RGnp iff
Mc|G1 | · · · |Gn ,Γ |= p.
• The case for negation. RG1 · · ·RGn¬ψ ∈ Γ

iff ¬RG1 · · ·RGnψ ∈ Γ (note that ¬RG1 · · ·RGnψ ∈ cl(α)
by Definition 25(2,5)) iff RG1 · · ·RGnψ /∈ Γ
iff Mc|G1 | · · · |Gn ,Γ 6|= ψ iff Mc|G1 | · · · |Gn ,Γ |= ¬ψ.
• The case for conjunction. RG1 · · ·RGn(ψ ∧ χ) ∈ Γ

iff (RG1 · · ·RGnψ ∧RG1 · · ·RGnχ) ∈ Γ
iff {RG1 · · ·RGnψ,RG1 · · ·RGnχ} ⊆ Γ (RG1 · · ·RGnψ and
RG1 · · ·RGnχ are in cl(α))
iff Mc|G1 | · · · |Gn ,Γ |= ψ and Mc|G1 | · · · |Gn ,Γ |= χ
iff Mc|G1 | · · · |Gn ,Γ |= ψ ∧ χ.
• The case for individual knowledge. From left to right.

RG1 · · ·RGnKiψ ∈ Γ
iff DδRG1 · · ·RGnψ ∈ Γ where δ = δ({i}, G1, . . . , Gn)
iff ∀∆.(Γ vδ ∆⇒ DδRG1 · · ·RGnψ ∈ ∆)
⇒ ∀∆.(Γ vδ ∆⇒ RG1 · · ·RGnψ ∈ ∆) (TD)
iff ∀∆.(Γ vδ ∆⇒Mc|G1 | · · · |Gn ,∆ |= ψ) (IH)
iff ∀∆.(Γ vδ ∆⇒Mc,∆ |= RG1 · · ·RGnψ)
iff Mc,Γ |= DδRG1 · · ·RGnψ
iff Mc,Γ |= RG1 · · ·RGnKiψ (11(1), 19)
iff Mc|G1 | · · · |Gn ,Γ |= Kiψ.

From right to left. Suppose Mc|G1 | · · · |Gn ,Γ |= Kiψ. We
must showRG1 · · ·RGnKiψ ∈ Γ. Suppose this is not the case.
Then ¬RG1 · · ·RGnKiψ ∈ Γ. Hence Γ∧¬RG1 · · ·RGnKiψ

is consistent, and so is Γ ∧ D̂δ¬RG1 · · ·RGnψ, where δ =
δ({i}, G1, . . . , Gn). Let S be the set of all maximal consistent
sets in cl(α). By Lemma 28, Γ∧ D̂δ

∨
¬RG1

···RGnψ∈Θ∈S Θ is

consistent. Since conjunction, resolution and the D̂δ-operator
all distribute over disjunction,

∨
¬RG1

···RGnψ∈Θ∈S(Γ∧ D̂δΘ)

is consistent. Therefore there must be a Θ ∈ S such that
¬RG1 · · ·RGnψ ∈ Θ and Γ ∧ D̂δΘ is consistent.

From ¬RG1 · · ·RGnψ ∈ Θ we get RG1 · · ·RGnψ /∈ Θ.
By the induction hypothesis Mc|G1 | · · · |Gn ,Θ 6|= ψ, and so
Mc,Θ 6|= RG1 · · ·RGnψ. By Lemma 29(4) and that Γ∧ D̂δΘ
is consistent, Γ vδ Θ. But this contradicts the supposition
that Mc|G1 | · · · |Gn ,Γ |= Kiψ, since by the same reasoning
as in the proof of the other direction (see above), Mc,∆ |=
RG1 · · ·RGnψ for all ∆ such that Γ vδ ∆.
• The case for distributed knowledge: similar to the case for in-

dividual knowledge, but just use δ(H,G1, . . . , Gn) instead of
δ({i}, G1, . . . , Gn).
• The case for common knowledge. RG1 · · ·RGnCHψ ∈ Γ

iff all 〈G1 · · ·Gn〉-resolved H-paths from Γ are also canonical
RG1 · · ·RGnψ-paths. Namely, for all ∆ such that (Γ,∆) ∈
(v|G1 | · · · |Gn)CH , RG1 · · ·RGnψ ∈ ∆
iff for all ∆ such that (Γ,∆) ∈ (v|G1 | · · · |Gn)CH , it holds by
the induction hypothesis that Mc|G1 | · · · |Gn ,∆ |= ψ
iff Mc|G1 | · · · |Gn ,Γ |= CHψ.
• The case for RHψ. RG1 · · ·RGnRHψ ∈ Γ

iff Mc|G1 | · · · |Gn |H ,Γ |= ψ (IH applies to ψ)

iff Mc|G1 | · · · |Gn ,Γ |= RHψ.

COROLLARY 31. Let Mc = (S,v, V ) be the canonical pseudo
model for cl(α). For all Γ ∈ S and all ϕ ∈ cl(α), it holds that
ϕ ∈ Γ iff Mc,Γ |= ϕ.

LEMMA 32 (PSEUDO COMPLETENESS). Let ϕ be an RCD-
formula. If ϕ is valid on all pseudo models, then it is provable in
RCD.

From Pseudo Completeness to Completeness.
By using unraveling and folding from [13, pp. 9–15], we can

transform the canonical pseudo model to a bisimilar pre-model and
then to a trans-bisimilar proper model. It remains to show that
this process preserves truth. We will use �T to denote the trans-
bisimulation relation.

LEMMA 33 (INVARIANCE OF TRANS-BISIMULATION). Let
(M,m) be a pointed model, (N, n) a pointed pre-model, and (S, s)
a pointed pseudo model. If (M,m) �T (N, n) � (S, s), then
M,m |= ϕ iff N, n |=p ϕ for all formulas ϕ.

PROOF. The lemma can be shown by induction on ϕ. Here we
only show the case for the resolution operators, proofs of other
cases are exactly as in the proof of [13, Lemma 26].

Given a pointed model (M,m), a pointed pre-model (N, n) and
a pointed pseudo model (S, s), such that Z : (M,m) �T (N, n)
for some Z and (N, n)� (S, s), we have the following:

M,m |= RGψ iff M|G,m |= ψ
iff N|G, n |=p ψ (∗)
iff N, n |=p RGψ,

where to show (∗) it is sufficient to show that Z : (M|G,m) �T

(N|G, n), as (∗) is then guaranteed by the induction hypothesis
(note that (N|G, n) � (S|G, s) by Proposition 21). Let M =
(M,∼, V ) and N = (N,v, ν).
• The case for (at) holds by Z : (M,m)�T (N, n).
• As for (ziggr), suppose m(∼|G)Hm

′ for some m′ ∈ M and
|H| ≥ 2.

– If G ∩ H = ∅, (∼|G)H =∼H . By Z : (M,m) �T (N, n)
there is an n′ ∈ N such that m′Zn′ and n vH0 · · · vHx n

′

with H ⊆ H0 ∩ · · · ∩ Hx. Let H0 = · · · = Hx = H .
Thus n vH · · · vH n′. Since (v|G)H =vH , it holds that
n(v|G)H · · · (v|G)Hn

′, and so (ziggr) holds in this case.
– If G∩H 6= ∅, (∼|G)H =∼G∪H . By Z : (M,m)�T (N, n)

there is an n′ ∈ N such that m′Zn′ and n vH0 · · · vHx n
′

with G ∪H ⊆ H0 ∩ · · · ∩Hx. Thus n vG∪H · · · vG∪H n′.
Since (v|G)H =vG∪H , It holds that n(v|G)H · · · (v|G)Hn

′.
(ziggr) holds also in this case.

• The case for (zigag) is analogous.
• The case for (zag). For all n′ ∈ N and all τ ∈ AG ∪ GR, if
n(v|G)τn

′, then we must show that there is an m′ ∈ M such
that m′Zn′ and m(∼|G)τm

′.
– If τ is an agent i. Then if i ∈ G, (v|G)i =vG, otherwise

(v|G)i =vi. By Z : (M,m)�T (N, n), we have m ∼G m′

if i ∈ G, or m ∼i m′ otherwise. Namely m(∼|G)im
′ in

either case.
– If τ is a group H . Then if G ∩H = ∅, (v|G)H =vH , other-

wise (v|G)H =vG∪H . By Z : (M,m) �T (N, n), we have
m ∼H m′ if G∩H = ∅, or m ∼G∪H m′ otherwise. Namely
m(∼|G)Hm

′ in either case.
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We have shown that the lemma holds for the case for resolution.
For other cases we refer to the proof of [13, Lemma 26].

THEOREM 34 (COMPLETENESS). For any RCD formula ϕ,
if ϕ is valid then it is provable in RCD.

PROOF. It suffices to show that any RCD-consistent formula is
satisfiable. Let ϕ be consistent. Let Mc be the canonical pseudo
model for cl(ϕ). By the pseudo truth lemma (with n = 0, i.e.,
an empty list of resolution operators), ϕ is satisfied in a state Γ in
Mc. Now let NMc

be the unraveling [13, Definition 18]3 of Mc.
NMc

is a pre-model [13, Proposition 19]. Now let (NMc

)∗ be the
folding [13, Definition 22] of NMc

. (NMc

)∗ is a (proper) model
[13, Definition 22]. From [13, Lemma 27] and [13, Lemma 28] we
have that unraveling preserves bisimulation and that folding pre-
serves trans-bisimulation, in other words we have that4 (M,Γ) �
(NMc

,Γ) �T ((NMc

)∗,Γ). By Corollary 22, (NMc

,Γ) |=p ϕ.
By Lemma 33, ((NMc

)∗,Γ) |= ϕ and we are done.

5. DISCUSSION
In this paper we captured the dynamics of publicly observable

private resolution of distributed knowledge. Resolution operators
(using update semantics) are both an alternative and a complement
to the standard distributed knowledge operators (which use stan-
dard modal semantics).

Resolution operators let us reason about the relationship between
common knowledge and distributed knowledge in general, and in
particular about distributed knowledge as potential common knowl-
edge – when can distributed knowledge become common knowl-
edge? A naive idea would be that DGϕ should imply that RGCGϕ
– any information that is distributed can become common knowl-
edge through resolution. This does not hold in general, however,
due to Moore-like phenomena – ϕ might even become false after
resolution (an example is the formulaD{1,2}(p∧¬K1p) discussed
in the introduction). We do, however, have the following (Prop.
6(2) with G = H):

RGCGϕ↔ DGRGϕ.

A fact can become common knowledge after the group have shared
their information if and only if it was distributed knowledge before
the event that the fact would be true after the event. This is exactly
the distributed knowledge that can become common knowledge (in
our special case of publicly observable private resolution of dis-
tributed knowledge). If the grand coalition resolves its distributed
knowledge, there is no distinction between distributed and common
knowledge any more: RAGCAGϕ↔ RAGDAGϕ (Prop. 5).

As discussed in the introduction, it has been argued that dis-
tributed knowledge in general does not comply with the following
principle of full communication [11]: if DGϕ is true, then ϕ fol-
lows logically from the set of all formulas known by at least one
agent in the group. This is seen as a problem: namely that agents
can have distributed knowledge without being able to establish it
“through communication” [11]. Several papers [11, 4, 7] have tried
to characterize classes of models on which the principle of full
communication does hold – the class of all such models is called
full communication models [7]. This may seem related to the dis-
tinction between distributed knowledge and resolution operators:
the latter is intuitively related to internal “full” communication in
the group. However, this similarity is superficial: the notion of full

3While unraveling is a standard general technique; here we mean
unraveling exactly in the sense of the mentioned definition.
4Here Γ is any path in the unraveling starting with Γ.

communication in the sense of [11] is about expressive power of
the communication language and the limits that puts on the result-
ing possible epistemic states under certain assumptions about how
information is shared. The key point of the resolution operators,
on the other hand, compared with the standard distributed knowl-
edge operators, is to make a distinction between before and after
the information sharing event. That distinction is not made in stan-
dard distributed knowledge – even restricted to full communication
models: it is easy to see that, e.g., D{1,2}(p ∧ ¬K1p) is satisfi-
able also on full communication models. The two ideas, of limiting
models to full communication models and of modeling group in-
formation sharing events using model updates, are orthogonal, and
there is nothing against restricting logics with the resolution opera-
tors to full communication models. We leave that for future work.
Furthermore, it would be interesting to look at a combined variant:
“update by full communication”, which takes the communication
language into account when defining the updated model.

A main interest for future work is expressive power. Can it be
shown that RCD is strictly more expressive than ELCD? An-
other, related, natural question is the relative expressivity of RCD
and PACD: can the combination of public announcement opera-
tors (which eliminate states) and distributed knowledge operators
(which pick out states considered possible by everyone) always be
used to “simulate” the resolution operators (which eliminate states
considered possible by everyone)?

Also of interest for future work is to look at other assumptions
about the other agents’ knowledge about the group communica-
tion event taking place. In this paper we only studied the case that
it is common knowledge that the event takes place (but not what
the agents in the group learn). That was naturally modeled using
a “global” model update: in every state, replace accessibility for
each agent in the group with the group accessibility (intersection).
An interesting and also natural alternative is doing only a “local”
model update: change accessibility in the same way, but only in the
current state. That would correspond to it being common knowl-
edge that if this is the current state, then the group resolves their
knowledge.

When looking at the interaction of the resolution and common
knowledge operators one might be reminded of relativized common
knowledge [9, 10]. Here is an open question: can RGCHϕ be ex-
pressed using relativized common knowledge, in combination with
other operators?

Finally, there is a conceptual relationship to group announce-
ment logic [1], where formulas of the form 〈G〉ϕ say that G can
make a joint public announcement such that ϕ will become true.
A difference to the resolution operators in this paper is that latter
model private communication. Yet, the exact relationship between
these operators is interesting for future work.
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APPENDIX

Proof of Proposition 6.
1. M, s |= RGCHϕ iff M|G, s |= CHϕ iff M|G, t |= ϕ for any

(s, t) ∈∼∗′H , where ∼∗′H= (
⋃
i∈H ∼′i)∗ and ∼′i=

⋂
j∈G ∼ j for

i ∈ G and ∼′i=∼i for i 6∈ G. Thus, when G ∩H = ∅, we get that
∼∗′H= (

⋃
i∈H ∼i)∗. M|G, t |= ϕ for any (s, t) ∈ (

⋃
i∈H ∼i)∗

holds iff M, t |= RGϕ for any (s, t) ∈ (
⋃
i∈H ∼i)∗ iff M, t |=

CHRGϕ.
2.

M, s |= RGCHϕ
iff M|G, s |= CHϕ
iff M|G, t |= ϕ for all t s.t. (s, t) ∈∼GCH

iff † M|G, t |= ϕ for all t s.t. (s, t) ∈∼Gi
iff M|G, s |= Kiϕ
iff M, s |= RGKiϕ

For the † step, note that when i ∈ G, ∼Gi =∼Gj for any j ∈ G
(and actually also equal to ∼G). Therefore,

∼GCH
= (

⋃

i∈H
∼Gi )∗ = (∼Gi )∗ =∼Gi .

That RGKiϕ ↔ DGRGϕ is valid is already shown in Proposi-
tion 4.

Proof of Proposition 18.
Let M = (S,v, V ). Clearly M|G = (S,v|G, V ) is a pre-

model. Moreover,
1. Given an agent i,

(v|G){i} =

{
v{i}∪G i ∈ G
v{i}, i /∈ G

=

{
vG i ∈ G
vi, i /∈ G

= (v|G)i.

2. Given two groups H and H ′ such that H ⊆ H ′,

(v|G)H′ =

{
vH′∪G H ′ ∩G 6= ∅
vH′ , H ′ ∩G = ∅

(v|G)H =

{
vH∪G H ∩G 6= ∅
vH , H ∩G = ∅

So we have:
• when H ∩G 6= ∅ (and therefore H ′ ∩G 6= ∅), (v|G)H′ =
vH′∪G ⊆ vH∪G = (v|G)H ;
• when H ′ ∩ G = ∅ (and therefore H ∩ G = ∅), (v|G

)H′ =vH′⊆vH= (v|G)H ;
• otherwise H ′ ∩ G 6= ∅ and H ∩ G = ∅, and in this case

(v|G)H′ = vH′∪G ⊆ vH = (v|G)H .
M|G is a pre-model satisfying the two conditions above, which
shows it is a pseudo model.

Proof of Proposition 21.
Let M = (S,v, V ) and M′ = (S′,v′, V ′). Thus M|G =

(S,v|G, V ) and M′|G = (S′,v′|G, V ′). Suppose Z : (M, s) �
(M′, s′), and we show Z : (M|G, s)� (M′|G, s′):
(at) This clearly follows from the (at) clause of Z : (M, s) �

(M′, s′).
(zig) For all t ∈ S, if s(v|G)Ht, then

– If G ∩H = ∅, then (v|G)H =vH and (v′|G)H =v′H . By
Z : (M, s) � (M′, s′) there must be a t′ ∈ S′ such that
s′(v′|G)Ht

′ and tZt′.
– IfG∩H 6= ∅, then (v|G)H =vG∪H and (v′|G)H =v′G∪H .

By Z : (M, s) � (M′, s′) there must be a t′ ∈ S′ such that
s′(v′|G)Ht

′ and tZt′.
If s(v|G)it, we can prove analogously to the above.

(zag) This can be shown analogously to the case for (zig).

Proof of Theorem 24.
It is easy to verify that (S5), (CK), (DK), (NR), (RA), (RC)

and (RN) are all valid or admissible with respect to the class of
all pseudo models. Here we only show that i) (RD1) and (RD2)
are valid in all pseudo models, and ii) (RRC ) preserves validity of
pseudo models.

Let M = (S,v, V ) be a pseudo model and s ∈ S. We show the
following:
• M, s |=p RD1 and M, s |=p RD2, i.e.,

– If G ∩H 6= ∅, then M, s |=p RGDHϕ↔ DG∪HRGϕ;
– If G ∩H = ∅, then M, s |=p RGDHϕ↔ DHRGϕ.

M, s |=p RGDHϕ
iff M|G, s |=p DHϕ
iff M|G, t |=p ϕ for all t s.t. (s, t) ∈ (v|G)H
iff M, t |=p RGϕ for all t s.t. (s, t) ∈ (v|G)H
iff † if G ∩H 6= ∅, M, t |=p RGϕ for all t s.t. (s, t) ∈v|G∪H ,

if G ∩H = ∅, M, t |=p RGϕ for all t s.t. (s, t) ∈v|H
iff if G ∩H 6= ∅, M, t |=p DG∪HRGϕ, and

if G ∩H = ∅, M, t |=p DHRGϕ,

where the † step is by definition:

(v|G)H =

{
vH∪G, G ∩H 6= ∅,
vH , G ∩H = ∅.

• M, s |=p ϕ → RG1 · · ·RGnCHψ under the assumption |=p

ϕ → (EHϕ ∧ RG1 · · ·RGnψ). The proof is similar to the
proof for genuine models.
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Proof of Proposition 27.
Suppose that M = (S,v, V ) is the canonical pseudo model for

cl(α). We need to show that M is a pseudo model. Namely,
1. S is non-empty, and
2. all vi’s and vG’s are equivalence relations, and
3. V is a valuation from PROP to ℘(S), and
4. vi=v{i} for every agent i, and
5. vH⊆vG if G and H are groups such that G ⊆ H .

Conditions 1–3 are the conditions for being a pre-model which are
easy to verify. Conditions 4 and 5 are additional conditions for
being a pseudo model.

By Definition 25(3), Kiϕ and Diϕ must be in cl(α) both or
neither. Thus, for any Γ,∆ ∈ S,

Γ vi ∆
iff {Kiϕ |Kiϕ ∈ Γ} = {Kiϕ |Kiϕ ∈ ∆}
iff {Diϕ |Diϕ ∈ Γ} = {Diϕ |Diϕ ∈ ∆} (Axiom DK1)
iff Γ v{i} ∆.

Γ vH ∆
iff {DH′ϕ |DH′ϕ ∈ Γ} = {DH′ϕ |DH′ϕ ∈ ∆},

for any group H ′ ⊆ H
⇒ {DG′ϕ |DG′ϕ ∈ Γ} = {DG′ϕ |DG′ϕ ∈ ∆},

for any group G′ ⊆ G
iff Γ vG ∆.

This finishes the proof, and shows that the notion “canonical pseudo
model” is well-defined.

Proof of Lemma 28(2).
Let ϕ ∈ cl(α). By ` ∨¬ϕ∈Γ∈S Γ → ¬ϕ and the first re-

sult (i.e., ` ∨¬ϕ∈Γ∈S ∨
∨
ϕ∈Γ∈S ) we get ` ϕ → ∨

ϕ∈Γ∈S Γ.
For the converse direction, suppose 0

∨
ϕ∈Γ∈S Γ → ϕ. Then

¬(
∨
ϕ∈Γ∈S Γ → ϕ) is consistent. Namely ¬ϕ ∧ ∨ϕ∈Γ∈S Γ is

consistent. But this is impossible.

Proof of Lemma 29(8).
Let RG1 · · ·RGnCHϕ ∈ cl(α). It follows from the definition

of closure (Definition 25) that the following formulas:
• Dδ({i},G1,...,Gn)RG1 · · ·RGnCHϕ where i ∈ H
• Dδ(H,G1,...,Gn)RG1 · · ·RGnCHϕ

• RG1 · · ·RGnϕ and ¬RG1 · · ·RGnϕ

are all in cl(α).
From left to right. Suppose RG1 · · ·RGnCHϕ ∈ Γ, we con-

tinue by induction on the length of the path that every 〈G1 · · ·Gn〉-
resolved H-path from Γ is a canonical RG1 · · ·RGnCHϕ-path.
Then the left-to-right direction follows: by ` CHϕ → ϕ, NR
and RG-distribution (which follows from RR axioms) we get `
RG1 · · ·RGnCHϕ → RG1 · · ·RGnϕ, and by RG1 · · ·RGnϕ ∈
cl(α) we have RG1 · · ·RGnϕ ∈ Γ.

Suppose the length of the 〈G1 · · ·Gn〉-resolvedH-path is 0, i.e.,
the path is 〈Γ〉, we must show that RG1 · · ·RGnCHϕ ∈ Γ. This is
guaranteed by the supposition.

Suppose the length of the 〈G1 · · ·Gn〉-resolvedH-path is n+1,
i.e., the path is 〈Γ0 �τ0 · · · �τn−1 Γn �τn Γn+1〉 with Γ0 = Γ
and every τx is either in H or a subset of H . By the induction
hypothesis we may assume that RG1 · · ·RGnCHϕ ∈ Γn.
• Suppose τn is an agent i (i ∈ H). By Axiom C1 we have
` CHϕ → KiCHϕ. It follows that ` RG1 · · ·RGnCHϕ →
RG1 · · ·RGnKiCHϕ by the rules NR and RG-distribution. Let
δ = δ({i}, G1, . . . , Gn). By the reduction axioms we move Ki

left, i.e., ` RG1 · · ·RGnKiCHϕ → DδRG1 · · ·RGnCHϕ, so

we get ` RG1 · · ·RGnCHϕ → DδRG1 · · ·RGnCHϕ. Hence
Γn ` DδRG1 · · ·RGnCHϕ. AsDδRG1 · · ·RGnCHϕ ∈ cl(α),
we have DδRG1 · · ·RGnCHϕ ∈ Γn. Moreover, by Proposition
19, �i=vδ . Thus DδRG1 · · ·RGnCHϕ ∈ Γn+1 by the defini-
tion of vδ , and so RG1 · · ·RGnCHϕ ∈ Γn+1.
• Suppose τn is a group I (I ⊆ H). By Axioms C1, D1 and

D2 we have ` CHϕ → DICHϕ. By NR and RG-distribution,
` RG1 · · ·RGnCHϕ→ RG1 · · ·RGnDICHϕ. By similar rea-
soning to the case above, we get the result RG1 · · ·RGnCHϕ ∈
Γn+1 (we use δ(H,G1, . . . , Gn) instead of δ({i}, G1, . . . , Gn)
in this case).

In both cases we get RG1 · · ·RGnCHϕ ∈ Γn+1 as we wish to
show.

From right to left. Suppose that every 〈G1 · · ·Gn〉-resolved H-
path from Γ is a canonicalRG1 · · ·RGnϕ-path. Let S0 be the set of
all maximal consistent sets ∆ in cl(α) such that every 〈G1 · · ·Gn〉-
resolved H-path from ∆ is a canonical RG1 · · ·RGnϕ-path. Now
consider the formula

λ =
∨

∆∈S0
∆

We will show the following:
1. ` Γ→ λ

2. ` λ→ (EHλ ∧RG1 · · ·RGnϕ).
From the above and the reduction rule for resolved common knowl-
edge we get ` Γ → RG1 · · ·RGnCHϕ which furthermore entails
RG1 · · ·RGnCHϕ ∈ Γ. We now continue with the proof of the
two clauses.
1. This is trivial, as Γ is one of the disjuncts of λ.
2. Suppose towards a contradiction that

λ ∧ ¬(EHλ ∧RG1 · · ·RGnϕ)

is consistent, i.e., λ∧ (¬EHλ∨¬RG1 · · ·RGnϕ) is consistent.
Because λ is a disjunction there must be a disjunct Ξ of λ such
that Ξ ∧ (¬EHλ ∨ ¬RG1 · · ·RGnϕ) is consistent. It follows
that either Ξ ∧ ¬EHλ or Ξ ∧ ¬RG1 · · ·RGnϕ is consistent.
If the former is consistent, then there must be an agent i ∈
H such that Ξ ∧ ¬Kiλ is consistent, i.e., Ξ ∧ K̂i¬

∨
∆∈S0 ∆

is consistent. Since ` ∨∆∈S ∆ by Lemma 28, we have `
¬∨∆∈S0 ∆ → ∨

∆′∈S\S0 ∆′, and so there must be a Θ in

S \S0 such that Ξ∧ K̂iΘ is consistent. By item 4 of this lemma
Ξ vi Θ (where v is the relation in the canonical pseudo model
for cl(α)). But then Ξ cannot be in S0 for Θ /∈ S0. A contra-
diction!
If the latter is consistent, since ¬RG1 · · ·RGnϕ ∈ cl(α) and
Ξ is maximal, ¬RG1 · · ·RGnϕ ∈ Ξ. But RG1 · · ·RGnϕ ∈ Ξ
since Ξ vH Ξ and every 〈G1 · · ·Gn〉-resolved H-path from Ξ
is a canonical RG1 · · ·RGnϕ-path. We reach a contradiction.
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ABSTRACT
Gossip protocols aim at arriving, by means of point-to-point
or group communications, at a situation in which all the
agents know each other’s secrets. We consider distributed
gossip protocols which are expressed by means of epistemic
logic. We provide an operational semantics of such protocols
and set up an appropriate framework to argue about their
correctness. Then we analyze specific protocols for complete
graphs and for directed rings.

Keywords
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knowledge-based programs

1. INTRODUCTION
In the gossip problem ([18, 4], see also [10] for an overview)

a number n of agents, each one knowing a piece of infor-
mation (a secret) unknown to the others, communicate by
one-to-one interactions (e.g., telephone calls). The result of
each call is that the two agents involved in it learn all secrets
the other agent knows at the time of the call. The problem
consists in finding a sequence of calls which disseminates all
the secrets among the agents in the group. It sparked a
large literature in the 70s and 80s [18, 4, 9, 5, 17] typically
focusing on establishing—in the above and other variants of
the problem—the minimum number of calls to achieve dis-
semination of all the secrets. This number has been proven
to be 2n− 4, where n, the number of agents, is at least 4.

The above literature assumes a centralized perspective on
the gossip problem: a planner schedules agents’ calls. In
this paper we pursue a line of research first put forth in [3]
by developing a decentralized theory of the gossip problem,
where agents perform calls not according to a centralized
schedule, but following individual epistemic protocols they
run in a distributed fashion. These protocols tell the agents
which calls to execute depending on what they know, or
do not know, about the information state of the agents in
the group. We call the resulting distributed programs (epis-
temic) gossip protocols.

Contribution of the paper and outline.
The paper introduces a formal framework for specifying epis-
temic gossip protocols and for studying their computations
in terms of correctness, termination, and fair termination
(Section 2). It then defines and studies two natural proto-
cols in which the interactions are unconstrained (Section 3)
and four example gossip protocols in which agents are posi-

tioned on a directed ring and calls can happen only between
neighbours (Section 4). Proofs are collected in the appendix.

From a methodological point of view, the paper integrates
concepts and techniques from the distributed computing,
see, e.g., [1, Chapter 11] and the epistemic logic literature
[8, 15] in the tradition of [16, 14, 7].

2. GOSSIP PROTOCOLS
We introduce first the syntax and semantics of gossip pro-

tocols.

2.1 Syntax
We loosely use the syntax of the language CSP (Communi-

cating Sequential Processes) of [11] that extends the guarded
command language of [6] by disjoint parallel composition
and commands for synchronous communication. CSP was
realized in the distributed programming language OCCAM
(see INMOS [12]).

The main difference is that we use as guards epistemic
formulas and as communication primitives calls that do not
require synchronization. Also, the syntax of our distributed
programs is very limited. In order to define gossip protocols
we introduce in turn calls and epistemic guards.

Throughout the paper we assume a fixed finite set A of
at least three agents. We assume that each agent holds
exactly one secret and that there exists a bijection between
the set of agents and the set of secrets. We denote by P
the set of all secrets (for propositions). Furthermore, it is
assumed that each secret carries information identifying the
agent to whom that secret belongs.

2.1.1 Calls
Each call concerns two agents, the caller (a below) and

the agent called (b). We distinguish three modes of com-
munication of a call:

push-pull , written as ab or (a, b). During this call the
caller and the called agent learn each other’s secrets,

push , written as a.b. After this call the called agent learns
all the secrets held by the caller,

pull , written as a / b. After this call the caller learns all
the secrets held by the called agent.

Variables for calls are denoted by c, d. Abusing notation we
write a ∈ c to denote that agent a is one of the two agents
involved in the call c (e.g., for c := ab we have a ∈ c and
b ∈ c). Calls in which agent a is involved are denoted by ca.
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2.1.2 Epistemic guards
Epistemic guards are defined as formulas in a simple modal

language with the following grammar:

φ ::= Fap | ¬φ | φ ∧ φ | Kaφ,

where p ∈ P and a ∈ A. Each secret is viewed as a distinct
symbol. We denote the secret of agent a by A, the secret
of agent b by B and so on. We denote the set of so defined
formulas by L and we refer to its members as epistemic
formulas or epistemic guards. We read Fap as ‘agent a is
familiar with the secret p’ (or ‘p belongs to the set of secrets
a knows about’) and Kaφ as ‘agent a knows that formula φ is
true’. So this language is an epistemic language where atoms
consist of ‘knowing whether’ statements about propositional
atoms, if we view secrets as Boolean variables.

Atomic expressions in L concern only who knows what
secrets. As a consequence the language cannot express for-
mally the truth of a secret p. This level of abstraction suf-
fices for the purposes of the current paper. However, expres-
sions Fap could be given a more explicit epistemic reading
in terms of ‘knowing whether’. That is, ‘a is familiar with p’
can be interpreted (on a suitable Kripke model) as ‘a knows
whether the secret p is true or not’. This link is established
in [3].

2.1.3 Gossip protocols
Before specifying what a program for agent a is, let us

first define the language La with the following grammar:

ψ ::= Kaφ | ¬ψ | ψ ∧ ψ
with φ ∈ L.1

By a component program , in short a program , for an
agent a we mean a statement of the form

∗[[]mj=1 ψj → cj ],

where m > 0 and each ψj → cj is such that ψj ∈ La and a
is the caller in cj .

Given an epistemic formula ψ ∈ La and a call c, we call
the construct ψ → c a rule and refer in this context to ψ as
a guard .

We denote the set of rules {ψ1 → c1, . . ., ψk → ck} as
[[]kj=1 ψj → cj ] and abbreviate a set of rules {ψ1 → c, . . ., ψk →
c} with the same call to a single rule

∨k
i=1 ψi → c.

Intuitively, ∗ denotes a repeated execution of the rules, one
at a time, where each time a rule is selected whose guard is
true.

Finally, by a distributed epistemic gossip protocol , in
short a gossip protocol , we mean a parallel composition
of component programs, one for each agent. In order not
to complicate matters we assume that each gossip protocol
uses only one mode of communication.

Of special interest for this paper are gossip protocols that
are symmetric. By this we mean that the protocol is a com-
position of the component programs that are identical mod-
ulo the names of the agents. Formally, consider a statement
π(x), where x is a variable ranging over the set A of agents
and such that for each agent a ∈ A, π(a) is a component
program for agent a. Then the parallel composition of the

1Alternatively, La could be defined as the fragment of L
consisting of the formulae of form Kaψ. In logic S5, it is
easy to prove that each ψ ∈ La is logically equivalent to a
formula Kaφ ∈ L.

π(a) programs, where a ∈ A, is called a symmetric gossip
protocol .

Gossip protocols are syntactically extremely simple. There-
fore it would seem that little can be expressed using them.
However, this is not the case. In Sections 3 and 4 we consider
gossip protocols that can exhibit complex behaviour.

2.2 Semantics
We now move on to provide a formal semantics of epis-

temic guards, and then describe the computations of gossip
protocols.

2.2.1 Gossip situations and calls
A gossip situation is a sequence s = (Qa)a∈A, where

Qa ⊆ P for each agent a. Intuitively, Qa is the set of secrets a
is familiar with in situation s. The initial gossip situation
is the one in which each Qa equals {A} and is denoted by
root. The set of all gossip situations is denoted by S. We
say that an agent a is an expert in a gossip situation s if
he is familiar in s with all the secrets, i.e., if Qa = P. The
initial gossip situation reflects the fact that initially each
agent is familiar only with his own secret, although it is
not assumed this is common knowledge among the agents.
In fact, in the introduced language we have no means to
express the concept of common knowledge.

We will use the following concise notation for gossip situ-
ations. Sets of secrets will be written down as lists. e.g., the
set {A,B,C} will be written as ABC. Gossip situations will
be written down as lists of lists of secrets separated by dots.
E.g., if there are three agents, root = A.B.C and the situa-
tion ({A,B}, {A,B}, {C}) will be written as AB.AB.C.

Each call transforms the current gossip situation by mod-
ifying the set of secrets the agents involved in the call are
familiar with. More precisely, the application of a call to a
situation is defined as follows.

Definition 2.1 (Effects of calls). A call is a func-
tion c : S −→ S, so defined, for s := (Qa)a∈A:

c = ab c(s) = (Q′a)a∈A, where Q′a = Q′b = Qa ∪ Qb, Q′c =
Qc, for c 6= a, b;

c = a . b c(s) = (Q′a)a∈A, where Q′b = Qa ∪ Qb, Q′a = Qa,
Q′c = Qc, for c 6= a, b;

c = a / b c(s) = (Q′a)a∈A, where Q′a = Qa ∪ Qb, Q′b = Qb,
Q′c = Qc, for c 6= a, b.

The definition formalizes the modes of communications we
introduced earlier. Depending on the mode, secrets are ei-
ther shared between caller and callee (ab), they are pushed
from the caller to the callee (a . b), or they are retrieved by
the caller from the callee (a / b).

2.2.2 Call sequences
A call sequence is a (possibly infinite) sequence of calls,

in symbols (c1, c2, . . . , cn, . . .), all being of the same commu-
nication mode. The empty sequence is denoted by ε. We
use c to denote a call sequence and C to denote the set of all
call sequences. The set of all finite call sequences is denoted
C<ω. Given a finite call sequence c and a call c we denote by
c.c the prepending of c with c, and by c.c the postpending
of c with c.
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The result of applying a call sequence to a situation s is
defined by induction using Definition 2.1, as follows:
[Base] ε(s) := s,
[Step] (c.c)(s) := c(c(s)).

Example 2.2. Let the set of agents be {a, b, c}.

ab ca ab

A.B.C AB.AB.C ABC.AB.ABC ABC.ABC.ABC

The top row lists the call sequence (ab, ca, ab), while the bot-
tom row lists the successive gossip situations obtained from
the initial situation A.B.C by applying the calls in the se-
quence: first ab, then ca and finally ab. 2

By applying an infinite call sequence c = (c1, c2, . . . , cn, . . .)
to a gossip situation s one obtains therefore an infinite se-
quence c0(s), c1(s), . . . , cn(s), . . . of gossip situations, where
each ck is sequence c1, c2, . . . , ck. A call sequence c is said
to converge if for all input gossip situations s the generated
sequence of gossip situations reaches a limit, that is, there
exists n < ω such that for all m ≥ n cm(s) = cm+1(s). Since
the set of secrets is finite and calls never make agents forget
secrets they are familiar with, it is easy to see the following.

Fact 2.3. All infinite call sequences converge.

However, as we shall see, this does not imply that all gos-
sip protocols terminate. In the remainder of the paper, un-
less stated otherwise, we will assume the push-pull mode of
communication. The reader can easily adapt our presenta-
tion to the other modes.

2.2.3 Gossip models
The set S of all gossip situations is the set of all possible

combinations of secret distributions among the agents. As
calls progress in sequence from the initial situation, agents
may be uncertain about which one of such secrets distri-
butions is the actual one. This uncertainty is precisely the
object of the epistemic language for guards we introduced
earlier.

Definition 2.4. A gossip model (for a given set A) is a
tuple M = (C<ω, {∼a}a∈A), where each ∼a⊆ C<ω × C<ω is
the smallest relation satisfying the following inductive con-
ditions (assume the mode of communication is push-pull):

[Base] ε ∼a ε;
[Step] Suppose c ∼a d.

(i) If a 6∈ c, then c.c ∼a d and c ∼a d.c.

(ii) If there exists b ∈ A and c, d ∈ {ab, ba} such that
c.c(root)a = d.d(root)a, then c.c ∼a d.d.

A gossip model with a designated finite call sequence is called
a pointed gossip model.

For the push, respectively pull, modes of communication
clause (ii) needs to be modified by requiring that for some
b ∈ A, c = d = a . b or c = d = a / b, respectively.

For instance, by (i) we have ab, bc ∼a ab, bd. But we
do not have bc, ab ∼a bd, ab since (bc, ab)(root)a = ABC 6=
ABD = (bd, ab)(root)a.

Let us flesh out the intuitions behind the above definition.
Gossip models are needed in order to interpret the epistemic

guards of gossip protocols. Since such guards are relevant
only after finite sequences of calls, the domain of a gossip
model is taken to consist only of finite sequences. Intuitively,
those are the finite sequences that can be generated by a
gossip protocol. Let us turn now to the ∼a relation. This is
defined with the following intuitions in mind. First of all, no
agent can distinguish the empty call sequence from itself—
this is the base of the induction. Next, if two call sequences
are indistinguishable for a, then the same is the case if (i)
we extend one of these sequences by a call in which a is not
involved or if (ii) we extend each of these sequences by a call
of a with the same agent (agent a may be the caller or the
callee), provided a is familiar with exactly the same secrets
after each of the new sequences has taken place—this is the
induction step.2

The above intuitions are based on the following assump-
tions on the form of communication we presuppose: (i) At
the initial situation, as communication starts, each agent
knows only her own secret but considers it possible that the
others may be familiar with all other secrets. In other words
there is no such thing as common knowledge of the fact that
‘everybody knows exactly her own secret’. (ii) In general,
each agent always considers it possible that call sequences
(of any length) take place that do not involve her. These
assumptions are weaker than the ones analyzed in [3].

We state without proof the following simple fact.

Fact 2.5.

(i) Each ∼a is an equivalence relation;

(ii) For all c, d ∈ C if c ∼a d, then c(root)a = d(root)a,
but not vice versa.

This prompts us to note also that according to Definition 2.4
sequences which make a learn the same set of secrets may
well be distinguishable for a, such as, for instance, ab, bc, ab
and ab, bc, ac. In the first one a comes to know that b knows
a is familiar with all secrets, while in the second one, she
comes to know that c knows a is familiar with all secrets.
Relation ∼a is so defined as to capture this sort of ‘higher-
order’ knowledge.

2.2.4 Truth conditions for epistemic guards
Everything is now in place to define the truth of the con-

sidered formulas.

Definition 2.6. Let (M, c) be a pointed gossip model with
M = (C<ω, (∼a)a∈A) and c ∈ C<ω. We define the satisfac-
tion relation |= inductively as follows (clauses for Boolean
connectives are omitted):

(M, c) |= Fap iff p ∈ c(root)a,

(M, c) |= Kaφ iff ∀d s.t. c ∼a d, (M, d) |= φ.

So formula Fap is true (in a pointed gossip model) whenever
secret p belongs to the set of secrets agent a is familiar with
in the situation generated by the designated call sequence c
applied to the initial situation root. The knowledge opera-
tor is interpreted as customary in epistemic logic using the
equivalence relations ∼a.

2Notice that the definition requires a designated initial sit-
uation, which we assume to be root.
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2.2.5 Computations
Assume a gossip protocol P that is a parallel composition

of the component programs ∗[[]ma
j=1 ψ

a
j → caj ], one for each

agent a ∈ A.
Given the gossip model M = (C<ω, {∼a}a∈A) we define

the computation tree CP ⊆ C<ω of P as the smallest set
of sequences satisfying the following inductive conditions:

[Base] ε ∈ CP ;

[Step] If c ∈ CP and (M, c) |= ψaj then c.caj ∈ CP . In this
case we say that a transition has taken place between
c and c.caj , in symbols, c→ c.caj .

So CP is a (possibly infinite) set of finite call sequences that
is iteratively obtained by performing a ‘legal’ call (according
to protocol P ) from a ‘legal’ (according to protocol P ) call
sequence.

A path in the computation tree of P is a (possibly infinite)
sequence of elements of CP , denoted by ξ = (c0, c1, . . . , cn, . . .),
where c0 = ε and each ci+1 = ci.c for some call c and i ≥ 0.
A computation of P is a maximal rooted path in the com-
putation tree of P .3

The above definition implies that a call sequence c is a
leaf of the computation tree if and only if

(M, c) |=
∧

a∈A

ma∧

j=1

¬ψaj .

We call the formula

∧

a∈A

ma∧

j=1

¬ψaj

the exit condition of the gossip protocol P .

Obviously computation trees can be infinite, though they
are always finitely branching. Further, note that this seman-
tics for gossip protocols abstracts away from some implemen-
tation details of the calls. More specifically, we assume that
the caller always succeeds in his call and does not require
to synchronize with the called agent. In reality, the called
agent might be busy, being engaged in another call. To take
care of this one could modify each call by replacing it by
a ‘call protocol’ that implements the actual call using some
lower level primitives. We do not elaborate further on this
topic.

Let us fix some more terminology. For c ∈ CP , an agent
a is enabled in c if (M, c) |= ∨ma

j=1 ψaj and is disabled
otherwise. So an agent is enabled if it can perform a call.
An agent a is selected in c if it is the caller in the call that
for some c′ determines the transition c→ c′ in ξ. Finally, a
computation ξ is called a fair computation if it is finite or
each agent that is enabled in infinitely many sequences in ξ
is selected in infinitely many sequences in ξ.

We note in passing that various alternative definitions of
fairness are possible; we just focus on one of them. An inter-
ested reader may consult [2], where several fairness defini-
tions (for instance one focusing on actions and not on agents)
for distributed programs were considered and compared.

3Note that while the sequences that are elements of the com-
putation tree of a protocol are always finite (although pos-
sibly infinite in number), computations can be infinite se-
quences (of finite call sequences).

We conclude this section by observing the following. Our
definition of computation tree for protocol P presupposes
that guards ψaj are interpreted over the gossip model M =
(C<ω, {∼a}a∈A). This means that when evaluating guards,
agents consider as possible call sequences that cannot be
generated by P . In other words, agents do not know the
protocol. To model common knowledge of the considered
protocol in the gossip model one should take as the domain
of the gossip model M the underlying computation tree.
However, the computation tree is defined by means of the
underlying gossip model. To handle such a circularity an
appropriate fixpoint definition is needed. We leave this topic
for future work.

2.3 Correctness
We are interested in proving the correctness of gossip pro-

tocols. Assume a gossip protocol P that is a parallel com-
position of the component programs ∗[[]ma

j=1 ψ
a
j → caj ].

We say that P is partially correct , in short correct , if in
all situations sequences c that are leaves of the computation
tree of P , for each agent a

(M, c) |=
∧

b∈A
FaB,

i.e., if for all situations sequences c that are leaves of the
computation tree of P , each agent is an expert in the gossip
situation c(root).

We say furthermore that P terminates if all its compu-
tations are finite and that P fairly terminates if all its fair
computations are finite.

In the next section we provide examples showing that par-
tial correctness and termination of the considered protocols
can depend on the assumed mode of communication and
on the number of agents. In what follows we study various
gossip protocols and their correctness. We begin with the
following obvious observation.

Fact 2.7. For each protocol P the following implications
(⇒) hold, where TP (x) stands for its termination and FTP (x)
for its fair termination in a communication mode x:

TP (x)⇒ FTP (x).

Protocol R3 given in Section 4 shows that none of these
implications can be reversed. Moreover, it is not the case
either that for each protocol P :

TP (.)⇒ TP (push-pull),

TP (/)⇒ TP (push-pull).

Example 2.8. Let A = {a, b, c} and define the following
expression:

A ⊂ C :=
∧

I∈{A,B,C}
(FaI → FcI) ∧

∨

I∈{A,B,C}
(FcI ∧ ¬FaI)

Expression B ⊂ C can be defined analogously. Note that
we denote by I the secret of agent i. Intuitively, A ⊂ C
means that agent c is familiar with all the secrets that agent
a is familiar with, but not vice versa. So c is familiar with
a superset of the secrets a is aware of. Further, let Expj
stand for

∧
I∈{A,B,C} FjI.

Consider now the following component programs:

• for agent a: ∗[Ka(¬(A ⊂ C) ∧ ¬Expa)→ a . c],
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• for agent b: ∗[Kb(¬(B ⊂ C) ∧ ¬Expb)→ b . c],

• for agent c: ∗[[]i∈{a,b}KcExpc ∧ ¬KcExpi → c . i].

First note that in our logic, Ki(φ1 ∧ φ2) is equivalent to
Kiφ1 ∧Kiφ2.

This protocol is correct. Indeed, initially, it is not the case
that c knows to be an expert, hence the guard of c is false.
Likewise, the guards of a and b are true; a for instance knows
that c is not familiar with more secrets than a, and that a
is not familiar with all secrets. So initially both a or b are
enabled. If the first call is granted to a, this agent will call c,
yielding the situation A.B.AC. Note that now, the guard of
a is false (from a’s perspective, c may now well be familiar
with all secrets), the guard of b is true, and the guard of
c is still false. So now only b is enabled, which yields the
situation A.B.ABC. At this stage, only agent c is enabled
and after he calls both a and b all guards become false.

Moreover, this protocol terminates. Indeed, the only com-
putations are the ones in which first the calls a . c and b . c
take place, in any order, followed by the calls c . a and c . b,
also performed in any order. However, if we use the push-
pull mode instead of push, the call ac can be indefinitely
repeated, so the protocol does not terminate. 2

3. TWO SYMMETRIC PROTOCOLS
In this section we consider protocols for the case when the

agents form a complete graph. We study two protocols. We
present them first for the communication mode push-pull.
(Partial) correctness of the considered protocols does not
depend on the assumed mode of communication.

Learn new secrets protocol (LNS).
Consider the following program for agent i:

∗[[]j∈A¬FiJ → (i, j)].

Informally, agent i calls agent j if i is not familiar with j’s
secret. Note that the guards of this protocol do not use the
epistemic operator Ki, but they are equivalent to the ones
that do, as ¬FiJ is equivalent to Ki¬FiJ .

This protocol was introduced in [3] and studied with re-
spect to the push-pull mode, assuming asynchronous com-
munication. As noted there this protocol is clearly correct.
Also, it always terminates since after each call (i, j) the size
of {(i, j) ∈ A× A | ¬FiJ} decreases. The same argument
shows termination if the communication mode is pull.

However, if the communication mode is push, the protocol
may fail to terminate, even fairly. To see it fix an agent a
and consider a sequence of calls in which each agent calls a.
At the end of this sequence a becomes an expert but nobody
is familiar with his secret. So any extension of this sequence
is an infinite computation.

Let us consider now the possible call sequences generated
by the computations of this protocol. Assume that there are
n ≥ 4 agents. By the result mentioned in the introduction
in each terminating computation at least 2n − 4 calls are
made.

The LNS protocol can generate such shortest sequences
(among others). Indeed, let A = {a, b, c, d, i1, . . ., in−4} be
the set of agents. Then the following sequence of 2n−4 calls

(a, i1), (a, i2), . . ., (a, in−4),
(a, b), (c, d), (a, c), (b, d),

(i1, b), (i2, b), . . ., (in−4, b)
(1)

corresponds to a terminating computation.
The guards used in this protocol entail that after a call

(i, j) neither the call (j, i) nor another call (i, j) can take
place, that is between each pair of agents at most one call
can take place. Consequently, the longest possible sequence

contains at most n(n−1)
2

calls. Such a worst case can be
generated by means of the following sequence of calls:

[2], [3], [4], . . ., [n],

where for a natural number k, [k] stands for the sequence
(1, k), (2, k), . . ., (k − 1, k).4

Hear my secret protocol (HMS).
Next, we consider a protocol with the following program for
agent i:

∗[[]j∈A¬KiFjI → (i, j)].

Informally, agent i calls agent j if he (agent i) does not know
whether j is familiar with his secret. To prove correctness
of this protocol it suffices to note that its exit condition

∧

i,j∈A
KiFjI

implies
∧
i,j∈A FjI. To prove termination it suffices to note

that after each call (i, j) the size of the set {(i, j) | ¬KiFjI}
decreases.

If the communication mode is push, then the termination
argument remains valid, since after the call i . j agent j still
learns all the secrets agent i is familiar with.

However, if the communication mode is pull, then the pro-
tocol may fail to terminate, even fairly. To see it fix an agent
j and consider the calls i / j, where i ranges over A \ {j},
arbitrarily ordered. Denote this sequence by c. Consider
now an infinite sequence of calls resulting from repeating c
indefinitely. It is straightforward to check that such a se-
quence corresponds to a possible computation. Indeed, in
this sequence agent j never calls and hence never learns any
new secret. So for each i 6= j the formula ¬KiFjI remains
true and hence each agent i 6= j remains enabled. Moreover,
after the calls from c took place agent j is not anymore
enabled. Hence the resulting infinite computation is fair.

When there are n ≥ 4 agents, the extreme cases in terms
of the lengths of possible call sequences are the same as in the
case of the LNS protocol. Indeed, let A = {a, b, c, d, i1, . . ., in−4}
be the set of agents. Then the sequence of (1) corresponds
to a terminating computation. Further, this protocol can

generate computations in which n(n−1)
2

calls are made. The
argument is the same as for the LNS protocol.

4. PROTOCOLS OVER DIRECTED RINGS
In this section we consider the case when the agents are

arranged in a directed ring, where n ≥ 3. For convenience we
take the set of agents to be {1, 2, . . ., n}. For i ∈ {1, . . ., n},
let i ⊕ 1 and i 	 1 denote respectively the successor and
predecessor of agent i. That is, for i ∈ {1, . . ., n− 1}, i ⊕
1 = i + 1, n ⊕ 1 = 1, for i ∈ {2, . . ., n}, i 	 1 = i − 1,
and 1 	 1 = n. For k > 1 we define i ⊕ k and i 	 k by
induction in the expected way. Again, when reasoning about
the protocols we denote the secret of agent i ∈ {1, . . ., n} by

4Other longest sequences are obviously possible, for in-
stance: 12, 13, ..., 1n, 23, 24, ..., 2n, 34, 35, .., 3n, ..., (n− 1)n.
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I. We consider four different protocols and study them with
respect to their correctness and (fair) termination.

In this set up, a call sequence over a directed ring is a
(possibly infinite) sequence of calls, all being of the same
communication mode, and all involving an agent i and i⊕1.
As before, we use c to denote such a call sequence and CDR
to denote the set of all call sequences over a directed ring.
In this section, unless stated otherwise, by a call sequence
we mean a sequence over a directed ring. The set of all such
finite call sequences is denoted C<ωDR. A gossip model for
a directed ring is a tuple MDR = (C<ωDR, {∼a}a∈A), where

each ∼a⊆ C<ωDR × C<ωDR is as in Definition 2.4. The truth
definition is as before, and the notion of a computation
tree for directed rings CPDR ⊆ C<ωDR of a ring protocol
P is analogous to the notion defined before. Note that by
restricting the domain inMDR to C<ωDR, the ring network—
and hence who is the successor of whom—becomes common
knowledge.

When presenting the protocols we use the fact that FiJ
is equivalent to KiFiJ .

Ring protocol R1.
Consider first a gossip protocol with the following program
for i:

∗[
n∨

j=1

(FiJ ∧Ki¬Fi⊕1J)→ i3i⊕ 1],

where 3 denotes the mode of communication, so ., / or
push-pull.

Informally, agent i calls his successor, agent i ⊕ 1, if i is
familiar with some secret and he knows that his successor is
not familiar with it.

Proposition 4.1. Let 3 = .. Protocol R1 terminates
and is correct.

Termination and correctness do not both hold for the
other communication modes. Consider first the pull com-
munication mode, i.e., 3 = /. Then the protocol does not
always terminate. Indeed, each call i / i⊕1 can be repeated.
Next, consider the push-pull communication mode. We show
that then the protocol is not correct. Indeed, take

c = (1, 2), (2, 3), . . ., (n− 1, n).

We claim that after the sequence of calls c the exit condition
of the protocol is true. To this end we consider each agent
in turn.

After c each agent i, where i 6= n is familiar the secrets
of the agents 1, 2, . . ., i + 1. Moreover, because of the call
(i, i+1) agent i knows that agent i+1 is familiar with these
secrets. So the exit condition of agent i is true.

To deal with agent n note that c ∼n c.(n− 2, n− 1).(n−
3, n− 2).. . .(2, 3).(1, 2). After the latter call sequence agent
1 becomes an expert. So after c agent n cannot know that
agent 1 is not familiar with some secret. Consequently, after
c the exit condition of agent n is true, as well. However,
after c agent 1 is not an expert, so the protocol is indeed
not correct.

In what follows we initially present the protocols assuming
the push-pull mode of communication.

Ring protocol R2.
Consider now a gossip protocol with the following program
for agent i:

∗[¬KiFi⊕1I 	 1→ (i, i⊕ 1)],

where (recall) I 	 1 denotes the secret of agent i 	 1. In-
formally, agent i calls his successor, agent i ⊕ 1, if i does
not know that his successor is familiar with the secret of i’s
predecessor, i.e., agent i	 1.

Proposition 4.2. If |A| ∈ {3, 4} then protocol R2 is cor-
rect.

However, this protocol is not correct for five or more agents.
To see it consider the sequence of calls

(1, 2), (2, 3), . . ., (n− 1, n), (n, 1), (1, 2)

where n ≥ 5. After it the exit condition of the protocol is
true. However, agent 3 is not familiar with the secret of
agent 5.

Note that the same argument shows that the protocol in
which we use ¬KiFi⊕1I∨¬KiFi⊕1I	1 instead of ¬KiFi⊕1I	
1 is incorrect, as well.

Moreover, this protocol does not always terminate. In-
deed, one possible computation consists of an agent i re-
peatedly calling his successor i⊕ 1.

Ring protocol R3.
Next, consider the following modification of protocol R2 in
which we use the following program for agent i:

∗[(¬
n∧

j=1

FiJ) ∨ ¬KiFi⊕1I 	 1→ (i, i⊕ 1)].

Informally, agent i calls his successor, agent i ⊕ 1, if i is
not familiar with all the secrets or i does not know that his
successor is familiar with the secret of his predecessor, agent
i	 1.

This gossip protocol is obviously correct thanks to the fact
that

∧n
i=1

∧n
j=1 FiJ is part of the exit condition. However,

it does not always terminate for the same reason as the pre-
vious one.

On the other hand, the following holds.

Proposition 4.3. Protocol R3 fairly terminates.

The same conclusions concerning non termination and fair
termination can be drawn for the push and the pull modes of
communication. Indeed, for push it suffices to consider the
sequence of calls i . i⊕1, i⊕1. i⊕2, . . ., i	1. i after which
agent i 	 1 becomes disabled, and for pull the sequence of
calls i / i⊕ 1, i	 1 / i, . . ., i⊕ 2 / i⊕ 3 after which agent i⊕ 2
becomes disabled.

Ring protocol R4.
Finally, we consider a protocol that is both correct and ter-
minates for the push-pull mode. Consider the following pro-
gram for i:

∗[
n∨

j=1

(FiJ ∧ ¬KiFi⊕1J)→ (i, i⊕ 1)].

Informally, agent i calls his successor, agent i ⊕ 1, if i is
familiar with some secret and he does not know whether
his successor is familiar with it. Note the similarity with
protocol R1.
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Protocol T FT T for . FT for . T for / FT for /
LNS yes yes no no yes yes
HMS yes yes yes yes no no
R3 no yes no yes no yes
R4 yes yes yes yes no yes

Table 1: Summary of termination results.

Proposition 4.4. Protocol R4 terminates and is correct.

If the communication mode is push, then the termination
argument remains valid, since after the call i . i ⊕ 1 agent
i⊕ 1 still learns all the secrets that agent i is familiar with
and hence the above set {(i, j) | ¬KiFi⊕1J} decreases.

If the communication mode is pull, then the protocol may
fail to terminate, because after the first call i / i ⊕ 1 agent
i ⊕ 1 does not learn the secret of agent i and consequently
the call can be repeated. However, the situation changes
when fairness is assumed.

Proposition 4.5. For the pull communication mode pro-
tocol R4 fairly terminates.

Table 1 summarizes the termination properties of the pro-
tocols considered in the paper.

5. CONCLUSIONS
The aim of this paper was to introduce distributed gossip

protocols, to set up a formal framework to reason about
them, and to illustrate it by means of an analysis of selected
protocols.

Our results open up several avenues for further research.
First, our correctness arguments were given in plain English
with occasional references to epistemic tautologies, such as
Kiφ → φ, but it should be possible to formalize them in
a customized epistemic logic. Such a logic should have a
protocol independent component that would consist of the
customary S5 axioms and a protocol dependent component
that would provide axioms that depend on the mode of com-
munication and the protocol in question. An example of
such an axiom is the formula KiFi⊕1I 	 1 → FiI ⊕ 1 that
we used when reasoning about protocol R2. To prove the
validity of the latter axioms one would need to develop a
proof system that allows us to compute the effect of the
calls, much like the computation of the strongest postcon-
ditions in Hoare logics. Once such a logic is provided the
next step will be to study formally its properties, including
decidability. Then we could clarify whether the provided
correctness proofs could be carried out automatically.

Second, generalizing further the ideas we introduced by
considering directed rings, gossip protocols could be stud-
ied in interface with network theory (see [13] for a textbook
presentation). Calls can be assumed to be constrained by a
network, much like in the literature on ‘centralized’ gossip
(cf. [10]) or even have probabilistic results (i.e., secrets are
passed with given probabilities). More complex properties
of gossip protocols could then be studied involving higher-
order knowledge or forms of group knowledge among neigh-
bors (e.g., “it is common knowledge among a and her neigh-
bors that they are all experts”), or their stochastic behavior
(e.g., “at some point in the future all agents are experts with
probability p”).

Third, it will be interesting to analyze the protocols for
the types of calls considered in [3]. They presuppose some
form of knowledge that a call took place (for instance that
given a call between a and b each agent c 6= a, b noted the call
but did not learn its content). Another option is to consider
multicasting (calling several agents at the same time).

Finally, many assumptions of the current setup could be
lifted. Different initial and final situations could be con-
sidered, for instance common knowledge of protocols could
be assumed, or common knowledge of the familiarity of all
agents with all the secrets upon termination could be re-
quired. Finally, to make the protocols more efficient passing
of tokens could be allowed instead of just the transmission
of secrets by means of calls.
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APPENDIX

Proof of Proposition 4.1.
Termination Given a call sequence c define the set

Inf (c) := {(i, j) | i, j ∈ {1, . . ., n} and (MDR, c) |= FiJ}.
After each enabled call i . i⊕1 in c, the set Inf (c) increases,
which ensures termination since each set Inf (·) has at most
n2 elements.
Correctness Consider a leaf of the computation tree. Then

the exit condition
n∧

i=1

n∧

j=1

(¬FiJ ∨ ¬Ki¬Fi⊕1J)

is true. We proceed by induction to show that then each FiJ
is true, where i, j ∈ {1, . . ., n}, and where the pairs (i, j) are
ordered as follows:

(1, 1), (2, 1), . . ., (n, 1),

(2, 2), (3, 2), . . ., (1, 2),

. . .,

(n, n), (1, n), . . ., (n− 1, n).

So the ith row lists the pairs (j, i) with j ∈ {1, . . ., n} ranging
clockwise, starting at i.

Take a pair (i, j). If i = j, then FiJ is true by assumption.
If i 6= j, then consider the pair that precedes it in the above
ordering. It is then of the form (i1, j), where i = i1 ⊕ 1.
By the induction hypothesis Fi1J is true, so by the exit
condition ¬Ki1¬FiJ is true.

Suppose now towards a contradiction that ¬Fi1⊕1J is
true. Then i1 ⊕ 1 6= j. Hence by virtue of the consid-
ered communication mode and Definition 2.4 it follows that
agent ii knows that ¬Fi1⊕1J is true since the only way for
i1 ⊕ 1 to become familiar with J is by means of a call from
i1. So Ki1¬FiJ is true. This yields a contradiction. Hence
FiJ is true.

So we showed, as desired, that
∧n
i=1

∧n
j=1 FiJ is true in

the considered leaf.

Proof of Proposition 4.2. To start with,
∧n
i=1 FiI is

true in every node of the computation tree. Suppose the exit
condition

∧n
i=1KiFi⊕1I 	 1 is true at a node of the compu-

tation tree (in short, true). It implies that
∧n
i=1 Fi⊕1I 	 1

is true. Fix i ∈ {1, . . ., n}. By the above FiI 	 2 is true.

Further, the implication KiFi⊕1I 	 1 → FiI 	 1 is true in
every node of the computation tree (remember, the agents
are positioned on a directed ring). If n = 3, this proves that∧n
j=1 FiJ is true.

If n = 4, we note that KiFi⊕1I 	 1 implies that agent i ⊕
1 learned I 	 1 through a call of agent i and hence the
implication KiFi⊕1I 	 1→ FiI ⊕ 1 is true in every node of
the computation tree, as well (remember that the mode is
push-pull). We conclude that

∧n
j=1 FiJ is true.

Proof of Proposition 4.3. First, note that the follow-
ing three statements are equivalent for each node c of an
arbitrary computation ξ and each agent i:

• i is disabled at c,

• (MDR, c) |= (
∧n
j=1 FiJ) ∧KiFi⊕1I 	 1,

• a sequence of calls (i⊕2, i⊕3), (i⊕3, i⊕4), . . ., (i, i⊕1)
(possibly interspersed with other calls) has taken place
in ξ before c.

Suppose now towards a contradiction that an infinite fair
computation ξ exists. We proceed by case distinction.

Case 1 Some agent becomes disabled in ξ.
We claim that if an agent i becomes disabled in ξ, then also
agent i ⊕ 1 becomes disabled in ξ. Indeed, otherwise by
fairness at some point in ξ after which i becomes disabled,
agent i⊕1 calls his successor, i⊕2, and by the above sequence
of equivalences in turn becomes disabled.

We conclude by induction that at some point in ξ all
agents become disabled and hence ξ terminates, which yields
a contradiction.
Case 2 No agent becomes disabled in ξ.

By fairness each agent calls in ξ infinitely often his successor.
So for every agent i there exists in ξ the sequence of calls
(i⊕2, i⊕3), (i⊕3, i⊕4), . . ., (i, i⊕1) (possibly interspersed
with other calls). By the above sequence of equivalences
after this sequence of calls agent i becomes disabled, which
yields a contradiction.

Proof of Proposition 4.4.
Termination It suffices to note that after each call (i, i⊕1)

the size of the set

{(i, j) ∈ A× A | ¬KiFi⊕1J}
decreases.
Correctness Consider a leaf of the computation tree. Then

the exit condition
n∧

i=1

n∧

j=1

(¬FiJ ∨KiFi⊕1J)

is true. As in the case of protocol R1 we prove that it implies
each FiJ is true by induction on the pairs (i, j), where i, j ∈
{1, . . ., n}, ordered as follows:

(1, 1), (2, 1), . . ., (n, 1),

(2, 2), (3, 2), . . ., (1, 2),

. . .,

(n, n), (1, n), . . ., (n− 1, n).

Take a pair (i, j). If i = j, then FiJ is true by assumption.
If i 6= j, then consider the pair that precedes it in the above
ordering, so (i1, j), where i = i1 ⊕ 1. By the induction
hypothesis Fi1J is true, so by the exit condition Ki1FiJ is
true and hence FiJ is true.
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Proof of Proposition 4.5. Consider the following se-
quence of statements:

(i) i is disabled at c,

(ii) (MDR, c) |= ∧n
j=1(FiJ → KiFi⊕1J),

(iii) (MDR, c) |= KiFi⊕1,

(iv) a sequence of calls i 	 1 / i, i 	 2 / i 	 1, . . ., i / i ⊕ 1
(possibly interspersed with other calls) has taken place
in ξ before c.

It is easy to verify that these statements are logically related
in the following way:

(i)⇔ (ii)⇒ (iii)⇒ (iv)⇒ (ii)

for each node c of an arbitrary computation ξ and each agent
i. They are therefore equivalent. Suppose now towards a
contradiction that an infinite fair computation ξ exists. As
in the proof of Proposition 4.3 we proceed by case distinc-
tion.
Case 1 Some agent becomes disabled in ξ.

We claim that if an agent i becomes disabled in ξ, then also
i 	 1 becomes disabled in ξ. Indeed, otherwise by fairness
at some point in ξ after which j becomes disabled, agent
i 	 1 calls his successor, i, and by the above sequence of
equivalences in turn becomes disabled.

We conclude by induction that at some point in ξ all
agents become disabled and hence ξ terminates, which yields
a contradiction.
Case 2 No agent becomes disabled in ξ.

By fairness each agent calls in ξ infinitely often his successor.
So for every agent i there exists in ξ a sequence of calls
i	 1 / i, i	 2 / i	 1, . . ., i / i⊕ 1 (possibly interspersed with
other calls). By the above sequence of equivalences, after
this sequence of calls agent i becomes disabled, which yields
a contradiction.
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ABSTRACT
We study natural strategic games on directed graphs, which
capture the idea of coordination in the absence of globally
common strategies. We show that these games do not need
to have a pure Nash equilibrium and that the problem of
determining their existence is NP-complete. The same holds
for strong equilibria. We also exhibit some classes of games
for which strong equilibria exist and prove that a strong
equilibrium can then be found in linear time.

1. INTRODUCTION
In this paper we study a simple and natural class of strate-

gic games. Assume a finite directed graph. Suppose that
each node selects a colour from a private set of colours
available for it. The payoff to a node is the number of
(in)neighbours who chose the same colour.
These games are typical examples of coordination games.

Recall that the idea behind coordination in strategic games
is that players are rewarded for choosing common strategies.
The games we study here are specific coordination games in
the absence of globally common strategies.
Recently, we studied in [2], and more fully in [3], a very

similar class of games in which the graphs were assumed to
be undirected. However, the transition from undirected to
directed graphs drastically changes the status of the games.
For instance, for the case of directed graphs Nash equilib-
ria do not need to exist, while they always exist when the
graph is undirected. Consequently, in [2] and [3] we focused
on the problem of existence of strong equilibria. We also ar-
gued there that such games are of relevance for the cluster
analysis, the task of which is to partition in a meaningful
way the nodes of a graph. The same applies here. Indeed,
once the strategies are possible cluster names, a Nash equi-
librium naturally corresponds to a ‘satisfactory’ clustering
of the underlying graph.
The above two classes of games are also similar in that

both are special cases of a number of well-studied types of
games. One of them are polymatrix games introduced in
[10]. In these games the payoff for each player is the sum of
the payoffs from the individual two player games he plays
with each other player separately. Another are graphical
games introduced in [11]. In these games the payoff of each
player depends only on the strategies of its neighbours in a
given in advance graph structure over the set of players.
In addition both classes of games satisfy the positive pop-

ulation monotonicity (PPM) property introduced in [12]
that states that the payoff of each player weakly increases if
another player switches to his strategy. Coordination games

on graphs are examples of games on networks, a vast re-
search area recently surveyed in [9]. Other related references
can be found in [3].

1.1 Plan of the paper and the results
In the next section we introduce preliminary definitions,

following [3]. We define the coordination games on directed
graphs in Section 3. In Section 4 we exhibit a number of
cases when a strong equilibrium exists. Next, in Section 5
we study complexity of the problem of existence of Nash
and strong equilibria and the problem of determining the
complexity of finding a strong equilibrium in a natural case
when it is known to exist. Finally, in Section 6 we discuss
future directions.
The main results are as follows. If the underlying graph is

a DAG, is complete or is such that every strongly connected
component (SCC) is a simple cycle, then strong equilibria
always exist and they can always be reached from any ini-
tial joint strategy by a sequence of coalitional improvement
steps. The same is the case when only two colours are used.
In general Nash equilibria do not need to exist and the

problem of determining their existence is NP-complete. The
same is the case for strong equilibria. We also show that
when every SCC is a simple cycle, then strong equilibrium
can always be found in linear time.

2. PRELIMINARIES
A strategic game G = (S1, . . . , Sn, p1, . . . , pn) with n > 1

players, consists of a non-empty set Si of strategies and a
payoff function pi : S1 × · · · × Sn→ R, for each player i.
We denote S1 × · · · × Sn by S, call each element s ∈

S a joint strategy and abbreviate the sequence (sj)j 6=i to
s−i. Occasionally we write (si, s−i) instead of s. We call a
strategy si of player i a best response to a joint strategy s−i
of his opponents if for all s′i ∈ Si, pi(si, s−i) ≥ pi(s′i, s−i).
Fix a strategic game G. We say that G satisfies the pos-

itive population monotonicity (PPM) if for all joint
strategies s and players i, j, pi(s) ≤ pi(si, s−j). (Note that
(si, s−j) refers to the joint strategy in which player j chooses
si.) So if more players (here just player j) choose player
i’s strategy and the remaining players do not change their
strategies, then i’s payoff weakly increases.
We call a non-empty subset K := {k1, . . . , km} of the set

of players N := {1, . . . , n} a coalition. Given a joint strat-
egy s we abbreviate the sequence (sk1 , . . . , skm ) of strategies
to sK and Sk1 × · · · × Skm to SK . We also write (sK , s−K)
instead of s. If there is a strategy x such that si = x for all
players i ∈ K, we also write (xK , s−K) for s.
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Given two joint strategies s′ and s and a coalition K, we
say that s′ is a deviation of the players in K from s if
K = {i ∈ N | si 6= s′i}. We denote this by s

K→s′. If in
addition pi(s′) > pi(s) holds for all i ∈ K, we say that the
deviation s′ from s is profitable. Further, we say that the
players in K can profitably deviate from s if there exists
a profitable deviation of these players from s.
Next, we call a joint strategy s a k-equilibrium, where

k ∈ {1, . . . , n}, if no coalition of at most k players can prof-
itably deviate from s. Using this definition, a Nash equi-
librium is a 1-equilibrium and a strong equilibrium, see
[5], is an n-equilibrium.
Given a joint strategy s, we call the sum

SW(s) =
∑

i∈N
pi(s)

the social welfare of s.
A coalitional improvement path, in short a c-improve-

ment path, is a maximal sequence ρ = (s1, s2, . . . ) of joint
strategies such that for every k > 1 there is a coalition
K such that sk is a profitable deviation of the players in
K from sk−1. If ρ is finite then by last(ρ) we denote the
last element of the sequence. Clearly, if a c-improvement
path is finite, its last element is a strong equilibrium. We
say that G has the finite c-improvement property (c-
FIP) if every c-improvement path is finite. Further, we
say that the function P : S → A, where A is a set, is a
generalized ordinal c-potential, also called generalized
strong potential, see [7, 8], for G if for some strict partial
ordering (P (S),�) the fact that s′ is a profitable deviation
of the players in some coalition from s implies that P (s′) �
P (s).
If a finite game admits a generalized ordinal c-potential

then it has the c-FIP. The converse also holds, see, e.g.,
[3]. We say that G is c-weakly acyclic if for every joint
strategy there exists a finite c-improvement path that starts
at it. Note that games that have the c-FIP or are c-weakly
acyclic game have a strong equilibrium.
We call a c-improvement path an improvement path if

each deviating coalition consists of one player. The notions
of a game having the FIP or being weakly acyclic, see
[15, 13], are then defined by referring to improvement paths
instead of c-improvement paths.

3. COORDINATION GAMES ON DIRECTED
GRAPHS

We now introduce the class of games we are interested
in. Fix a finite set of colours M and a weighted directed
graph (G,w) without self loops in which each edge e has
a non-negative weight we associated with. We say that a
node j is a neighbour of the node i if there is an edge j → i
in G. Let Ni denote the set of all neighbours of node i in
the graph G. By a colour assignment we mean a function
that assigns to each node of G a finite non-empty set of
colours. For technical reasons we also introduce the concept
of a bonus, which is a function β that to each node i and a
colour c assigns a natural number β(i, c). (We allow zero as
a natural number.)
Given a weighted graph (G,w), a colour assignment A and

a bonus function β we define a strategic game G(G,w,A, β)
as follows:
• the players are the nodes,

• the set of strategies of player (node) i is the set of
colours A(i); we refer to the strategies as colours and
to joint strategies as colourings,

• each payoff function is defined by

pi(s) =
∑

j∈Ni, si=sj

wj→i + β(i, si).

So each node simultaneously chooses a colour and the pay-
off to the node is the sum of the weights of the edges from its
neighbours that chose its colour augmented by the bonus to
the node from choosing the colour. We call these games co-
ordination games on directed graphs, from now on just
coordination games. Because weights are non-negative
each coordination game satisfies the PPM.
In the paper we mostly consider the case when all weights

are 1 and all bonuses are 0. Then each payoff function is
simply defined by

pi(s) := |{j ∈ Ni | si = sj}|.

Example 1. Consider the directed graph and the colour
assignment depicted in Figure 1.
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Figure 1: A directed graph with a colour assign-
ment.

Take the joint strategy s that consists of the underlined
strategies. Then the payoffs are as follows:

• 0 for the nodes 1, 7, 8 and 9,

• 1 for the nodes 2, 4, 5, 6,

• 2 for the node 3.

Note that the above joint strategy is not a Nash equilibrium.
For example, node 1 can profitably deviate to colour a. 2

In what follows we study the problem of existence of Nash
equilibria or strong equilibria in coordination games.
Finally, given a directed graph G and a set of nodes K,

we denote by G[K] the subgraph of G induced by K.

4. STRONG EQUILIBRIA
In this section we focus on the existence of strong equilib-

ria. To start with, we have the following positive result.
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Theorem 2. Every coordination game whose underlying
graph is a DAG has the c-FIP and a fortiori a strong equi-
librium. Further, each Nash equilibrium is a strong equilib-
rium.

Proof. Given a DAG G := (V,E), where V = {1, . . ., n},
we fix a permutation π of 1, . . ., n such that for all i, j ∈ V

if i < j, then (π(j)→ π(i)) 6∈ E. (1)

So if i < j, then the payoff of the node π(i) does not depend
on the strategy selected by the node π(j).
Then given a coordination game whose underlying di-

rected graph is the DAG G we associate with each joint
strategy s the sequence pπ(1)(s), . . ., pπ(n)(s) that we abbre-
viate to pπ(s). We now claim that pπ : S → Rn is a general-
ized ordinal c-potential when we take for the partial ordering
� on pπ(S) the lexicographic ordering >lex on the sequences
of reals.
Suppose that some coalition K profitably deviates from

the joint strategy s to s′. Choose the smallest j such that
π(j) ∈ K. Then pπ(j)(s′) > pπ(j)(s) and by (1) pπ(i)(s′) =
pπ(i)(s) for i < j. This implies that pπ(s′) >lex pπ(s), as
desired. Hence the game has the c-FIP.
To prove the second claim, take a Nash equilibrium s and

suppose it is not a strong equilibrium. Then some coalition
K can profitably deviate from s to s′. Choose the smallest
j such that π(j) ∈ K. Then pπ(j)(s′) > pπ(j)(s) and by (1)
the payoff of π(j) does not depend on the strategies selected
by the other members of the coalition K. Hence pπ(j)(s′) =
pπ(j)(s′π(j), s−π(j)), which contradicts the assumption that s
is a Nash equilibrium.

The next result deals with a class of coordination games
introduced in [3]. Given the set of colours M , we say that
a directed graph G is colour complete (with respect to a
colour assignment A) if for every colour x ∈ M each com-
ponent of G[Vx] is complete, where Vx = {i ∈ V | x ∈ Ai}.
In particular, every complete graph is colour complete.

Theorem 3. Every coordination game on a colour com-
plete directed graph has the c-FIP and a fortiori a strong
equilibrium.

Proof. In [3] it is proved that every uniform game has
the c-FIP, where we call a coordination game on a directed
graph G uniform if for every joint strategy s and for every
edge i→ j ∈ E it holds: if si = sj then pi(s) = pj(s). (In [3]
only undirected graphs are considered, but the proof remains
valid without any change.) Clearly every coordination game
on a colour complete directed graph is uniform.

It is difficult to come up with other classes of directed
graphs for which the coordination game has the c-FIP. In-
deed, consider the following example.

Example 4. Consider a coordination game on a simple
cycle 1→ 2→ . . .→ n→ 1, where n ≥ 3 and such that the
nodes share at least two colours, say a and b. Take the initial
colouring (a, b, . . ., b). Then both (a, b, b, . . ., b), (a, a, b, . . ., b)
and (a, a, b, . . ., b), (b, a, b, . . ., b) are profitable deviations. (To
increase readability we underlined the strategies that were
modified.) After these two steps we obtain a colouring that
is a rotation of the first one. Iterating we obtain an infinite
improvement path.
Hence the coordination game does not have the FIP and

a fortiori the c-FIP. 2

However, a weaker result holds, which, for reasons that
will soon become clear, we prove for a larger class of games.

Theorem 5. Every coordination game with bonuses on a
simple cycle is c-weakly acyclic, so a fortiori has a strong
equilibrium.

To prove it, we first establish a weaker claim.

Lemma 6. Every coordination game with bonuses on a
simple cycle is weakly acyclic.

Proof. To fix the notation, suppose that the considered
graph is 1 → 2 → . . . → n → 1. Below for i ∈ {2, . . ., n},
i	 1 = i− 1, and 1	 1 = n.
Let MA(i) be the set of available colours to player i with

the maximal bonus, i.e., MA(i) = {c ∈ A(i) | β(i, c) =
maxd∈A(i) β(i, d)}. Let
BR(i, s−i) = {c ∈ MA(i) | colour c is a best response

of player i to s−i}

be the set of best responses among the colours with the high-
est bonus only. The set BR(i, s−i) is never empty because
of the game structure and the fact that bonuses are natural
numbers. Indeed, if si	1 ∈ MA(i), then BR(i, s−i) = {si	1}
and otherwise BR(i, s−i) is a non-empty subset of MA(i).
Below we stipulate that whenever a player i updates in

a joint strategy s his strategy to a best response to s−i, he
always selects a strategy from BR(i, s−i).
Consider an initial joint strategy s. We construct a finite

improvement path that starts with s as follows.
Phase 1. We proceed around the cycle and consider the
players 1, 2, . . . , n−1 in that order. For each player in turn,
if his current strategy is not a best response, we update it
to a best response respecting the above proviso. When this
phase ends the current strategy of each of the players 1, 2,
. . . , n− 1 is a best response.
If at this moment the current strategy of player n is also

a best response, the current joint strategy s′ is a Nash equi-
librium and the path is constructed. Otherwise we move to
the next phase.
Phase 2. We repeat the same process as in Phase 1, but
starting with s′ and player n and proceeding at most n steps.
From now on at each step at least n− 1 players have a best
response strategy. So if at a certain moment the current
strategy of the considered player is a best response, the cur-
rent joint strategy is a Nash equilibrium and the path is
constructed. Otherwise, after n steps, we move to the final
phase.
Phase 3. We repeat the same process as in Phase 2. Now
in the initial joint strategy each player i has a strategy from
MA(i). Because of the definition of BR(i, s−i) each player
can improve his payoff only if he switches to the strategy
selected by his predecessor. So after at most n steps this
phase terminates and we obtain a Nash equilibrium.

By Lemma 6 every coordination game on a simple cycle
has a Nash equilibrium. However, not every Nash equilib-
rium is then a strong equilibrium.

Example 7. Consider the directed graph depicted in Fig-
ure 2, together with the sets of colours associated with the
nodes.
Clearly (a, b) is a Nash equilibrium. However, it is not

a strong equilibrium since the coalition {1, 2} can profitably
deviate to (c, c), which is a strong equilibrium. 2
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Figure 2: Nash equilibria versus strong equilibria

On the other hand, the following observation holds.

Lemma 8. Consider a coordination game with bonuses on
a simple cycle with n nodes. Then every Nash equilibrium
is a k-equilibrium for all k ∈ {1, . . ., n− 1}.

Proof. Take a Nash equilibrium s. It suffices to prove
that it is an (n − 1)-equilibrium. Suppose otherwise. Then
for some coalition K of size ≤ n− 1 and a joint strategy s′,
s
K→s′ is a profitable deviation.
Assume k 	 1 = k − 1 if k > 1 and 1	 1 = n. Take some

i ∈ K such that i 	 1 6∈ K. We have pi(s′) > pi(s). Also
pi(s′i, s−i) = pi(s′), since si	1 = s′i	1. So pi(s′i, s−i) > pi(s),
which contradicts the fact that s is a Nash equilibrium.

Proof of Theorem 5. Take a joint strategy s. By Lemma 6
a finite improvement path starts at s and ends in a Nash
equilibrium s′. By Lemma 8 s′ is an (n − 1)-equilibrium.
If s′ is not a strong equilibrium, then a profitable deviation
s′
N→s′′ exists, where, recall, N is the set of all players. Be-

cause of the game structure the social welfare along each
c-improvement path weakly increases, while in the last step
the social welfare strictly increases. So SW(s′′) > SW(s).
If s′′ is not a strong equilibrium, we repeat the above pro-

cedure starting with s′′. Since each time the social welfare
strictly increases, eventually this process stops and we ob-
tain a finite c-improvement path. 2

Using Theorem 5, we now show that every coordination
game in which all strongly connected components are simple
cycles is c-weakly acyclic. We first introduce some notations
and make use of the following well-known decomposition
result.

Theorem 9 ([6], page 92). Every directed graph is a
directed acyclic graph (DAG) of its strongly connected com-
ponents (SCCs).

Given a graph G = (V,E), let D = (VD, ED) be the
corresponding DAG obtained by the above decomposition
theorem and let g : 2V → VD be the function that maps
each SCC in G to a node in D. Let g−1(v) = X ⊆ V where
g(X) = v. Note that for each i ∈ V , there is a unique
v ∈ VD such that i ∈ g−1(v), we denote this node by vi. Let
|VD| = m and θ = (θ1, θ2, . . . , θm) be a topological ordering
of VD (this is well-defined since D is a DAG). We define
a labelling function lD : VD → {1, . . . ,m} as follows: for
all v ∈ VD, lD(v) = j iff θj = v. We can extend lD to
a function l : V → {1, . . . ,m} in the natural way: for all
i ∈ V , l(i) = lD(v) if i ∈ g−1(v).
Note that for each node v ∈ VD, either g−1(v) = {i} for

some i ∈ V or g−1(v) = X ⊆ V with |X| ≥ 2 and the
subgraph of G induced by the set of nodes X forms an SCC.
Also, note that every v ∈ VD and a joint strategy s in G,
defines a coordination game with bonuses Gv on the graph
G(v, s) = (V ′, E′) which is the subgraph induced by the set
of nodes V ′ = g−1(v). For i ∈ V ′ and a ∈ A(i) we put
β(i, a) := |{j ∈ Ni \ V ′ | sj = a}|.

Theorem 10. Every coordination game on a directed graph
G in which all strongly connected components of G are sim-
ple cycles is c-weakly acyclic and a fortiori has a strong equi-
librium.

Proof. Consider a coordination game G on a graph G =
(V,E) where all SCCs are simple cycles. Let D = (VD, ED)
be the corresponding DAG with |VD| = m. Since all SCCs
in G are simple cycles, it follows that for all v ∈ VD, either
g−1(v) = {i} or g−1(v) = X ⊆ V such that the induced
graph on X forms a simple cycle in G.
Let v ∈ VD such that the induced graph on g−1(v) forms a

simple cycle in G. For a joint strategy t in G, consider the re-
sulting game Gv on the graph (V ′, E′), the subgraph induced
by the set of nodes g−1(v). Let s0 = tV ′ (the restriction of
the joint strategy t to nodes in V ′) and let ρ : s0, s1, . . . , sk

be a finite c-improvement path in Gv which is guaranteed to
exist by Theorem 5. Define CPath(Gv, t) as follows:

CPath(Gv, t) =
{
ε if tV ′ is a strong equilibrium in Gv,
λt(s1), . . . , λt(sk) otherwise,

where for all h ∈ {1, . . . , k}, λt(sh) is the joint strategy in
G defined as: for all i ∈ V , (λt(sh))i = shi if i ∈ V ′ and
(λt(sh))i = ti if i 6∈ V ′.
For a joint strategy t in G and v ∈ VD, if the underlying

graph of the coordination game Gv with bonuses consists of
exactly one node, then the game is trivially c-weakly acyclic
and we define CPath(Gv, t) analogously.
Let t0 be an arbitrary joint strategy in G. We define a

sequence of sequences of joint strategies as follows:
• ρ0 = t0,

• for h ∈ {0, 1, . . . ,m− 1}, let ρh+1 = ρh ·CPath(Gv, th)
where lD(v) = h+ 1 and th = last(ρh).

Let ρ = ρm. From the definition of ρm and CPath, it
follows that ρ is a finite sequence of joint strategies in G.
By induction on the length of ρ, we can show that for every
subsequent pair of joint strategies tk and tk+1 in ρ, there
is a coalition K ⊆ V for which tk+1 is a profitable devi-
ation from tk. To complete the proof, it suffices to argue
that ρ is maximal, or equivalently, that last(ρ) is a strong
equilibrium.
Suppose last(ρ) is not a strong equilibrium. Then there

exists K ⊆ V and a joint strategy s such that there is a
profitable deviation of players in K from last(ρ) to s. Let d
be the least element of the set {l(i) | i ∈ K} and X = K ∩
{i ∈ V | l(i) = d}. By definition of a profitable deviation,
we have that for all i ∈ X, pi(s) > pi(last(ρ)). Note that
for all i ∈ X and for all j ∈ Ni \ g−1(vi), we have l(j) < d.
Therefore, (Ni \ g−1(vi)) ∩ K = ∅. Also note that for all
j ∈ g−1(vi), (last(ρd))j = (last(ρ))j . But this implies that
the coalition X has a profitable deviation from the joint
strategy (last(ρd))X to sX in the game Gvi . This contradicts
the fact that last(ρd) is a strong equilibrium in the game
Gvi .

We conclude this section by considering another class of
coordination games. Example 4 shows that even when only
two colours are used, the coordination game does not need
to have the c-FIP. On the other hand, a weaker property
does hold.

Theorem 11. Every coordination game in which only two
colours are used is c-weakly acyclic and a fortiori has a
strong equilibrium.
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Proof. We prove the result for a more general class of
games, namely the ones that satisfy the PPM. Call the
colours blue and red, that we abbreviate to b and r. When
a node selected blue we refer to it as a blue node, and the
same for the red colour.
Take a joint strategy s1. Consider a maximal sequence

ξ of profitable deviations of the coalitions starting in s in
which the nodes can only switch to blue. At each step the
number of blue nodes increases, so ξ is finite. Let s1, . . ., sk,
where k ≥ 1, be the successive joint strategies of ξ.
If sk is a strong equilibrium, then ξ is the desired finite

improvement path. Otherwise consider a maximal sequence
χ of profitable deviations of the coalitions starting in sk

in which the nodes can only switch to red. χ is finite. Let
sk, sk+1, . . ., sk+l, where l ≥ 1, be the successive joint strate-
gies of χ.
We claim that sk+l is a strong equilibrium. Suppose oth-

erwise. Then for some joint strategy s′, sk+l K→s′ is a prof-
itable deviation of some coalition K. Let L be the set of
nodes from K that switched in this deviation to blue. By
the definition of sk+l the set L is non-empty.
Given a set of nodesM and a joint strategy s we denote by

(M : b, s−M ) the joint strategy obtained from s by letting
the nodes in M to select blue, and similarly for the red
colour. Also it should be clear what joint strategy we denote
by (M : b, P \M : r, s−P ), where M ⊆ P .
We claim that sk+l L→(L : b, sk+l

−L ) is a profitable deviation
of the players in L. Indeed, we have for all i ∈ L

pi(L : b, sk+l
−L ) > pi(sk+l), (2)

since by the PPM pi(L : b, sk+l
−L ) ≥ pi(s′) and by the as-

sumption pi(s′) > pi(sk+l).
Let M be the set of nodes from L that are red in sk.

Suppose that M is non-empty. We show that then

pM (M : r, L \M : b, sk−L) < pM (M : b, L \M : b, sk−L). (3)

Indeed, we have for all i ∈M
pi(M : r, L \M : b, sk−L) ≤ pi(M : r, L \M : b, sk+l

−L )
≤ pi(M : r, L \M : r, sk+l

−L ) < pi(M : b, L \M : b, sk+l
−L )

≤ pi(M : b, L \M : b, sk−L),

where the weak inequalities are due to the PPM and the
strict inequality holds by the definition of L.
But sk = (M : r, L \M : b, sk−L), so (3) contradicts the

definition of sk. So M is empty, i.e., all nodes from L are
blue in sk. We now have for all i ∈ L

pi(L : r, sk−L) ≤ pi(L : r, sk+l
−L ) = pi(sk+l)

< pi(L : b, sk+l
−L ) ≤ pi(L : b, sk−L),

where again the weak inequalities are due to the PPM and
the strict inequality holds by (2).
But (L : r, sk−L) = sk, so we proved that sk L→(L : b, sk−L)

is a profitable deviation. This yields a contradiction with
the definition of sk.

The following example shows that when three colours are
used, Nash equilibria, so a fortiori strong equilibria do not
need to exist.

Example 12. Consider the directed graph depicted in Fig-
ure 1 of Example 1, together with the sets of colours asso-
ciated with the nodes. We argue that the coordination game

associated with this graph does not have a Nash equilibrium.
Note that for nodes 7, 8 and 9 the only option is to select
the unique strategy in its strategy set. The best response for
nodes 4, 5 and 6 is to always select the same strategy as
nodes 1, 2 and 3 respectively. Therefore, to show that the
game does not have a Nash equilibrium, it suffices to con-
sider the strategies of nodes 1, 2 and 3. We denote this by
the triple (s1, s2, s3). Below we list all such joint strategies
and we underline a strategy that is not a best response to the
choice of other players: (a, a, b), (a, a, c), (a, c, b), (a, c, c),
(b, a, b), (b, a, c), (b, c, b) and (b, c, c). 2

Call now a graph a coloured DAG (with respect to a
colour assignment A) if for each available colour x the com-
ponents of the subgraph induced by the nodes having colour
x are DAGs. In view of Theorem 3 it is tempting to try to
generalize Theorem 2 to coloured DAGs. However, the di-
rected graph depicted in Figure 1 is a coloured DAG and,
as explained in the above example, the coordination game
on this graph has no Nash equilibrium.

5. COMPLEXITY ISSUES
Next, we study the complexity of the existence problems

and of the problem of finding strong equilibria.

Theorem 13. The Nash equilibrium existence problem in
coordination games is NP-complete.

Proof. The problem is in NP, since we can simply guess
a colour assignment and checking whether it is a Nash equi-
librium can be done in polynomial time.
To prove NP-hardness we provide a reduction from the

3-SAT problem, which is NP-complete. Notice that an edge
with a natural number weight w can be simulated by adding
w extra players to the game. More precisely, an edge (i →
j) with the weight w can be simulated by the extra set
of players {i1, . . . , iw} and the following 2 · w unweighted
edges: {(i → i1), (i → i2), . . . , (i → iw), (i1 → j), (i2 →
j), . . . , (iw → j)}. Given a colour assignment in the game
with the weighted edges, we then assign to each of the nodes
i1, . . ., iw the colour set of the node i.
Therefore we will assume that edges can have such weights

assigned to them, because this simplifies our construction.
Assume we are given a 3-SAT formula

φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ . . . ∧ (ak ∨ bk ∨ ck)

with k clauses and n propositional variables x1, . . . , xn, where
each ai, bi, ci is a literal equal to xj or ¬xj for some j. We
will construct a coordination game Gφ of size O(k) such that
Gφ has a Nash equilibrium iff φ is satisfiable.
First, for every propositional variable xi we have a corre-

sponding node Xi in Gφ with two possible colours > and ⊥.
Intuitively, for a given truth assignment, if xi is true then >
should be chosen for Xi and otherwise ⊥ should be chosen.
In our construction we make use of the following gadget, de-
noted by Di(x, y, z), with three parameters x, y, z ∈ {>,⊥}
and i used just for labelling purposes, and presented in Fig-
ure 3. This gadget behaves similarly to the game without
Nash equilibrium analyzed in Example 12.
What is important is that for all possible parameters val-

ues, the gadget Di(x, y, z) does not have a Nash equilibrium.
Indeed, each of the nodes Ai, Bi, or Ci can always secure
a payoff 2, so selecting > or ⊥ is never a best response and

61



X1

{>,⊥}

X2

{>,⊥}

X3

{>,⊥}

X4

{>,⊥}

· · · Xn

{>,⊥}

4{•}

1 {•, •,⊥}

3{•, •,>} 2 {•, •>}

6 {•} 5{•}

1

1

1

2

2 2

4
4

4

4′ {•}

1′ {•, •,>}

3′{•, •,⊥} 2′ {•, •,⊥}

6′ {•} 5′{•}

1

1

1

2

2 2

4
4

4

. . .
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Figure 3: Gadget Di with three parameters x, y, z ∈
{>,⊥} and three distinguished nodes Ai, Bi, Ci.

hence in no Nash equilibrium a node chooses > or ⊥. The
rest of the reasoning is as in Example 12.
For any literal, l, let

pos(l) :=
{
> if l is a positive literal
⊥ otherwise

For every clause (ai∨bi∨ci) in φ we add to the game graph
Gφ the Di(pos(ai), pos(bi),pos(ci)) instance of the gadget.
Finally, for every literal ai, bi, or ci in φ, which is equal to
xj or ¬xj for some j, we add an edge from Xj to Ai, Bi, or
Ci, respectively, with weight 4. We depict an example game
Gφ in Figure 4.
We claim that Gφ has a Nash equilibrium iff φ is satisfiable.

(⇒) Assume there is a Nash equilibrium s in the game Gφ.
We claim that the truth assignment ν : {x1, . . . , xn} →
{>,⊥} that assigns to each xj the colour selected by the
node Xj in s makes φ true. Fix i ∈ {1, . . ., k}. We need to
show that ν makes one of the literals ai, bi, ci of the clause
(ai ∨ bi ∨ ci) true.
From the above observation about the gadgets it follows

that at least one of the nodes Ai, Bi, Ci selected in s the
same colour as its neighbour Xj . Without loss of generality
suppose it is Ai. The only colour these two nodes, Ai and
Xj , have in common is pos(ai). So Xj selected in s pos(ai),
which by the definition of ν equals ν(xj). Moreover, by
construction xj is the variable of the literal ai. But ν(xj) =
pos(ai) implies that ν makes ai true.
(⇐) Assume φ is satisfiable. Take a truth assignment ν :
{x1, . . . , xn} → {>,⊥} that makes φ true. For all j, we
assign to the node Xj the colour ν(xj). We claim that this
assignment can be extended to a Nash equilibrium in Gφ.
Fix i ∈ {1, . . ., k} and consider theDi(pos(ai),pos(bi), pos(ci))

instance of the gadget. The truth assignment ν makes the
clause (ai ∨ bi ∨ ci) true. Suppose without loss of general-
ity that ν makes ai true. We claim that then it is always
a unique best response for the node Ai to select the colour
pos(ai).
Indeed, let j be such that ai = xj or ai = ¬xj . Notice that

the fact that ν makes ai true implies that ν(xj) = pos(ai).
So when node Ai selects pos(ai), the colour assigned to Xj ,
its payoff is 4.
This partial assignment of colours can be completed to a

Nash equilibrium. Indeed, remove from the directed graph
of Gφ all Xj nodes and the nodes that secured the pay-
off 4, together with the edges that use any of these nodes.
The resulting graph has no cycles, so by Theorem 2 the
corresponding coordination game has a Nash equilibrium.
Combining both assignments of colours we obtain a Nash
equilibrium in Gφ.

Corollary 14. The strong equilibrium existence prob-
lem in coordination games is NP-complete.

Proof. It suffices to note that in the above proof the (⇒)
implication holds for a strong equilibrium, as well, while in
the proof of the (⇐) implication by virtue of Theorem 2
actually a strong equilibrium is constructed.

An interesting application of Theorem 13 is in the context
of polymatrix games. These are finite strategic form games
in which the influence of a pure strategy selected by any
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player on the payoff of any other player is always the same,
regardless of what strategies other players select. Formally,
for all pairs of players i and j there exists a partial payoff
function aij such that for any joint strategy s = (s1, . . . , sn),
the payoff of player i is given by pi(s) :=

∑
j 6=i a

ij(si, sj).
In [14] we proved that deciding whether a polymatrix game
has a Nash equilibrium is NP-complete. We can strengthen
this result as follows.

Theorem 15. Deciding whether a polymatrix game with
0/1 partial payoffs has a Nash equilibrium is NP-complete.

Proof. We can efficiently translate any coordination game
G(G,M,w,A, β) into a polymatrix game P with only 0/1
partial payoff as follows. The number of players in P will
be equal to the number of nodes in G and the set of strate-
gies for each player will be M . We define aij(si, sj) := 1 if
si = sj and j ∈ Ni, and aij(si, sj) := 0 otherwise.
Notice that any joint strategy s = (s1, . . . , sn) in G is

also a joint strategy in M with exactly the same payoff,
because pPi (s) =

∑
j 6=i a

ij(si, sj) = |{j ∈ Ni | si = sj}| =
pGi (s). It follows that Nash equilibria in G and P coincide.
In particular, there exists Nash equilibrium in G if and only
if there exists one in P, but the former problem was shown
to be NP-hard in Theorem 13, so the latter is also NP-hard.
On the other hand, for any polymatrix game we can guess
a joint strategy and check whether it is a Nash equilibrium
in polynomial time, which shows this decision problem is in
fact NP-complete.

Next, we determine the complexity of finding a strong
equilibrium. We begin with the following auxiliary result.

Theorem 16. A strong equilibrium of a coordination game
with bonuses on a simple cycle can be found in linear time.

Proof. Let n be the number of players in the game and
C the number of possible colours. We assume adjacency
list representation for the game graph, binary representa-
tion of the bonuses and that the list of colours available to
player i is given as a list of length |A(i)| of elements of size
logC. Formally, the size of the input for player i only is
Θ(|A(i)| logC +

∑
c∈A(i) log(β(i, c) + 1)); the sum of these

over i = 1, . . . , n gives the total size of the input.
First note that for any colour assignment, the best re-

sponse of the i-th player can be found in time linear in
the size of her part of the input just by checking all pos-
sible colours in A(i). Second, each phase of the algorithm
in Lemma 6 looks for the best response (with a preference
given to colours with a higher bonus) of each player at most
once, which will require time linear in the size of the whole
input. The algorithm requires at most three such phases
before a Nash equilibrium is found, so it runs in linear time.
Note that thanks to Lemma 8 we know that any NE in

such a game structure is already a (n − 1)-equilibrium, so
the only way this joint strategy is not a strong equilibrium
is when all n players can strictly improve their payoff. How-
ever, in any Nash equilibrium a player has to have her payoff
at at most one below the maximum possible one, because
that is the minimum payoff for picking a colour with the
highest bonus. Moreover, player’s payoff can only be a nat-
ural number.
Therefore, the only possibility when a NE is not a strong

equilibrium is when there is a joint strategy which gives all

the players their maximum possible payoff, i.e. each player
is assigned a colour with the highest possible bonus as well
as gets an extra +1 to her payoff for colour agreement with
her only neighbour. The latter implies that all the players
need to pick the same colour in such a joint strategy.
To check whether such a joint strategy exists we do the

following. Let p = argmini|A(i)| be the player with the least
number of colours to choose from. We pick the set of her
colours with the maximal bonus and intersect it with the set
of colours with the maximal bonus for every other player.
An intersection of two sets represented as lists of length a
and b of elements of size K can be done in Θ(aK + bK)
time, so the total running time will be Θ(n|A(p)| logC +∑n

i=1 |A(i)| logC) = Θ(
∑n

i=1 |A(i)| logC), because |A(p)| ≤
|A(i)| for all i, which is linear. If the final set is empty then
any NE is a strong equilibrium and otherwise we know how
to construct one.

Corollary 17. A strong equilibrium of a coordination
game on a graph in which all strongly connected components
are simple cycles can be computed in linear time. 2

6. CONCLUSIONS
We presented here a study of a simple class of coordination

games on directed graphs. We focused on the existence of
Nash and strong equilibria. We also studied the complexity
of checking for the existence of Nash and strong equilibria,
as well as the complexity of computing a strong equilibrium
in certain cases where it is guaranteed to exist.
A number of open problems remain. We showed that in

general Nash equilibria and strong equilibria are not guaran-
teed to exist. However, if the underlying graph is a DAG, is
colour complete or is such that every SCC is a simple cycle,
then strong equilibria always exist. It would be interesting
to identify other classes of graphs for which Nash or strong
equilibria exist.
The proof of Lemma 6 shows that in the case of a simple

cycle, starting from any initial joint strategy a Nash equi-
librium can be found by an improvement path of length at
most 3n. Also, each step of such a path can be constructed
in linear time. Additionally, the proof of Theorem 5 shows
that a strong equilibrium can be found by an improvement
path of length at most 3n + 1, possibly augmented by a
single profitable deviation of all players. It would be inter-
esting to extend this analysis of bounds on the lengths of
improvement paths to other cases when a Nash or a strong
equilibrium is known to exist.
In the future we plan to study the inefficiency of equi-

libria in coordination games on directed graphs. Also, we
plan to study coordination games on finite directed weighted
graphs. While we already defined here these games, we used
weights solely as a means to simplify the argument in the
proof of Theorem 13. It should be noted that Lemma 6
does not hold for finite directed weighted graphs and, as a
consequence, Theorems 5, 10, and 16 do not hold either. A
counterexample to Lemma 6 can be constructed by modi-
fying the game in Figure 1 as follows. Nodes 4, 5, 6 are
removed and replaced by assigning weight 2 to all the edges
in the cycle. Nodes 7, 8, 9 are also removed and replaced
by a +1 bonus to the colour of the node removed. It is easy
to see that the behaviour of this new game will mimic the
game in Figure 1. On the other hand, Theorem 2 and its
proof is still valid for finite directed weighted graphs as well
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is Theorem 13, because checking whether a colour assign-
ment is a Nash equilibrium can still be done in polynomial
time for them.
As an example of coordination games on weighted directed

graphs consider the problem of a choice of the trade treaties
between various countries. Assume a directed weighted graph
in which the nodes are the countries and the weight on an
edge i→ j corresponds to the percentage of the overall im-
port of country j from country i. Suppose additionally that
each country should choose a specific trade treaty, that the
options for the countries differ (for instance because of its
geographic location) and that each treaty offers the same
tax-free advantages. Then once the countries choose the
treaties, the payoff to each country is the aggregate per-
centage of its import that is tax-free.
The case of weighted directed graphs can be seen as a mi-

nor modification of the social network games with oblig-
atory product selection that we introduced and analyzed in
[4]. These are games associated with a threshold model of a
social network introduced in [1] which is based on weighted
graphs with thresholds. The difference consists of using
thresholds equal to 0. However, setting the thresholds to
0 essentially changes the nature of the games and crucially
affects the validity of several arguments.
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ABSTRACT
We investigate the issues of inductive problem-solving and
learning by doxastic agents. We provide topological charac-
terizations of solvability and learnability, and we use them to
prove that AGM-style belief revision is “universal”, i.e., that
every solvable problem is solvable by AGM conditioning.
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1. INTRODUCTION
When in the course of observations it becomes necessary

for agents to arrive at a generalization, they should declare,
along with their conjecture, the extent of their certainty.
The problem of induction seems formidable if a standard of
absolute certainty is imposed on the learner. Indeed, as is
well-known in Philosophy of Science, the so-called problem
of empirical underdetermination (i.e., the fact that typically
the data are compatible with more than one hypothesis)
rules out any chance of obtaining infallible knowledge in
empirical research. But apart from the conclusions based
on absolute certainty (cf. [13, 10, 15]), learners can produce
hypotheses based on beliefs. It is thus strange that Formal
Learning Theory and Belief Revision Theory developed com-
pletely independently from each other, and that they have
generally maintained their distance ever since.

However, there does exist a line of research that combines
belief revision with learning-theoretic notions, line pursued
by Kelly [21, 20], Kelly, Schulte and Hendricks [26], Martin
and Osherson [28], Osherson [29] and ourselves [13, 3, 4,
14]. In this paper we continue this research program, using
topological characterizations and methods.

An inductive problem consists of a state space, a family of
“potential observations”, and a“question” (i.e., a partition of
the state space). These observations provide data for learn-
ing. The problem is solvable if there exists a learner that,
after observing “enough” pieces of data, eventually stabi-
lizes on the correct answer. A special case of solvability is
learnability in the limit, corresponding to the solvability of
the “ultimate” question: ‘What is the actual state of the
world?’. This notion matches the usual learning-theoretic
concept of identifiability in the limit [32, 16, 30].

The aim of the paper is twofold. First, we give topo-
logical characterizations of the notions of solvability (and
learnability), in terms of topological separation principles.
Intuitively, the ability to reliably learn the true answer to a

question, is related to the ability to “separate” answers by
observations. The second goal is to use these topological
results to look at the “solving power” of well-behaved dox-
astic agents, such as the ones whose beliefs satisfy the usual
KD45 postulates of doxastic logic, as well as the standard
AGM postulates of rational belief-revision [1]. We look at
a particularly simple and canonical type of doxastic agent,
who forms beliefs by AGM conditioning.

Our main result is that AGM conditioning is universal
for problem-solving, i.e., that every solvable problem can be
solved by AGM conditioning. This means that (contrary to
some prior claims), AGM belief-revision postulates are not
an obstacle to problem-solving. As a special case, it follows
that AGM conditioning is also“universal for learning”(every
learnable space can be learned by conditioning).1

The close connections between Epistemology and General
Topology have already been noticed long ago [33, 19]. Based
on these connections, Kevin Kelly started a far-reaching
program [19, 22] meant to import ideas and techniques
from both Formal Learning Theory and Topology into main-
stream Epistemology, and show their relevance to the induc-
tion problem in Philosophy of Science. A further connection
is the one with Ockham’s Razor, that would

(...) guarantee that always choosing the simplest
theory compatible with experience and hanging on
to it while it remains the simplest is both neces-
sary and sufficient for efficiency of inquiry. [22]

Simplicity has been claimed to have topological
characteristics—the simplicity order should in some
way follow the structure imposed on the uncertainty range
by possible tests and observations. It has also been linked
with the notion of minimal mind change, where the learning
agent keeps the conjecture changes to a minimum [19, 31].

Taken together, our results can be seen as a vindication
both of the general topological program in Inductive Epis-
temology [19, 22] and of the AGM Belief Revision Theory
[1]. On the first front, our general topological characteriza-
tions of learning-theoretic concepts seem to confirm Kelly’s
long-standing claim that Inductive Epistemology can be seen
mathematically as a branch of General Topology. On the
second front, our universality result seems to vindicate Be-

1This special case is a topological translation of one of our
previous results [3, 4]. However, the result about problem-
solving universality is not only new and much more general,
but also much harder to prove, involving new topological
notions and results.
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lief Revision Theory as a canonical form of learning.2

2. EPISTEMIC SPACES AND INDUCTIVE
PROBLEMS

Definition 1. An epistemic space is a pair S = (S,O)
consisting of a state space S and a countable (or finite) set
of observable properties (“data”) O ⊆ P(S). We denote by
by Os := {O ∈ O | s ∈ O} the set of all observable properties
(holding) at a given state s.

One can think of the states in S as “possible worlds”, in
the tradition of Kripke and Lewis.The sets O ∈ O represent
properties of the world that are in principle observable: if
true, such a property will eventually be observed (although
there is no upper bound on the time needed to come to
observe it).

To keep things simple, we assume that at each step of the
learning process only one property is observed. As for the
countability of the set O, it is natural to think of observables
as properties which can be expressed by means of a language
or numerical coding system, generated from a grammar with
a finite vocabulary. Any such family O will be (at most)
countable.

We denote by O∩ the family of all finite intersections
of observations from O, and by O∗ the family of all fi-
nite sequences of observations. Such a finite sequence σ =
(O0, O1, . . . , Oi) ∈ O∗ is called a data sequence, and its i-th
component is denoted by σi := Oi. It is easy to see that
both O∩ and O∗ are countable.

A data stream is a countable sequence ~O = (O0, O1, . . .) ∈
Oω of data from O. (Here, ω is the set of natural num-
bers, so Oω is the set of all maps assigning an observable
property to every natural number.) We use the following

notation: ~On is the n-th element in ~O; ~O[n] is the ini-

tial segment of ~O of length n, (O0, . . . , On−1); set( ~O) :=

{O | O is an element of ~O} is the set of all data in ~O; ∗ is
the concatenation operator on strings.

The intuition is that at stage n of a data stream, the agent
observes the information in On. A data stream captures a
possible future history of observations in its entirety, while
a data sequence captures only a finite part of such a history.

Given a state s ∈ S, a data stream for s is a stream ~O ∈
Oω such that Os = {O ∈ O | ⋂ni=0Oi ⊆ O for some n ∈ ω}.
Such a stream is “sound” (every data in ~O is true at s) and
“complete” (every true data is entailed by some finite set of

observations in ~O).

Example 1. Let our epistemic space S = (S,O) be the
real numbers, with observable properties given by open in-
tervals with rational endpoints: S := R, O := {(a, b) | a, b ∈
Q, a ≤ b}, where (a, b) := {x ∈ R | a < x < b}. For instance,
observables may represent measurements of a physical quan-
tity (such as a position along a one-dimensional line) that
takes real numbers as its possible values. In such case, for
any state x ∈ R and any two sequences an, bn ∈ Q of rational
numbers, such that an ≤ x ≤ bn and both sequences converge
to x, the sequence (a0, b0), . . . , (an, bn), . . . is a (sound and
complete) data stream for x.

2And in the same time (if we adopt a“simplicity” interpreta-
tion of the prior), this last result can be seen as a vindication
of Ockham’s razor (in line with Kevin Kelly’s program).
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Figure 1: A problem P (left-hand side) and its re-
finement P′ (right-hand side), see Example 3

Other examples include standard n-dimensional Euclidean
spaces, e.g., S = R3 with O consisting of all open balls with
rational radius and center.

Definition 2. An inductive problem is a pair P = (S,Q)
consisting of an epistemic space S = (S,O) together with a
“question”Q, i.e., a partition3 of S. The cells Ai of the par-
tition Q are called answers. Given s ∈ S, the unique A ∈ Q
with s ∈ A is called the answer to Q at s, and denoted As.
We say that a problem P′ = (S,Q′) is a refinement of an-
other problem P = (S,Q) (or that the corresponding question
Q′ is a refinement of the question Q) if every answer of Q
is a disjoint union of answers of Q′.

The most refined question concerns the identity of the real
world.

Example 2. The learning question on a space S is Q =
{{s} | s ∈ S} (‘What is the actual state?’).

Example 3. Let S = (S,O), where S = {s, t, u, v),
O = {U, V, P,Q}, with U = {s, t}, V = {s},P = {u, v},Q =
{u}. Take the problem P = (S,Q), given by the ques-
tion Q = {{t, u}, {s, v}} depicted on the left-hand side
of Figure 1. This can obviously refined to obtained the
problem P′ = (S,Q′) given by the learning question Q =
{{s}, {t}, {u}, {v}} for this space, as depicted on the right-
hand side of Figure 1.

3. LEARNING AND PROBLEM-SOLVING

Definition 3. Let S = (S,O) be an epistemic space and
let σ0, . . . , σn ∈ O. An agent (also known as a “learner”,
or a “learning method”) is a map L that associates to any
epistemic space S and any data sequence (σ0, . . . , σn) some
family LS(σ0, . . . , σn) ⊆ P(S) of subsets of S, satisfying
a “consistency” condition: ∅ 6∈ LS(σ0, . . . , σn) whenever⋂n
i=o σi 6= ∅.

Intuitively, after observing the data sequence ~σ =
(σ0, . . . , σn), we can say that agent L believes a proposition
P after observing the data sequence ~σ = (σ0, . . . , σn), and
write B~σLP iff P ∈ LS(σ0, . . . , σn). We can also interpret this
as a conditional belief, rather than as revised belief, the agent
believes every P ∈ LS(σ0, . . . , σn) conditional on σ0, . . . , σn.

3This means that
⋃
i∈I Ai = S, and Ai∩Aj = ∅ for all i 6= j.
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But in the end we are of course interested in the actual re-
vised beliefs after observing the data, so the assumption in
this case is that conditional beliefs guide the agent’s revision
strategy: they “pre-encode” future belief revisions, to use a
term coined by J. van Benthem [6]. The above consistency
simply means that each of the agent’s beliefs is consistent
whenever the observed data are consistent.

A doxastic agent is one whose set LS(σ0, . . . , σn) of beliefs
forms a (proper) filter on S when observing consistent data;
in other words, her beliefs are (consistent when possible, and
also) inference-closed (i.e., if P ⊆ Q and P ∈ LS(σ0, . . . , σn),
then Q ∈ LS(σ0, . . . , σn)) and conjunctive (i.e., if P,Q ∈
LS(σ0, . . . , σn) then (P ∩ Q) ∈ LS(σ0, . . . , σn)). Hence, for
any doxastic agent L and every consistent data sequence ~σ,
the belief operator B~σL (as defined above) satisfy the usual
KD45 axioms of doxastic logic.

A standard agent is a doxastic agent L whose beliefs form
a principal filter, i.e., all her beliefs are entailed by one
“strongest belief”; formally, a doxastic agent L is standard iff
for every data sequence ~σ over any epistemic space S there
exists some set LS(~σ), such that

LS(~σ) = {P ⊆ S | LS(~σ) ⊆ P}.
It is easy to see that in this case, we must have LS(~σ) =⋂LS(~σ). Indeed, we can equivalently define a doxastic agent
L to be standard iff

⋂LS(~σ) ∈ LS(~σ) holds for all data se-
quences ~σ. Standard agents are globally consistent whenever
possible:

⋂LS(σ0, . . . , σn) 6= ∅ whenever
⋂n
i=o σi 6= ∅.

Traditional learning methods in Formal Learning The-
ory correspond to our standard agents, and they are typ-
ically identified with the map L (given by LS(σ0, . . . , σn) :=⋂LS(σ0, . . . , σn)). From now on we follow this tradition,
and refer to standard agents using the map L. But in gen-
eral we do not restrict ourselves to standard agents.

An AGM agent is an agent L≤ who forms beliefs by AGM
conditioning, i.e., it comes endowed with a map that asso-
ciates any epistemic space S some total preorder4 ≤S on S,
called “prior” plausibility relation; and whose beliefs after
observing any data sequence ~σ = (σ0, . . . , σn) are given by

L≤S (~σ) := {P ⊆ S | ∃s ∈
n⋂

i=0

σi ∀t ∈
n⋂

i=0

σi (t ≤ s⇒ t ∈ P )}.

Intuitively, t ≤ s means that t is at least as plausible as
s (according to our agent). So, an AGM agent believes P
conditional on a data sequence ~σ iff P is true in all the states
(consistent with the data) that are “plausible enough”.

It is easy to see that every AGM agent is a doxastic agent :
L≤S (~σ) is a proper filter whenever

⋂n
i=0 σi 6= ∅; hence, the

beliefs of an AGM agent satisfy the usual KD45 axioms of
doxastic logic (when learning any consistent data sequence).

Moreover, it is well-known that in fact, the beliefs of AGM
agents satisfy all the so-called AGM axioms from Belief Re-
vision Theory [1]: if, for any data sequence ~σ = (σ0, . . . , σn),
we set T = L(σ0, . . . , σn), and for any new observation
φ ∈ O we set T ∗ φ = L(σ0, . . . , σn, φ), then the resulting
revision operator ∗ satisfies all the AGM postulates. In fact,
for any AGM agent L, if we interpret the operator B~σL (as de-
fined above) as representing a conditional belief Bσ0∧...∧σn ,
then the sound and complete logic of these conditional belief

4A total preorder on S is a binary relation ≤ on S that is
reflexive, transitive, and connected (i.e., for all s, t ∈ S, we
have either s ≤ t or t ≤ s).

operators is the so-called Conditional Doxastic Logic [8, 5]
(which is itself just a repackaging of the AGM postulates in
the language of conditional logic).

Observation 1. Given a total preorder ≤ on S and a
subset A ⊆ S, set

Min≤(A) := {s ∈ A | s ≤ t for all t ∈ A}
for the set of ≤-minimal states in A. Let ~σ = (σ0, . . . , σn)
be any data sequence such that Min≤(

⋂n
i=0 σi) 6= ∅. Then

L≤S (~σ) is the principal filter generated by Min≤(
⋂n
i=0 σi),

i.e., we have

L≤S (σ0, . . . , σn) := {P ⊆ S | Min≤(

n⋂

i=0

σi) ⊆ P}.

In general though, the filter L≤S (~σ) is not principal. So
AGM agents are not necessarily standard agents. But there
is an important case when they are standard: whenever the
preorder ≤S is well-founded in every space S (i.e., there are
no infinite chains s0 > s1 > s2 . . . of more and more plausible
states). It is easy to see that the map L associated to a
standard AGM agent is given by the set of ≤-minimal states
consistent with the data:

L≤S (σ0, . . . , σn) := Min≤(

n⋂

i=0

σi).

Intuitively, this means that a standard AGM agent believes
a proposition P iff P is true in all the “most plausible” states
consistent with the data.

The original semantics of AGM belief was given using only
standard AGM agents. But this semantics was in fact bor-
rowed by Grove [18] from Lewis’ semantics for conditionals
[27], which did not assume well-foundedness.5

Definition 4. Let S be an epistemic space. An agent L
verifies a proposition A ⊆ S in the limit if, for every state
s ∈ S and every data stream ~O for s, we have s ∈ A iff there
exists some k ∈ ω such that A ∈ LS( ~O[n]) for all n ≥ k. For

standard agents, this means that LS( ~O[n]) ⊆ A for all n ≥ k.
A set A ⊆ S is verifiable in the limit if there exists some
agent that verifies A in the limit.6

An agent L falsifies a proposition A ⊆ S in the limit if,
for every state s ∈ S and every data stream for ~O for s,
we have s /∈ A iff there exists some k ∈ ω such that Ac ∈
L(S, ~O[n]) ⊆ Ac for all n ≥ k. (Here, as in the rest of this
paper, Xc := S \X stands for the complement of X.) For a

standard agent, this means L(S, ~O[n]) ⊆ Ac for all n ≥ k,
A proposition A ⊆ S is falsifiable in the limit if there

exists some agent that falsifies A in the limit.
A proposition A ⊆ S is decidable in the limit if it is both

verifiable and falsifiable in the limit.
An agent L solves a problem P = (S,Q) if, for every state

s ∈ S and every data stream ~O for s, there exists some k ∈ ω
such that As ∈ LS( ~O[n]) for all n ≥ k. (Recall that As is
true answer to Q at s.) For a standard agent, this means

that LS( ~O[n]) ⊆ As for all n ≥ k. A problem is solvable (in
the limit) if there exists some agent that solves it.
5Indeed, Lewis’ definition of conditionals has a similar shape
to our above definition of (conditional) beliefs for non-
standard AGM agents.
6For a discussion of the relationship between verifiability
and learnability see, e.g., [19, 12].
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An epistemic space S = (S,O) is learnable (by an agent
L) if the (problem given by the) learning question QS =
{{s} | s ∈ S} is solvable (by L).

All the above notions have a standard counterpart, e.g.,
A is standardly verifiable if there exist some standard agent
that verifies it; P is standardly solvable if it can be solved
by some standard agent, etc.

Note that standard learnability is essentially the same as
Gold’s identifiability in the limit [30, 17].
Examples and Counterexamples: An example of non-
learnable space S = (S,O) is obtained by taking four ab-
stract states S = {s, t, u, w} and two observable properties
O = {V,U}, with V = {s, t, u} and U = {t, u, w}, as de-
picted in Figure 2. Since states s and t satisfy the same
observable properties, no learning method will ever distin-
guish them.

s t u w

UV

Figure 2: A non-learnable space

But even spaces in which no two states satisfy the same
observations can still be non-learnable, e.g., all the n-
dimensional Euclidean spaces from Example 1 are not learn-
able (though, as we will see, many questions are solvable and
many subsets are decidable over these spaces). Another ex-
ample of non-learnable space is given in Figure 3: formally,
S = (S,O), where S := {sn | n ∈ ω} ∪ {s∞}, and O =
{Oi | i ∈ ω}, and for any i ∈ ω, Oi := {si, si+1, . . .} ∪ {s∞}.

s0 s1 s2 s3 s∞
O0 O1 O2 O3 . . .

Figure 3: Another non-learnable space

In contrast, an example of learnable space is in Fig-
ure 4: formally, S = {sn | n ∈ ω} consists of countably
many distinct states, with O = {On | n ∈ ω}, where
On = {s0, s1, s2, . . . , sn}. A standard agent that can learn

s0 s1 s2 s3 s4

O0 O1 O2 O3 O4 . . .

Figure 4: A learnable space

this space in the limit is given by setting L(σ1, . . . , σn)

to be the maximum number (in the natural order) in⋂n
i=0 σi, whenever there is such a maximum number, and

settingL(σ1, . . . , σn) :=
⋂n
i=0 σi otherwise.

Proposition 1. Let S be an epistemic space, A ⊆ S a
proposition and P = (S,Q) an inductive problem. Then we
have the following:

• A is verifiable (falsifiable, decidable) in the limit iff
it is standardly verifiable (falsifiable, decidable) in the
limit.

• P is solvable iff it is standardly solvable.

• S is learnable iff it is standardly learnable.

Proof. Let A ⊆ S be a set that is verifiable (falsifiable,
decidable) by an agent L on an epistemic space S. We con-
struct a standard agent that does the same thing, by setting,
for every data sequence ~σ ∈ O∗: LS(~σ) := A if A ∈ LS(~σ),
LS(~σ) := Ac if A 6∈ LS(~σ) but Ac ∈ LS(~σ), and LS(~σ) := S
otherwise. Also, on any other space S′ = (S′,O′), we set by
default LS′(~σ

′) := S′.
Similarly, let P = (S,Q) be a problem that is solvable

by L. Let ≤ be some arbitrary well-order of the set Q.
(Such a well-order exists, by the Well-Ordering Theorem.)
We construct a standard agent who also solves P, by setting
LS(~σ) := A if A is the first answer in Q (according to ≤)
such that A ∈ LS(~σ) holds; and LS(~σ) := S if no such answer
exists. (As before, we can extend our agent to any other
space S′ = (S′,O′), by setting LS′(~σ

′) := S′.)
By applying this to the learning problem Q = {{s} | s ∈

S}, we obtain the similar result for learnability.

In conclusion, everything that can be learned by any agent
can also be learned by some standard agent. However, this
is no longer true when we restrict to more canonical types
of agents (such as AGM agents).

Proposition 2. There exist spaces that are learnable, but
not learnable by standard AGM agents. (Hence, there exist
solvable problems that are not solvable by standard AGM
agents.)

Proof. Here is a counterexample from [13, 3, 4]. Take
the epistemic model from Figure 4. This space is learn-
able, and thus learnable by AGM conditioning, but it is not
learnable by standard conditioning. Indeed, this space is
learnable by conditioning only with respect to the following
non-wellfounded prior: s0 > s1 > . . . > sn > sn+1 > . . .

4. THE OBSERVATIONAL TOPOLOGY
In this section, we assume familiarity with the following

notions: topology τ (identified with its family of open sub-
sets) over a set S of points, topological space (S, τ), open
sets, closed sets, interior Int(X) and closure X of a set X,
(open) neighborhood of a point s, base of a topology and
local base (of neighborhoods) at a point. We use letters U ,
U ′, etc., for open sets in τ , and letters C, C′, etc., for closed
sets.

A space is said to be second-countable if its topology has
a countable base. Given a topological space (S, τ), the spe-
cialization preorder v ⊆ S × S is defined in the following
way: for any s, t ∈ S, we set

s v t iff ∀U ∈ τ (s ∈ U ⇒ t ∈ U).
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Separation Principles. In this paper we use four key topo-
logical separation notions. The first is the well-known sepa-
ration axiom T0, which will be satisfied by all the topologies
that arise in our setting. The second is the separation ax-
iom TD. This condition (together with countability) will be
shown to characterize learnable spaces. The next two no-
tions are analogues of TD separation for questions. Instead
of asking for open sets that separate points (states), these
conditions require the existence of open sets that separate
answers (to the same question). The concept of locally closed
questions is a first analogue of TD, and it will be shown to
characterize in some sense solvable problems. Finally, the
notion of linearly separated questions is a stronger analogue
of TD for questions, which characterizes a stronger type
of solvability, what we will call direct solvability by (AGM)
conditioning.

Definition 5. A topological space (S, τ) satisfies the sep-
aration axiom T0 if the specialization preorder is actually a
partial order, i.e., it is antisymmetric: s v t v s implies
s = t. Equivalently, if s 6= t, then there exists some “sep-
arating” open U , such that either s ∈ U , t 6∈ U , or s 6∈ U ,
t ∈ U .

The space (S, τ) satisfies the separation axiom TD iff for
every point s ∈ S, there is an open Ux 3 x such that y 6v x
for all y ∈ Ox \ {x}. Equivalently: for every s ∈ S there is

an open U ∈ τ such that {s} = U ∩ {s}.

Essentially, T0 says that every two points s 6= t can be
separated (by an open U) one way or another (i.e., either s ∈
U , t 6∈ U , or s 6∈ U , t ∈ U), while TD essentially says that
every point s can be separated (by an open neighborhood)
from all the points t 6= s that are inseparable from s.7

Definition 6. Given a topological space (S, τ), a set A ⊆
S is locally closed if it is the intersection A = U ∩ C of an
open set U with a closed set C. Equivalently, if it is of the
form A = U ∩A for some open U .

A set is ω-constructible if it is a countable union of locally
closed sets.

A question Q (partition of S) is locally closed if all its
answers are locally closed. A problem P is locally closed if
its associated question is locally closed.

Essentially, locally closed questions are partitions with the
property that every “answer” (i.e., partition cell) A can be
separated (by an open neighborhood) from all the non-A-
states that are inseparable from A.8

Definition 7. A question Q is linearly separated if there
exists some total order � on the answers in Q, such that
A ∩ ⋃B�AB = ∅. In other words, every answer A can be
separated (by some open UA ⊇ A) from the union of all the
previous answers: UA ∩B = ∅ for all B �A.

Essentially, a linearly separated question is one whose an-
swers can be totally ordered by a “plausibility” (or “simplic-
ity”) order, in such a way that every answer A can be sepa-
rated (by an open neighborhood UA ⊇ A) from all answers
that are “more plausible” (or “simpler”) than A.

7A point y is “inseparable” from x if every open neighbor-
hood of y contains x, i.e. y and x are in the topological
refinement order y v x.
8Here, a state t is said to be “inseparable” from a set A if
there is no open neighborhood U 3 t that is disjoint from A.

Definition 8. The observational topology τS associated
with an epistemic space S = (S,O) is the topology generated
by O (i.e., the smallest collection of subsets of S, that in-
cludes O∪{∅, S} and is closed under finite intersections and
arbitrary unions).

From now on, we will always implicitly consider our epis-
temic spaces S to also be topological spaces (S, τS), en-
dowed with their observational topology τS. Every topolog-
ical property possessed by the associated topological space
will thus be also attributed to the epistemic space.

Observation 2. Every epistemic space is T0 and second-
countable. A (sound and complete) data stream for s is the
same as a local neighborhood base at s.

Proposition 3. Every ω-constructible set can be written
as a disjoint countable union of locally closed sets.

Proof. In order to prove this, we first recall some stan-
dard topological notions and results: A set is called con-
structible if it is a finite disjoint union of locally closed sets.
Obviously, all locally closed sets are constructible. It is
known that constructible sets form a Boolean algebra, i.e.,
the family of constructible sets is closed under complemen-
tation, finite unions, and finite intersections.

Suppose A =
⋃
i∈ω Ai, where all Ai are locally closed.

Then we can rewrite A as a disjoint union A =
⋃
i∈ω Bi,

where we have set Bi = Ai \ (
⋃
k<iAk) = Ai ∩

⋂
k<iA

c
k,

for every i. Since Bi’s are generated from locally closed sets
using complementation and finite intersections, they must
be constructible. Hence, each Bi can be written as disjoint
finite unions of locally closed sets Bi =

⋃
1≤j≤iBij . Hence,

we can write A =
⋃
i∈ω
⋃

1≤j≤iBij as a disjoint countable
union of locally closed sets.

Definition 9. A pseudo-stratification is a finite or ω-
long sequence of locally closed sets 〈Ai | i < λ〉 (where λ ∈
ω∪{ω}), which form a partition of S satisfying the following
condition:

if j < i then either Ai ∩Aj = ∅ or Ai ⊆ Aj.

Proposition 4. Every countable locally closed question
can be refined to a pseudo-stratification.

Proof. Suppose Π = {Ai | i ∈ ω} is a countable locally
closed question (partition of S). We first show the following:

Claim. There exists a family {(Πi, <i) | i ∈ ω}, satisfying

(1) each Πi is a finite partition of Ai into locally closed
sets;

(2) each <i is a total order on Πi;

(3) if j < i, E ∈ Πj , B ∈ Πi, then either B ⊆ E or
B ⊆ Ec;

(4) if B,E ∈ Πi, E <i B, then B ⊆ Ec.
Proof of Claim: We construct (Πn, <n) by recursion: for
n = 0, set Π0 := {A0}, with <0 trivial. For the step n+ 1:
assume given {(Πi, <i) | i ≤ n} satisfying the above four
conditions (for i ≤ n). We set

Πn+1 := {Bf | f :

n⋃

i=1

Πi → {0, 1}},
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where for each function f :
⋃n
i=1 Πi → {0, 1} we have set

Bf := An+1 ∩
⋂
{E | E ∈ f−1(0)} ∩

⋂
{Ec | E ∈ f−1(1)}.

It is obvious that the Bf ’s are locally closed (given that An+1

is locally closed) and that they form a partition of An+1. So
condition (1) is satisfied.

It is also easy to check condition (2) for i = n + 1: let
j < n + 1, E ∈ Πj and Bf ∈ Πn+1. Then we have either
f(E) = 0, in which case Bf ⊆ E (by construction of Bf ), or
else f(E) = 1, in which case Bf ⊆ Ec.

To construct the order <n+1, observe first that there is
a natural total order <(n) on the disjoint union

⋃n
i=1 Πi,

namely the one obtained by concatenating the orders <0,
<1, . . . , <n. (More precisely, if, for every B ∈ ⋃ni=1 Πi, we
set i(B) to be the unique index i ≤ n such that B ∈ Πi,

then the order <(n) is given by setting: B <(n) E iff either
i(B) < i(E), or else i(B) = i(E) and B <i(B) E.)

Now, the order <n+1 on Bf ’s is given by the lexicographic

order induced by<(n) on the functions f (thought as“words”
written with the letters 0 and 1). More precisely, we set:

Bf <n+1 Bg

iff there exists some set E ∈ ⋃ni=1 Πi such that
(
∀E′ <(n) E f(E′) = g(E′), but f(E) < g(E)

)
,

where < is the usual order 0 < 1 on {0, 1}. Clearly, <n+1 is
a total order on Πn+1, so condition (2) is satisfied.

Finally, we check condition (4) for n+1, let Bf , Bg ∈ Πn+1

such that Bf <n+1 Bg. By definition of the order <n+1,
this means that there exists some E ∈ ⋃ni=1 Πi such that

for all E′ <(n) E we have f(E′) = g(E′) but f(E) < g(E),
i.e., f(E) = 0 and g(E) = 1. By the construction of Bf ’s,
f(E) = 0 implies that Bf ⊆ E, from which we get Bf ⊆ E,
and thus E

c ⊆ Bf
c
. Similarly, g(E) = 1 implies that Bg ⊆

E
c
. So we have Bg ⊆ Ec ⊆ Bf c, and thus by transitivity of

inclusion we get Bg ⊆ Bf c. This completes the proof of our
Claim.

Given now the above Claim, we can prove our Lemma by
taking as our refined partition

Π′ :=
⋃

i∈ω
Πi.

Clearly, Π′ is a refinement of Π consisting of locally closed
sets. We now define a well-order <′ on Π′ as the concatena-
tion of all the ≤i’s.9 Obviously, <′ is a total order of type
≤ ω on Π′, so we get finite or ω-long sequence that enumer-
ates Π′. The above properties (3) and (4) ensure that this
is a pseudo-stratification.

Lemma 1. Given a pseudo-stratification 〈Ai | i < λ〉 (of
length λ ≤ ω), there exists a λ-long sequence of open sets
〈Ui | i < λ〉, satisfying:

(1) Ui ∩Ai = Ai;

(2) if j < i and Ui ∩Aj 6= ∅, then Ai ⊆ Aj.
9Once again, one can specify this more precisely by first
defining i : Π′ → ω by choosing i(B) to be the unique index
i such that B ∈ Πi, and finally defining: B <′ E iff either
i(B) < i(E), or else i(B) = i(E) and B <i(B) E.

Proof. We know that each Ai is locally closed, so there
exists some open set UAi ∈ τ such that UAi ∩ Ai = Ai.
Now, for all i ∈ ω set

Ui := UAi ∩
⋂
{Ajc | j < i,Ai ⊆ Ajc}.

Let us first check that the sequence 〈Ui | i < λ〉 satisfies
condition (1):

Ui ∩Ai = (UAi ∩
⋂
{Ajc | j < i,Ai ⊆ Ajc}) ∩Ai

= (Ui ∩Ai) ∩
⋂
{Ajc | j < i,Ai ⊆ Ajc}

= Ai ∩
⋂
{Ajc | j < i,Ai ⊆ Ajc} = Ai

Second, let us check condition (2): Suppose that we have
j < i and Ui ∩ Aj 6= ∅, but Ai 6⊆ Aj . Since (Ai)i<λ is a
pseudo-stratified sequence, from j < i and Ai 6⊆ Aj we can
derive Ai ⊆ Ajc. By the construction of Ui, this implies that
Ui ⊆ Ajc, and hence that Ui∩Aj ⊆ Ajc∩Aj ⊆ Ajc∩Aj = ∅,
which contradicts the assumption that Ui ∩Aj 6= ∅.

Lemma 2. Every pseudo-stratification is linearly sepa-
rated.

Proof. Let Π = {Ai | i < λ} be a pseudo-stratification
(with λ ≤ ω), and let 〈Ui | i < λ〉 be a sequence satisfying
the conditions of Lemma 1. It is clear that, in order to prove
our intended result, it is enough to construct a total order
� on the set {i ∈ ω|i < λ} = λ ⊆ ω, such that

Ui ∩Aj 6= ∅ ⇒ i� j.

For this, we first define a reflexive relation R on λ, by
setting

iRj ⇐⇒ Ui ∩Aj 6= ∅.
Claim: There are no non-trivial cycles

i1R · · · inRi1 (with distinct ik’s).

Proof of Claim: Let i1R · · · inRi1 be a non-trivial cycle of
minimal length n ≥ 2. There are two cases:

Case 1: n = 2, i.e., i1Ri2Ri1 with i2 6= i1. We must have
either i1 < i2 or i2 < i1. Without loss of generality, we can
assume i1 < i2 (otherwise, just swap i1 and i2, and use the
cycle i2Ri1Ri2). From i2Ri1, we get Ui2 ∩ Ai1 6= ∅. This
together with i1 < i2, gives us Ai2 ⊆ Ai1 (by condition (2)
from Lemma 2), and hence Ui1 ∩ Ai2 ⊆ Ui1 ∩ Ai1 = Ai1 .
From this, we get that Ui1 ∩ Ai2 = (Ui1 ∩ Ai2) ∩ Ai2 ⊆
Ai1 ∩ Ai2 = ∅ (since i1 6= i2, so Ai1 and Ai2 are different
answers, hence disjoint), so we conclude that Ui1 ∩Ai2 = ∅.
But on the other hand, from i1Ri2 we get Ui1 ∩ Ai2 6= ∅.
Contradiction.

Case 2: n > 2. Since all the ik’s are distinct, there must
exist a (unique) smallest index in the cycle. Without loss
of generality (since otherwise we can rearrange the indices,
permuting the cycle), we can assume that i3 is the smallest
index. (Note that, since n > 2, there must be at least three
distinct successive indices i1, i2, i3.) So i3 < i1 and i3 < i2.
From i2Ri3 we get Ui2 ∩ Ai2 6= ∅. Since i3 < i2, it follows
that Ai2 ⊆ Ai3 (by Lemma 2). But on the other hand, i1Ri2
gives us Ui1 ∩Ai2 6= ∅. We hence obtain Ui1 ∩Ai3 6= ∅. This,
together with i3 < i1, gives us Ai1 ⊆ Ai3 (again by Lemma
2). From this, we derive Ai1 ⊆ Ui1 ∩Ai3 (since Ai ⊆ Ui for
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all i). Let now s ∈ Ai1 be any state satisfying the answer
Ai1 ⊆ Ui1 ∩ Ai3 . So we have s ∈ Ui1 and s ∈ Ai3 , which
together imply that Ui1 ∩ Ai3 6= ∅ (since s ∈ Ai3 implies
that every open neighborhood of s intersects Ai3). Hence,
we have i1Ri3, which means we can shorten the cycle by
eliminating i2, we obtain contradiction.

Given the above Claim, it follows that the transitive clo-
sure R∗ is a partial order on λ (which obviously includes R).
By the Order Extension Principle, we can extend R∗ to a
total order � on λ, which still includes R.

5. TOPOLOGICAL CHARACTERIZA-
TION OF SOLVABILITY

Definition 10. Let S = (S,O) be an epistemic space, L
be a standard agent, A ⊆ S, and s ∈ A. An A-locking
sequence for s (with respect to L) is a data sequence σ =
(O1, . . . , Ok), such that:

(1) σ is sound for s, i.e., s ∈ ⋂1≤i≤k Oi;

(2) if δ is any data sequence sound for s, then L(S, σ∗δ) ⊆
A.

For a given data sequence σ, we denote by LσA the set of
all states in A having σ as an A-locking sequence, i.e.,

LσA := {s ∈ A | σ is an A-locking sequence for s wrt L}.

Lemma 3. If A is verifiable in the limit by a standard
agent L, then

⋃
σ∈O∗ L

σ
A = A.

Proof. Suppose not. Let A be verifiable in the limit, but
such that A 6= ⋃σ∈O∗ LσA. Since all LσA ⊆ A, his means that
A 6⊆ ⋃σ∈O∗ LσA, i.e., there exists some state s ∈ A for which
there is no A-locking sequence. This means that every data
sequence σ that is sound for s can be extended to a sequence
δ that is also sound for s and has L(δ) 6⊆ A.

Let now ~O be a (sound and complete) data stream for

s. We construct a new infinite data stream ~V , by defining
increasingly longer initial segments δk of ~O, in countably
many stages: we first set V0 = O0, thus obtaining an initial
segment δ0 = (O0) = (V0); at the k+ 1-th stage, given some
initial segment δk = (V0, V1, . . . , Vnk ) (of some length nk),
we built our next initial segment by taking any extension
δk+1 of the sequence σk = (V0, . . . , Vnk , On+1) that is sound

for s and has L(σk) 6⊆ A. The resulting infinite stream ~V is

a (sound and complete) stream for s (the completeness of ~V
with respect to s follows the fact that this stream includes all
the elements of ~U), but which contains arbitrarily long initial
segments σk with L(σk) 6⊆ A. Since s ∈ A, this contradicts
the assumption that A is verifiable in the limit.

Lemma 4. If A ⊆ S is verifiable in the limit by a standard
agent L, then for every data sequence σ = (O1, . . . Ok), the
set LσA is locally closed.

Proof. Let O :=
⋂k
i=1Oi be the intersection of all the

observations in σ. We will show that

O ∩ LσA = LσA,

from which the desired conclusion follows.
(⊇) If s ∈ LσA, then σ is an A-locking sequence for s, hence

σ is sound for s, and thus s ∈ ⋂ni=1Oi = O.

(⊆) Suppose that s ∈ O ∩ LσA. We prove two claims:

Claim 1: For every data sequence δ that is sound for s and
extends σ, we have LS(δ) ⊆ A.

Proof of Claim 1 : Let δ = (δ1, . . . , δn) be a data sequence
that is sound for s (i.e., s ∈ δi for all i = 1, . . . , n) and
extends σ, i.e., n ≥ k and Ui = Oi for all i ≤ k). Hence,⋂n
i=1 δi is an open neighborhood of s, and s ∈ LσA, so there

must exist some t ∈ ⋂ni=1 δi such that t ∈ LσA. Hence, t ∈ A
and σ is an A-locking sequence for t. But δ extends σ and
is sound for t, so (by the definition of σ being an A-locking
sequence for t), we have that L(δ) ⊆ A, which concludes the
proof of Claim 1.

Claim 2: We have s ∈ A.
Proof of Claim 2 : Let ~V be a stream for s that extends

σ (such a stream must exist, since σ is sound for s: just
take any stream for s and prefix it with σ). Then, for every
n ≥ k, the sequence δn = (V1, . . . , Vn) is sound for s and
extends σ. Hence, by the above Claim, we must have that
LS(V1, . . . , Vn) ⊆ A for all n ≥ k. But we assumed that
A is verifiable in the limit, so we must have s ∈ A, which
concludes the proof of Claim 2.

From Claims 1 and 2 together, we conclude that σ is an
A-locking sequence for s ∈ A, hence s ∈ LσA.

Theorem 1. Given an epistemic space (S,O), a set A ⊆
S is verifiable in the limit iff it is ω-constructible.

Proof. (⇐) Assume A =
⋃
n(Un ∩ Cn) is a countable

disjoint union of (mutually disjoint) locally closed sets Un ∩
Cn (with Un open and Cn closed). We define a standard
agent L for A on finite data sequences δ = (O1, . . . , Ok),
by setting L(S, δ) = Ac, if we have

⋂
j Oj 6⊆ Un for all

n ∈ ω; L(S, δ) = Ac (where Ac is the complement of A),
if
⋂
j Oj ⊆ Ccn holds for the first index n ∈ ω such that⋂

j Oj ⊆ Un; and L(S, δ) = A otherwise. Then it is easy to
see that L verifies A in the limit.

(⇒) Suppose that A is verifiable in the limit. By Proposi-
tion 1, it is then verifiable by a standard agent L. By Lemma
1, A is the union of all sets LσA for all finite data sequences
σ. But there are only countably many such sequences, so
this is a countable union. Moreover, by Lemma 2, each LσA
is locally closed. Hence A is a countable union of locally
closed sets, i.e., an ω-constructible set.

Corollary 1. A is decidable in the limit iff both A and
Ac are ω-constructible.

Proof. Follows trivially from the above results.

Theorem 2. Let P = (S,Q) be an inductive problem on
an epistemic space S. The following are equivalent:

(1) P is solvable (in the limit);

(2) the associated question Q is an (at most) countable
family of ω-constructible answers;

(3) Q has an (at most) countable locally closed refinement.

Proof. (1) ⇒ (2) : Let P be a solvable problem. By
Proposition 1, there exists some standard agent that solves
it. Let L be such a standard agent that solves P.
Claim: Every answer A ∈ Q is verifiable in the limit.

Proof of Claim: Let A ∈ Q be an answer. We construct
a standard agent LA that verifies it, by setting LAS (σ) := A
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iff LS(σ) ⊆ A, and LAS (σ) := Ac otherwise. It is easy to see
that LA verifies A.

Using the Claim and Lemma 3, we obtain that, for each
answer A ∈ Q, there exists some data sequence σ ∈ O∗ such
that LS(σ) ⊆ A. But O∗ is countable, so there can be only
countably many answers in Q.

By the claim above, Lemma 3 and Lemma 4, we obtain
that every answer A ∈ Q is a countable union of locally
closed sets, hence it is ω-constructible.

(2) ⇒ (3) : By (2), Q is (at most) countable, say Q =
{Ai | i ∈ ω}, and also each answer AI ∈ Q is ω-constructible,
hence it can be written as a countable disjoint union of lo-
cally closets A =

⋃
k∈ω A

k
i (where all Aki ’s locally closed and

mutually disjoint). Then the question {Aki | i ∈ ω, k ∈ ω} is
a refinement of Q, which is countable and locally closed.

(3) ⇒ (1) : Let Q′ = {Bi | i ∈ ω} be a countable closed
refinement of Q′. By Corollary 1, every answer B ∈ Q′ is
decidable, and so by Proposition 1, we can choose for each
Bi ∈ Q some standard agent Li that decides Bi. We define
now a new standard agent L, by:

LS(σ) :=
⋃
{Bi | i ∈ ω such that Li(σ) ⊆ Bi}.

It is easy to see that this agent L solves Q′, and since Q′ is
a refinement of Q, L also solves Q.

Corollary 2. An epistemic space S = (S,O) is learn-
able in the limit iff it is countable and satisfies the TD sep-
aration axiom.

Proof. Apply Theorem 2 to the learning question
{{s} | s ∈ S}, noticing that the fact that all its answers
are ω-constructible is equivalent to all singletons being lo-
cally closed, which is just another formulation of the TD
axiom.

6. UNIVERSALITY OF CONDITIONING
Our aim in this section is to show that AGM conditioning

is “universal”: every solvable problem can be solved by some
AGM agent. First, we introduce an auxiliary notion, that
of a problem being directly solvable by AGM conditioning.

Given a questionQ on an epistemic space (S,O), any total
order � ⊆ Q×Q on (the answers of) the question Q induces
in a canonical way a total preorder ≤⊆ S × S, obtained by:

s ≤ t iff As �At

(where As is the unique answer As ∈ Q such that s ∈ As).
Definition 11. A problem P = (S,Q) is directly solvable

by conditioning if it is solvable by AGM conditioning with
respect to (a prior ≤ that is canonically induced, as explained
above, by) a total order � ⊆ Q×Q on (the answers of) the
question Q.

Direct solvability by conditioning essentially means that
the problem can be solved by a conditioning agent who does
not attempt to refine the original question: she forms beliefs
only about the answers to the given question, and is thus
indifferent between states satisfying the same answer. Direct
solvability by conditioning is thus a very stringent condition,
and unsurprisingly this form of conditioning is not universal.

Proposition 5. ( K. Genin, personal communication)
Not every solvable problem is directly solvable by condition-
ing.

Proof. Let P be the problem in Example 3, depicted on
the left-hand side of Figure 1. It is easy to see that this prob-
lem cannot be directly solvable by conditioning! (Indeed, if
{t, u} � {s, v} then v is not learnable by �-conditioning; if
{s, v} < {t, u} then t is not learnable by �-conditioning;
while if {t, u} and {s, v} are equally plausible, then neither
t nor v are learnable.)

But P can be refined to a directly solvable problem,
namely the “learning question” P′ (depicted on the right-
hand side of Figure 1), which can be directly solvable (e.g.
if we set {t} � {s} � {v} � {u}). As a consequence, P can
itself be solved by (non-direct) conditioning (with respect to
the order t < s < v < u).

This counterexample suggests a way to prove our intended
universality result: it is enough to show that every solvable
problem has a refinement that is directly solvable by condi-
tioning. To do this, we first need a structural characteriza-
tion of direct solvability.

Lemma 5. (Topological Characterization of Direct Solv-
ability by Conditioning) A problem P = (S,Q) is directly
solvable by conditioning iff Q is linearly separated.

Proof. Left-to-right implication: Suppose that P is di-
rectly solvable by conditioning with respect to (a prior ≤
that is canonically induced by) a total order � ⊆ Q × Q.
Then, for every s ∈ S choose some sound and complete data
stream ~OS = (Osn)n∈ω for s (with Ons ∈ O ⊆ τS). Direct
solvability by conditioning implies then that there exists
some Ns such that Min≤(Os1, . . . , O

s
Ns

) ⊆ As. Set Us :=⋂Ns
i=1O

s
i ∈ τS, so that we have s ∈ Us and Min≤Us ⊆ As.

Then set UA :=
⋃
s∈A Us ∈ τS for every answer A ∈ Q. We

claim that UA “separates” A from the union of all the an-
swers B �A (as linear separation demands): indeed, by the
construction of UA, it is obvious that (1) A ⊆ UA, and also
that Min≤UA ⊆ A. By unfolding the last clause in terms
of �, we obtain that: A � B holds for all B ∈ Q such that
UA∩B 6= ∅. Since � is a total order on Q, this is equivalent
to: (2) UA ∩ B = ∅ for all B � A. By (1) and (2) together,
we obtain that Q is linearly separated.

Right-to-left implication: Suppose Q is linearly separated.
Let � be a total order on Q that linearly separates it. This
means that, for every answer A ∈ Q, there exists some open
set UA ∈ τS such that A ⊆ UA and UA∩B = ∅ for all B�A.
For each s ∈ S, we set Us := UAs (where As is the unique
answer As ∈ Q with s ∈ As).

Let ≤ be the total preorder on S canonically induced by
the order � ⊆ Q × Q (by s ≤ t iff As � At). We show
now that P is directly solvable by conditioning with respect
to ≤. For this, let s ∈ S be any state, and ~O = (On)n∈ω
be a sound and complete stream for s. Completeness of the
stream implies that there must exist some N ∈ ω such that⋂N
i=1Oi ⊆ Us.
To conclude our proof, it is enough to show the following

Claim: For every n ≥ N , we have

s ∈Min≤(
n⋂

i=1

Oi) ⊆ As.

First, let us see why this Claim is enough to give us
direct solvability by conditioning. The fact that s ∈
Min≤(

⋂n
i=1Oi) implies that Min≤(

⋂n
i=1Oi) 6= ∅, for all

n ≥ N . A previous observation tells us that, when applied
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to such data streams, the AGM agent L≤ produces a “prin-
cipal filter”, given by

L≤(O1, . . . , On) = {P ⊆ S | Min≤(

n⋂

i=1

Oi) ⊆ P}.

By the Claim above we have Min≤(
⋂n
i=1Oi) ⊆ As, and

hence we obtain As ∈ L≤(O1, . . . , On), for all n ≥ N .

Proof of Claim: Let n ≥ N . To prove the Claim, it is
enough to show the following two implications (for all states
t):

(1) t ∈ ⋂ni=1Oi ⇒ s ≤ t;
(2) t ∈Min≤(

⋂n
i=1Oi) ⇒ At = As.

To show (1), let t ∈ ⋂n
i=1Oi. Then t ∈ Us (since⋂n

i=1Oi ⊆
⋂N
i=1Oi ⊆ Us), so Us ∩ At 6= ∅. Hence (by

linear separation) we must have As �At, i.e., s ≤ t.
To show (2), let t ∈ Min≤(

⋂n
i=1Oi). This implies that

t ≤ s (since s ∈ ⋂ni=1Oi). But by (1), we also have s ≤ t,
and hence s ≤ t ≤ s. This means that As�At�As. But �

is a total order on Q, so it follows that At = As.

Theorem 3. AGM conditioning is a universal problem-
solving method, i.e., every solvable problem is solvable by
some AGM agent.

Proof. Let P be a solvable problem. From Theorem 2,
Proposition 3 and Lemma 2, it follows that P has a linearly
separated refinement P′. By Lemma 5, that refinement is
(directly) solvable by an AGM agent L≤. It is obvious (from
the definition of solvability) that any doxastic agent which
solves the more refined problem P′ solves also the original
problem P.

Corollary 3. AGM conditioning is a universal learn-
ing method, i.e., every learnable space is learnable by some
AGM agent.

Proof. Apply the previous result to the finest question
Q := {{s} | s ∈ S}.

In contrast, recall that the counterexample in Proposi-
tion 2 showed that standard AGM agents have a very lim-
ited problem-solving power. Standard conditioning is not a
universal learning method (while general AGM conditioning
is universal). This means that allowing prior plausibility or-
ders that are non-wellfounded is essential for achieving uni-
versality of conditioning. Beliefs generated in this way may
occasionally fail to be globally consistent. (Indeed, note that
in the counterexample from Proposition 2, the beliefs of the
non-standard AGM agent who learns the space are initially
globally inconsistent. In conclusion, occasional global incon-
sistencies are the unavoidable price for the universality of
AGM conditioning.

7. CONCLUSIONS AND CONNECTIONS
TO OTHER WORK

The general topological setting for problem-solving as-
sumed here is a variation of the one championed by Kelly in
various talks [23] and in unpublished work [24, 25], though
until recently we did not realize this close similarity. Our
topological characterizations of verifiable, falsifiable and de-
cidable properties are generalizations of results by Kelly [19],

who proved characterizations for the special case of Baire
spaces.10 Our result on learning-universality (Corollary 3)
is also a generalization of analogue results by Kelly [21, 20],
and Kelly, Schulte and Hendricks [26]. But our generaliza-
tion to arbitrary spaces is highly non-trivial, requiring the
use of the TD characterization. (In contrast, the Baire space
satisfies the much stronger separation axiom T1, which triv-
ializes the specialization order, and so the proof of learning-
universality is much easier in this special case: any total
ω-like ordering of the space can be used for conditioning.)
Nevertheless, in a sense, this result is just a topological re-
packaging of one of our own previous results [13, 3, 4].

While writing this paper, we learned that our TD charac-
terization of learnability (Corollary 2) was independently re-
proven by Konstantin Genin ([11], unpublished manuscript),
soon after we announced its proof. This characterization is
actually a topological translation of a classical characteri-
zation of identifiability in the limit [2], and in fact it also
follows from a result by de Brecht and Yamamoto [9], who
prove it for so-called “concept spaces”.

Our key new results are far-reaching and highly non-
trivial: the topological characterization of solvability (Theo-
rem 2), and the universality of AGM condition for problem-
solving (Theorem 3). They required the introduction of new
topological concepts (e.g., pseudo-stratifications and linearly
separated partitions), and some non-trivial proofs of new
topological results.

Philosophically, the importance of these results is that,
on the one hand they fully vindicate the general topological
program in Inductive Epistemology started by Kelly and
others [19, 31], and on the other hand they reassert the
power and applicability of the AGM Belief Revision Theory
against its critics.

To this conclusion, we need to add an important proviso:
our results show that, in order to achieve problem-solving
universality, AGM agents need to (a) be “creative”, by go-
ing beyond the original problem (i.e., finding a more refined
problem that can be solved directly, and forming prior be-
liefs about the answer to this more refined question), and
(b) admit non-standard priors, which occasionally will lead
to beliefs that are globally inconsistent (although still locally
consistent). Such occasional global inconsistencies can give
rise to a type of “infinite Lottery Paradox”. But this is the
price that AGM agents have to pay in order to be able to
solve every solvable question.

Whether or not this is a price that is worth paying is a
different, more vague and more “ideological” question, al-
though a very interesting one. But this question lies beyond
the scope of this paper.
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ABSTRACT
We show that standard Bayesian games cannot represent
the full spectrum of belief-dependent preferences. However,
by introducing a fundamental distinction between intended
and actual strategies, we remove this limitation. We define
Bayesian games with intentions, generalizing both Bayesian
games and psychological games [5], and prove that Nash
equilibria in psychological games correspond to a special
class of equilibria as defined in our setting.

1. INTRODUCTION
Type spaces were introduced by John Harsanyi [6] as a

formal mechanism for modeling games of incomplete infor-
mation where there is uncertainty about players’ payoff func-
tions. Broadly speaking, types are taken to encode payoff-
relevant information, a typical example being how each par-
ticipant values the items in an auction. An important fea-
ture of this formalism is that types also encode beliefs about
types. Thus, a type encodes not only a player’s beliefs about
other players’ payoff functions, but a whole belief hierarchy :
a player’s beliefs about other players’ beliefs, their beliefs
about other players’ beliefs about other players’ beliefs, and
so on.

This latter point has been enthusiastically embraced by
the epistemic game theory community, where type spaces
have been co-opted for the analysis of games of complete
information. In this context, types encode beliefs about
the strategies used by other players in the game as well as
their types. So again, types encode a belief hierarchy, but
one that describes players’ beliefs about other players’ be-
liefs. . . about the other players’ types and strategies. In this
framework, one can determine whether a player is rational
given her type and strategy; that is, whether her strategy
is such that she is making a best response to her beliefs,
as encoded by her type. Thus, rationality, common belief
of rationality, and so on can be defined as events in the
space of (profiles of) strategy-type pairs. This opens the
way to epistemic analyses of solution concepts, among other
applications [3]. In this setting, types do not encode payoff-
relevant information; rather, they are simply a tool for de-
scribing belief hierarchies about other players’ (types and)
strategies.

By contrast, in a Bayesian game, types are payoff-relevant
objects in that utility depends on them, though the payoff-
relevant information they are taken to encode often includes
such things as characteristics of the players (strength, work
ethic, etc.), or more generally any relevant facts that may
not be common knowledge. There is typically assumed to

be a prior probability on types (indeed, often a common
prior), so a type can still be viewed as encoding beliefs on
other types in this setting (a type t encodes the probability
obtained by conditioning the prior on t), and thus a belief
hierarchy. However, the only aspect of this belief hierarchy
that is typically used in Bayesian games is the first-order be-
lief about other players’ types (but not beliefs about beliefs,
and so on), which is needed to defined a player’s expected
utility. Nonetheless, it is possible to leverage the fact that
types encode beliefs to define Bayesian games in which play-
ers’ preferences depend to some extent on the beliefs of their
opponents (see Example 2.2). This observation is the point
of departure for the present work.

The notion that a player’s preferences might depend on
the beliefs of her opponents (or on her own beliefs) is not
new. Psychological games [1, 5] model phenomena like anger,
surprise, and guilt by incorporating belief hierarchies di-
rectly into the domain of the utility functions. Language-
based games [2] model similar belief-dependent preferences
by defining utility over descriptions in a given language (in
particular, a language that can express the players’ beliefs).
Types play no explicit role in either of these frameworks; on
the other hand, the discussion above suggests that they may
be naturally employed to accomplish many of the same mod-
eling goals. Since Bayesian games and, more generally, type
spaces have become cornerstones of modern game theory, if
the modeling and analysis of psychological games could be
carried out in this familiar framework, it would unify these
paradigms and thereby amplify both the insights and the
accessibility of the latter. In this paper, we provide an ex-
tension of Bayesian games that allows us to do just this.

There is an obvious obstruction to capturing general belief-
dependent preferences using types in the standard way: types
in Bayesian games encode beliefs about types, not about
strategies. This severely limits the extent to which prefer-
ences over types can capture feelings like surprise or guilt,
which are typically expressed by reference to beliefs about
strategies (e.g., my opponent is surprised if I do not play
the strategy that she was expecting me to play). It may
seem that there is a simple solution to this problem: al-
low types to encode beliefs about strategies. But doing this
leads to difficulties in the definition of Bayesian Nash equi-
librium, the standard solution concept in Bayesian games;
this notion depends on being able to freely associate strate-
gies with types. In Section 2, we give the relevant definitions
and make this issue precise.

In Section 3, we develop a modification of the standard
Bayesian setup where each player is associated with two
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strategies: an intended strategy that is determined by her
type (and thus can be the object of beliefs), and an ac-
tual strategy that is independent of her type (as in stan-
dard Bayesian games). This gives us what we call Bayesian
games with intentions. We define a solution concept for such
games where we require that, in equilibrium, the actual and
intended strategies are equal. As we show, under this re-
quirement, equilibria do not always exist.

In Section 4, we show that psychological games can be
embedded in our framework. Moreover, we show that the
notion of Nash equilibrium for psychological games defined
by Geanakoplos, Pearce, and Stachetti [5] (hereafter GPS)
corresponds to a special case of our own notion of equilib-
rium. Thus, we realize all the advantages of psychological
games in an arguably simpler, better understood setting.
We do not require complicated beliefs hierarchies; these are
implicitly encoded by types.

The advantages of distinguishing actual from intended
strategies go well beyond psychological games. As we show
in the full paper, intended strategies can be fruitfully inter-
preted as reference points in the style of prospect theory [7].
One of the central insights of prospect theory is that the
subjective value of an outcome can depend, at least in part,
on how that outcome compares to some “reference level”;
for example, whether it is viewed as a relative gain or loss.
The intended/actual distinction naturally implements the
needed comparison between“real”and“reference”outcomes.
Using this insight, we show that reference-dependent prefer-
ences, as defined by Kőszegi and Rabin [8], can be captured
using Bayesian games with intentions.

2. BAYESIAN GAMES

2.1 Definition
A Bayesian game is a model of strategic interaction among

players whose preferences can depend on factors beyond
the strategies they choose to play. These factors are often
taken to be characteristics of the players themselves, such as
whether they are industrious or lazy, how strong they are,
or how they value certain objects. Such characteristics can
be relevant in a variety of contexts: a job interview, a fight,
an auction, etc.

A type of player i is often construed as encoding precisely
such characteristics. More generally, however, types can be
viewed as encoding any kind of information about the world
that might be payoff-relevant. For example, the resolution
of a battle between two armies may depend not only on what
maneuvers they each perform, but also on how large or well-
trained they were to begin with, or the kind of terrain they
engage on. Decision-making in such an environment there-
fore requires a representation of the players’ uncertainty re-
garding these variables.

We now give a definition of Bayesian games that is some-
what more general than the standard definition. This will
make it easier for us to develop the extension to Bayesian
games with intentions. We explain the differences after we
give the definition.

Fix a set of players, N = {1, . . . , n}. A Bayesian game
(over N) is a tuple B = (Ω, (Σi, Ti, τi, pi, ui)i∈N ) where

• Ω is the measurable space of states of nature;

• Σi is the set of strategies available to player i;

• Ti is the set of types of player i;

• τi : Ω→ Ti is player i’s signal function;

• pi : Ti → ∆(Ω) associates with each type ti of player i a
probability measure pi(ti) on Ω with pi(ti)(τ

−1
i (ti)) =

1, representing type ti of player i’s beliefs about the
state of nature;1

• ui : Σ× Ω→ R is player i’s utility function.2

As we said above, this definition of a Bayesian game is
more general than what is presented in much (though not
all) of the literature. There are two main differences. First,
we take utility to be defined over strategies and states of
nature, rather than over strategies and types (cf. [9] for a
similar definition). This captures the intuition that what is
really payoff-relevant is the way the world is, and types sim-
ply capture the players’ imperfect knowledge of this. Since
the type signal function profile (τ1, . . . , τn) associates with
each world a type profile, utilities can depend on players’
types. Of course, we can always restrict attention to the
special case where Ω = T and where τi : T → Ti is the
ith projection function; this is called the reduced form, and
it accords with a common conception of types as encoding
all payoff-relevant information aside from strategy choices
(cf. [4]).

The second respect in which this definition is more general
than is standard is in the association of an arbitrary proba-
bility measure pi(ti) to each type ti. It is typically assumed
instead that for each player i there is some fixed probability
measure πi ∈ ∆(Ω) representing her “prior beliefs” about
the state of nature, and pi(ti) is obtained by conditioning
these prior beliefs on the “private information” ti (or, more
precisely, on the event τ−1

i (ti)).
3 When π1 = π2 = · · · = πn,

we say that the players have a common prior ; this condi-
tion is also frequently assumed in the literature. We adopt
the more general setup because it accords with a standard
presentation of type spaces as employed for the epistemic
analysis of games of complete information [3], thus making
it easier for us to relate our approach to epistemic game
theory.

The requirement that pi(ti)(τ
−1
i (ti)) = 1 amounts to as-

suming that each player is sure of her own type (and hence,
her beliefs); that is, in each state ω ∈ Ω, each player i
knows that the true state is among those where she is of
type ti = τi(ω), which is exactly the set τ−1

i (ti).

2.2 Examples
It will be helpful to briefly consider two simple examples

of Bayesian games, one standard and one a bit less so.

Example 2.1. First consider a simplified auction scenario
where each participant i ∈ N must submit a bid σi ∈ Σi =

1As usual, we denote by ∆(X) the set of probability mea-
sures on the measurable space X. To streamline the pre-
sentation, we suppress measurability assumptions here and
elsewhere in the paper.
2Given a collection (Xi)i∈N indexed by N , we adopt the
usual convention of denoting by X the product

∏
i∈N Xi

and by X−i the product
∏
j 6=iXj .

3To ensure this is well-defined, it is also typically assumed
that none of player i’s types are null with respect to πi; that
is, for all ti ∈ Ti, πi(τ−1

i (ti)) > 0.
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R+ for a given item. Types here are conceptualized as en-
coding valuations of the item up for auction: for each ti ∈ Ti,
let v(ti) ∈ R+ represent how much player i thinks the item
is worth, and define player i’s utility ui : Σ× T by

ui(σ, t) =





v(ti)− σi if σi = max
j∈N

σj

0 otherwise.

Thus, a player’s payoff is 0 if she does not submit the high-
est bid, and otherwise is equal to her valuation of the item
less her bid (for simplicity, this model assumes that in the
event of a tie, every top-bidding player gets the item). Note
that the state space here is implicitly taken to be identical
to the space T of type profiles, that is, the game is presented
in reduced form. A type ti therefore tells us not only how
valuable player i thinks the item is (v(ti)), but also what be-
liefs pi(ti) ∈ ∆(T ) player i has about how the other players
value the item (and what beliefs they have about their op-
ponents, and so on). The condition that pi(ti)(τ

−1(ti)) = 1
then simply amounts to the assumption that each player is
sure of her own valuation (as well as her beliefs about other
players’ types).

Example 2.2. Next we consider an example where the
Bayesian framework is leveraged to model a player whose
preferences depend on the beliefs of her opponent. Consider
a game where the players are students in a class, with player
1 having just been called upon by the instructor to answer
a yes/no question. Assume for simplicity that N = {1, 2},
Σ1 = {yes, no, pass}, and Σ2 = {∗} (where ∗ denotes a vacu-
ous move, so only player 1 has a real decision to make). Let
Ω = {wy, wn, vy, vn}, where, intuitively, states with the sub-
script y are states where “yes” is the correct answer, while
states with the subscript n are states where “no” is the cor-
rect answer. Let T1 = {t1, t′1}, T2 = {t2, t′2, t′′2}, and define
the signal functions by

τ1(wy) = τ1(wn) = t1, τ1(vy) = τ1(vn) = t′1, and

τ2(wy) = τ2(wn) = t2 and τ2(vy) = t′2 and τ2(vn) = t′′2 .

Finally, assume that all of the subjective probability mea-
sures arise by conditioning a common prior π ∈ ∆(Ω) on the
type of the player in question; assume further that π is the
uniform distribution. It follows that in each state, player 1
is unsure of the correct answer. On the other hand, while in
states wy and wn, player 2 is also unsure of the correct an-
swer, in states vy and vn, player 2 knows the correct answer.
Moreover, in states wy and wn, player 1 is sure that player
2 does not know the correct answer, whereas in states vy
and vn, player 1 is sure that player 2 does know the correct
answer (despite not knowing it himself). We can therefore
use this framework to encode the following (quite plausible)
preferences for player 1: guessing the answer is preferable to
passing provided player 2 does not know the right answer,
but passing is better than guessing otherwise. Set

u1(yes, wy) = u1(yes, vy) = u1(no, wn) = u1(no, vn) = 5,

representing a good payoff for answering correctly; set

u1(pass, x) = −2 for all x ∈ Ω,

representing a small penalty for passing regardless of what

the correct answer is; finally, set

u1(yes, wn) = u1(no, wy) = −5 and

u1(yes, vn) = u1(no, vy) = −15,

representing a penalty for getting the wrong answer that
is substantially worse in states where player 2 knows the
correct answer.

It is easy to check that if player 1 considers wy and wn to
be equally probable, then her expected utility for randomly
guessing the answer is 0, which is strictly better than passing
(passing, of course, always yields an expected utility of −2).
By contrast, if player 1 considers vy and vn to be equally
probable, then her expected utility for randomly guessing is
−5, which is strictly worse than passing. In short, player 1’s
decision depends on what she believes about the beliefs of
player 2.

Example 2.2 captures what might be thought of as em-
barrassment aversion, which is a species of belief-dependent
preference: player 1’s preferences depend on what player 2
believes. It is worth being explicit about the conditions that
make this possible:

C1. States in Ω encode a certain piece of information I
(in this case, whether the correct answer to the given
question is “yes” or “no”).

C2. Types encode beliefs about states.

C3. Utility depends on types.

From C1–C3, we can conclude that preferences can depend
on what the players believe about I.

Not all kinds of belief-dependent preferences can be cap-
tured in the Bayesian framework. Suppose, for example,
that the goal of player 1 is to surprise her opponent by play-
ing an unexpected strategy. More precisely, suppose that
Σ1 = {σ1, σ

′
1} and we wish to define u1 in such a way that

player 1 prefers to play σ1 if and only if player 2 believes
he will play σ′1. In contrast to Example 2.2, this scenario
cannot be represented with a Bayesian game for the follow-
ing simple reason: states do not encode strategies. In other
words, condition C1 is not satisfied if we take I to be player
1’s strategy. Therefore, types cannot encode such beliefs
about strategies, so utility cannot be defined in a way that
depends on such beliefs.

This suggests an obvious generalization of the Bayesian
setting, namely, encoding strategies in states. Indeed, this
is the idea we explore in this paper; however, it is not quite
as straightforward a maneuver as it might appear, primarily
due to its interaction with the mechanics of Bayesian Nash
equilibrium.

2.3 Equilibrium
Part of the value of Bayesian games lies in the fact that

a generalized notion of Nash equilibrium can be defined in
this framework, for which the following notion plays a crucial
role: a behaviour rule for player i is a function βi : Ti → Σi.
In Bayesian games, we talk about behaviour rule profiles be-
ing in equilibrium, just as in normal-form games, we talk
about strategy profiles being in equilibrium. Intuitively,
βi(ti) represents the strategy that type ti of player i is play-
ing, so a player’s strategy depends on her type.

From a technical standpoint, behaviour rules are impor-
tant because they allow us to associate a payoff for each
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player with each state, rather than strategy-state pairs. Since
types encode beliefs about states, this yields a notion of ex-
pected utility for each type. A Bayesian Nash equilibrium
is then defined to be a profile of behaviour rules such that
each type is maximizing its own expected utility.

More precisely, observe that via the signal functions τi, a
behaviour rule βi associates with each state ω the strategy
βi(τi(ω)). Thus, a profile β of behaviour rules defines an

induced utility function uβi : Ω→ R as follows:

uβi (ω) = ui((βj(τj(ω)))j∈N , ω).

The beliefs pi(ti) then define the expected utility for each

type: let Eti(β) denote the expected value of uβi with respect
to pi(ti). Denote by Bi the set of all behaviour rules for
player i. A behaviour rule βi is a best response to β−i if,
for each ti ∈ Ti, βi maximizes Eti :

(∀β′i ∈ Bi)(Eti(βi, β−i) ≥ Eti(β′i, β−i)).
Finally, a Bayesian Nash equilibrium of the Bayesian
game B is a profile of behaviour rules β such that, for each
i ∈ N , βi is a best response to β−i. A (mixed) Bayesian
Nash equilibrium is guaranteed to exist when the strategy
and types spaces are finite (see [10] for a more general char-
acterization of when an equilibrium exists).

3. INTENTION

3.1 Definition
Behaviour rules map types to strategies, but the underly-

ing model does not enforce any relationship between types
and strategies (or between states and strategies). Thus, be-
haviour rules do not provide a mechanism satisfying con-
dition C1 with I taken to be a player’s strategies, so they
do not allow us to express preferences that depend on be-
liefs about strategies. In order to express such preferences,
we must associate strategies with states in the model itself.
Note that once we do this, utility functions depend on strate-
gies in two ways. Specifically, since ui is defined on the cross
product Σ×Ω, players’ preferences depend on strategies both
directly (corresponding to the strategy-profile component of
ui’s input) and as encoded in states (the second component
of ui’s input). To keep track of this distinction, we call these
actual and intended strategies, respectively.

Formally, a Bayesian game with instantiated inten-
tions (BGII) is a tuple I = (Ω, (Σi, Ti, τi, si, pi, ui)i∈N ),
where si : Ti → Σi is player i’s intention function and the
remaining components are defined as in a Bayesian game.
(The reason for this terminological mouthful will become
clear in Section 3.3, where we define Bayesian games with
intentions.) Each si associates with each type ti of player
i an intended strategy si(ti). Intuitively, we might think
of si(ti) as the strategy that a player of type ti “intends”
or “is planning” to play (though may ultimately decide not
to); alternatively, it might be conceptualized as the“default”
strategy for that type; it might even be viewed as the“stereo-
typical” strategy employed by players of type ti. The former
interpretation may be appropriate in a situation where we
want to think of self-control; for example, a player who in-
tends to exercise, but actually does not. The latter interpre-
tation may be appropriate if we think about voting. Wealthy
people in Connecticut typically vote Republican, but a par-
ticular player i who is wealthy and lives in Connecticut (this

information is encoded in her type) votes Democrat.
We associate intended strategies with types rather than

directly with states by analogy to behaviour rules, in keep-
ing with the modeling paradigm where the personal char-
acteristics of a player—including her beliefs, decisions, and
intentions—are entirely captured by her type. Nonetheless,
the composition si ◦ τi : Ω → Σi does associate strategies
with states and so satisfies condition C1 (again, with I be-
ing a player’s strategy); thus, players can have beliefs about
strategies. This, in turn, allows us to define utility so as to
capture preferences that depend on beliefs about strategies.

3.2 Examples
The presentation of a BGII is made clearer by introducing

the following notation for the set of states where player i
intends to play σi:

[[σi]] = (si ◦ τi)−1(σi) = {ω ∈ Ω : si(τi(ω)) = σi}.

Example 3.1. Consider a 2-player game in which player
1’s goal is to surprise her opponent. We take player 2 to be
surprised if his beliefs about what player 1 intends to play
are dramatically different from what player 1 actually plays.
For definiteness, we take “dramatically different” to mean
that his beliefs about player 1’s intended strategy ascribe
probability 0 to player 1’s actual strategy. Thus, we define
player 1’s utility function as follows:

u1(σ, ω) =

{
1 if p2(τ2(ω))([[σ1]]) = 0

0 otherwise.

(Recall that p2(τ2(ω)) is a measure on states, which is why
we apply it to τ−1

1 (s−1
1 (σ1)), that is, the set of states ω where

player 1’s intended strategy, s1(τ1(ω)), is equal to σ1.)

Example 3.2. Next we consider an example introduced
by GPS [5] called the bravery game. This is a 2-player sce-
nario in which player 1 has the only real decision to make:
he must choose whether to take a bold action or a timid ac-
tion, so Σ1 = {bold, timid} (and Σ2 = {∗}). The crux of the
game is the psychological factor, described by GPS as fol-
lows: player 1 prefers “to be timid rather than bold, unless
he thinks his friends expect him to be bold, in which case
he prefers not to disappoint them” [5]. It is also stipulated
that player 2 prefers player 1 to be bold, and also prefers to
think of him as bold. Define q : T → [0, 1] to be the degree
of belief that type t2 of player 2 has in player 1 being bold:

q(t) = p(t2)([[bold]]).

Define q̃ : T → [0, 1] to be type t1 of player 1’s expectation
of this degree of belief:

q̃(t) = Et1(q),

where Eti(f) denotes the expected value of f with respect
to the measure p(ti). We can then represent the players’
preferences in a reduced-form BGII as follows:

u1(σ, t) =

{
2− q̃(t) if σ1(t1) = bold

3(1− q̃(t)) if σ1(t1) = timid,

u2(σ, t) =

{
2(1 + q(t)) if σ1(t1) = bold

1− q(t) if σ1(t1) = timid.
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This representation closely parallels that given in [5], in
which q and q̃ are understood not as functions of types,
but (implicitly) as functions of belief hierarchies.4 But this
makes no difference to the preferences this game encodes.
For example, it is easy to see that player 2 prefers player 1
to be bold, and all the more so when q is high—that is, all
the more so when she believes with high probability that he
will be bold.5 Similarly, one can check that player 1 prefers
to be timid provided that q̃(t) < 1

2
; in other words, provided

that his expectation of his opponent’s degree of belief in him
being bold is sufficiently low.

Why not define player 1’s preferences directly in terms
of the beliefs of his opponent, rather than his expectation
of these beliefs? GPS cannot do so because of a technical
limitation of the framework as developed in [5]; specifically,
that a player’s utility can depend only on her own beliefs.
Battigalli and Dufwenberg [1] correct this deficiency. BGIIs
do not encounter such limitations in the first place. In par-
ticular, it is easy enough to redefine player 1’s utility as
follows:

u′1(σ, t) =

{
2− q(t) if σ1(t1) = bold

3(1− q(t)) if σ1(t1) = timid.

In this case, we find that player 1 prefers to be timid pro-
vided q(t) < 1

2
, or in other words, provided that his op-

ponent’s degree of belief in him being bold is sufficiently
low.

Observe that in neither of the preceding examples did we
provide a concrete BGII, in that we did not explicitly define
the type spaces, the intention functions, and so on. Instead,
we offered general recipes for implementing certain belief-
dependent preferences (e.g., to surprise, to live up to expec-
tations, etc.) in arbitrary BGIIs. Particular choices of type
spaces and intention functions do play an important role in
equilibrium analyses; however, as illustrated by the preced-
ing two examples, at the modeling stage they need not be
provided up front.

3.3 Equilibrium
We now define a notion of equilibrium for this setting. As

a first step towards this definition, given a BGII I, we say
that a profile of behaviour rules β is an equilibrium of I
provided:

(1) β is a Bayesian Nash equilibrium of the underlying Bayesian
game: that is, each βi is a best response to β−i in pre-
cisely the sense defined in Section 2.3;

(2) for each player i ∈ N , βi = si.

This definition, and in particular condition (2), embodies
the conception of equilibrium as a steady state of play where

4Additionally, GPS give the value of q, not by the proba-
bility that player 2 assigns to player 1 being bold, but by
player 2’s expectation of the probability p with which player
1 decides to be bold. We forgo this subtlety for the time
being.
5It is not quite clear why GPS define player 2’s payoff in
the event that player 1 is timid to be 1 − q(t) rather than
1+q(t). This latter value preserves the preferences described
while avoiding the implication that, assuming that player 1
will be timid, player 2 also prefers to believe that he will
be timid—this stands in opposition to the stipulation that
player 2 prefers to think of her opponent as bold.

each player has correct beliefs about her opponents (and is
best responding to those beliefs). In a BGII, beliefs about
the strategies of one’s opponents are beliefs about intended
strategies (although, in equilibrium, a player will also have
beliefs about actual strategies). On the other hand, since be-
havior rules associate strategies with types and players have
beliefs over types, behaviour rules also induce beliefs about
strategies; in our terminology, these are beliefs about actual
strategies. Condition (2) implies that these two beliefs coin-
cide in equilibrium; in equilibrium, each type of each player
actually plays the strategy she intended to play (which is
exactly the strategy her opponents expected her to play).

Does condition (2) collapse the distinction between in-
tended and actual strategies, thereby returning us to the
classical setting? It does not. First, in a standard Bayesian
game we could not even write down a model where players’
preferences depended on beliefs about strategies. In addi-
tion, although we demand that intended and actual strate-
gies coincide in equilibrium, this restriction does not apply
to the evaluation of best responses. Recall that βi is a best
response to β−i if and only if

(∀β′i ∈ Bi)(Eti(βi, β−i) ≥ Eti(β′i, β−i)).
Crucially, β′i need not be equal to si. In other words, for βi
to count as a best response, it must be at least as good as
all other behaviour rules, including those that recommend
playing a strategy distinct from that specified by si.

Example 3.3. Consider a 2-player reduced-form BGII with
Σ1 = {a, b}, Σ2 = {∗}, T1 = {x, x′}, and T2 = {y, y′}, and
where

p1(x)({y}) = p1(x′)({y′}) = p2(y)({x′}) = p2(y′)({x}) = 1.

Let u1 be defined as in Example 3.1, encoding player 1’s
desire to surprise her opponent:

u1(σ1, ∗, t) =

{
1 if p2(t2)([[σ1]]) = 0

0 otherwise.

Suppose that s1(x) = s1(x′) = a. Then, of course, p2(y)([[a]]) =
p2(y′)([[a]]) = 1, and likewise p2(y)([[b]]) = p2(y′)([[b]]) = 0.
It follows immediately that the expected utility of playing
a for either type of player 1 is equal to 0 (since player 1 is
sure that this will not surprise her opponent), whereas the
expected utility of playing b for either type of player 1 is
equal to 1 (since, in this case, player 1 is sure that this will
surprise her opponent). In particular, if β1 = s1, then β1 is
not a best response. Thus, this particular BGII admits no
equilibrium.

Now suppose that s1(x) = a and s1(x′) = b. This is,
of course, a different BGII from the one considered in the
previous paragraph, but it differs only in the specification
of player 1’s intentions. Moreover, in this BGII it is not
hard to check that β1 = s1 is a best response and therefore
constitutes an equilibrium: type x is sure that player 2 is
of type y; therefore, type x is sure that player 2 is sure
that player 1 is of type x′, and so is playing b; thus, a is a
best response for x, since x is sure that it will surprise her
opponent; a similar argument shows that b is a best response
for x′.

Example 3.3 demonstrates that the notion of best response
in a BGII—and therefore the notion of equilibrium—can be
sensitive to states of play where players are not playing their
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intended strategies. But it also illustrates the pivotal role
of the intention functions si in determining the existence of
an equilibrium. Indeed, condition (2) implies that if a given
BGII I has an equilibrium at all, it is unique and equal to
s. This suggests that BGIIs are not at the right “resolution”
for equilibrium analysis, since they come already equipped
with a unique candidate for equilibrium. Thus, rather than
restricting attention to a single BGII, where the intention
function is specified and hard-coded into the model, we con-
sider a more general model, where the intention function is
not specified, but still affects the utility. This is parallel to
the role of strategies in standard games, which are not hard-
coded into the model, but of course the utility function still
depends on them. Essentially, we are moving the intention
function from the model to the utility function. As we shall
see, our earlier examples of BGIIs can be easily interpreted
as models in this more general sense.

In order to make this precise, we must first formally define
utility functions that take as arguments intention functions.
More precisely, taking ΣT = ΣT1

1 × · · · ×ΣTn
n (so that ΣT is

the set of intention function profiles), an explicit utility func-
tion is a map ũi : Σ × Ω × ΣT → R; these are just like the
utility functions in a BGII except they explicitly take as in-
put the associations between types and strategies provided
by intention functions. A Bayesian game with inten-
tions (BGI) is a tuple Ĩ = (Ω, (Σi, Ti, τi, pi, ũi)i∈N ), where
the components are defined just as they are in a Bayesian
game, except that the functions ũi are explicit utility func-
tions. We emphasize that a BGI, unlike a BGII, does not
include players’ intention functions among its components;
instead, these functions show up as arguments in the (ex-
plicit) utility functions.

It is easy to see that all the examples of BGIIs that we
have considered so far can be naturally converted to BGIs.
For example, the utility function u1(σ, t) in Example 3.1 be-
comes ũi(σ, t, s). The definition of ũi(σ, t, s) looks identical
to that of u1(σ, t); the additional argument s is needed to
define [[σ1]].

A BGI induces a natural map from intention functions
to BGIIs: given Ĩ = (Ω, (Σi, Ti, τi, pi, ũi)i∈N ) and functions
si : Ti → Σi, let

Ĩ(s1, . . . , sn) = (Ω, (Σi, Ti, τi, si, pi, ui)i∈N ),

where ui : Σ× Ω→ R is defined by

ui(σ, ω) = ũi(σ, ω, s1, . . . , sn).

Clearly Ĩ(s1, . . . , sn) is a BGII; we call it an instantiation

of Ĩ. We then define an equilibrium of Ĩ to be a profile of
behaviour rules β that is an equilibrium of the correspond-
ing instantiation Ĩ(β). Here we make implicit use of the fact
that both behaviour rules and intention functions are func-
tions from types to strategies. Indeed, the profile β plays
two roles: first, it is used to determine the intentions of the
players; then, in the context of the instantiated BGI with
these fixed intentions, we evaluate whether each βi(ti) is a
best response, just as in the definition of equilibrium for a
standard Bayesian game.

Is this a reasonable notion of equilibrium? As we observed
above, in a BGII, the only possible equilibrium is “built in”
to the model in the form of the intention functions. In par-
ticular, the only possible equilibrium for the instantiation
Ĩ(β) is β itself. Of course, β is not necessarily an equi-
librium of this game; however, by quantifying over β and

considering the corresponding class of BGIIs (i.e., those ob-

tained as instantiations of Ĩ), we are essentially asking the
question: “Is there a profile of intentions such that, assuming
those intentions are common knowledge, no player prefers to
deviate from their intention?” If so, that profile constitutes
an equilibrium. This is a natural solution concept; in fact,
as we show in Section 4, the notion of equilibrium proposed
by GPS for psychological games is a special case of our def-
inition.

Example 3.4. In light of these definitions, Example 3.3
can be viewed as first defining a BGI Ĩ, and then considering
two particular instantiations of it. The equilibrium observa-
tions made then amount to the following: the behaviour rule
β1 ≡ a (i.e., the constant function a) is not an equilibrium

of Ĩ, but the behaviour rule β′1 that sends x to a and x′ to b
is. (As there is only ever one option for player 2’s behaviour
rule, namely β2 ≡ ∗, we can safely neglect it.)

Example 3.5. Consider again the bravery game of Ex-
ample 3.2. Under any particular specification of state space
and type spaces, this becomes a BGI Ĩ. It is not difficult to
see that each of the behaviour rules β1 ≡ timid and β′1 ≡ bold
is an equilibrium of Ĩ.

3.4 Existence
Are equilibria of BGIs guaranteed to exist? Not necessar-

ily. At least one obstacle to existence lies in the specification
of the underlying type space and the corresponding prob-
ability measures: as the following example shows, certain
kinds of belief that are necessary for best-responses may be
implicitly ruled out.

Example 3.6. Consider a 2-player reduced-form BGI Ĩ
where Σ1 = {a, b}, Σ2 = {∗}, T1 = {x, x′}, and T2 = {y, y′},
and where

p1(x)({y}) = p1(x′)({y′}) = p2(y)({x}) = p2(y′)({x′}) = 1.

Once again we consider a model where player 1 wishes to
surprise her opponent, and so define u1 as in Example 3.3:

u1(σ1, ∗, t) =

{
1 if p2(t2)([[σ1]]) = 0

0 otherwise.

Note that player 1 is certain that player 2 knows her type.
It follows that no matter what her intentions are, player 2
knows them, and so (by definition of u1), player 1 can always
do better by deviating. In other words, no behaviour rule β1
is an equilibrium of Ĩ(β1) (since it is not a best response).

It follows immediately that Ĩ admits no equilibria.

This obstacle persists even if we extend our attention to
mixed strategies. More precisely, consider the class of BGIIs
where, for each player i, Σi = ∆(Ai) for some finite set Ai
(the set of player i’s pure strategies), and ui : Σ × Ω → R
satisfies

ui(σi, σ−i, ω) =
∑

ai∈Ai

σi(ai)ui(ai, σ−i, ω).

In other words, player i’s utility for playing σi is just the
expected value of her utility for playing her various pure
strategies with the probabilities given by σi. As is standard,
we call elements of Σi mixed strategies, and the correspond-
ing BGIIs mixed-strategy BGIIs. We can similarly define
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mixed-strategy BGIs. Note that in this context, since the
intention functions si map into Σi, intended strategies are
also mixed.

The next example shows that, in contrast to the classi-
cal setting, there are mixed-strategy BGIs with finite type
spaces that admit no equilibria.

Example 3.7. Consider a 2-player reduced-form BGI where
Σ1 = ∆({a, b}), Σ2 = {∗}, T1 = {x, x′}, and T2 = {y, y′},
and where

p1(x)({y}) = p1(x′)({y′}) = p2(y)({x}) = p2(y′)({x′}) = 1.

Set

u1(a, ∗, t) =

{
1 if p2(t2)([[a]]) < 1

0 otherwise

and

u1(b, ∗, t) =

{
1 if p2(t2)([[a]]) = 1

0 otherwise,

and extend to all σ1 ∈ ∆({a, b}) by taking expectation:

u1(σ1, ∗, t) = σ1(a)u1(a, ∗, t) + σ1(b)u1(b, ∗, t).
Note that, following standard conventions, here we identify
the pure strategy a with the degenerate mixed strategy that
places probability 1 on a; likewise for b. Thus, for exam-
ple, the condition p2(t2)([[a]]) < 1 amounts to the following:
“type t2 is not absolutely certain that player 1 intends to
play the pure strategy a”, or equivalently, “type t2 consid-
ers it possible that player 1 intends to play a mixed strategy
that places positive weight on b”. The preferences defined by
u1 can be roughly summarized as follows: “player 1 prefers
to play a in the event that player 2 thinks she might place
positive weight on b, and prefers to play b if player 2 is sure
that she’ll play a for sure”.

This game admits no equilibria. To see this, suppose that
β1 were an equilibrium: that is, set player 1’s intention func-
tion equal to β1, and suppose that β1 is an equilibrium of the
resulting BGII.6 First consider the case where β1(x) ∈ Σ1

satisfies β1(x)(b) > 0. Then it follows that p2(y)([[a]]) = 0
(i.e., type y is certain that player 1 is not playing the pure
strategy a), and so, since type x is certain that player 2 is
of type y, it follows by definition of u1 that type x’s best re-
sponse is to play the pure strategy a. In particular, β1(x) is
not a best response, so β1 cannot constitute an equilibrium.
Now consider the case where β1(x)(b) = 0; in other words,
β1(x) is the pure strategy a. Then we have p2(y)([[a]]) = 1,
from which it follows that type x’s best response is to play
the pure strategy b. Thus, once again, β1 cannot constitute
an equilibrium.

4. PSYCHOLOGICAL GAMES
Psychological games can be captured in our framework.

A psychological game P consists of a finite set of players
N , together with mixed strategies Σi and utility functions
vi : B̄i × Σ → R for each player i, where B̄i denotes the
set of “collectively coherent” belief hierarchies for player i.
Somewhat more precisely, an element bi ∈ B̄i is an in-
finite sequence of probability measures (b1i , b

2
i , . . .) where

6As before, we ignore player 2’s behaviour since he has no
choices to make.

b1i ∈ ∆(Σ−i) is player i’s first-order beliefs, b2i is player
i’s second-order beliefs (i.e., roughly speaking, her beliefs
about the beliefs of her opponents), and so on, such that
the beliefs in this sequence satisfy certain technical condi-
tions (roughly speaking, lower-order beliefs must agree with
the appropriate marginals of higher-order beliefs, and this
agreement must be common knowledge); see the full paper
for the complete definition.

Given a mixed-strategy BGII I and a type ti ∈ Ti, we can
define the first-order beliefs associated with ti by

ϕ1
i (ti) = (s−i)∗(pi(ti));

that is, the pushforward of pi(ti) from Ω to Σ−i by s−i. Note
that, in our terminology, these are beliefs about intended
strategies. The kth-order beliefs associated with ti, denoted
ϕki (ti), can be defined inductively in a similar fashion; it is
then straightforward to show that the sequence

ϕi(ti) = (ϕ1
i (ti), ϕ

2
i (ti), . . .)

is collectively coherent, and thus ϕi : Ti → B̄i (see the full
paper).

This correspondence provides a natural notion of equiva-
lence between psychological games and BGIIs with respect
to the psychological preferences expressed in the former,
namely,

∀i ∈ N ∀σ ∈ Σ∀ω ∈ Ω(ui(σ, ω) = vi(ϕi(τi(ω)), σ)).

When a BGII I satisfies this condition with respect to a
psychological game P, we say that I and P are preference-
equivalent.

The notion of preference-equivalence lifts naturally to BGIs.
Observe that the functions ϕki depend on the profile of in-
tention functions s; being explicit about this dependence, we
write ϕki (ti; s) rather than ϕki (ti); we then say that Ĩ and P
are preference-equivalent provided that

∀i ∈ N ∀σ ∈ Σ∀ω ∈ Ω∀s ∈ ΣT (ũi(σ, ω, s) = vi(ϕi(τi(ω); s), σ)).

It is easy to see that, given a psychological game P, we
can obtain a preference-equivalent BGI Ĩ simply by taking
the above condition as the definition of the utility functions
ũi. Thus, we have the following:

Proposition 4.1. For every psychological game there ex-
ists a preference-equivalent BGI.

Note that even very simple BGIs (i.e., those with very
small type/state spaces) can be preference-equivalent to psy-
chological games; indeed, it is sufficient for the utility func-
tions ũi to be of the form

ũi(σ, ω, s) = f(ϕi(τi(ω); s), σ),

so that utility depends on states only to the extent that
states encode belief hierarchies. In particular, although the
utility functions in a psychological game have uncountable
domains (since they apply to all possible belief hierarchies),

a BGI Ĩ can be preference-equivalent to a psychological
game P even if Ĩ has only finitely many states, since all
that matters is that the utility functions of Ĩ agree with
the utilitiy functions of P on the belief hierarchies encoded
by the states of Ĩ. Given a psychological game, we can
construct a preference-equivalent BGI with type spaces rich
enough that each ϕi is surjective: in other words, every be-
lief hierarchy is realized by some type. However, in order
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to capture equilibrium behaviour, such richness turns out to
be superfluous. We now show how the notion of equilibrium
defined by GPS for psychological games can be recovered as
equilibria in our setting.

Given σ ∈ Σ, let χi(σ) ∈ B̄i denote the unique belief
hierarchy for player i corresponding to common belief in σ.
A psychological Nash equilibrium of P is a strategy profile σ
such that, for each player i, σi maximizes the function

σ′i 7→ vi(χi(σ), σ′i, σ−i).

In particular, to check whether σ constitutes a psychological
Nash equilibrium, the only relevant belief hierarchies are
those corresponding to common belief of σ. This, in essense,
is the reason we do not need rich type spaces in BGIs to
detect such equilibria.

Theorem 4.2. If P and Ĩ are preference-equivalent, then
σ is a psychological Nash equilibrium of P if and only if the
profile of (constant) behaviour rules β for which βi ≡ σi is

an equilibrium of Ĩ.

Proof. When β is the profile of behaviour rules described
in this theorem, the corresponding instantiation Ĩ(β) has the
property that, for each type ti, ϕi(ti) = χi(σ). The rest of
the proof is essentially just unwinding definitions; see the
full paper for details.

Theorem 4.2 shows that equilibrium analysis in psycho-
logical games does not depend on the full space of belief hi-
erarchies; it can be captured by particularly simple BGIs. It
also establishes an equivalence between psychological Nash
equilibria and a certain restricted class of equilibria in BGIs;
namely, those consisting of constant behaviour rules. This
restriction is not surprising in light of the fact that psycho-
logical games do not model strategies as functions of types,
while BGIs do. Thus, BGIs are not merely recapitulations
of the GPS framework: they are a common generalization
of psychological games and Bayesian games.

5. CONCLUSION
We have introduced BGIs, Bayesian games with inten-

tions, which generalize Bayesian games and psychological
games in a natural way. We believe that BGIs will prove
much easier to deal with than psychological games, while
allowing greater flexibility.

When do equilibria exist? While Theorem 4.2 provides
sufficient conditions for the existence of equilibria in BGIs,
they are certainly not necessary conditions. We can show,
for example, that there are BGIs that admit only equilibria
in which no behaviour rule is constant. Formulating more
general conditions sufficient for existence is the subject of
ongoing work.

Perhaps the most exciting prospect for future research lies
in leveraging the distinction between actual and intended
strategies. As we show in the full paper, this distinction
can be used to implement Köszegi and Rabin’s [8] model of
reference-dependent preferences; we believe that it will have
other uses as well, and perhaps lead to new insights into
solution concepts.
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1. INTRODUCTION
Interactive reasoning is an important aspect of how players
behave. To determine whether a particular course of action
is good or bad, Ann may need to form a theory about Bob’s
play of the game. In forming such a theory, she may reason
that Bob is ‘strategically sophisticated’ — if so, she may
reason that Bob forms a belief about her own play to deter-
mine whether a particular strategy is good or bad for him.
That is, Ann may want to form a second-order theory about
Bob’s play of the game. Of course, Ann may then reason
that Bob uses a second-order theory to choose his strategy.
In this case, Ann may want to form a third-order theory
about Bob’s play of the game. And so on.

How many levels of reasoning do players undertake? We
address this question for the case where the players’ pro-
cesses of reasoning are not observable. Instead, the re-
searcher observes only the behavior of the players — or,
perhaps, only the outcome of the game. We ask: Can the
researcher use this information to identify — or provide
bounds on — levels of reasoning?

2. A MOTIVATING EXAMPLE
Figure 1 depicts the game of Battle-of-the-Sexes with an

Outside Option: Ann can either choose to exercise an out-
side option or choose to play Battle-of-the-Sexes with Bob.
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at the University of Bristol, the 2013 Asian Meeting of the
Econometric Society, National University of Singapore, and
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mation Change for important input. Adam Brandenburger
thanks the NYU Stern School of Business for financial sup-
port. Amanda Friedenberg thanks NSF SES-1358008 for
financial support and the UCL Economics Department for
its unbounded hospitality.

The standard argument is that, if the players are ‘strate-
gically sophisticated,’ then Ann will choose In-U and Bob
will choose L: The strategy In-D is dominated for Ann by
the outside option. Thus, if Ann does play In, Bob should
reason that she will play U , since In-U is undominated. In
this case, his best response is to play L. Ann should under-
stand that Bob will reason this way and expect Bob to play
L. With this expectation, Ann should play In-U .

4,2 0,0

0,0 2,4

U

D

R

Ann

Bob

Ann

3

*

Out In

L

Figure 1: Battle-of-the-Sexes with an Outside Option

Thus, there appears to be a clear prediction: Ann will play
In-U and Bob will play L. Yet, in the lab, Out is played with
significant frequency. (See, inter alia, [4] and [2].) One might
then draw the conclusion that there is limited reasoning: If
Bob engages in one level of reasoning, he may choose either
L or R depending on what he believes about Ann’s play. So,
if Ann engages in two levels of reasoning, she might choose
to play Out. It is only if Ann reasons three (or more) levels
that she would not play Out.

But, in fact, this behavior need not be an artifact of lim-
ited reasoning. There is another reason why Ann might
choose to play Out — one based on the idea that there is a
“context” to the game. In particular, suppose that it is com-
monly understood that “Bob is a bully” and, so, whenever
a Battle-of-the-Sexes game is played, he attempts to go for
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his best option and plays R. To be specific, suppose:

Bully-1: at each information set, Ann believes that Bob
plays R,

Bully-2: at each information set, Bob believes “Bully-
1,”

Bully-3: at each information set, Ann believes “Bully-
2.”

...

If this is the context under which the game is played, Ann
may play Out, even if she reasons three levels. In fact, she
may play Out, even if she engages in common reasoning
about the play of the game.

Here is the basic idea: When the game is played in this
context, if Ann reasons at least one level, then she must
play Out. (Ex ante, she expects that Bob will play R, and
so Out is the unique best choice.) If Bob reasons at least two
levels, then he will reason that Ann reasons at least one level,
provided he has not observed information that contradicts
this hypothesis. Thus, if Bob reasons at least two levels, he
must begin the game believing Ann plays Out. Conditional
upon Ann’s playing In, he is forced to reason that Ann does
not reason one level. So, Bob can reason two levels and
conclude (after observing In) that Ann is playing In-U , but
he can also conclude that Ann is playing In-D. Thus, if Bob
reasons two levels, he can play either of L or R. It follows
that believing that Bob play will R is consistent with three
levels of reasoning for Ann.

In light of the above, it appears premature to conclude
that observing the play of Out indicates that Ann is neces-
sarily only a level m-reasoner, for some m ≤ 2. This paper
focuses on the case where the researcher cannot observe play-
ers’ actual beliefs or which beliefs players consider possible.
Thus, we seek an answer to our question that is independent
of the context of the game.

3. APPROACH AND CHALLENGE
In keeping with what we have just seen, we will need to

describe what beliefs players do vs. do not consider possible
in a particular game. The device we will use to describe
these beliefs is an epistemic type structure, denoted by
T . An epistemic type structure will consist of a set of types
for each player, where a type for a player will describe that
player’s hierarchies of beliefs about the play of the game.
Different type structures are associated with different events
which are commonly believed. For instance, for Battle-of-
the-Sexes with an Outside Option, there is a type structure
where the event “Bob is a bully” is commonly believed and
there are other type structures where it is not.

Call a pair (Γ, T ) an epistemic game. For a given epis-
temic game (Γ, T ), we can define the set of strategy-type
pairs which are consistent with m levels of reasoning, to be
denoted Rm(T ). Refer to Figure 2, that illustrates these
sets. Specifically:

(0) The set R0(T ) is the set of all strategy-type pairs.
This set captures level-0 reasoning, since there is no
requirement on reasoning.

(1) The set R1(T ) is the set of strategy-type pairs where
the players’ strategies are optimal given their belief
(i.e., type). This set captures level-1 reasoning.

Types

Strategies

R1(T )

R2(T )

R3(T )

R4(T )

Figure 2: Level-m Reasoning

...

(m) The set Rm+1(T ) is the set of strategy-type pairs in
Rm(T ) where each player reasons that the other play-
ers engage in level-m reasoning. This set captures
level-(m+ 1) reasoning.

...

(∞) The set R∞(T ) is the set of strategy-type pairs in
Rm(T ) for all m. This set captures level-∞ or com-
mon reasoning.

The sets Rm(T ) depend not only on the game Γ but also on
the type structure T . This fits with our informal analysis
of Battle-of-the-Sexes with an Outside Option, where the
behavior of a level-3 reasoner depended on whether or not
the event “Bob is a bully” is commonly understood.

Observe that the sets R0(T ), . . . , Rm(T ), . . . are decreas-
ing. This reflects the fact that, if players reason at least
(m + 1) levels, then they reason at least m levels. As a
consequence, we will not be able to identify the minimum
number of levels of reasoning by observing behavior alone.1

Instead, we seek to identify the maximum number of levels
of reasoning consistent with observed behavior.

The goal then is to identify when a strategy is consistent
with m but not (m+1) levels of reasoning. Toward this end,
we seek to construct an ordered partition of the strategy set,
denoted by L = {L0, L1, . . . , Lm, . . . , L∞}, that satisfies the
following criteria: When m is finite, s ∈ Lm if it is

1. consistent with level-m reasoning in some epistemic
game (Γ, T ∗), but

2. inconsistent with level-(m + 1) reasoning in any epis-
temic game (Γ, T ).

When m is infinite, s ∈ Lm if it is consistent with level-
∞ reasoning in some epistemic game (Γ, T ∗). We refer to
players who choose s ∈ Lm as Level-m Reasoners (or
Lm-Reasoners).

1As the “level-k” and “cognitive hierarchy” literatures make
clear, it may be possible to identify the minimum number of
levels of reasoning by making auxiliary assumptions about
behavior or beliefs. See the discussion below.
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For the case of a matrix, standard results give that s ∈ Lm
if and only if s is m but not (m + 1)-rationalizable. One
might conjecture that the same is true for the tree, where
we now take “rationalizability” to mean “extensive-form ra-
tionalizability” as in [8] and [1] (or, equivalently, “iterated
conditional dominance,” as in [9]). This is not the case.
Refer back to Battle-of-the-Sexes with an Outside Option
(Figure 1). There, Out is consistent with two but not three
rounds of extensive-form rationalizability. But, the “Bob is
a bully” analysis showed that Out ∈ L∞.

The main paper provides a novel procedure which serves
to construct the partition L in a finite number of steps. A
major challenge in providing such an procedure is the fact
that the definition of Lm makes reference to all type struc-
tures. For a given finite tree, there are infinitely many as-
sociated type structures and, therefore, searching across all
type structures would appear to be an infinite task. The
Main Theorem in the paper provides a way to side-step this
difficulty for generic games. It characterizes the set of strate-
gies consistent with m levels of reasoning as a property of
the game alone — without reference to any type structure.
It goes on to show how to implement the procedure in a
“simple” manner.

4. UPPER BOUND ON REASONING
The main paper identifies the maximum number of levels

of reasoning consistent with observed behavior. The focus
on this upper bound is inevitable, absent making auxiliary
assumptions on behavior and/or beliefs. (The “level-k” and
“cognitive hierarchy” literatures, e.g., [7], [10], [5], [3], etc.,
obtain exact identification by imposing such restrictions.)
But, there are also good reasons why this upper bound is of
interest. To the extent that the researcher is interested in
using the number of levels of reasoning as an empirical input,
the researcher may care only that the player acts ‘as if’ she
is an L2-Reasoner — even if she is, in fact, an L1-Reasoner
or L0-Reasoner. A similar argument applies to higher levels
of reasoning.

For certain datasets, it may be possible to distinguish an
L2-Reasoner from an L1-Reasoner who acts as if she is an L2-
Reasoner. With a large dataset, we should expect, on sta-
tistical grounds, to see more than just occasional in-sample
play of strategies inconsistent with higher levels of reason-
ing. In the spirit of the “level-k” and “cognitive hierarchy”
literatures (e.g., [7], [10], [5], [3], etc.), the researcher may
be able to design an experiment so that, even in small sam-
ples, we would expect to see play inconsistent with higher
levels of reasoning. For instance, the design in [6] is based on
“ring games,” where the payoff to any player depends only
on his/her left-hand neighbor’s choice. So, changing payoffs
to a player two steps to the left of Ann should not affect
her behavior if she is a L1-Reasoner, but should affect her
behavior is she is a L2-Reasoner. As a consequence, varying
payoffs across the experimental session should generate dis-
tinct behavior for L1- and L2-Reasoners, thereby allowing
the experimenter to identify the L2-Reasoner.
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ABSTRACT
In the last few decades, numerous experiments have shown
that humans do not always behave so as to maximize their
material payoff. Cooperative behavior when non-cooperation
is a dominant strategy (with respect to the material payoffs)
is particularly puzzling. Here we propose a novel approach
to explain cooperation, assuming what Halpern and Pass
[2013] call translucent players. Typically, players are as-
sumed to be opaque, in the sense that a deviation by one
player in a normal-form game does not affect the strate-
gies used by other players. But a player may believe that if
he switches from one strategy to another, the fact that he
chooses to switch may be visible to the other players. For
example, if he chooses to defect in Prisoner’s Dilemma, the
other player may sense his guilt. We show that by assuming
translucent players, we can recover many of the regularities
observed in human behavior in well-studied games such as
Prisoner’s Dilemma, Traveler’s Dilemma, Bertrand Compe-
tition, and the Public Goods game.

1. INTRODUCTION
In the last few decades, numerous experiments have shown

that humans do not always behave so as to maximize their
material payoff. Many alternative models have consequently
been proposed to explain deviations from the money-maximization
paradigm. Some of them assume that players are boundedly
rational and/or make mistakes in the computation of the
expected utility of a strategy [Camerer et al. 2004, Costa-
Gomes et al. 2001, Halpern and Pass 2015, McKelvey and
Palfrey 1995, Stahl and Wilson 1994]; yet others assume that
players have other-regarding preferences [Bolton and Ocken-
fels 2000, Charness and Rabin 2002, Fehr and Schmidt 1999];
others define radically different solution concepts, assuming
that players do not try to maximize their payoff, but rather
try to minimize their regret [Halpern and Pass 2012, Renou
and Schlag 2010], or maximize the forecasts associated to
coalition structures [Capraro 2013, Capraro et al. 2013], or
maximize the total welfare [Apt and Schäfer 2014, Rong and
Halpern 2013]. (These references only scratch the surface; a
complete bibliography would be longer than this paper!)

Cooperative behavior in one-shot anonymous games is
particularly puzzling, especially in games where non-cooperation
is a dominant strategy (with respect to the material payoffs):
why should you pay a cost to help a stranger, when no clear
direct or indirect reward seems to be at stake? Neverthe-
less, the secret of success of our societies is largely due to
our ability to cooperate. We do not cooperate only with
family members, friends, and co-workers. A great deal of

cooperation can be observed also in one-shot anonymous in-
teractions [Camerer 2003], where none of the five rules of
cooperation proposed by Nowak [2006] seems to be at play.

Here we propose a novel approach to explain cooperation,
based on work of Halpern and Pass [2013] and Salcedo [2013],
assuming what Halpern and Pass call translucent players.
Typically, players are assumed to be opaque, in the sense
that a deviation by one player in a normal-form game does
not affect the strategies used by other players. But a player
may believe that if he switches from one strategy to another,
the fact that he chooses to switch may be visible to the other
players. For example, if he chooses to defect in Prisoner’s
Dilemma, the other player may sense his guilt. (Indeed, it
is well known that there are facial and bodily clues, such
as increased pupil size, associated with deception; see, e.g.,
[Ekman and Friesen 1969]. Professional poker players are
also very sensitive to tells—betting patterns and physical
demeanor that reveal something about a player’s hand and
strategy.)1

We use the idea of translucency to explain cooperation.
This may at first seem somewhat strange. Typical lab ex-
periments of social dilemmas consider anonymous players,
who play each other over computers. In this setting, there
are no tells. However, as Rand and his colleagues have ar-
gued (see, e.g., [Rand et al. 2012, Rand et al. 2014]), behav-
ior of subjects in lab experiments is strongly influenced by
their experience in everyday interactions. People internalize
strategies that are more successful in everyday interactions
and use them as default strategies in the lab. We would ar-
gue that people do not just internalize strategies; they also
internalize beliefs. In everyday interactions, changing strate-
gies certainly affects how other players react in the future.
Through tells and possible leaks about changes in plans,
it also may affect how other players react in current play.
Thus, we would argue that, in everyday interactions, peo-
ple assume a certain amount of transparency, both because
it is a way of taking the future into account in real-world
situations that are repeated and because it is a realistic as-
sumption in one-shot games that are played in settings where

1The idea of translucency is motivated by some of the same
concerns as Solan and Yariv’s [2004] games with espionage,
but the technical details are quite different. A game with
espionage is a two-player extensive-form game that extends
an underlying normal-form game by adding a step where
player 1 can purchase some noisy information about player
2’s planned move. Here, the information is free and all play-
ers may be translucent. Moreover, the effect of the translu-
cency is modeled by the players’ counterfactual beliefs rather
than by adding a move to the game.
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players have a great deal of social interaction. We claim that
players then apply these beliefs in lab settings where they
are arguably inappropriate.

There is experimental evidence that can be viewed as pro-
viding support for players believing that they are transpar-
ent. Gilovich et al. [1998] show that people tend to overes-
timate the extent to which others can discern their internal
states. For instance, they showed that liars overestimate the
detectability of their lies and that people believe that their
feelings of disgust are more apparent than they actually are.
There is also growing evidence that showing people simple
images of watching eyes has a marked effect on behavior,
ranging from giving more in Public Goods games to litter-
ing less (see [Bateson et al. 2013] for a discussion of some
of this work and an extensive list of references). One way
of understanding these results is that the eyes are making
people feel more transparent.

We apply the idea of translucency to a particular class of
games that we call social dilemmas (cf. [Dawes 1980]). A
social dilemma is a normal-form game with two properties:

1. there is a unique Nash equilibrium sN , which is a pure
strategy profile;

2. there is a unique welfare-maximizing profile sW , again
a pure strategy profile, such that each player’s utility
if sW is played is higher than his utility if sN is played.

These uniqueness assumptions are not necessary, but they
make definitions and computations easier. Although these
restrictions are nontrivial, many of the best-studied games
in the game-theory literature satisfy them, including Pris-
oner’s Dilemma, Traveler’s Dilemma [Basu 1994], Bertrand
Competition, and the Public Goods game. (See Section 3
for more discussion of these games.)

There are (at least) two reasons why an agent may be
concerned about translucency in a social dilemma: (1) his
opponents may discover that he is planning to defect and
punish him by defecting as well, (2) many other people in
his social group (which may or may not include his oppo-
nent) may discover that he is planning to defect (or has
defected, despite the fact that the game is anonymous) and
think worse of him.

For definiteness, we focus here on the first point and as-
sume that, in social dilemmas, players have a degree of belief
α that they are transparent, so that if they intend to cooper-
ate (by playing their component of the welfare-maximizing
strategy) and decide to deviate, there is a probability α that
another player will detect this, and play her component of
the Nash equilibrium strategy. (The assumption that co-
operation acts as a default strategy is supported by experi-
ments showing that people forced to make a decision under
time pressure are, on average, more cooperative than those
forced to made a decision under time delay [Rand et al. 2012,
Rand et al. 2014]. Rand and his colleagues suggest that this
is due to the internalization of strategies that are successful
in everyday interactions.) We assume that these detections
are independent, so that the probability of, for example, ex-
actly two players other than i detecting a deviation by i is
α2(1 − α)N−3, where N is the total number of players. Of
course, if α = 0, then we are back at the standard game-
theoretic framework. We show that, with this assumption,
we can already explain a number of experimental regularities
observed in social dilemmas (see Section 3). We can model

the second point regarding concerns about transparency in
much the same way, and would get qualitatively similar re-
sults (see Section 6).

The rest of the paper is as follows. In Section 2, we for-
malize the notion of translucency in a game-theoretic set-
ting. In Section 3, we define the social dilemmas that we
focus on in this paper; in Section 4, we show that by as-
suming translucency, we can obtain as predictions of the
framework a number of regularities that have been observed
in the experimental literature. We discuss related work in
Section 5. Section 6 concludes. Proofs are deferred to the
full paper, where we also discuss a solution concept that we
call translucent equilibrium, based on translucency, closely
related to the notion of individual rationality discussed by
Halpern and Pass [2013], and show how it can be applied in
social dilemmas.

2. RATIONALITY WITH TRANSLUCENT
PLAYERS

In this section, we briefly define rationality in the presence
of translucency, motivated by the ideas in Halpern and Pass
[2013].

Formally, a (finite) normal-form game G is a tuple (P, S1, . . . , SN ,
u1, . . . , uN ), where P = {1, . . . , N} is the set of players, Si
is the set of strategies for player i, and ui is player i’s utility
function. Let S = S1 × · · · × SN and S−i =

∏
j 6=i Sj . We

assume that S is finite and that N ≥ 2.
In standard game theory, it is assumed that a player i has

beliefs about the strategies being used by other players; i
is rational if his strategy is a best response to these beliefs.
The standard definition of best response is the following.

Definition 2.1. A strategy si ∈ Si is a best response to
a probability µi on S−i if, for all strategies s′i for player i,

∑

s′−i∈S−i

µi(s
′
−i)ui(si, s

′
−i) ≥

∑

s′−i∈S−i

µi(s
′
−i)ui(s

′
i, s
′
−i).

ut

Definition 2.1 implicitly assumes that i’s beliefs about what
other agents are doing do not change if i switches from si, the
strategy he was intending to play, to a different strategy. (In
general, we assume that i always has an intended strategy,
for otherwise it does not make sense to talk about i switching
to a different strategy.) So what we really have are beliefs

µ
si,s
′
i

i for i indexed by a pair of strategies si and s′i; we

interpret µ
si,s
′
i

i as i’s beliefs if he intends to play si but
instead deviates to s′i. Thus, µsi,sii represents i’s beliefs if
he plays si and does not deviate. We modify the standard
definition of best response by defining best response with

respect to a family of beliefs µ
si,s
′
i

i .

Definition 2.2. Strategy si ∈ Si is a best response for

i with respect to the beliefs {µsi,s
′
i

i : s′i ∈ Si} if, for all
strategies s′i ∈ Si,
∑

s′−i∈S−i

µsi,sii (s′−i)ui(si, s
′
−i) ≥

∑

s′−i∈S−i

µ
si,s
′
i

i (s′−i)ui(s
′
i, s
′
−i).

ut

We are interested in players who are making best re-
sponses to their beliefs, but we define best response in terms
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of Definition 2.2, not Definition 2.1. Of course, the standard
notion of best response is just the special case of the notion

above where µ
si,s
′
i

i = µsi,sii for all s′i: a player’s beliefs about
what other players are doing does not change if he switches
strategies.

Definition 2.3. A player is translucently rational if he
best responds to his beliefs in the sense of Definition 2.2. ut

Our assumptions about translucency will be used to de-

termine µ
si,s
′
i

i . For example, suppose that Γ is a 2-player
game, player 1 believes that, if he were to switch from si to
s′i, this would be detected by player 2 with probability α,
and if player 2 did detect the switch, then player 2 would

switch to s′j . Then µ
si,s
′
i

i is (1 − α)µsi,si + αµ′, where µ′

assigns probability 1 to s′j ; that is, player 1 believes that
with probability 1 − α, player 2 continues to do what he
would have done all along (as described by µsi,si) and, with
probability α, player 2 switches to s′j .

3. SOCIAL DILEMMAS
Social dilemmas are situations in which there is a tension

between the collective interest and individual interests: ev-
ery individual has an incentive to deviate from the common
good and act selfishly, but if everyone deviates, then they are
all worse off. Many personal and professional relationships,
the depletion of natural resources, climate protection, the
security of energy supply, and price competition in markets
can all be viewed as instances of social dilemmas.

As we said in the introduction, we formally define a so-
cial dilemma as a normal-form game with a unique Nash
equilibrium and a unique welfare-maximizing profile, both
pure strategy profiles, such that each player’s utility if sW is
played is higher than his utility if sN is played. While this
is a quite restricted set of games, it includes many that have
been quite well studied. Here, we focus on the following
games:

Prisoner’s Dilemma. Two players can either cooperate
(C) or defect (D). To relate our results to experimen-
tal results on Prisoner’s Dilemma, we think of cooper-
ation as meaning that a player pays a cost c > 0 to give
a benefit b > c to the other player. If a player defects,
he pays nothing and gives nothing. Thus, the payoff
of (D,D) is (0, 0), the payoff of (C,C) is (b− c, b− c),
and the payoffs of (D,C) and (C,D) are (b,−c) and
(−c, b), respectively. The condition b > c implies that
(D,D) is the unique Nash equilibrium and (C,C) is
the unique welfare-maximizing profile.

Traveler’s Dilemma. Two travelers have identical luggage,
which is damaged (in an identical way) by an airline.
The airline offers to recompense them for their luggage.
They may ask for any dollar amount between L and H
(where L and H are both positive integers). There is
only one catch. If they ask for the same amount, then
that is what they will both receive. However, if they
ask for different amounts—say one asks for m and the
other for m′, with m < m′—then whoever asks for m
(the lower amount) will get m+b (m and a bonus of b),
while the other player gets m − b: the lower amount
and a penalty of b. It is easy to see that (L,L) is
the unique Nash equilibrium, while (H,H) maximizes
social welfare, independent of b.

Public Goods game. N ≥ 2 contributors are endowed
with 1 dollar each; they must simultaneously decide
how much, if anything, to contribute to a public pool.
(The contributions must be in whole cent amounts.)
The total contribution pot is then multiplied by a con-
stant strictly between 1 and N , and then evenly redis-
tributed among all players.2 So the payoff of player i is
ui(x1, . . . , xN ) = 1−xi+ρ(x1+ . . .+xN ), where xi de-
notes i’s contribution, and ρ ∈

(
1
N
, 1
)

is the marginal
return. (Thus, the pool is multiplied by ρN before
being split evenly among all players.) Everyone con-
tributing nothing to the pool is the unique Nash equi-
librium, and everyone contributing their whole endow-
ment to the pool is the unique welfare-maximizing pro-
file.

Bertrand Competition. N ≥ 2 firms compete to sell their
identical product at a price between the “price floor”
L ≥ 2 and the “reservation value” H. (Again, we as-
sume that H and L are integers, and all prices must
be integers.) The firm that chooses the lowest price,
say s, sells the product at that price, getting a payoff
of s, while all other firms get a payoff of 0. If there
are ties, then the sales are split equally among all firms
that choose the lowest price. Now everyone choosing L
is the unique Nash equilibrium, and everyone choosing
H is the unique welfare-maximizing profile.3

From here on, we say that a player cooperates if he plays
his part of the welfare-maximizing strategy profile and de-
fects if he plays his part of the Nash equilibrium strategy
profile.

While Nash equilibrium predicts that people should al-
ways defect in social dilemmas, in practice, we see a great
deal of cooperative behavior; that is, people often play (their
part of) the welfare-maximizing profile rather than (their
part of) the Nash equilibrium profile. Of course, there have
been many attempts to explain this. Evolutionary theo-
ries may explain cooperative behavior among genetically re-
lated individuals [Hamilton 1964] or when future interac-
tions among the same subjects are likely [Nowak and Sig-
mund 1998, Trivers 1971]; see [Nowak 2006] for a review of
the five rules of cooperation. However, we often observe co-
operation even in one-shot anonymous experiments among
unrelated players [Rapoport 1965].

Although we do see a great deal of cooperation in these
games, we do not always see it. Here are some of the regu-
larities that have been observed:

• The degree of cooperation in the Prisoner’s dilemma
depends positively on the benefit of mutual coopera-
tion and negatively on the cost of cooperation [Capraro
et al. 2014, Engel and Zhurakhovska 2012, Rapoport
1965].

2We thus consider only linear Public Goods games. This
choice is motivated by the fact that our purpose is to com-
pare the predictions of our model with experimental data.
Most experiments have adopted linear Public Goods games,
since they have much easier instructions and thus they min-
imize noise due to participants not understanding the rules
of the game.
3We require that L ≥ 2 for otherwise we would not have a
unique Nash equilibrium, a condition we imposed on Social
Dilemmas. If L = 1 and N = 2, we get two Nash equilibria:
(2, 2) and (1, 1); similarly, for L = 0, we also get multiple
Nash equilibria, for all values of N ≥ 2.
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• The degree of cooperation in the Traveler’s Dilemma
depends negatively on the bonus/penalty [Capra et al.
1999].

• The degree of cooperation in the Public Goods game
depends positively on the constant marginal return
[Gunnthorsdottir et al. 2007, Isaac et al. 1984].

• The degree of cooperation in the Public Goods game
depends positively on the number of players [Barcelo
and Capraro 2015, Isaac et al. 1994, Zelmer 2003].

• The degree of cooperation in the Bertrand Compe-
tition depends negatively on the number of players
[Dufwenberg and Gneezy 2002].

• The degree of cooperation in the Bertrand Competi-
tion depends negatively on the price floor [Dufwenberg
et al. 2007].

4. EXPLAINING SOCIAL DILEMMAS US-
ING TRANSLUCENCY

As we suggested in the introduction, we hope to use translu-
cency to explain cooperation in social dilemmas even when
players cannot see each other. We expect that people get
so used to assuming some degree of transparency in their
everyday interactions, which are typically face-to-face, that
they bring these strategies and beliefs in the lab setting,
even though they are arguably inappropriate.

To do this, we have to make assumptions about an agent’s
beliefs. Say that an agent i has type (α, β, C) if i intends
to cooperate (the parameter C stands for cooperate) and
believes that (a) if he deviates from that, then each other
agent will independently realize this with probability α; (b)
if an agent j realizes that i is not going to cooperate, then
j will defect; and (c) all other players will either cooperate
or defect, and they will cooperate with probability β.

The standard assumption, of course, is that α = 0. Our
results are only of interest if α > 0. The assumption that i
believes that agent j will defect if she realizes that i is going
to deviate from cooperation seems reasonable; defection is
the “safe” strategy. We stress that, for our results, it does
not matter what j actually does. All that matters are i’s
beliefs about what j will do. The assumption that players
will either cooperate or defect is trivially true in Prisoner’s
Dilemma, but is a highly nontrivial assumption in the other
games we consider. While cooperation and defection are
arguably the most salient strategies, we do in practice see
players using other strategies. For instance, the distribu-
tion of strategies in the Public Goods game is typically tri-
modal, concentrated on contributing nothing, contributing
everything, and contributing half [Capraro et al. 2014]. We
made this assumption mainly for technical convenience: it
makes the calculations much easier. We believe that results
qualitatively similar to ours will hold under a much weaker
assumption, namely, that a type (α, β, C) player believes
that other players will cooperate with probability β (with-
out assuming that they will defect with probability 1− β).

Similarly, the assumptions that a social dilemma has a
unique Nash equilibrium and a unique social-welfare maxi-
mizing strategy were made largely for technical reasons. We
can drop these assumptions, although that would require
more complicated assumptions about players’ beliefs.

Our assumptions ensure that the type of player i deter-

mines the distributions µ
si,s
′
i

i . In a social dilemma with
N agents, the distribution µsi,sii assigns probability βr(1−
β)N−1−r to a strategy profile s−i for the players other than i
if exactly r players cooperate in s−i and the remaining N −
1−r players defect; it assigns probability 0 to all other strat-

egy profiles. The distributions µ
si,s
′
i

i for s′i 6= si all have the

form
∑
J⊆{1,...,i−1,i+1,...,N} α

|J|(1− α)N−1−|J|µJi , where µJi

is the distribution that assigns probability βk(1−β)N−|J|−k

to a profile where k ≤ N−1−|J | players not in J cooperate,
and the remaining players (which includes all the players in
J) defect. Thus, µJi is the distribution that describes what
player i’s beliefs would be if he knew that exactly the players
in J had noticed his deviation (which happens with proba-

bility α|J|(1− α)N−1−|J|). In the remainder of this section,
when we talk about best response, it is with respect to these
beliefs.

For our purposes, it does not matter where the beliefs α
and β that make up a player’s type come from. We do not
assume, for example, that other players are (translucently)
rational. For example, i may believe that some players co-
operate because they are altruistic, while others may coop-
erate because they have mistaken beliefs. We can think of β
as summarizing i’s previous experience of cooperation when
playing social dilemmas. Here we are interested in the im-
pact of the parameters of the game on the reasonableness of
cooperation, given a player’s type.

The following four propositions analyze the four social
dilemmas in turn; the proofs can be found in the full pa-
per. We start with Prisoner’s Dilemma. Recall that b is
the benefit of cooperation and c is its cost.

Proposition 4.1. In Prisoner’s Dilemma, it is translu-
cently rational for a player of type (α, β, C) to cooperate if
and only if αβb ≥ c. ut

As we would expect, if α = 0, then cooperation is not a
best response in Prisoner’s Dilemma; this is just the stan-
dard argument that defection dominates cooperation. But
if α > 0, then cooperation can be rational. Moreover, if we
fix α, the greater the benefit of cooperation and the smaller
the cost, then the smaller the value of β that still allows
cooperation to be a best response.

We next consider Traveler’s Dilemma. Recall that b is the
reward/punishment, H is the high payoff, and L is the low
payoff,

Proposition 4.2. In Traveler’s Dilemma, it is translu-
cently rational for a player of (α, β, C) to cooperate if and
only if

b ≤
{ (H−L)β

1−αβ if α ≥ 1
2

min
(

(H−L)β
1−αβ , H−L−1

1−2α

)
if α < 1

2
.

ut

Proposition 4.2 shows that as b, the punishment/reward,
increases, a player must have greater belief that his opponent
is cooperative and/or a greater belief that the opponent will
learn about his deviation and/or a greater difference between
the high and low payoffs in order to make cooperation a

best response. (The fact that increasing β increases (H−L)β
1−αβ

follows from straightforward calculus.)
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We next consider the Public Goods game. Recall the ρ is
the marginal return of cooperating.

Proposition 4.3. In the Public Goods game with N play-
ers, it is translucently rational for a player of type (α, β, C)
to cooperate if and only if αβρ(N − 1) ≥ 1− ρ. ut

Proposition 4.3 shows that if ρ = 1, then cooperation is
certainly a best response (you always get out at least as
much as you contribute). For fixed α and β, there is guar-
anteed to be an N0 such that cooperation is a best response
for all N ≥ N0; moreover, for fixed α, as N gets larger,
smaller and smaller βs are needed for cooperation to be a
best response.

Finally we consider the Bertrand competition. Recall that
H is the reservation value and L is the price floor.

Proposition 4.4. In Bertrand Competition, it is translu-
cently rational for a player of type (α, β, C) to cooperate iff
βN−1 ≥ max(γN−1N(H − 1)/H, f(γ,N)LN/H), where γ =

(1−α)β and f(γ,N) =
∑N−1
k=0

(
N−1
k

)
(1−γ)kγN−k−1/(k+1).

ut

Note that f(γ,N) =
∑N−1
k=0

(
N−1
k

)
(1 − γ)kγN−k−1/(k +

1) ≥ ∑N−1
k=0

(
N−1
k

)
(1 − γ)kγN−k/N = 1/N , so Proposi-

tion 4.4 shows cooperation is irrational if βN−1 < L/H.
Thus, while cooperation may be achieved for reasonable val-
ues of α and β if N is small, a player must be more and more
certain of cooperation in order to cooperate in Bertrand
Competition as the number of players increases. Indeed,
for a fixed type (α, β, C), there exists N0 such that coop-
eration is not a best response for all N ≥ N0. Moreover,
if we fix the number N of players, more values of α and β
allow cooperation as L/H gets smaller. In particular, if we
fix H and raise the floor L, fewer values of α and β allow
cooperation.

While Propositions 4.1–4.4 are suggestive, we need to make
extra assumptions to use these propositions to make predic-
tions. A simple assumption that suffices is that there are a
substantial number of translucently rational players whose
types have the form (α, β, C), and for each pair (u, v) and
(u′, v′) of open intervals in [0, 1], there is a positive proba-
bility of finding someone of type (α, β, C) with α ∈ (u, v)
and β ∈ (u′, v′). With this assumption, it is easy to see that
all the regularities discussed in Section 3 hold.

5. COMPARISON TO OTHER APPROACHES
Here we show that approaches (that we are aware of) other

than that of Charness and Rabin and possibly that of Bolton
and Ockenfels are not able to obtain all the regularities that
we mentioned in Section 3. We consider a number of ap-
proaches in turn.

• The Fehr and Schmidt [1999] inequity-aversion model
assumes that subjects play a Nash equilibrium of a
modified game, in which players do not only care about
their monetary payoff, but also they care about equity.
Specifically, player i’s utility when strategy s is played

is assumed to be Ui(s) = ui(s)− aFSi
N−1

∑
j 6=i max(uj(s)−

ui(s), 0)− bFSi
N−1

∑
j 6=i max(ui(s)−uj(s), 0), where ui(s)

is the material payoff of player i, and 0 ≤ bFSi ≤ aFSi
are individual parameters, where aFSi represents the

extent to which player i is averse to inequity in favor
of others, and bFSi represents his aversion to inequity
in his favor. Consider the Public Goods game with N
players. The strategy profile (x, . . . , x), where all play-
ers contribute x gives player i a utility of (1−x)+ρNx.
If x > 0 and player i contributes x′ < x, then his
payoff is (1 − x′) + ρ((N − 1)x + x′) − bFSi ρ(x − x′).
Thus, (x, . . . , x) is an equilibrium if bFSi ρ(x − x′) ≥
(1 − ρ)(x − x′), that is, if bFSi ≥ (1 − ρ)/ρ. Thus,
if bFSi ≥ (1 − ρ)/ρ for all players i, then (x, . . . , x)
is an equilibrium for all choices of x and all values of
N . While there may be other pure and mixed strategy
equilibria, it is not hard to show that if bFSi < (1−ρ)/ρ,
then player i will play 0 in every equilibrium (i.e., not
contribute anything). As a consequence, assuming, as
in our model, that players believe that there is a prob-
ability β that other agents will cooperate and that
the other agents either cooperate or defect, Fehr and
Schmidt [1999] model does not make any clear predic-
tion of a group-size effect on cooperation in the public
goods game.

• McKelvey and Palfrey’s [1995] quantal response equi-
librium (QRE) is defined as follows.4 Taking σi(s)
to be the probability that mixed strategy σi assigns
to the pure strategy s, given λ > 0, a mixed strat-
egy profile σ is a QRE if, for each player i, σi(s) =

e
λEUi(s,σ−i)

∑
s′
i
∈Si

e
λEUi(s

′
i
,σ−i)

.

To see that QRE does not describe human behaviour
well in social dilemmas, observe that in the Prisoner’s
Dilemma, for all choices of parameters b and c in the
game, all choices of the parameter λ, all players i,
and all (mixed) strategies s−i of player −i, we have
EUi(C, s−i) < EUi(D, s−i). Consequently, whatever
the QRE σ is, we must have σi(C) < 1

2
< σi(D), that

is, QRE predicts that the degree of cooperation can
never be larger than 50%. However, experiments show
that we can increase the benefit-to-cost ratio so as to
reach arbitrarily large degrees of cooperation (close to
80% in [Capraro et al. 2014] with b/c = 10).

• Iterated regret minimization [Halpern and Pass 2012]
does not make appropriate predictions in Prisoner’s
Dilemma and the Public Goods game, because it pre-
dicts that if there is a dominant strategy then it will
be played, and in these two games, playing the Nash
equilibrium is the unique dominant strategy.

• Capraro’s [2013] notion of cooperative equilibrium, while
correctly predicting the effects of the size of the group
on cooperation in the Bertrand Competition and the
Public Goods game [Barcelo and Capraro 2015], fails
to predict the negative effect of the price floor on co-
operation in the Bertrand Competition.

• Rong and Halpern’s [2010, 2013] notion of cooperative
equilibrium (which is different from that of Capraro
[2013]) focuses on 2-player games. However, the defi-
nition for games with greater than 2 players does not
predict the decrease in cooperation as N increases in

4We actually define here a particular instance of QRE called
the logit QRE ; λ is a free parameter of this model.
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Bertrand Competition, nor the increase as N increases
in the Public Goods Game.

• Bolton and Ockenfels’ [2000] inequity-aversion model
assumes that a player i aims at maximizing his or
her motivational function vi = vi(xi, σi), where xi is
i’s monetary payoff and σi = σi(x1,

∑
j=1,...,N xj) =

xi/
∑
j=1,...,N xj . The motivational function is assumed

to be twice differentiable, weakly increasing in the first
argument, and concave in the second argument with a
maximum at σi = 1

N
, but otherwise is unconstrained.

For each of the social dilemmas that we have consid-
ered, it is not hard to define a motivational function
that will obtain the regularities observed. However,
we have not been able to find a single motivational
function that gives the observed regularities for all
four social dilemmas that we have considered. In any
case, just as with the Charness and Rabin model, once
we consider the interaction between social groups and
translucency, we can distinguish our approach from
this inequity-aversion model. Specifically, consider a
situation where people are given a choice between giv-
ing $1 to an anonymous stranger, rather than burning
it. In such a situation, inequity aversion would predict
that people would burn the dollar to maintain equity
(i.e., a situation where no one gets $1). However, per-
haps not surprisingly, Capraro et al. [2014] found that
over 90% people prefer giving away the dollar to burn-
ing it. Of course, translucency (and a number of other
approaches) would have no difficulty in explaining this
phenomenon.

The one approach besides ours that we are aware of that
obtains all the regularities discussed above is that of Char-
ness and Rabin [2002]. Charness and Rabin, like Fehr and
Schmidt [1999], assume that agents play a Nash equilibrium
of a modified game, where players care not only about their
personal material payoff, but also about the social welfare
and the outcome of the least fortunate person. Specifi-
cally, player i’s utility is assumed to be (1 − aCRi )ui(s) +

aCRi (bCRi minj=1,...,N uj(s)+(1−bCRi )
∑N
j=1 uj(s)). Assum-

ing, as in our model, that agents believe that other play-
ers either cooperate or defect and that they cooperate with
probability β, then it is not hard to see that Charness and
Rabin [2002] also predict all the regularities that we have
been considering.

Although it seems difficult to distinguish our model from
that of Charness and Rabin [2002] if we consider only so-
cial dilemmas, the models are distinguishable if we look at
other settings and take into account the other reason we
mentioned for translucency: that other people in their so-
cial group might discover how they acted. We can easily
capture this in the framework we have been considering by
doubling the number of agents; for each player i, we add
another player i∗ that represent’s i’s social network. Player
i∗ can play only two actions: n (for “did not observe player
i’s action) and o (for “observed player i’s action”).5 The
payoffs of these new players are irrelevant. Player i’s payoff
depends on the action of player i∗, but not on the actions of
player j∗ for j∗ 6= i∗. Now player i must have a prior prob-
ability γi about whether his action will be observed; in a
5Alternatively, we could take player i’s payoff to depend on
the state of the world, where the state would model whether
or not player i’s action was observed.

social dilemma, this probability might increase to γ′i ≥ γi if
he intends to cooperate but instead deviates and defects. It
should be clear that, even if γ′i = γi, if we assume that player
i’s utilities are significantly lower if his non-cooperative ac-
tion is observed, with this framework we would get quali-
tatively similar results for social dilemmas to the ones that
we have already obtained. Again, a player has beliefs about
the extent to which he is transparent, and we can set the
payoffs so that the effects of transparency are the same if a
player’s social network learns about his actions and if other
players learn about his action.

The advantage of taking into account what your social
group thinks is that it allows us to apply ideas of translu-
cency even to single-player games like the Dictator Game
[Kahneman et al. 1986]. To do so, we need to make assump-
tions about what a player’s utility would be if his social
group knew the extent to which he shared the pot. But
it should be clear that reasonable assumptions here would
lead to some degree of sharing. While this would still not
distinguish our predictions from those of the Charness-Rabin
model, there is a variant of the Dictator Game that has re-
cently been considered to show existence of hyper-altruism
in conflict situations [Crockett et al. 2014, Capraro 2014].
In the simplest version of this game, there are only two pos-
sible allocations of money: either the agent gets x and the
other player gets −x, or the other player gets x and the
agent gets −x. In this game, the Charness-Rabin approach
would predict that the agent will either keep x or be indif-
ferent between keeping x and giving it away. But assuming
translucency allows for the possibility that some types of
agents would think that their social group would approve of
them giving away x, so if the action were observed by their
social group, they would get high utility by giving away x.
However, recent results by Capraro [2014] show that a sig-
nificant fraction (1/6) of people are hyper-altruistic: they
strictly prefer giving away x to keeping it [Capraro 2014].

Just to be clear, we do not mean to imply that translu-
cency is the unique “right” explanation for cooperation in
social dilemmas and all the other explanations that we dis-
cussed above are “wrong”. There are probably a number of
factors that contribute to cooperation. We hope in future
work to tease these apart.

6. DISCUSSION
We have presented an approach that explains a number of

well-known observations regarding the extent of cooperation
in social dilemmas. In addition, our approach can also be
applied to explain the apparent contradiction that people
cooperate more in a one-shot Prisoner’s dilemma when they
do not know the other player’s choice than when they do. In
the latter case, Shafir and Tversky [1992] found that most
people (90%) defect, while in the former case, only 63% of
people defect. Our model of translucent players predicts this
behavior: if player 1 knows player 2’s choices then there is no
translucency, so our model predicts that player 1 defects for
sure. On the other hand, if player 1 does not know player
2’s choice and believes that he is to some extent translu-
cent, then, as shown in Proposition 4.1, he may be willing
to cooperate. Seen in this light, our model can also be in-
terpreted as an attempt to formalize quasi-magical thinking
[Shafir and Tversky 1992], the kind of reasoning that is sup-
posed to motivate those people who believe that the others’
reasoning is somehow influenced by their own thinking, even
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though they know that there is no causal relation between
the two. Quasi-magical thinking has also been formalized
by Masel [2007] in the context of the Public Goods game
and by Daley and Sadowski [2014] in the context of sym-
metric 2×2 games. The notion of translucency goes beyond
these models, since it may be applied to a much larger set
of games.

Besides a retrospective explanation, our model makes new
predictions for social dilemmas which, to the best of our
knowledge, have never been tested in the lab. In particular,
it predicts that

• the degree of cooperation in Traveler’s dilemma in-
creases as the difference H − L increases;

• for fixed L andN , the degree of cooperation in Bertrand
Competition increases as H increases, and what really
matters is the ratio L/H.

Clearly much more experimental work needs to be done
to validate the approach. For one thing, it is important to
understand the predictions it makes for other social dilem-
mas and for games that are not social dilemmas. Perhaps
even more important would be to see if we can experimen-
tally verify that people believe that they are to some extent
translucent, and, if so, to get a sense of what the value of
α is. In light of the work on watching eyes mentioned in
the introduction, it would also be interesting to know what
could be done to manipulate the value of α.

One feature of our approach is that, at least if we take
the concern with translucency to be due to an opponent dis-
covering what you are going to do (rather than other mem-
bers of your social group discovering what you are going to
do), then, unlike many other approaches to explaining social
dilemmas, our approach does not involve modifying the util-
ity function; that is, we can apply translucency while still
identifying utility with the material payoff. While this make
it an arguably simpler explanation, that does not necessar-
ily make it “right”, of course. We do not in fact believe that
there is a unique“right”explanation for cooperation in social
dilemmas and all the other explanations that we discussed
above are “wrong”. There are probably a number of factors
that contribute to cooperation. We hope in future work to
tease these apart.

Of course, we do not have to assume α > 0 to get co-
operation in social dilemmas such as Traveler’s Dilemma or
Bertrand Competition. But we do if we want to consider
what we believe is the appropriate equilibrium notion. Sup-
pose that rational players are chosen at random from a pop-
ulation and play a social dilemma. Players will, of course,
then update their beliefs about the likelihood of seeing coop-
eration, and perhaps change their strategy as a consequence.
Will these beliefs stabilize and the strategies played stabi-
lize? By stability here, we mean that (1) players are all best
responding to their beliefs, and (2) players’ beliefs about the
strategies played by others are correct: if player i ascribes
probability p to player j playing a strategy sj , then in fact
a proportion p of players in the population play sj . We
have deliberately been fuzzy here about whether we mean
best response in the sense of Definition 2.1 or Definition 2.2.
If we use Definition 2.1 (or, equivalently use Definition 2.2
and take α = 0), then it is easy to see (and well known)
that the only way that this can happen is if the distribu-
tion of strategies played by the players represents a mixed

strategy Nash equilibrium. On the other hand, if α > 0 and
we use Definition 2.2, then we can have stable beliefs that
accurately reflect the strategies used and have cooperation
(in all the other social dilemmas that we have studied). We
make this precise in the full paper, using the framework
of Halpern and Pass [2013], by defining a notion of translu-
cent equilibrium. Roughly speaking, we construct a model
where, at all states, players are translucently rational (so we
have common belief of translucent rationality), the strate-
gies used are common knowledge, and we nevertheless have
cooperation at some states. Propositions 4.1–4.4 play a key
role in this construction; indeed, as long as the strategies
used satisfy the constraints imposed by these results, we get
a translucent equilibrium.

In the full paper, we also characterize those profiles of
strategies that can be translucent equilibria, using ideas sim-
ilar in spirit to those of Halpern and Pass [2013]. While
allowing people to believe that they are to a certain extent
transparent means that the set of translucent equilibria is a
superset of the set of Nash equilibria, not all strategy profiles
can be translucent equilibria. For example, (C,D) is not a
translucent equilibrium in Prisoner’s dilemma. We have not
focused on translucent equilibrium in the main text, because
it makes strong assumptions about players’ rationality and
beliefs (e.g., it implicitly assumes common belief of translu-
cent rationality). We do not need such strong assumptions
for our results.

7. REFERENCES
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ABSTRACT
We propose a multi-agent logic of knowledge, public and
arbitrary announcements, that is interpreted on topological
spaces in the style of subset space semantics. The arbi-
trary announcement modality functions similarly to the ef-
fort modality in subset space logics, however, it comes with
intuitive and semantic differences. We provide axiomatiza-
tions for three logics based on this setting, and demonstrate
their completeness.

Keywords
Topology, subset space logic, dynamic epistemic logic, arbi-
trary (public) announcements

1. INTRODUCTION
In [13], Moss et al. introduce a bi-modal logic with lan-

guage

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | 2ϕ,
called subset space logic (SSL), in order to formalize rea-
soning about sets and points together in one modal system.
The main interest in their investigation lies in spatial struc-
tures such as topological spaces and using modal logic and
the techniques behind for spatial reasoning, however, they
also have a strong motivation from epistemic logic. While
the modality K is interpreted as knowledge, 2 intends to
capture the notion of effort, i.e., any action that results in
increase in knowledge. They propose subset space seman-
tics for their logic. A subset space is defined to be a pair
(X,O), where X is a non-empty domain and O is a collec-
tion of subsets of X (not necessarily a topology), wherein
the modalities K and 2 are evaluated with respect to pairs
of the form (x, U), where x ∈ U ∈ O. According to subset
space semantics, given a pair (x, U), the modality K quan-
tifies over the elements of U , whereas 2 quantifies over all
open subsets of U that include the actual world x. Therefore,
while knowledge is interpreted ‘locally’ in a given observa-
tion set U , effort is read as open-set-shrinking where more
effort corresponds to a smaller neighbourhood, thus, a pos-
sible increase in knowledge. The schema 3Kϕ states that
after some effort the agent comes to know ϕ where effort can
be in the form of measurement, observation, computation,
approximation [13, 8, 14, 5], or announcement [15, 1, 16].

The epistemic motivation behind the subset space seman-
tics and the dynamic nature of the effort modality suggests
a link between SSL and dynamic epistemic logic, in par-
ticular dynamics known as public announcement [4, 5, 3,

19, 6]. The works [4, 5, 3] propose modelling public an-
nouncements on subset spaces by deleting the states or the
neighbourhoods falsifying the announcement. This dynamic
epistemic method is not in the spirit of the effort modality:
dynamic epistemic actions result in global model change,
whereas the effort modality results in local neighbourhood
shrinking. Hence, it is natural to search for an ‘open-set-
shrinking-like’ interpretation of public announcements on
subset spaces. To best of our knowledge, Wang and Ågotnes
[19] were the first to propose semantics for public announce-
ments on subset spaces in the style of the effort modality,
although this is not necessarily on topological spaces. Bjorn-
dahl [6] then proposed a revised version of the [19] semantics.
In contrast to the aforementioned proposals, Bjorndahl uses
models based on topological spaces to interpret knowledge
and information change via public announcements. He con-
siders the language

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ,

where int(ϕ) means ‘ϕ is true and can be announced’, and
where [ϕ]ψ means ‘after public announcement of ϕ, ψ.’

In [1], Balbiani et al. introduce a logic to quantify over
announcements in the setting of epistemic logic based on
the language (with single-agent version here)

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | [ϕ]ϕ | 2ϕ.
In this case, unlike above, 2ϕ means ‘after any announce-
ment, ϕ (is true)’ so that 2 quantifies over epistemically de-
finable subsets (2-free formulas of the language) of a given
model. In this case, 3Kϕ again means that the agent comes
to know ϕ, but in the interpretation that there is a formula
ψ such that after announcing it the agent knows ϕ. What
becomes true or known by an agent after an announcement
can be expressed in this language without explicit reference
to the announced formula.

Clearly, the meaning of the effort 2 modality and of the ar-
bitrary announcement 2 modality are related in motivation.
In both cases, interpreting the modality requires quantifica-
tion over sets. Subset-space-like semantics provides natural
tools for this. In [16], we extended Bjorndahl’s proposal [6]
with an arbitrary announcement modality

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ | 2ϕ
and provided topological semantics for the 2 modality, and
proved completeness for the corresponding single-agent logic
APALint .

In the current proposal we generalize this approach to a
multi-agent setting. Multi-agent subset space logics have
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been investigated in [11, 12, 4, 18]. There are some chal-
lenges with such a logic concerning the evaluation of higher-
order knowledge. The general setup is for any finite num-
ber of agents, but to demonstrate the challenges, consider
the case of two agents. Suppose for each of two agents i
and j there is an open set such that the semantic primitive
becomes a triple (x, Ui, Uj) instead of a pair (x, U). Now

consider a formula like KiK̂jKip, for ‘agent i knows that
agent j considers possible that agent i knows proposition p’.
If this is true for a triple (x, Ui, Uj), then K̂jKip must be
true for any y ∈ Ui; but y may not be in Uj , in which case

(y, Ui, Uj) is not well-defined: we cannot interpret K̂jKip.
Our solution to this dilemma is to consider neighbourhoods
that are not only relative to each agent, as usual in multi-
agent subset space logics, but that are also relative to each
state. This amounts to, when shifting the viewpoint from
x to y ∈ Ui, in (x, Ui, Uj), we simultaneously have to shift
the neighbourhood (and not merely the point in the actual
neighbourhood) for the other agent. So we then go from
(x, Ui, Uj) to (y, Ui, Vj), where Vj may be different from Uj .
If they are different, their intersection should be empty.

In order to define the evaluation neighbourhood for each
agent with respect to the state in question, we employ a
technique inspired by the standard neighbourhood semantics
[7]. We use a set of neighbourhood functions, determining the
evaluation neighbourhood relative to both the given state
and the corresponding agent. These functions need to be
partial in order to render the semantics well-defined for the
dynamic modalities in the system.

In Section 2 we define the syntax, structures, and seman-
tics of our multi-agent logic of arbitrary public announce-
ments, APALint , interpreted on topological spaces equipped
with a set of neighbourhood functions. Without arbitrary
announcements we get the logic PALint, and with neither
arbitrary nor public announcements, the logic ELint. In this
section we also show some typical validities of the logic, and
give a detailed example. In Section 3 we give axiomatiza-
tions for the logics: PALint extends ELint and APALint

extends PALint. In Section 4 we demonstrate completeness
for these logics. The completeness proof for the epistemic
version of the logic, ELint, is rather different from the com-
pleteness proof for the full logic APALint. We then compare
our work to that of others (Section 5) and conclude.

2. THE LOGIC APALint

We define the syntax, structures, and semantics of our
logic. From now on, Prop is a countable set of propositional
variables and A a finite and non-empty set of agents.

2.1 Syntax

Definition 1. The language LAPALint is defined by

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | int(ϕ) | [ϕ]ϕ | 2ϕ
where p ∈ Prop and i ∈ A. Abbreviations for the connec-
tives ∨, → and ↔ are standard, and ⊥ is defined as abbre-
viation by p ∧ ¬p. We employ K̂i for ¬Ki¬ϕ, and 3ϕ for
¬2¬ϕ. We denote the non-modal part of LAPALint (without
the modalities Ki, int, [ϕ] and 2) by LPl, the part without
2 by LPALint , and the part without 2 and [ϕ] by LELint .

Necessity forms [10] allow us to select unique occurrences of
a subformula in a given formula (unlike in uniform substi-

tution). They will be used in the axiomatization (Section
3).

Definition 2. Let ϕ ∈ LAPALint . The necessity forms
are inductively defined as

ξ(]) := ] | ϕ→ ξ(]) | Kiξ(]) | int(ξ(])) | [ϕ]ξ(]).

It is not hard to see that each necessity form ξ(]) has a
unique occurrence of ]. Given a necessity form ξ(]) and a
formula ϕ ∈ LAPALint , the formula obtained by replacing ]
by ϕ is denoted by ξ(ϕ).

In the completeness proof (Section 4) we use a complex-
ity measure on formulas based on the size and 2-depth of
formulas where the size of a formula is a weighted count of
the number of symbols and 2-depth counts the number of
the 2-modalities occurring in a formula. The measure was
first introduced in [2].

Definition 3. The size S(ϕ) of a formula ϕ ∈ LAPALint

is defined as: S(p) = 1, S(¬ϕ) = S(ϕ) + 1, S(ϕ ∧ ψ) =
S(ϕ) + S(ψ), S(Kiϕ) = S(ϕ) + 1, S(int(ϕ)) = S(ϕ) + 1,
S([ϕ]ψ) = S(ϕ) + 4S(ψ), and S(2ϕ) = S(ϕ) + 1.

The factor 4 in the clause for [ϕ]ψ is to ensure Lemma 7.
Although the choice of the number 4 might seem arbitrary,
it is the smallest natural number guaranteeing the desired
result (see the proof of Lemma 7).

Definition 4. The 2-depth of a formula ϕ ∈ LAPALint ,
denoted by d(ϕ), is defined as: d(p) = 0, d(¬ϕ) = d(ϕ),
d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}, d(Kiϕ) = d(ϕ), d(int(ϕ)) =
d(ϕ), d([ϕ]ψ) = max{d(ϕ), d(ψ)}, and d(2ϕ) = d(ϕ) + 1.

We now define three order relations on LAPALint based on
the size and 2-depth of the formulas.

Definition 5. For any ϕ,ψ ∈ LAPALint ,

• ϕ <S ψ iff S(ϕ) < S(ψ)

• ϕ <d ψ iff d(ϕ) < d(ψ)

• ϕ <Sd ψ iff (either d(ϕ) < d(ψ), or d(ϕ) = d(ψ) and
S(ϕ) < S(ψ))

We let Sub(ϕ) denote the set of subformulas of a given for-
mula ϕ.

Lemma 6. For any ϕ,ψ ∈ LAPALint ,

1. <S , <d, <
S
d are well-founded strict partial orders be-

tween formulas in LAPALint ,

2. ϕ ∈ Sub(ψ) implies ϕ <Sd ψ ,

3. int(ϕ) <Sd [ϕ]ψ,

4. ϕ ∈ LPALint iff d(ϕ) = 0,

5. ϕ ∈ LPALint implies [ϕ]ψ <Sd 2ψ.

Lemma 7. For any ϕ,ψ, χ ∈ LAPALint and i ∈ A,

1. ¬[ϕ]ψ <Sd [ϕ]¬ψ,

2. int([ϕ]ψ) <Sd [ϕ]int(ψ),

3. Ki[ϕ]ψ <Sd [ϕ]Kiψ,

4. [¬[ϕ]¬int(ψ)]χ <Sd [ϕ][ψ]χ.

Proof. We only prove Lemma 7.4. The proof demon-
strates why in the [ϕ]ψ clause of Definition 3, 4 is the small-
est natural number guaranteeing the result.

By Definition 3, we have that S([¬[ϕ]¬int(ψ)]χ) = S(ϕ)+
4S(ψ) + 4S(χ) + 9 and that S([ϕ][ψ]χ) = S(ϕ) + 4S(ψ) +
16S(χ). As for any χ ∈ LAPALint , 1 ≤ S(χ), it follows that
4S(χ)+9 ≤ 4S(χ)+9S(χ) = 13S(χ) < 16S(χ). Further, we
observe that d([¬[ϕ]¬int(ψ)]χ) = max{d(ϕ), d(ψ), d(χ)} =
d([ϕ][ψ]χ). (This is similar in the first three items.)

96



2.2 Background
In this section, we introduce the topological concepts that

will be used throughout this paper. All the concepts in this
section can be found in [9].

Definition 8. A topological space (X, τ) is a pair con-
sisting of a non-empty set X and a family τ of subsets of X
satisfying ∅ ∈ τ and X ∈ τ , and closed under finite inter-
sections and arbitrary unions.

The set X is called the space. The subsets of X belonging
to τ are called open sets (or opens) in the space; the family
τ of open subsets of X is also called a topology on X. If for
some x ∈ X and an open U ⊆ X we have x ∈ U , we say
that U is an open neighborhood of x.

A point x is called an interior point of a set A ⊆ X if
there is an open neighborhood U of x such that U ⊆ A. The
set of all interior points of A is called the interior of A and
denoted by Int(A). We can then easily observe that for any
A ⊆ X, Int(A) is the largest open subset of A.

Definition 9. A family B ⊆ τ is called a base for a
topological space (X, τ) if every non-empty open subset of X
can be written as a union of elements of B.

Given any family Σ = {Aα | α ∈ I} of subsets of X,
there exists a unique, smallest topology τ(Σ) with Σ ⊆ τ(Σ)
[9, Th. 3.1]. The family τ(Σ) consists of ∅, X, all finite
intersections of the Aα, and all arbitrary unions of these
finite intersections. Σ is called a subbase for τ(Σ), and τ(Σ)
is said to be generated by Σ. The set of finite intersections
of members of Σ forms a base for τ(Σ).

2.3 Structures
In this section we define our multi-agent models based on

topological spaces.

Definition 10. Given a topological space (X, τ), a neigh-
bourhood function set Φ on (X, τ) is a set of partial func-
tions θ : X ⇀ A → τ such that for all x, y ∈ Dom(θ), for
all i ∈ A, and for all U ∈ τ :

1. θ(x)(i) ∈ τ ,

2. x ∈ θ(x)(i),

3. θ(x)(i) ⊆ Dom(θ),

4. if y ∈ θ(x)(i) then θ(x)(i) = θ(y)(i),

5. θ|U ∈ Φ,

where θ|U is the partial function with Dom(θ|U ) = Dom(θ) ∩ U
and θ|U (x)(i) = θ(x)(i) ∩ U . We call the elements of Φ
neighbourhood functions.

Definition 11. A topological model with functions (or
in short, a topo-model) is a tuple M = (X, τ,Φ, V ), where
(X, τ) is a topological space, Φ a neighbourhood function set,
and V : Prop→ X a valuation function. We refer to the
part X = (X, τ,Φ) without the valuation function as a topo-
frame.

A pair (x, θ) is a neighbourhood situation if x ∈ Dom(θ)
and θ(x)(i) is called the epistemic neighbourhood at x of
agent i. If (x, θ) is a neighbourhood situation inM we write
(x, θ) ∈ M. Similarly, if (x, θ) is a neighbourhood situation
in X we write (x, θ) ∈ X .

Lemma 12. For any (X, τ,Φ) and θ ∈ Φ, Dom(θ) ∈ τ .

2.4 Semantics

Definition 13. Given a topo-modelM = (X, τ,Φ, V ) and
a neighbourhood situation (x, θ) ∈M, the semantics for the
language LAPALint is defined recursively as:

M, (x, θ) |= p iff x ∈ V (p)
M, (x, θ) |= ¬ϕ iff not M, (x, θ) |= ϕ
M, (x, θ) |= ϕ ∧ ψ iff M, (x, θ) |= ϕ and M, (x, θ) |= ψ
M, (x, θ) |= Kiϕ iff (∀y ∈ θ(x)(i))(M, (y, θ) |= ϕ)
M, (x, θ) |= int(ϕ) iff x ∈ Int [[ϕ]]θ

M, (x, θ) |= [ϕ]ψ iff M, (x, θ) |= int(ϕ)⇒
M, (x, θϕ) |= ψ

M, (x, θ) |= 2ϕ iff (∀ψ ∈ LPALint )(M, (x, θ) |= [ψ]ϕ)

where p ∈ Prop, [[ϕ]]θ = {y ∈ Dom(θ) | M, (y, θ) |= ϕ}
and θϕ : X ⇀ A → τ such that Dom(θϕ) = Int [[ϕ]]θ and
θϕ(x)(i) = θ(x)(i) ∩ Int [[ϕ]]θ.

The updated neighbourhood function θϕ is the restriction of
θ to the open set Int [[ϕ]]θ, i.e., for all x ∈ X, θϕ(x)(i) =
θ|Int[[ϕ]]θ (x)(i).

A formula ϕ ∈ LAPALint is valid in a topo-model M, de-
notedM |= ϕ, iffM, (x, θ) |= ϕ for all (x, θ) ∈M; ϕ is valid,
denoted |= ϕ, iff for all topo-models M we have M |= ϕ.
Soundness and completeness with respect to topo-models
are defined as usual.

Let us now elaborate on the structure of topo-models and
the above semantics we have proposed for LAPALint . Given
a topo-model (X, τ,Φ, V ), the epistemic neighbourhoods of
each agent at a given state x are determined by (partial)
functions θ : X ⇀ A → τ assigning an open neighbourhood
to the state in question for each agent. We allow for partial
functions in Φ, and close Φ under taking restricted func-
tions θ|U where U ∈ τ (see Definition 10, condition 5), so
that updated neighbourhood functions are guaranteed to be
well-defined elements of Φ. As in the standard subset space
semantics, by picking a neighbourhood situation (x, θ), we
first localize our focus to an open subdomain, in fact to
Dom(θ), including the state x and the epistemic neighbour-
hood of each agent at x determined by θ. Then the function
θ(x) designates an epistemic neighbourhood for each agent
i in A. It is guaranteed that every agent i is assigned a
neighbourhood by θ at every state x in Dom(θ), since each
θ(x) is defined to be a total function from A to τ . Moreover,
condition 2 of Definition 10 ensures that ∅ cannot be an epis-
temic neighbourhood, i.e., θ(x)(i) 6= ∅ for all x ∈ Dom(θ).
Finally, conditions 2 and 4 of Definition 10 make sure that
the S5 axioms for each Ki are sound with respect to all
topo-models.

We now provide some semantic results. As usual in the
subset space setting, truth of non-modal formulas only de-
pends on the state in question.

Proposition 14. Give a topo-model M = (X, τ,Φ, V ),
neighbourhood situations (x, θ1), (x, θ2) ∈M, and a formula
ϕ ∈ LPl. Then (x, θ1) |= ϕ iff (x, θ2) |= ϕ.

Proposition 15. Given M = (X, τ,Φ, V ), θ ∈ Φ and
ϕ ∈ LAPALint . Then [[int(ϕ)]]θ = Int [[ϕ]]θ.

Proof.

[[int(ϕ)]]θ = {y ∈ Dom(θ) | (y, θ) |= int(ϕ)}
= {y ∈ Dom(θ) | y ∈ Int [[ϕ]]θ}
= Int [[ϕ]]θ (since Int [[ϕ]]θ ⊆ Dom(θ))
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A corollary is that Int [[int(ϕ)]]θ = IntInt [[ϕ]]θ = Int [[ϕ]]θ.

Proposition 16.

1. |= [ϕ]ψ ↔ [int(ϕ)]ψ

2. |= (int(ϕ) ∧ 〈ϕ〉int(ψ))↔ 〈ϕ〉int(ψ)

Proposition 17.

1. [[ψ]]θ
ϕ

= [[〈ϕ〉ψ]]θ

2. θϕ = θint(ϕ)

3. (θϕ)ψ = θ〈ϕ〉int(ψ)

2.5 Example
We illustrate our logic by a multi-agent version of Bjorn-

dahl’s convincing example in [6] about the jewel in the tomb.
Indiana Jones (i) and Emile Belloq (e) are both scouring
for a priceless jewel placed in a tomb. The tomb could ei-
ther contain a jewel or not, the tomb could have been re-
discovered in modern times or not, and (beyond [6]), the
tomb could be in the Valley of Tombs in Egypt or not. The
propositional variables corresponding to these propositions
are, respectively, j, d, and t. We represent a valuation of
these variables by a triple xyz, where x, y, z ∈ {0, 1}. Given
carrier set X = {xyz | x, y, z ∈ {0, 1}}, the topology τ that
we consider is generated by the base consisting of the subsets
{000, 100, 001, 101}, {010}, {110}, {011}, {111}. The idea
is that one can only conceivably know (or learn) about the
jewel or the location, on condition that the tomb has been
discovered. Therefore, {000, 100, 001, 101} has no strict sub-
sets besides empty set: if the tomb has not yet been discov-
ered, no one can have any information about the jewel or
the location.

A topo-model M = (X, τ,Φ, V ) for this topology (X, τ)
has Φ as the set of all neighbourhood functions that are
partitions of X for both agents, and restrictions of these
functions to open sets. A typical θ ∈ Φ describes com-
plete ignorance of both agents and is defined as θ(s)(i) =
θ(s)(e) = X. This corresponds most to the situation de-
scribed in [6]. A more interesting neighbourhood situation
in this model is one wherein Indiana and Emile have differ-
ent knowledge. Let us assume that Emile has the advan-
tage over Indiana so far, as he knows the location of the
tomb but Indiana doesn’t. This is the θ′ such that for all
x ∈ X, θ′(x)(i) = X whereas the partition for Emile con-
sists of sets {101, 100, 001, 000}, {111, 011}, {110, 010}, i.e.,
θ′(111)(e) = {111, 011}, etc.

We now can evaluate what Emile knows about Indiana at
111, and confirm that this goes beyond Emil’s initial epis-
temic neighbourhood. This situation however does not cre-
ate any problems in our setting since Indiana’s epistemic
neighbourhoods will be determined relative to the states in
Emile’s initial neighbourhood. Firstly, Emile knows that the
tomb is in the Valley of Tombs in Egypt

M, (111, θ′) |= Ket

and he also knows that Indiana does not know that

M, (111, θ′) |= Ke¬(Ki¬t ∨Kit)

The latter involves verifying M, (111, θ′) |= K̂it and

M, (111, θ′) |= K̂i¬t. And this is true because θ′(111)(i) =
X, and 000, 001 ∈ X, and while M, (001, θ′) |= t, we also
haveM, (000, θ′) |= ¬t. We can also check that Emile knows
that Indiana considers it possible that Emile doesn’t know

the tomb’s location

M, (111, θ′) |= KeK̂i¬(Ket ∨Ke¬t)
Announcements will change their knowledge in different ways.
Consider the announcement of j. This results in Emile know-
ing everything but Indiana still being uncertain about the
location.

M, (111, θ′) |= [j](Ke(j ∧ d∧ t)∧Ki(j ∧ d)∧¬Ki(t∨Ki¬t))
Model checking this involves computing the epistemic neigh-
bourhoods of both agents given by the updated neighbour-

hood function (θ′)j at 111. Observe that Int [[j]]θ
′

= {111, 110}.
Therefore, (θ′)j(111)(e) = Int [[j]]θ

′ ∩θ′(111)(e) = {111} and

(θ′)j(111)(i) = Int [[j]]θ
′ ∩ θ′(x)(i) = {111, 110}.

There is an announcement after which Emile and Indiana
know everything (for example the announcement of j ∧ t):

M, (111, θ) |= 3(Ke(j ∧ d ∧ t) ∧Ki(j ∧ d ∧ t))
As long as the tomb has not been discovered, nothing will
make Emile (or Indiana) learn that it contains a jewel or
where the tomb is located:

M |= ¬d→ 2(¬(Kej ∨Ke¬j) ∧ ¬(Ket ∨Ke¬t))

3. AXIOMATIZATION
We now provide the axiomatizations of ELint , PALint ,

and APALint , and prove their soundness and completeness
with respect to the proposed semantics.

(P) all instantiations of propositional tautologies

(K-K) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)

(K-T) Kiϕ→ ϕ

(K-4) Kiϕ→ KiKiϕ

(K-5) ¬Kiϕ→ Ki¬Ki¬ϕ
(int-K) int(ϕ→ ψ)→ (int(ϕ)→ int(ψ))

(int-T) int(ϕ)→ ϕ

(int-4) int(ϕ)→ int(int(ϕ))

(Kint) Kiϕ→ int(ϕ)

(R1) [ϕ]p↔ (int(ϕ)→ p)

(R2) [ϕ]¬ψ ↔ (int(ϕ)→ ¬[ϕ]ψ)

(R3) [ϕ](ψ ∧ χ)↔ [ϕ]ψ ∧ [ϕ]χ

(R4) [ϕ]int(ψ)↔ (int(ϕ)→ int([ϕ]ψ))

(R5) [ϕ]Kiψ ↔ (int(ϕ)→ Ki[ϕ]ψ)

(R6) [ϕ][ψ]χ↔ [¬[ϕ]¬int(ψ)]χ

(R7) 2ϕ→ [χ]ϕ where χ ∈ LPALint

(DR1) From ϕ and ϕ→ ψ, infer ψ

(DR2) From ϕ, infer Kiϕ

(DR3) From ϕ, infer int(ϕ)

(DR4) From ϕ, infer [ψ]ϕ

(DR5) From ξ([ψ]χ) for all ψ ∈ LPALint , infer ξ(2χ)

Table 1: Axiomatizations ELint , PALint , and APALint

Definition 18. The axiomatization APALint is given in
Table 1. The axiomatization PALint is the one without
(DR5) and (R7). We get ELint if we further remove ax-
ioms (R1)-(R6) and the rule (DR4).

The parts (DR1) to (DR5) are the derivation rules and
the other parts are the axioms. A formula is a theorem of
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APALint , notation ` ϕ, if it belongs to the smallest set of
formulas containing the axioms and closed under the deriva-
tion rules. (Similarly for ELint and PALint .)

Lemma 19. Axiomatization APALint satisfies substitu-
tion of equivalents. If ` ϕ↔ ψ, then ` χ[p/ϕ]↔ χ[p/ψ].

Proof. In the above, χ[p/ϕ] means uniform substitution
of ϕ for p. The proof is not trivial but proceeds along similar
lines as for public announcement logic, see [17].

Proposition 20. [ϕ]⊥ ↔ ¬int(ϕ) is a theorem of APALint .

Proposition 21. APALint is sound with respect to the
class of all topo-models.

Proof. Let M = (X, τ,Φ, V ) be a topo-model, (x, θ) ∈
M and ϕ,ψ, χ ∈ LAPALint . We show three cases.

(Kint) Suppose (x, θ) |= Kiϕ. This means, (y, θ) |= ϕ
for all y ∈ θ(x)(i). Hence, θ(x)(i) ⊆ [[ϕ]]θ. By Definition 10,
θ(x)(i) is an open neighbourhood of x, therefore we obtain
x ∈ Int [[ϕ]]θ, i.e., (x, θ) |= int(ϕ).

(R7) Let χ ∈ LPALint and suppose (x, θ) |= 2ϕ. By the
semantics, we have (x, θ) |= 2ϕ iff (∀ψ ∈ LPALint )((x, θ) |=
[ψ]ϕ). Therefore, in particular, (x, θ) |= [χ]ϕ.

(DR5) Suppose ξ([ψ]χ) is valid for all ψ ∈ LPALint .
The proof follows by induction on the complexity of ξ(]).
In case ξ(]) = ], we have ξ([ψ]χ) = [ψ]χ. By assumption,
we have that [ψ]χ is valid for all ψ ∈ LPALint . This implies
M, (x, θ) |= [ψ]χ for all ψ ∈ LPALint , all topo-models M,
and (x, θ) ∈ M. Therefore, by the semantics, M, (x, θ) |=
2χ, i.e., M, (x, θ) |= ξ(2χ). All other, inductive, cases are
elementary.

Corollary 22. The axiomatizations ELint and PALint

are sound with respect to the class of all topo-models.

4. COMPLETENESS
We now show completeness for ELint , PALint , andAPALint

with respect to the class of all topo-models. Completeness of
ELint is shown in a standard way via a canonical model con-
struction and a Truth Lemma that is proved by induction on
formula complexity. Completeness for PALint is shown by
reducing each formula in LPALint to an equivalent formula of
LELint . The proof of the completeness for APALint becomes
more involved. Reduction axioms for public announcements
no longer suffice in the APALint case, and the inductive
proof needs a subinduction where announcements are con-
sidered. Moreover, the proof system of APALint has an
infinitary derivation rule, namely the rule (DR5), and given
the requirement of closure under this rule, the maximally
consistent sets for that case are defined to be maximally con-
sistent theories (see, Section 4.2). Lastly, the Truth Lemma
requires the more complicated complexity measure on for-
mulas defined in Section 2. There, we need to adapt the
completeness proof of [2] to our setting.

4.1 Completeness of ELint and PALint

For LELint we define consistent and maximally consistent
sets in the usual way, see e.g. [6] for details, and the multi-
agent aspect does not complicate the definition. Let Xc be
the set of all maximally consistent sets of ELint . We de-
fine relations ∼i on Xc as x ∼i y iff ∀ϕ ∈ LELint (Kiϕ ∈
x iff Kiϕ ∈ y). Notice that the latter is equivalent to:

∀ϕ ∈ LELint (Kiϕ ∈ x implies ϕ ∈ y) since Ki is an S5
modality. As each Ki is of S5 type, every ∼i is an equiva-
lence relation, hence, it induces equivalence classes on Xc.
Let [x]i denote the equivalence class of x induced by the
relation ∼i. Moreover, we define ϕ̂ = {y ∈ Xc | ϕ ∈ y}.
Observe that x ∈ ϕ̂ iff ϕ ∈ x.

Lemma 23 (Lindenbaum’s Lemma). Each consistent
set can be extended to a maximally consistent set.

Definition 24. We define the canonical model
X c = (Xc, τ c,Φc, V c) as follows:

• Xc is the set of all maximally consistent sets;

• τ c is the topological space generated by the subbase

Σ = {[x]i ∩ înt(ϕ) | x ∈ Xc, ϕ ∈ LELint and i ∈ A};
• x ∈ V c(p) iff p ∈ x, for all p ∈ Prop;

• Φc = {θ∗|U | U ∈ τ c}, where we define θ∗ : Xc →
A→ τ c as θ∗(x)(i) = [x]i, for x ∈ Xc and i ∈ A.

Observe that, since ̂int(>) = Xc, we have [x]i ∩ ̂int(>) =
[x]i ∈ Σ for each i. Therefore, each [x]i is an open subset
of Xc. Moreover, the elements of Φc satisfy the required
properties given in Definition 10.

Lemma 25 (Truth Lemma). For every ϕ ∈ LELint and
for each x ∈ Xc, ϕ ∈ x iff X c, (x, θ∗) |= ϕ.

Proof. Cases for the propositional variables and Booleans
are straightforward. We only show the cases for Ki and int .

Case ϕ := Kiψ
(⇒) Suppose Kiψ ∈ x and let y ∈ θ∗(x)(i). Since

y ∈ θ∗(x)(i) = [x]i, by definition of ∼i, we have Kiψ ∈ y.
Then, by T-axiom for Ki, we obtain ψ ∈ y. Then, by IH,
X c, (y, θ∗) |= ψ. Therefore X c, (x, θ∗) |= Kiψ.

(⇐) Suppose Kiψ 6∈ x. Then, {Kiγ | Kiγ ∈ x} ∪ {¬ψ}
is a consistent set. We can then extend it to a maximally
consistent set y. As {Kiγ | Kiγ ∈ x} ⊆ y, we have y ∈
[x]i meaning that y ∈ θ∗(x)(i). Moreover, since ¬ψ ∈ y,
ψ 6∈ y. Therefore, we have a maximally consistent set y ∈
θ∗(x)(i) such that ψ 6∈ y. By (IH), X c, (y, θ∗) 6|= ψ. Hence,
X c, (x, θ∗) 6|= Kiψ.

Case ϕ := int(ψ)

(⇒) Suppose int(ψ) ∈ x. Consider the set [x]i ∩ înt(ψ)

for some i ∈ A. Obviously, x ∈ [x]i∩ înt(ψ) and [x]i∩ înt(ψ)

is open (since it is in Σ). Now let y ∈ [x]i ∩ înt(ψ). Since

y ∈ înt(ψ), int(ψ) ∈ y. Then, by (int -T), since y is maximal
consistent, we have ψ ∈ y. Thus, by IH, we have (y, θ∗) |= ψ.

Therefore, y ∈ [[ψ]]θ
∗
. This implies [x]i ∩ înt(ψ) ⊆ [[ψ]]θ

∗
.

And, since x ∈ [x]i∩ înt(ψ) ∈ τ c, we have x ∈ Int [[ψ]]θ
∗
, i.e.,

(x, θ∗) |= int(ψ).

(⇐) Suppose (x, θ∗) |= int(ψ), i.e., x ∈ Int [[ψ]]θ
∗
. Recall

that the set of finite intersections of the elements of Σ forms
a base, which we denote by BΣ, for τ c. x ∈ Int [[ψ]]θ

∗
implies

that there exists an open U ∈ BΣ such that x ∈ U ⊆ [[ψ]]θ
∗
.

Given the construction of BΣ, U is of the form

U =
⋂

i∈I1
[x1]i ∩ . . .

⋂

i∈In
[xk]i ∩

⋂

η∈Formfin

înt(η)

where I1, . . . , In are finite subsets of A, x1 . . . xk ∈ Xc and
Formfin is a finite subset of LELint . Since int is a normal
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modality, we can simply write

U =
⋂

i∈I1
[x1]i ∩ . . .

⋂

i∈In
[xk]i ∩ înt(γ),

where
∧

η∈Formfin

η := γ. Since x is in each [xj ]i with 1 ≤ j ≤

k, we have [xj ]i = [x]i for all such j. Therefore, we have

x ∈ U = (
⋂

i∈I
[x]i) ∩ înt(γ) ⊆ [[ψ]]θ

∗
,

where I = I1 ∪ · · · ∪ In.

This implies, for all y ∈ (
⋂
i∈I

[x]i), if y ∈ înt(γ) then ψ ∈ y.

From this, we can say
⋃
i∈I
{Kiσ | Kiσ ∈ x} ` int(γ) → ψ.

Then, there is a finite subset Γ ⊆ ⋃
i∈I
{Kiσ | Kiσ ∈ x} such

that ` ∧
λ∈Γ

λ→ (int(γ)→ ψ). It then follows:

1. ` int(
∧
λ∈Γ

λ→ (int(γ)→ ψ)) (DR3)

2. ` int(
∧
λ∈Γ

λ)→ int(int(γ)→ ψ)) (int-K) and (DR1)

3. ` (
∧
λ∈Γ

int(λ))→ int(int(γ)→ ψ)) (int-K)

Observe that each λ ∈ Γ is of the form Kjα for some
Kjα ∈

⋃
i∈I
{Kiσ | Kiσ ∈ x} and we have ` Kiϕ↔ int(Kiϕ).

Therefore, ` (
∧
λ∈Γ

λ) → int(int(γ) → ψ)). Thus, since
∧
λ∈Γ

λ ∈ x (by Γ ⊆ x), we have int(int(γ)→ ψ)) ∈ x. Then,

by (int-K), (DR1) and since ` int(int(γ)) ↔ int(γ) and

x ∈ înt(γ) (i.e., int(γ) ∈ x) , we obtain int(ψ) ∈ x.

Theorem 26. ELint is complete with respect to the class
of all topo-models.

Theorem 27. PALint is complete with respect to the class
of all topo-models.

Proof. This follows from Theorem 26 by reduction in a
standard way. The occurrences of the modality int on the
right-hand-side of the reduction axioms (axioms (R1)-(R6))
should not lead to any confusion: extending the complexity
measure defined in [17, Definition 7.21 p. 187] to the lan-
guage LPALint by adding the same complexity measure for
the modality int as for Ki gives us the desired result.

4.2 Completeness of APALint

We now reuse the technique of [2] in the setting of topolog-
ical semantics. Given the closure requirement under deriva-
tion rule (DR5) it seems more proper to call maximally con-
sistent sets of APALint maximally consistent theories, as
further explained below.

Definition 28. A set x of formulas is called a theory
iff APALint ⊆ x and x is closed under (DR1) and (DR5).
A theory x is said to be consistent iff ⊥ 6∈ x. A theory x
is maximally consistent iff x is consistent and any set of
formulas properly containing x is inconsistent.

Observe thatAPALint constitutes the smallest theory. More-
over, maximally consistent theories of APALint posses the
usual properties of maximally consistent sets:

Proposition 29. For any maximally consistent theory x,
ϕ 6∈ x iff ¬ϕ ∈ x, and ϕ ∧ ψ ∈ x iff ϕ ∈ x and ψ ∈ x.

In the setting of our axiomatization based on the infinitary
rule (DR5), we will say that a set x of formulas is consistent
iff there exists a consistent theory y such that x ⊆ y. Ob-
viously, maximal consistent theories are maximal consistent
sets of formulas. Under the given definition of consistency
for sets of formulas, maximal consistent sets of formulas are
also maximal consistent theories.

Definition 30. Let ϕ ∈ LAPALint and i ∈ A. Then x +
ϕ := {ψ | ϕ→ ψ ∈ x} and Kix := {ϕ | Kiϕ ∈ x}.

Lemma 31. For any theory x of APALint and
ϕ ∈ LAPALint , x + ϕ is a theory and it contains x and ϕ,
and Kix is a theory.

Lemma 32. Let ϕ ∈ LAPALint . For all theories x, x + ϕ
is consistent iff ¬ϕ 6∈ x.

Proof. Let ϕ ∈ LAPALint and x be a theory. Then ¬ϕ ∈
x iff ϕ→ ⊥ ∈ x (as ¬ϕ↔ ϕ→ ⊥ is a theorem) iff ⊥ ∈ x+ϕ.
Therefore, x + ϕ is inconsistent iff ¬ϕ ∈ x, i.e., x + ϕ is
consistent iff ¬ϕ 6∈ x.

Lemma 33 (Lindenbaum’s Lemma [1]). Each consis-
tent theory can be extended to a maximal consistent theory.

Lemma 34. If Kiϕ 6∈ x, then there is a maximally con-
sistent theory y such that Kix ⊆ y and ϕ 6∈ y.

Proof. Let ϕ ∈ LAPALint and x be such that Kiϕ 6∈
x. Thus, ϕ 6∈ Kix. Hence, by Lemma 32, Kix + ¬ϕ is
consistent. Then, by Lemma 33, there exists a maximally
consistent set y such that Kix+¬ϕ ⊆ y. Therefore Kix ⊆ y
and ϕ 6∈ y.

Lemma 35. For all ϕ ∈ LAPALint and all maximally con-
sistent theories x, 2ϕ ∈ x iff for all ψ ∈ LPALint , [ψ]ϕ ∈ x.

Proof. Let ϕ ∈ LAPALint and x be a maximally consis-
tent theory.

(⇒) Suppose 2ϕ ∈ x. Then, by (R7) and (DR1), we
have [ψ]ϕ ∈ x for all ψ ∈ LPALint .

(⇐) Suppose [ψ]ϕ ∈ x for all ψ ∈ LPALint . Consider the
necessity form ]. By assumption, ]([ψ]ϕ) for all ψ ∈ LPALint .
Then, since x is closed under (DR5), ](2ϕ) ∈ x, i.e., 2ϕ ∈ x
as well.

The definition of the canonical model for APALint is the
same as for ELint , except that the maximally consistent
sets are maximally consistent theories. We now come to
the Truth Lemma for the logic APALint . Here we use the
complexity measure ψ <Sd ϕ.

Lemma 36 (Truth Lemma). For every ϕ ∈ LAPALint

and for each x ∈ Xc, ϕ ∈ x iff X c, (x, θ∗) |= ϕ.

Proof. Let ϕ ∈ LAPALint and x ∈ X c. The proof is by
<Sd -induction on ϕ, where the case ϕ = [ψ]χ is proved by a
subinduction on χ. We therefore consider 14 cases.

Case ϕ := p
x ∈ p iff x ∈ νc(p)

iff (x, θ∗) |= p

Induction Hypothesis (IH): For all formulas ψ ∈ LAPALint ,
if ψ <Sd ϕ, then ψ ∈ x iff X c, (x, θ∗) |= ψ.

The cases negation, conjunction, and interior modality are
as in Truth Lemma 25 for ELint, where we observe that the
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subformula order is subsumed in the <Sd order (see Lemma
6.2). We proceed with the knowledge operator, i.e., case
ϕ := Kiψ, and then with the subinduction on χ for case
announcement ϕ := [ψ]χ, and finally with the case ϕ := 2ψ.

Case ϕ := Kiψ
This case is also similar to the one in Truth Lemma 25 for

ELint, however, using maximally consistent theories in the
canonical model creates some differences. For the direction
from left-to-right, see Truth Lemma 25. For (⇐), suppose
Kiψ 6∈ x. Then, by Lemma 34, there exists a maximally
consistent theory y such that Kix ⊆ y and ψ 6∈ y. By ψ <Sd
Kiψ and (IH), (y, θ∗) 6|= ψ. Since Kix ⊆ y, we have y ∈ [x]i
meaning that y ∈ θ∗(x)(i). Therefore, by the semantics,
X c, (x, θ∗) 6|= Kiψ.

Case ϕ := [ψ]p

[ψ]p ∈ x iff int(ψ)→ p ∈ x (R1)
iff int(ψ) 6∈ x or p ∈ x Prop. 29
iff (x, θ∗) 6|= int(ψ) or (x, θ∗) |= p (∗)
iff (x, θ∗) |= [ψ]p (R1)

(*): By (IH), int(ψ) <Sd [ψ]p and p <Sd [ψ]p (Lemma 6.3 and
Lemma 6.2).

Case ϕ := [ψ]¬η Use (R2) and (IH) and, by Lemma 6.3
and Lemma 7.1, int(ψ) <Sd [ψ]¬η and ¬[ψ]η <Sd [ψ]¬η.

Case ϕ := [ψ](η∧σ) Use (R3) and (IH), [ψ]η <Sd [ψ](η∧
σ) and [ψ]σ <Sd [ψ](η ∧ σ).

Case ϕ := [ψ]int(η) Use (R4) and (IH) and, by Lemmas
6.3, 7.2, int(ψ) <Sd [ψ]int(η) and int([ψ]η) <Sd [ψ]int(η).

Case ϕ := [ψ]Kiη Use (R5) and (IH) and, by Lemmas
6.3, 7.3, int(ψ) <Sd [ψ]Kiη and Ki[ψ]η <Sd [ψ]Kiη.

Case ϕ := [ψ][η]σ Use (R6) and (IH) and, by Lemma
7.4, [¬[ψ]¬int(η)]σ <Sd [ψ][η]σ.

Case ϕ := [ψ]2σ For all η ∈ LPALint , [ψ][η]σ <Sd [ψ]2σ,
as [ψ]2σ has one more 2 than [ψ][η]σ . Therefore, it suffices
to show [ψ]2σ ∈ x iff ∀η ∈ LPALint , [ψ][η]σ ∈ x.

(⇐) Consider the necessity form [ψ]] and assume that
for all η ∈ LPALint , [ψ][η]σ ∈ x, i.e., for all η ∈ LPALint ,
[ψ]]([η]σ) ∈ x . As x is closed under (DR5), we obtain
[ψ]](2σ) ∈ x, i.e., [ψ]2σ ∈ x.

(⇒) Suppose [ψ]2σ ∈ x. We have

` 2σ → [η]σ, for all η ∈ LPALint (R7)
` [ψ](2σ → [η]σ) for all η ∈ LPALint (DR4)
` [ψ]2σ → [ψ][η]σ, for all η ∈ LPALint (DR1), (R1-R3)

Therefore, for all η ∈ LPALint , [ψ][η]σ ∈ x. As [ψ][η]σ <Sd
[ψ]2σ for all η ∈ LPALint , by (IH), we have for all η ∈
LPALint , (x, θ

∗) |= [ψ][η]σ. Then, by the semantics, we ob-
tain (details omitted) that (x, θ∗) |= [ψ]2σ.

Case ϕ := 2ψ Again note that for all η ∈ LPALint ,
[η]ψ <Sd 2ψ, as 2ψ has one more 2 than [η]ψ (see Lemma
6.4 and Lemma 6.5). Therefore, we obtain

2ψ ∈ x iff (∀η ∈ LPALint )([η]ψ ∈ x) Lemma 35
iff (∀η ∈ LPALint )(x, θ

∗) |= [η]ψ (IH)
iff (x, θ∗) |= 2ψ semantics

Theorem 37. APALint is complete with respect to the
class of all topo-models.

Proof. Let ϕ ∈ LAPALint such that 6` ϕ, i.e., ϕ 6∈ APALint

(Recall that APALint is the smallest theory). Then, by
Lemma 32, APALint + ¬ϕ is a consistent theory and, by
Lemma 31, ¬ϕ ∈ APALint +¬ϕ. By Lemma 33, the consis-
tent theory APALint +¬ϕ can be extended to a maximally

consistent theory y such that APALint + ¬ϕ ⊆ y. Since
y is maximally consistent and ¬ϕ ∈ y, we obtain ϕ 6∈ y
(by Proposition 29). Then, by Lemma 36 (Truth Lemma),
X c, (y, θ∗) 6|= ϕ.

5. COMPARISON TO OTHER WORK
Multi-agent epistemic systems with subset space-like se-

mantics have been proposed in [11, 12, 4, 18], however, none
of these are concerned with arbitrary announcements. Our
goal in this paper is not to provide a multi-agent generaliza-
tion of SSL per se, but to work with the effort-like modal-
ity 2 intended to capture the information change brought
about by any announcements (subject to some restrictions)
in a multi-agent setting and modelling it by way of “open-
set shrinking” similar to the effort modality, rather than by
deleting states or neighbourhoods, so that the intuitive link
between the two becomes more transparent on a semantic
level. In [3], Balbiani et al. proposed subset space seman-
tics for arbitrary announcements, however, their approach
does not go beyond the single-agent case and the semantics
provided is in terms of model restriction. An unorthodox
approach to multi-agent knowledge is proposed in [11, 12].
Roughly speaking, instead of having a knowledge modality
Ki for each agent in his syntax, Heinemann uses additional
operators to define Ki and his semantics only validate the
S4-axioms for Ki. The necessitation rule for Ki does not
preserve validity under the proposed semantics [11, 12]. In
[18] a multi-agent semantics for knowledge is provided, but
no announcements or further generalizations (unlike in their
other, single-agent, work [19]), and not in a topological set-
ting. Their use of partitions for each agent instead of a
single neighbourhood is compatible with our requirement
that all neighbourhoods for a given agent be disjoint. A fur-
ther difference from the existing literature is that we restrict
our attention to topological spaces and prove our results by
means of topological tools.

We applied the new completeness proof for arbitrary pub-
lic announcement logic of [2] to a topological setting. The
canonical modal construction is as in [6] with some multi-
agent modifications. The modality int in our system de-
mands a different complexity measure in the Truth Lemma
of the completeness proof than in [2].

6. CONCLUSIONS
We have proposed topological semantics for the multi-

agent extensions of the public announcement logic of [6], and
further extended the logic with arbitrary announcements.
We showed topological completeness of these logics. Our
work can be seen as a step toward discovering the interplay
between dynamic epistemic logic and topological reasoning.

For further research, we envisage a finitary axiomati-
zation for APALint wherein the infinitary derivation rule
(DR5) is replaced by a finitary rule. The obvious derivation
rule would derive something after any announcement if it
can be derived after announcing a fresh variable [1]. Under
subset space semantics, it is unclear how to prove that this
rule is sound.

We are still investigating expressivity and (un)decidability.
If the logic APALint is undecidable, this would contrast
nicely with the undecidability of arbitrary public announce-
ment logic. Otherwise, there may be interesting decidable
versions when restricting the class of models to particular
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topologies.
The logicAPALint is also axiomatizable on the class where

the K modalities have S4 properties, a result we have not
reported in this paper for consistency of presentation. This
class is of topological interest.

In our setup all agents have the same observational pow-
ers. If agents can have different observational powers, we
can associate a topology with each agent and generalize the
logic to an arbitrary epistemic action logic.

Furthermore, we would like to explore the exact difference
between the effort modality and the arbitrary announcement
modality (in the single agent case, see [16]) by constructing a
topological model which distinguishes the two: a topological
model might have more than epistemically definable opens
with respect to the proposed semantics.
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ABSTRACT
In economics and social choice single-peakedness is one of
the most important and commonly studied models for pref-
erences. It is well known that single-peaked consistency
for total orders is in P. However in practice a preference
profile is not always comprised of total orders. Often vot-
ers have indifference between some of the candidates. In a
weak preference order indifference must be transitive. We
show that single-peaked consistency for weak orders is in
P for three different variants of single-peakedness for weak
orders. Specifically, we consider Black’s original definition
of single-peakedness for weak orders, Black’s definition of
single-plateaued preferences, and the existential model re-
cently introduced by Lackner. We accomplish our results by
transforming each of these single-peaked consistency prob-
lems to the problem of determining if a 0-1 matrix has the
consecutive ones property.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and
Problems; I.2.11 [Artificial Intelligence]: Distributed Ar-
tificial Intelligence—Multiagent systems

General Terms
Algorithms, Economics, Theory

Keywords
computational social choice, partial preferences, domain re-
strictions

1. INTRODUCTION
Single-peakedness is one of the most important and com-

monly examined domain restrictions on preferences in eco-
nomics and social choice. The study of single-peaked pref-
erences in computational social choice is often restricted to
total orders, but in practical settings voters often have some
degree of indifference in their preferences. This is seen in the
online repository PrefLib, which contains several datasets
comprised of voters with various degrees of partial prefer-
ences, many of which are weak orders [26]. Additionally,
some election systems are defined for weak orders, e.g., the
Kemeny rule [22] and the Schulze rule [30], or can be easily
extended for weak orders.

Single-peaked preferences were introduced by Black [5]
and they model the preferences of a collection of voters with

respect to a one-dimensional axis, i.e., a total ordering of
the candidates. Each voter in a single-peaked electorate has
a single most preferred candidate (peak) on the axis and the
farther that a candidate is from the voter’s peak the less pre-
ferred they are by the voter. Black extended his model to
single-plateaued preferences, which models the preferences
of a collection of voters in a similar way, but allows voters
to have multiple most preferred candidates (an indifference
plateau) in their preferences [6, Chapter 5]. We mention
that the definition of single-peaked preferences from Fish-
burn [18, Chapter 9] for weak orders is the same as Black’s
definition of single-plateaued preferences.

Elections where the voters have single-peaked preferences
over the candidates have many desirable properties in eco-
nomics and social choice, e.g., the majority relation is transi-
tive [5] and there exist strategy-proof voting rules [28]. Addi-
tionally, computational problems often become easier when
preferences are single-peaked. For example, when voters in
an election have single-peaked (or even nearly single-peaked)
preferences the complexity of determining if a manipulative
action exists often becomes easy [17, 16] and determining the
winner for Dodgson and Kemeny elections becomes easy [8]
when it is Θp

2-complete in general [20, 21].
The problem of single-peaked consistency is to determine

if an axis exists such that the preferences of a collection of
voters are single-peaked. The first paper to computationally
study single-peaked consistency for partial preferences was
Lackner [24], where a partial order is said to be single-peaked
with respect to an axis if it can be extended to a total order
that is single-peaked with respect to that axis. For clarity
we refer to this as existentially single-peaked, or ∃-single-
peaked, throughout this paper. Lackner presents algorithms
and complexity results for determining the ∃-single-peaked
consistency for preference profiles of varying degrees of par-
tial preferences, including top orders, weak orders, local
weak orders, and partial orders. Lackner shows that if a
given preference profile contains an implicitly specified total
order (which is not guaranteed to exist) then ∃-single-peaked
consistency for weak orders is in P [24]. Lackner also shows
that the general case of ∃-single-peaked consistency for top
orders (weak orders with all indifference between last-ranked
candidates) is in P [24]. The complexity of the general case
of ∃-single-peaked consistency for weak orders was explicitly
left as the main open problem in Lackner [24] and we show
in this paper that it is in P.

We show that an algorithm to determine if a 0-1 ma-
trix has the consecutive ones property can be used to de-
termine the single-peaked, single-plateaued, and ∃-single-
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peaked consistency for weak orders without requiring an im-
plicitly specified total order. So given a preference profile of
weak orders not only can we determine if it is single-peaked,
single-plateaued, or ∃-single-peaked, we can find all consis-
tent axes by using the PQ-tree algorithm for determining if
a 0-1 matrix has the consecutive ones property [7]. This al-
gorithm was previously used to determine the single-peaked
consistency for total orders by Bartholdi and Trick [4] and to
determine the single-crossing consistency for total orders by
Bredereck et al. [9]. The model of single-crossing preferences
is another domain restriction [27] and its corresponding con-
sistency problem for total orders was first shown to be in P
by Elkind et al. [12]. We also mention that after single-
peaked consistency for total orders was shown to be in P,
both Escoffier et al. [15] and Doignon and Falmagne [10]
independently found faster direct algorithms.

This paper is organized as follows. In Section 2 we define
the types of partial preferences studied, the different variants
of single-peakedness, and the consecutive ones matrix prob-
lem. We present our results in Section 3, which is split into
three sections with each corresponding to a different variant
of single-peakedness. Section 3.1 contains our results for
∃-single-peaked preferences, Section 3.2 for single-plateaued
preferences, and Section 3.3 for single-peaked preferences.
In each of these sections we redefine the variant of single-
peakedness using forbidden substructures and describe the
transformation from its consistency problem to the problem
of determining if a 0-1 matrix has the consecutive ones prop-
erty. We conclude in Section 4 by summarizing our results
and stating some possible directions for future work.

2. PRELIMINARIES
A preference order, v, is an ordering of the elements of a

finite candidate set, C. A multiset of preference orders, V ,
is called a preference profile. (We sometimes refer to each v
as a voter with a corresponding preference order.) A partial
order is a transitive, reflexive, and antisymmetric binary
relation on a set. A weak order is a partial order where the
indifference relation is transitive, a top order is a weak order
where all indifference is between candidates ranked last, and
a total order is a partial order with no indifference between
candidates.

Example 1. Given the set of candidates {a, b, c, d}, an
example of a total order is (a > b > d > c), an example
of a weak order is (a ∼ c > d > b), and an example of a
top order is (a > c > b ∼ d), where “∼” is used to denote
indifference between candidates.

We focus on weak orders since they model easily under-
stood incompleteness in preferences. Voters are often not
able to discern between two candidates or view them as truly
equal. Allowing each voter to state a weak preference order
still requires that they specify each candidate in their order,
but gives them the ability to have multiple candidates at
each position.

It is very natural for election systems to be defined for
weak orders. The Kemeny rule and Schulze rule are de-
fined for weak orders [22, 30] and clearly election systems
based on pairwise comparisons (e.g., Copeland) can be used
to evaluate a preference profile of partial votes. The Borda
count can be extended for top orders [13] and a recent pa-
per has even explored the complexity of the manipulation
problem on such extensions to the Borda count and defined

additional extensions for election systems to be defined on
top orders [29].

2.1 Variants of Single-Peakedness
In our definitions of each variant of single-peakedness we

refer to a total ordering of the set of candidates that each
preference profile is consistent with as an axis A. Like
Bartholdi and Trick [4], who were the first to show single-
peaked consistency for total orders in P, we say that a pref-
erence order v is strictly increasing (decreasing) along a seg-
ment X of A if each candidate in X is strictly preferred to
each candidate to its left (right) in X. Similarly, we say that
a preference order is increasing (decreasing) along a segment
X of A if each candidate in X is strictly preferred or ranked
indifferent to each candidate to its left (right) in X. When
we say that a preference order v is remaining constant along
a segment, then all candidates in that segment are ranked
indifferent to each other.

We begin our discussion of single-peaked preferences by
stating the definition of single-peaked preferences for total
orders. We use the definition found in the work by Bartholdi
and Trick [4].

Definition 2. A preference profile V of total orders is
single-peaked with respect to an axis A if for every v ∈ V ,
A can be split at the most preferred candidate (peak) of v
into two segments X and Y (one of which can be empty)
such that v has strictly increasing preferences along X and
v has strictly decreasing preferences along Y .

We now define each of the three variants of single-peaked
preferences for weak orders that we study in this paper and
present an example of each in Figure 1.

2.1.1 Single-Peaked Preferences
Single-peaked preferences for weak orders can be defined

in the same way as single-peaked preferences for total orders.

Definition 3. A preference profile V of weak orders is
single-peaked with respect to an axis A if for every v ∈ V ,
A can be split at the most preferred candidate (peak) of v
into two segments X and Y (one of which can be empty)
such that v has strictly increasing preferences along X and
v has strictly decreasing preferences along Y .

Notice that for a weak preference order to be single-peaked
it must have a single most preferred candidate and can only
contain indifference between at most two candidates at each
position. Otherwise the segments X and Y referred to in
Definition 3 would not be strictly increasing/decreasing. We
define the corresponding problem of single-peaked consis-
tency for weak orders below.

Given: A preference profile V of weak orders and a set of
candidates C.

Question: Does there exist an axis A such that V is single-
peaked with respect to A?

2.1.2 Single-Plateaued Preferences
A slightly weaker restriction than single-peakedness for

weak orders is single-plateauedness [6, Chapter 5]. Single-
peaked and single-plateaued preferences are closely related
domain restrictions and Barberà [2] discusses how the
amounts of indifference permitted in these restrictions im-
pact their properties.
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Building upon the definition for single-peaked preferences,
we state a definition for single-plateaued preferences.

Definition 4. A preference profile V of weak orders is
single-plateaued with respect to an axis A if for every v ∈ V ,
A can be split into three segments X, Y , and Z (X and Z
can each be empty) where v’s most preferred candidates are
Y , v has strictly increasing preferences along X, and v has
strictly decreasing preferences along Z.

We define the corresponding problem of single-plateaued
consistency for weak orders below.

Given: A preference profile V of weak orders and a set of
candidates C.

Question: Does there exist an axis A such that V is single-
plateaued with respect to A?

2.1.3 Existentially Single-Peaked Preferences
So far we have considered the given preference orders as

the true preferences of the voters. One approach to dealing
with partial preferences is to assume that voters have an
underlying total preference order and consider extensions
of their preferences to total orders (see, e.g., [23]). This is
the approach taken by Lackner for the existential model of
single-peakedness [24].

Definition 5. [24] A preference profile V of weak orders
is ∃-single-peaked with respect to an axis A if for every v ∈
V , v can be extended to a total order v′ such that the profile
V ′ of total orders is single-peaked with respect to A.

We can restate Definition 5 without referring to exten-
sions to better see how it relates to single-peaked and single-
plateaued preferences.

Observation 6. A preference profile V of weak orders is
∃-single-peaked with respect to an axis A if and only if for
every v ∈ V , A can be split into three segments X, Y , and
Z (X and Z can each be empty) where v’s most preferred
candidates are Y , v has increasing preferences along X, and
v has decreasing preferences along Z.

We define the corresponding problem of ∃-single-peaked
consistency for weak orders below.

Given: A preference profile V of weak orders and a set of
candidates C.

Question: Does there exist an axis A such that V is ∃-
single-peaked with respect to A?

Figure 1 illustrates an example of each variant of single-
peakedness for weak orders described where each preference
order is consistent with respect to the axis A = a < d < b <
e < c. In Figure 1 the preference order (b > d ∼ e > c > a)
is single-peaked, single-plateaued, and ∃-single-peaked. The
preference order (a ∼ d > b > e > c) is single-plateaued
and ∃-single-peaked, but not single-peaked since it has more
than one most preferred candidate. The preference order
(c > b ∼ e > d ∼ a) is ∃-single-peaked and not single-
plateaued or single-peaked since it is not strictly increasing
to its most preferred candidate(s).

We conclude our discussion of these variants of single-
peakedness for weak orders by stating several observations.

a d b e c

Figure 1: The solid line represents the single-peaked
preference order (b > d ∼ e > c > a), the dotted
line represents the single-plateaued preference order
(a ∼ d > b > e > c), and the dashed line represents the
∃-single-peaked preference order (c > b ∼ e > d ∼ a).

First we show that there exists an ∃-single-peaked consis-
tent preference profile that does not have a transitive ma-
jority relation. We say that a majority relation is transi-
tive if when x > y and y > z by majority, then x > z
by majority. Note that single-peaked and single-plateaued
preferences both have transitive majority relations [5, 6].

Consider the preference profile V comprised of the follow-
ing five voters from Table 9.1 in Fishburn [18].

v1 (b > a > c)
v2, v3 (c > b > a)
v4, v5 (a > b ∼ c)

When we evaluate this preference profile under the simple
majority rule where x > y by simple majority if more voters
state x > y than y > x, then V has the majority cycle
a > c > b > a [18]. Clearly V is ∃-single-peaked consistent
with respect to the axis A = a < b < c, so we can make the
following observation.

Observation 7. There exists a preference profile of weak
orders that is ∃-single-peaked and does not have a transitive
majority relation.

The existential model for single-peakedness considers the
existence of a single extension of the preferences of all of the
voters to total orders. We briefly consider the case where all
extensions to total orders must be single-peaked and make
two observations.

Observation 8. If a preference profile of weak orders is
single-peaked then all extensions of the preferences to total
orders are also single-peaked.

Observation 9. If a preference profile of weak orders is
single-plateaued and each preference order has at most two
most preferred candidates, then all extensions of the prefer-
ences to total orders are single-peaked.

2.2 Consecutive-Ones Matrices
All of our polynomial-time results are due to transforma-

tions to the following problem of determining if a 0-1 matrix
has the consecutive ones property.

Given: A 0-1 matrix M .

Question: Does there exist a permutation of the columns of
M such that in each row all of the 1’s are consecutive?

The above problem was shown to be in P by Fulkerson and
Gross [19]. Booth and Lueker [7] improved on this result by
finding a linear-time algorithm through the development and
use of the novel PQ-tree data structure, which contains all
possible permutations of the columns of a matrix such that
all of the 1’s are consecutive in each row.
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3. RESULTS
The following three sections consist of our results and they

are structured as follows. We examine each variant of single-
peakedness starting with the weakest restriction and end-
ing with the strongest. When we examine each restriction
we present an alternative definition of the variant of single-
peakedness using forbidden substructures and the transfor-
mation to the problem of determining if a 0-1 matrix has
the consecutive ones property.

3.1 Existentially Single-Peaked Consistency
The most general of the three variants mentioned in Sec-

tion 2.1 is the model of ∃-single-peaked preferences. The
construction and corresponding proof will be the basis for
showing that single-peaked and single-plateaued consistency
for weak orders are each also in P.

Given an axis A and a preference order v, if v is ∃-single-
peaked with respect to A then v cannot have strictly decreas-
ing and then strictly increasing preferences with respect to
A. Following the terminology used by Lackner [24], we refer
to this as a v-valley.

Definition 10. A preference order v over a candidate set
C contains a v-valley with respect to an axis A if there exist
candidates a, b, c ∈ C such that a < b < c in A and (a > b)
and (c > b) in v.

Using the v-valley substructure we can state the following
lemma, which will simplify our argument used in the proof
of Theorem 14.

Lemma 11. [24] Let V be a preference profile of weak or-
ders. V is ∃-single-peaked with respect to an axis A if and
only if no preference order v ∈ V contains a v-valley with
respect to A.

To construct a matrix from a preference profile of weak
orders, we apply essentially the same transformation as used
Bartholdi and Trick [4] for total orders (see Example 13).
We describe the construction below.

Construction 12. Let V be a preference profile of weak
orders over candidate set C. For each v ∈ V construct a
(‖C‖−1)×‖C‖ matrix Xv. Each column of Xv corresponds
to a candidate in C. For each candidate c ∈ C let k be
the number of candidates that are strictly preferred to c in
v and let the corresponding column in matrix Xv contain k
0’s starting at row one, with the remaining entries filled with
1’s. All ‖V ‖ of the matrices are row-wise concatenated to
yield the (‖V ‖ · (‖C‖ − 1))× ‖C‖ matrix X.

The main difference in our construction is that we have
one fewer row in each of the individual preference matrices.
In the construction used by Bartholdi and Trick [4], given a
preference order v over a set of candidates C, for all a, b ∈
C, (a > b) in v if and only if the number of 1’s in the
column corresponding to a is greater than the number of
1’s in the column corresponding to b in v’s corresponding
individual preference matrix. Notice that this still holds for
our construction.

The polynomial-time results for ∃-single-peaked consis-
tency for weak orders and local weak orders proved in Lack-
ner [24] require that the given preference profile contains a
guiding order, i.e., an implicitly specified total order. Given
a preference profile V , a guiding order can be constructed

iteratively in the following way. If there exists a v ∈ V such
that the last ranked candidate in v is not ranked indifferently
with any other candidate, then that candidate is appended
to the top of the guiding order. This is then repeated on the
preference profile restricted to the candidates not yet added
to the guiding order until either the guiding order is a total
order or there is no v ∈ V with a unique last ranked candi-
date, the case where no guiding order exists [24]. Observe
that if a given preference profile is ∃-single-peaked then it
remains ∃-single-peaked if a guiding order is added as an ad-
ditional preference order [24]. It is important to point out
that our results do not depend on the existence of a guiding
order in a preference profile. Below we show how Construc-
tion 12 is applied to a preference profile of weak orders that
is ∃-single-peaked.

Example 13. Consider the preference profile V that con-
sists of the preference orders v and w. Let the preference or-
der v be (a ∼ c > b > e ∼ d > f) and the preference order w
be (a > b > c > e ∼ d > f). Notice that V does not contain
a guiding order, which is required by the polynomial-time
algorithm for weak orders found in Lackner [24].

Xv =

a b c d e f


1 0 1 0 0 0
1 0 1 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0


 Xw =

a b c d e f


1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0




We then row-wise concatenate Xv and Xw to construct X.

X =

a b c d e f


1 0 1 0 0 0
1 0 1 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0




X ′ =

b a c d e f


0 1 1 0 0 0
0 1 1 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0
0 1 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0




Next, we permute the columns of X so that in each row all
of the 1’s are consecutive to yield X ′. Observe that V is
∃-single-peaked with respect to b < a < c < d < e < f , the
ordering of the columns of X ′ as its axis.

We now show that ∃-single-peaked consistency for weak
orders and the problem of determining if the constructed
0-1 matrix has the consecutive ones property are equivalent
using Lemma 11 and Construction 12.

Theorem 14. A preference profile V of weak orders is
∃-single-peaked consistent if and only if the matrix X, con-
structed using Construction 12, has the consecutive ones
property.

Proof. Let V be a preference profile of weak orders.
Essentially the same argument as used by Bartholdi and
Trick [4] holds.

If V is ∃-single-peaked with respect to an axis A then by
Lemma 11 we know that no preference order v ∈ V con-
tains a v-valley with respect to A. When the columns of the
matrix X are permuted to correspond to the axis A no row
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will contain the sequence · · · 1 · · · 0 · · · 1 · · · since this corre-
sponds to a preference order that strictly decreases and then
strictly increases along the axis A (a v-valley). Therefore X
has the consecutive ones property.

For the other direction suppose that V is not ∃-single-
peaked, then by Lemma 11 we know that for every possi-
ble axis there exists a preference order v ∈ V such that v
contains a v-valley with respect to that axis. So every per-
mutation of the columns of X will correspond to an axis
where some preference order has a v-valley. As stated in the
other direction, a v-valley corresponds to a row containing
the sequence · · · 1 · · · 0 · · · 1 · · · so clearly X does not have
the consecutive ones property.

The only difference from the argument used by Bartholdi
and Trick [4] for total orders is that in our case the preference
orders can remain constant at the peak and at points on
either side of the peak. The same argument still applies
since by Lemma 11 the absence of v-valleys with respect
to an axis is equivalent to a profile of weak orders being
∃-single-peaked with respect to that axis.

Corollary 15. ∃-Single-peaked consistency for weak or-
ders is in P.

3.2 Single-Plateaued Consistency
Single-plateaued preferences are a much more restrictive

model than ∃-single-peaked preferences since they are essen-
tially single-peaked except that each preference order can
have multiple most preferred candidates [6, Chapter 5].

Since a preference order must be strictly increasing and
then strictly decreasing with respect to an axis (excluding
its most preferred candidates) we can again use the v-valley
substructure. However we will need another substructure
to prevent two candidates that are ranked indifferent in a
voter’s preference order from appearing on the same side of
that voter’s peak (plateau).

Definition 16. A preference order v over a candidate set
C contains a nonpeak plateau with respect to A if there exist
candidates a, b, c,∈ C such that a < b < c in A and either
(a > b ∼ c) or (c > b ∼ a) in v.

We use the v-valley and nonpeak plateau substructures to
state the following lemma.

Lemma 17. Let V be a preference profile of weak orders.
V is single-plateaued with respect to an axis A if and only if
no preference order v ∈ V contains a v-valley with respect to
A and no preference order v ∈ V contains a nonpeak plateau
with respect to A.

Proof. Let C be a candidate set, V be a preference pro-
file of weak orders, and A be an axis.

If V is single-plateaued with respect to A then for every
preference order v ∈ V , A can be split into segments X, Y ,
and Z such that v is strictly increasing along X, remaining
constant along Y , and strictly decreasing along Z. Since v is
only ever strictly decreasing along Z and Z is the rightmost
segment of A, v cannot contain a v-valley with respect to
A. For a nonpeak plateau to exist with respect to A there
must exist candidates a, b, c ∈ C such that a < b < c in A
and either (a > b ∼ c) or (c > b ∼ a) in v.

We first consider the case of (a > b ∼ c) in v. Since a is
strictly preferred to b and c in v and both b and c are to the
right of a on the axis we know that both b and c must be in

segment Z. However, v is strictly decreasing along Z, so v
cannot have a nonpeak plateau of this form.

We now consider the case of (c > b ∼ a) in v. Since c is
strictly preferred to a and b in v and both a and b are to the
left of c on the axis we know that both a and b must be in
segment X. However, v is strictly increasing along X, so v
cannot have a nonpeak plateau of this form.

For the other direction we consider the case when no pref-
erence order v ∈ V contains a v-valley with respect to A and
no preference order v ∈ V contains a nonpeak plateau with
respect to A.

Since no preference order v ∈ V contains a v-valley with
respect to A, we know from Lemma 11 that V is ∃-single-
peaked with respect to A. Since we also know that no pref-
erence order v ∈ V contains a nonpeak plateau with respect
to A it is easy to see that V is single-plateaued with respect
to A.

Since the nonpeak plateau substructure is needed in ad-
dition to the v-valley substructure, we need to extend Con-
struction 12 so that if a preference order contains a nonpeak
plateau with respect to an axis A, then when the columns
of its corresponding preference matrix are permuted accord-
ing to A the matrix will contain a row with the sequence
· · · 1 · · · 0 · · · 1 · · · .

Notice that if a preference order ranks three candidates
indifferent to each other below its peak (plateau) that it
will have a nonpeak plateau with respect to every possible
axis. To handle this case in the extension to Construction 12
we need to ensure that its corresponding preference matrix
will contain a row with the sequence · · · 1 · · · 0 · · · 1 · · · for
every permutation of its columns.

Construction 18. Let V be a preference profile of weak
orders over candidate set C. For each v ∈ V construct a
(‖C‖ − 1) × ‖C‖ matrix Xv. Each column of Xv corre-
sponds to a candidate in C. For each candidate c ∈ C let k
be the number of candidates that are strictly preferred to c
in v and let the corresponding column in matrix Xv contain
k 0’s starting at row one, with the remaining entries filled
with 1’s (as in Construction 12). The following extensions
to Construction 12 ensure that if v has nonpeak plateau with
respect to an axis A then when the columns of Xv are per-
muted according to A it will not have consecutive ones in
rows.

For each pair of candidates a, b ∈ C such that (a ∼ b) in v,
they are not the most preferred candidates in v, and there is
no candidate c ∈ C −{a, b} such that v is indifferent among
a, b, and c, then append three additional rows to the ma-
trix Xv where the column corresponding to a is

[
0 1 1

]′
,

the column corresponding to b is
[
1 1 0

]′
, each column

corresponding to a candidate strictly preferred to a and b is[
1 1 1

]′
, and each column corresponding to a remaining

candidate is
[
0 0 0

]′
.

If there exist three candidates a, b, c ∈ C such that (a ∼
b ∼ c) in v and they are not the most preferred candidates
in v, then output a matrix that has no solution.

After constructing an Xv matrix for each v ∈ V , all ‖V ‖
of the matrices are row-wise concatenated to yield a matrix
X, except in the case where the input resulted in a matrix
with no solution.

We now show how Construction 18 is applied to a prefer-
ence profile of weak orders that is single-plateaued.

107



Example 19. We consider the same preference profile as
in Example 13 and we bold the additional rows in this exam-
ple. Let the preference order v be (a ∼ c > b > e ∼ d > f)
and the preference order w be (a > b > c > e ∼ d > f).

Xv =

a b c d e f


1 0 1 0 0 0
1 0 1 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 0 1 0
1 1 1 1 1 0
1 1 1 1 0 0




Xw =

a b c d e f


1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 0 1 0
1 1 1 1 1 0
1 1 1 1 0 0




We then row-wise concatenate Xv and Xw to construct X.

X =

a b c d e f


1 0 1 0 0 0
1 0 1 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 0 1 0
1 1 1 1 1 0
1 1 1 1 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 0 1 0
1 1 1 1 1 0
1 1 1 1 0 0




X ′ =

e b a c d f


0 0 1 1 0 0
0 0 1 1 0 0
0 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 0 0
1 1 1 1 1 0
0 1 1 1 1 0
0 0 1 0 0 0
0 1 1 0 0 0
0 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 0 0
1 1 1 1 1 0
0 1 1 1 1 0




Next, we permute the columns of X such that in each row
all of the ones are consecutive to yield X ′. Observe that V
is single-plateaued with respect to this new ordering e < b <
a < c < d < f as its axis. Also notice that an axis containing
d and e adjacent to each other (as seen in Example 13) would
not correspond to an ordering of the columns of X with
consecutive ones in rows due to the additional rows from
the extensions made to Construction 12 in Construction 18.

Construction 12 ensures that no preference order contains
a v-valley and the extensions made in Construction 18 ensure
that no preference order contains a nonpeak plateau. So the
proof of the following theorem uses a similar argument to
the proof of Theorem 14. Now the presence of v-valleys or
nonpeak plateaus, not just v-valleys, is equivalent to a row
containing the sequence · · · 1 · · · 0 · · · 1 · · · .

Theorem 20. A preference profile V of weak orders is
single-plateaued consistent if and only if the matrix X, con-
structed using Construction 18, has the consecutive ones
property.

Proof. Let V be a preference profile of weak orders. We
extend the argument used by Bartholdi and Trick [4] and the
proof of Theorem 14 except in this case we use Lemma 17
instead of Lemma 11.

If V is single-plateaued with respect to an axis A then by
Lemma 17 we know that no v ∈ V contains a v-valley with
respect to A and no v ∈ V contains a nonpeak plateau with
respect to A. When the columns of the matrix X are per-
muted to correspond to the axis A no row will contain the

sequence · · · 1 · · · 0 · · · 1 · · · since this would correspond to a
preference order that strictly decreases and then strictly in-
creases along the axis A (a v-valley) or it would correspond
to a preference order that has two candidates ranked indif-
ferent appearing on the same side of its peak (a nonpeak
plateau). Therefore X has the consecutive ones property.

If V is not single-plateaued then we know from Lemma 17
that for every possible axis there exists a preference order
v ∈ V such that v contains a v-valley or v contains a non-
peak plateau with respect to that axis. So every permuta-
tion of the columns of X will correspond to an axis where
a preference order has a v-valley or a nonpeak plateau. As
stated in the other direction, the presence of a v-valley or
a nonpeak plateau corresponds to a row containing the se-
quence · · · 1 · · · 0 · · · 1 · · · . Therefore X does not have the
consecutive ones property.

Corollary 21. Single-plateaued consistency for weak
orders is in P.

3.3 Single-Peaked Consistency
We now present our results for the strongest domain re-

striction on weak orders that we examine, single-peaked
preferences. Recall that a preference order is single-peaked
with respect to an axis A if it is strictly increasing to a
single most preferred candidate (peak) and then strictly de-
creasing with respect to A. So we again use the v-valley
substructure, but like the previous case of single-plateaued
preferences we need an additional substructure. Even if no
preference order has a v-valley with respect to A it may not
be single-peaked because it is indifferent between two can-
didates on the same side of its peak or has more than one
most preferred candidate.

We can handle the first condition just mentioned with
the nonpeak plateau substructure used in Section 3.2, but
the second condition requires us to view any plateau as a
forbidden substructure.

Definition 22. A preference order v over a candidate set
C contains a plateau with respect to an axis A if there exist
candidates a, b ∈ C such that a and b are adjacent in A and
(a ∼ b) in v.

We can now use the plateau substructure and the v-valley
substructure to state the following lemma.

Lemma 23. Let V be a preference profile of weak orders.
V is single-peaked with respect to an axis A if and only if
no preference order v ∈ V contains a v-valley with respect
to A and no preference order v ∈ V contains a plateau with
respect to A.

Proof. Let C be a candidate set, V be a preference pro-
file of weak orders, and A be an axis.

If V is single-peaked with respect to A then clearly V is
also single-plateaued with respect to A. So by Lemma 17
we know that no preference order v ∈ V contains a v-valley
with respect to A and no preference order v ∈ V contains a
nonpeak plateau with respect to A. Since V is single-peaked
we also know that no preference order v ∈ V has more than
one most preferred candidate so clearly no preference order
v ∈ V contains a plateau with respect to A.

For the other direction we consider the case when no pref-
erence order v ∈ V contains a v-valley with respect to A and
no preference order v ∈ V contains a plateau with respect
to A.
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Since no preference order v ∈ V contains a v-valley with
respect to A we know from Lemma 11 that V is ∃-single-
peaked with respect to A. Since we also know that no pref-
erence order v ∈ V contains a plateau with respect to A it
is easy to see that V is single-peaked with respect to A.

We extend Construction 18 so that if a preference order
contains a plateau with respect to an axis A, then when the
columns of its preference matrix are permuted according to
A the matrix will contain the sequence · · · 1 · · · 0 · · · 1 · · · .
Since Construction 18 already ensures this for the case of
nonpeak plateaus, our extended construction below only
needs to add a condition for plateaus that contain the most
preferred candidates in a given preference order.

Construction 24. Follow Construction 18 except add
the following condition while constructing a preference ma-
trix Xv for each preference order v ∈ V .

If there exist two candidates a, b ∈ C such that (a ∼ b)
in v and they are the most preferred candidates in v, then
output a matrix that has no solution.

Clearly the extension to Construction 18 above ensures
that if there are multiple most preferred candidates in a pref-
erence order then the preference matrix constructed from
that order does not have the consecutive ones property.

When a preference order has a unique most preferred
candidate and is single-plateaued, it is clearly also single-
peaked. Construction 24 ensures that no preference order
contains more than one most preferred candidate the same
way that Construction 18 ensures that no preference order
contains three or more candidates that are all ranked in-
different to each other and that are not the most preferred
candidates, since this always results in a nonpeak plateau.
So the proof of the following theorem follows from the proof
of Theorem 20, but using Lemma 23 instead of Lemma 17.

Theorem 25. A preference profile V of weak orders is
single-peaked consistent if and only if the matrix X, con-
structed using Construction 24 has the consecutive ones
property.

Corollary 26. Single-peaked consistency for weak or-
ders is in P.

4. CONCLUSIONS AND FUTURE WORK
We presented three different variants of single-peaked

preferences for weak orders and showed that each of their
corresponding consistency problems are in P. Since we ac-
complished this by using transformations to the problem of
determining if a 0-1 matrix has the consecutive ones prop-
erty we are able to apply the PQ-tree algorithm from Booth
and Lueker [7]. Using this algorithm we can actually go fur-
ther than just determining the consistency problem for each
of these variants and find all consistent axes. An interesting
open direction is how the consecutive ones matrix problem
relates to other domain restrictions and what benefits there
are to having all consistent axes for a given preference pro-
file.

The existential approach introduced by Lackner for single-
peaked preferences [24] has been recently applied to other
domain restrictions. The model of single-crossing prefer-
ences [27] was studied in the existential model by Elkind et
al. [11] and the model of top-monotonic preferences [3] was

studied in the existential model by Aziz [1]. An interesting
direction for future work would be to apply the existential
model to other domain restrictions.

Single-peaked preferences are studied because they are a
simply stated and important domain restriction that gives
insight into how the voters view the candidates and elec-
tions with single-peaked voters have nice properties. How-
ever, experimental study suggests that in real-world settings
voters are often not single-peaked [25], but in this study the
single-peaked results only used Black’s definition for total
orders. It would be interesting to see if real-world datasets
of weak orders contain voters that are single-peaked, single-
plateaued, or ∃-single-peaked.

In single-peaked and nearly single-peaked elections com-
putational problems often become easier [17, 16]. As men-
tioned by Lackner [24] an important open problem is to
determine what computational benefits are gained when a
preference profile is ∃-single-peaked or even nearly ∃-single-
peaked. There are several different types of nearly single-
peakedness and determining if a given preference profile is
nearly single-peaked with respect to a certain distance mea-
sure is an interesting computational problem [14]. It would
be interesting to see how preference profiles of weak orders
impact the complexity of nearly single-peakedness or, as also
mentioned by Lackner [24], nearly single-peakedness in the
existential model.

5. ACKNOWLEDGMENTS
The author thanks Edith Hemaspaandra, Martin Lackner,
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ABSTRACT
Synchronic norms of theory choice—traditional to the phi-
losophy of science—restrict the theories one can choose in
light of given information. Ockham’s razor is a famous
example. How can one argue that these biases are truth-
conducive, without begging the question with material as-
sumptions?

Diachronic norms of theory change—as studied in belief
revision—restrict how one should change one’s current be-
liefs in light of new information. How do the diachronic
norms relate to the synchronic norms? Furthermore, is there
some sense in which the diachronic norms are truth-conducive?

If one insists upon an overly strict standard of truth-
conduciveness in inductive contexts, the epistemic justifi-
cation of inductive norms becomes intractable. Theoreti-
cal virtues are not guaranteed to indicate truth with a low
chance of error, the way litmus paper indicates pH. But
there is a spectrum of truth-conduciveness concepts, ranging
from the strict standard of truth-indicativeness to the weak
standard of mere convergence in the limit. Neither extreme
suffices for epistemic justification. The former is too strict
to apply and the latter, notoriously, mandates no short-run
norms at all. There are more nuanced concepts of opti-
mally direct convergence to the truth, lying between these
extremes. We consider two such concepts: convergence with
minimal reversals of opinion and convergence with minimal
cycles of opinion.

We show how the rationality principles of belief revision
can be thought of as truth-conducive norms of direct con-
vergence. Furthermore, we prove that preferring simple, fal-
sifiable theories is a necessary condition for satisfying the
norms of rational theory change. The results forge deep
and, perhaps, surprising connections between synchronic ra-
tionality norms, diachronic rationality norms, and the truth-
conduciveness of both.
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revision, reliability, formal epistemology

1. INTRODUCTION
This work is concerned with three things: the synchronic

norms of theory choice, the diachronic norms of theory change,
and the justification of these norms by their reliability, or
truth-conduciveness.

Synchronic norms of theory choice restrict the theories one
can choose in light of given, empirical information. They are
the traditional purview of the philosophy of science. But
how do they facilitate arrival at true theories? Are they
better than other means toward that end and, if so, in what
sense? For example, it is widely agreed that scientific theory
choice proceeds in accordance with a bias toward simpler or
more sharply testable theories. However, the truth might
not be simple, in which case that bias would probably lead to
error. So how can one argue that the characteristic scientific
biases toward simplicity or testability are truth-conducive,
without begging the question with material assumptions?

Diachronic norms of theory change restrict how one should
change one’s current beliefs in light of new information. The
crucial difference from synchronic norms is dependency upon
one’s prior beliefs. Such norms are studied propositionally
in belief revision theory and non-monotonic logic and quan-
titatively in Bayesian epistemology. The question of truth-
conduciveness arises for such norms, just as it does for norms
of theory choice. Furthermore, there is the additional ques-
tion how diachronic norms relate to the more traditional,
synchronic ones.

If one insists upon an overly strict standard of truth-
conduciveness in inductive contexts, the crucial question of
truth-conduciveness becomes intractable. Theoretical virtues
are not guaranteed to indicate truth with a low chance of er-
ror, the way litmus paper indicates pH—inductive inferences
in accordance with the rationality principles are subject to
arbitrarily high chances of error, because the available in-
formation can probably be arbitrarily similar, regardless of
which conclusion is true.

Maturity is a matter of ceasing to demand the impossible.
In that spirit, it makes more sense to adjust the standards of
truth-conduciveness to the intrinsic difficulty of the inference
problem one faces—a view we call feasibility-contextualism.
Feasibility contextualism presupposes a spectrum of alterna-
tive concepts of truth-conduciveness. Just such a spectrum
is routinely studied in the subject known as formal learning
theory, which studies concepts of truth-conduciveness rang-
ing from the very strict standard of truth-indicativeness to
the very weak standard of mere convergence to the truth
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in the limit. Neither extreme suffices for epistemic justifi-
cation. The former is too strict to apply without question-
begging assumptions and the latter, notoriously, mandates
no short-run norms at all, since convergence in the limit
is compatible with any inductive behavior whatever in the
short run. In between these extremes, however, are more nu-
anced concepts of optimally direct convergence to the truth.
We consider two such concepts in this paper: convergence
with minimal reversals of opinion and convergence with min-
imal cycles of opinion. Since a strategy is conducive to a goal
insofar as it leads as directly as possible to the goal, we view
directness of approach to the truth as constitutive of truth-
conduciveness and, hence, of epistemic justification, rather
than as an auxiliary, “pragmatic” consideration.

In this work, we show how the rationality principles of
belief revision can be thought of as truth-conducive norms
of maximally direct convergence in the sense just described.
Furthermore, we prove that preferring simple, falsifiable the-
ories (Ockham’s razor) is a necessary condition for achieving
optimally truth-conducive performance. The results forge
deep and, perhaps, surprising connections between synchronic
rationality norms, diachronic rationality norms, and the truth-
conduciveness of both.

1.1 Reliability and the Norms of Theory Choice
It is commonplace to observe that science seeks true the-

ories about the world. But that banal observation raises
a profound question about scientific method: how, and in
what sense, do such hallmark scientific values as simplicity,
precision, scope, and novelty help one find true theories? To
demand an answer to that question is to demand an epis-
temic justification of scientific values [16, 24, 12]. One goal
of this work is to provide such a justification for Ockham’s
razor, the pervasive scientific bias in favor of simple theories.

An epistemic justification of Ockham’s razor is tradition-
ally understood to be a demonstration that simpler theo-
ries are more likely to be true.1 That narrow, synchronic
concept of justification makes a hopeless conundrum out of
Ockham’s razor. It has led theorists into metaphysical spec-
ulations less plausible than the scientific conclusions they are
meant to justify. Both Kepler and Dirac expressed the con-
viction that Nature loves mathematical elegance, and that
physicists ought to adopt the same passion to more surely
uncover her secrets [29, 11]. It has led others to give up on
epistemic justification entirely: “no one has shown that any
of these rules is more likely to pick out true theories than
false ones. It follows that none of these rules is epistemic in
character” [25].

There is no shortage of non-epistemic justifications. Pre-
dictive accuracy, not truth, is the target of frequentist justi-
fications: a bias toward simple theories prevents over-fitting
and improves prediction when extrapolating from small sam-
ples [1, 13, 38]. But while they may be more predictively
accurate at small sample sizes, simple theories are not more
likely to be true in any objective sense of likelihood. Akaike’s
method does not even converge to the true theory in the
limit of infinite data. Some frequentists take that to be a

1Baker [3] is representative: “justifying an epistemic princi-
ple requires answering an epistemic question: why are par-
simonious theories more likely to be true?” The demand
is trivial if “likely” is understood subjectively, so we under-
stand it objectively, in the sense of a guaranteed low chance
of error.

design feature, rather than a flaw, and warn against methods
that both impose penalties on complexity and converge to
the truth [26]. Bayesians, on the other hand, explicate Ock-
ham’s razor as the result of conditioning over a wide class
of plausible, prior probabilities that impose flattish distri-
butions over theoretical parameters [17, 5, 39, 30]. But that
does not begin to explain how such prior probabilities lead
one to true theories better than alternative biases would—
unless one begs the question by appealing to the prior prob-
abilities themselves. The question of epistemic justification,
if not begged, is dodged.

The point can be sharpened with a bit of terminology.
Say that a method is truth-indicative if at every stage of
inquiry the theory it selects is probably true. But truth-
indicative performance is impossible in inductive inference
problems—insisting on achieving that impossible synchronic
standard leads to inductive skepticism. More plausibly, one
can entertain a range of weaker concepts of diachronic truth-
conduciveness, and understand epistemic justification as achieve-
ment of the strongest performance possible for the problem
one faces.2 Weaker demands do not fall short of epistemic
demands. They are, rather, the appropriate epistemic de-
mands, in light of the intrinsic difficulty of the task at hand.

Over half a century ago, Carnap already sketched the idea
in On Inductive Logic [8]. He recognized, that for inductive
methods, synchronic truth-indicativeness is too high a stan-
dard: “the fact that the truth of the predictions reached by
induction cannot be guaranteed does not preclude a justifi-
cation in a weaker sense”. On the other hand, Reichenbach’s
diachronic norm of limiting convergence is too low a stan-
dard:

Reichenbach is right in the assertion that any
procedure which does not [converge to the truth
in the limit] is inferior to his rule of induction.
However, his rule, which he calls “the” rule of in-
duction, is far from being the only one possessing
the characteristic. The same holds for an infinite
number of other rules of induction. . . . Therefore
we need a more general and stronger method for
examining and comparing any two given rules of
induction ... [8, p. ]

The relevant notions of truth-conduciveness have to lie some-
where between those two extremes. If they are to be fea-
sible, they must relax truth-indicativeness. If they are to
mandate interesting short-run methodological principles like
Ockham’s razor, they must demand more than mere limit-
ing convergence. We propose that such notions can be devel-
oped by adapting and refining existing concepts from formal
learning theory.

1.2 Learning Theory and Truth-Conduciveness
2In statistics, the distinction between truth-indicative and
truth-conducive methods is closely tracked by the distinc-
tion between uniformly and point-wise consistent methods.
Both types of consistency entail convergence to the truth in
the limit, but for uniformly consistent methods, the proba-
bility and severity of error can be quantified and bounded
at each sample size. For point-wise convergent methods no
such guarantees can be given. Of course, we prefer uni-
formly convergent methods, but these do not always exist.
No statistician claims that using a point-wise convergent
method is not epistemically justified when there is no better
alternative.
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Formal learning theory is a mathematical framework for
studying inductive problems and the methods that solve
them [33, 15, 31, 18]. As in computational complexity the-
ory, inductive problems are classified by their intrinsic diffi-
culty. Inductive methods are justified so long as they solve a
problem as efficiently as problems of comparable complexity
can be solved. From the perspective of formal learning the-
ory, it makes no more sense to demand truth-indicative per-
formance in inductive problems than it does to demand gen-
eral polynomial time solutions to NP-hard problems. The
demands of epistemic justification are kept proportionate to
epistemic complexity.

The baseline notion of truth-conduciveness in formal learn-
ing theory is limiting convergence: methods eventually settle
on the truth as information accumulates, without ever be-
coming certain that the future holds no surprises in store. As
Carnap observed, limiting convergence is compatible with
any arbitrary behavior in the short-run. To narrow the field
of admissible methods, learning theorists have developed
several refinements of limiting convergence that fall short of
short-run guarantees. One possible refinement is to require
methods to minimize the number of mind changes on the
way to convergence [33, 9, 36, 28, 19, 21, 22]. Another refine-
ment guards against “U-shaped learning,” wherein learners
conjecture a theory, reject it, and then return to it again [7,
6]. We propose that these convergence criteria—lying mid-
way between truth-indicativeness and mere limiting convergence—
can answers Carnap’s challenge. If scientists are in pursuit
of truth, then virtuous inquiry ought to exhibit the virtues
of pursuit. If the target of pursuit is evasive, then a certain
amount of swerving may be expected. But false starts and
U-turns ought to be avoided if possible—virtuous pursuit is
as direct as the problem situation allows. We show how op-
timal truth-conduciveness mandates a preference for simple
theories. That solves the traditional puzzle of justification
for Ockham’s Razor, a hallmark virtue of theory choice.

1.3 Belief Revision and Scientific Inquiry
Belief revision is an alternative, formal framework in which

to analyze belief change driven by new information. Relia-
bility and truth-conduciveness are not central to the belief
revision framework. Gärdenfors seems indifferent—if not
hostile—to concerns about truth:

[T]he concepts of truth and falsity are irrelevant
for the analysis of belief systems. These concepts
deal with the relation between belief systems and
the external world, which I claim is not essential
for an analysis of epistemic dynamics. . . . My
negligence of truth may strike traditional epis-
temologists as heretical. However, one of my
aims is to show that many epistemological prob-
lems can be attacked without using the notions
of truth and falsity [14, p. 20].

Instead, belief revision theorists derive epistemic justifica-
tion from conformity with a set of idealized postulates that
govern rational belief change. The postulates are usually
motivated by considerations of preservation, or minimal change:
the injunction to (1) add only those new beliefs and (2) re-
move only those old beliefs, that are absolutely compelled
by incorporation of new information.3 It is not obvious that

3Rott [34] questions whether the rationality postulates of

those postulates of rationality have anything to do with
truth-conduciveness. In §3.1, we demonstrate that such a
connection does, in fact, exist: we show that a weakened
version of the rationality postulates is equivalent to a truth-
conduciveness norm from formal learning theory, once the
requirement of limiting convergence has been imposed.

It is also not obvious that there should be any connec-
tion between the rationality postulates that belief revision
theorists take to govern theory change, and the synchronic
theoretical virtues investigated by philosophers of science.
Rott expresses a hope that such connections exist:

In his joint book with J.S. Ullian, The Web of
Belief (1978), Quine has added more virtues that
good theories should have: modesty, generality,
refutability, and precision. Again, belief revi-
sion as studied so far has little to offer to re-
flect the quest for these intuitive desiderata. Ex-
cept for the issue of conservatism, Quine’s list is
one of theory choice rather than theory change
in that it lists properties that a good posterior
theory should have, independently of the prop-
erties of the prior theory. It is a strange coinci-
dence that the philosophy of science has focussed
on the monadic (nonrelational) features of theory
choice, while philosophical logic has emphasized
the dyadic (relational) features of theory change.
I believe that it is time for researchers in both
fields to overcome this separation and work to-
gether on a more comprehensive picture [34, p.
15].

In §5, we demonstrate that theoretical refutability is a nec-
essary condition for the rationality postulates of belief re-
vision, in light of the requirement of limiting convergence.
What’s more, we show that theoretical refutability is equiv-
alent to a version of theoretical simplicity.

2. PROBLEMS AND SOLUTIONS
We first give a minimal characterization of the context

of empirical inquiry. Let W be a set of possible worlds.
A proposition is a set P ⊆ W . The set of all proposi-
tions is denoted P(W ). The contradictory proposition is ∅
and the necessary proposition is W . We assume the usual
correspondence between logical and set-theoretic operations:
P ∧Q = P ∩Q, P ∨Q = P ∪Q, P c = W \ P and P entails
Q iff P ⊆ Q.

Some propositions correspond to possible information
states. Propositional information is understood to be true.
Examples include propositions concerning discrete experi-
mental outcomes and inexact measurements of continuous
quantities. Let I ⊆ P(W ) be the set of all possible infor-
mation states one might be in. We denote the set of all
information states in world w as: I(w) = {E ∈ I : w ∈ E}.
For P ⊆ W , we let I(P ) =

⋃
w∈P I(w). The set of infor-

mation states I is an information basis iff the following
postulates are satisfied. I1.

⋃ I = W ; I2. If A,B ∈ I(w),

belief revision are correctly thought of as principles of min-
imal change. Alternatively, one can think of them as mono-
tonicity principles. That also suggests a rapprochement with
the learning-theoretic viewpoint: adherence to the rational-
ity principles throughout the course of inquiry guarantees a
certain degree of monotonicity—or “directness” – of conver-
gence to the truth.
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then A ∩ B ∈ I(w).4 I3. |I| ≤ ω. The second thesis is the
most interesting: it ensures that information accumulates
through time. The third thesis is partly for mathematical
tractability, but it is also well-motivated by Turing’s [37]
argument that infinite gradations of input information are
indistinguishable.

The closure of the information basis under arbitrary union,
I∗, determines a topological space. An open set of I∗ is a
verifiable proposition — if true, there is information avail-
able that entails it. A closed set of I∗ is refutable — its
complement is verifiable. A set is locally closed in I∗ iff
it is closed in an open subspace of I∗. The locally closed
sets are verifutable propositions — if true, it is eventually
verified that they are refutable. A set is constructible in
I∗ iff it is a finite union of locally closed sets. A set is
Σ0

2 in I∗ iff it is a countable union of locally closed sets.
The topological closure of P ⊆ W , written as P , is the set
{w : I(w) ⊆ I(P )} — the set of worlds where P is never

refuted. The topological frontier, written as
∨
P , is defined

as P \ P — the set of worlds where P is false, but never
refuted. The following characterization of locally closed sets
will prove useful in what follows.

Theorem 1. P is locally closed iff
∨
P is closed.

A question Q on W is a countable partition of W into
mutually exclusive and exhaustive answers. We denote the
unique answer true in w ∈ W as Q(w). For P ⊆ W , we let
Q(P ) =

⋃
w∈P Q(w). A question is locally closed iff each of

its answers is. One question refines another, if each answer
of the one entails some answer of the other. An empirical
problem is a triple P = (W, I,Q), specifying the set of
possibilities entertained (W ), the information provided (I)
and the information demanded (Q). A learner is a function
from information states to conjectures λ : I → Q∗, where
Q∗ is the closure of Q under arbitrary disjunction. A learner
λ solves P in the limit iff for all w ∈W , there is E ∈ I(w)
such that for all F ∈ I(w), λ(E ∩ F ) = Q(w). Call such
a learner a solution to P. No matter which world is the
true one, a solution eventually converges on the answer true
in that world. For learner λ and w ∈ W , define Lock(λ,w)
as the set of all E ∈ I(w) such that if F ∈ I(w), then
λ(E ∩ F ) ⊆ Q(w). We call these the locking propositions,
following the usage in [31]. An empirical problem is solvable
iff there is a learner that solves it in the limit. The following
theorem characterizes solvable problems.5

Theorem 2. The following propositions are equivalent:

1. Problem P = (W, I,Q) is solvable in the limit;

2. Each answer Q ∈ Q is a Σ0
2 proposition;

3. Question Q is refined by a locally closed question Q′.
4This can be weakened to I’2. If A,B ∈ I(w), then there is
C ∈ I(w) such that C ⊆ A∩B. Nothing essential would be
changed, though the statements of the theorems and their
proofs would be more cumbersome.
5A version of this result is given by de Brecht and Yamamoto
[10, Theorem 5], where it is couched in the terms of com-
putable analysis. A similar theorem was proven indepen-
dently by Kelly [20, Corollary 1] in a first-countable setting.
It was arrived at independently by Baltag, Gierasimczuk,
and Smets [4, Theorem 8]. It is proven for the Baire space
by Kelly [18, Proposition 4.10].

We have two easy corollaries. Say that a learner is consistent
iff λ(E) ∩ E is non-empty, for all non-empty E ∈ I. Then:

Theorem 3. Every solvable problem has a consistent so-
lution.

New information E may be thought of as shifting the given
problem P to the restricted problem

P|E = (E, I|E , Q|E),

where I|E is the set of all information states F ∩E such that
F is in I, and Q|E is the set of all H ∩E such that H is an
answer to Q. Then:

Theorem 4. If P is a solvable problem and C ⊆W , then
P|C is a solvable problem.

3. REFINING LIMITING SOLVABILITY
Solution in the limit furnishes a minimal notion of in-

ductive truth-conduciveness. But as many have observed,
it enforces no interesting methodological norms, since it is
consistent with any short-run behavior. We introduce some
notions of truth-conduciveness that refine solution in the
limit. As we will show, these notions of truth-conduciveness
are weak enough to be feasible in a broad class of problems,
and strong enough to mandate interesting norms of theory
choice. We also demonstrate how these norms relate to the
diachronic norms of theory change advocated as principles
of rationality in belief revision and non-monotonic logic.

We first define three different forms of non-monotonicity,
in decreasing generality. A reversal sequence is a sequence
(Ai)

n
i=0, where each Ai ∈ Q∗ \ {∅}, and Ai+1 ⊆ Aci . A

cycle sequence is a reversal sequence such that An ⊆ A0.
For reversal sequences a, b of length n, define the severity
pre-order b ≤ a to hold iff Bi ⊆ Ai, for each i ≤ n, where
a ≤ b means that a reverses as severely as b. The strict
relation < holds iff ≤ holds one way and not the other. For
example, (A,B,C) < (A ∪ D,B,C). A reversal sequence
a = (Ai)

n
i=0 is forcible in P iff for every λ that solves P,

there is a nested set of information states e = (Ei)
n
i=0, such

that λ(e) = (λ(Ei))
n
i=0 ≤ a. We can characterize the forcible

sequences as follows.

Theorem 5. If P is solvable, then reversal sequence a =
(A0, . . . , An) is forcible in P iff

A0 ∩A1 ∩ . . . ∩An−1 ∩An 6= ∅.

We define the forcible paths in P by a recursion on the
length of paths.

Π1 = {A : A ∈ Q};
Πn = {A ∩B : A ∈ Q and B ∈ Πn−1},

and Path(P) =
⋃
i∈N Πi.

3.1 Avoiding Cycles
One refined notion of truth-conduciveness is to avoid cy-

cles altogether. A learner λ is cycle free iff there exist
no nested set of information states e, such that λ(e) is a
cycle sequence. That truth-conduciveness notion is closely
related to several norms of rational theory change. Say that
a learner λ satisfies conditionalization iff λ(E) ∩ Q(E ∩
F ) ⊆ λ(E ∩ F ). A learner λ is rationally monotone iff
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λ(E∩F ) ⊆ λ(E)∩Q(E∩F ) whenever λ(E)∩Q(E∩F ) 6= ∅.6

Many authors have suggested that these principles may be
too strong to govern inductive inference [14, 35, 27]. How-
ever, both these principles are weakened by the following.
A learner λ is reversal monotone iff λ(E ∩F ) meets λ(E)
whenever λ(E)∩Q(E ∩F ) 6= ∅. We show that for learners,
reversal monotonicity is equivalent to avoiding cycles. This
demonstrates a tight connection between a norm of truth-
conduciveness, and two norms of theory change.

Theorem 6. If consistent λ solves P, then λ is cycle free
iff λ is reversal monotone.

Although not all solvable problems have cycle-free solutions,
every solvable problems is refined by one that does. This
universality principle is a direct consequence of Theorem 3
of Baltag, Gierasimczuk, and Smets [4].

Theorem 7. If P = (W, I,Q) is a solvable problem, then
there is P′ = (W, I,Q′) such that Q′ is locally closed, Q′
refines Q, and P′ is solved by a cycle-free learner.

3.2 Minimizing Reversals
Although in many cases cycles can be avoided altogether,

reversals cannot be avoided in inductive problems. But this
does not mean that they cannot be minimized. Say that λ is
reversal optimal for P iff λ solves P and every λ-reversal
sequence is forcible. Not all problems have reversal optimal
solutions, but we can characterize the ones that do. For
A ∈ Q, define A⊥ = {B ∈ Path(P) : A ∩B = ∅}.

Theorem 8. Locally closed P has a reversal optimal so-
lution iff for every A ∈ Q, A ∩ ∪A⊥ = ∅.

The characterization is straightforward: a problem has a
reversal-optimal solution iff in each answer A, the set of all
paths that are not forcible from A, A⊥, are topologically
separable from A.

4. SIMPLICITY AND FALSIFIABILITY
If we live in a world where bread will always nourish, all

information we ever receive will be consistent with bread
ceasing to nourish sometime in the future. But the situ-
ation is asymmetrical: if we lived in a world where bread
ceases to nourish eventually, we would find out sooner or
later. There is a natural order that captures the structure
of inductive underdetermination between possibilities. For

X,Y ∈ P(W ) set X ≺ Y iff X ⊆
∨
Y , and X � Y iff X ≺ Y

or X = Y . If X ≺ Y , we say that X faces the problem
of induction with respect to Y , i.e. X is inconsistent with
Y , but any information consistent with X is consistent with
Y . For all X,Y ∈ P(W ), we say that X is simpler than
Y if and only if X ≺ Y. That straightforward relation cap-
tures many of our simplicity intuitions. Exactly that rela-
tion holds between sets of polynomials of lower and higher
degree; between nested statistical models; and between uni-
versal generalizations like “all ravens are black” and their
negations. The ≺ relation is not in general a strict order.
However, if Q is locally closed then ≺ determines a strict
order over the elements of Q.

6Conditionalization and rational monotonicity are intended
as analogues to principles (K∗7) and (K∗8) of AGM revision
respectively and the defeasible inference principles of the
same name.

Theorem 9. If question Q is locally closed, then ≺ is
transitive on Q.7

It follows immediately that ≺ is a strict order on Q, and
that � is a partial order on Q. Our notion of simplicity is
closely related to Popper’s. Popper [32] proposes to define
simplicity in terms of the falsifiability relation:

A statement x is said to ‘falsifiable in a higher
degree’ or ‘better testable’ than a statement y ...
if and only if the class of potential falsifiers of x
includes the class of the potential falsifiers of y as
a proper subclass’ ... The epistemological ques-
tions which arise in connection with the concept
of simplicity can all be answered if we equate this
concept with degree of falsifiability.

But Popper’s notion and ours are not equivalent. To see
that, define the class of potential falsifiers of X ⊆W as the
set of all information states inconsistent with X: F(X) =
I \ I(X). Then X is more falsifiable than Y , if F(Y ) ⊆
F(X), or, equivalently, X ⊆ Y . That notion of simplicity
has the bizarre defect that every proposition is simpler than
its consequences. Our notion of simplicity does not face this
difficulty, since X ≺ Y iff X is more falsifiable than Y , and
X and Y are incompatible.

We can make the make the relation between simplicity
and falsifiability even more explicit. For any proposition
A, define the set of propositions strictly simpler than A as
follows: A≺ :

⋃{B ≺ A : B ⊆ W}. Say that A is simplest
iff A is minimal in ≺, i.e. A≺ = ∅. Then it is easy to show

that ∪A≺ =
∨
A, and that A≺ = ∅ iff A is closed (falsifiable).8

5. THE NORMS OF CHOICE
In this section we give two different methodological prin-

ciples that are necessary for avoiding cycles, and minimizing
reversals, respectively. That furnishes the necessary connec-
tion between truth-conduciveness and the norms of theory
choice. Say that a learner λ is Ockham iff for all E ∈ I,
λ(E)≺ ∩ E = ∅, i.e. λ(E) is always simplest in E. On
this conception, Ockham’s razor is content-neutral: it does
not say whether the conjecture has to be weak or strong,
requiring only that there be nothing strictly simpler com-
patible with current information. That is equivalent to the
requirement that the learner’s conjecture is falsifiable at ev-
ery stage of inquiry, which is precisely Popper’s requirement
of severe testability—an enjoiner for bold conjectures, vul-
nerable before the tribunal of experience. We show that
obeying Ockham’s razor is necessary for avoiding cycles.

Theorem 10. If λ solves P and λ is cycle free, then λ is
Ockham.

As an immediate consequence of Theorems 7, and 10, we
have the following Theorem.

Theorem 11. If P = (W, I,Q) is a solvable problem,
then there is P′ = (W, I,Q′) such that Q′ is locally closed,
Q′ refines Q, and P′ is solved by an Ockham learner.

We state our second methodological principle as follows.
A learner λ is patient iff for all E ∈ I and Q ⊆ Q(E), there

7This can be weakened to the requirement that every Q ∈ Q
is constructible.
8Recall that a set is closed iff its frontier is empty.
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is Q′ ⊆ λ(E) such that Q′ ∩ Q 6= ∅.9 Although Ockham
methods can favor some simplest possibilities over others, a
patient method must disjoin all simplest possibilities com-
patible with current information. Furthermore, if a patient
conjecture entails the negation of a particular answer, it is
because it concedes a simpler possibility. In particular, if
λ(E) ⊆ Qc, then λ(E)∩Q≺ 6= ∅. A patient method always
has a simplicity-based reason for disbelieving an answer.

Theorem 12. If λ is reversal optimal for P = (W, I,Q),
then λ is patient.

As a consequence of theorem 8, we have the following
theorem.

Theorem 13. Locally closed P has a patient, Ockham so-
lution iff for every A ∈ Q, A ∩ ∪A⊥ = ∅.

6. CONCLUSION
In this work we have proposed two norms of inductive

truth-conducivness: the avoidance of theoretical cycles, and
the minimization of reversals. We have shown that once
the requirement of limiting convergence is imposed, avoiding
cycles is equivalent to a weakening of two norms of theory
change from belief revision and non-monotonic logic. We
have also given a topological characterization of theoreti-
cal simplicity, and formulated three related norms of the-
ory choice: falsifiability, Ockham’s razor, and patience. We
have shown that minimizing reversals requires learners to be
patient. We have also shown that avoiding cycles requires
learners to be Ockham, and always make falsifiable conjec-
tures. This means that the preservation principles from be-
lief revision and non-monotonic logic, combined with the
requirement of limiting convergence, all necessitate a pref-
erence for simpler, more falsifiable theories. We take this
to demonstrate a surprising connection between the Poppe-
rian preference for falsifiable theories, and the principles of
rational belief change.
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8. PROOFS AND LEMMAS

Proof of theorem 1. ⇒: Suppose that A = O ∩ C for
O,Cc open. Then:

∨
A = O ∩ C ∩ (O ∩ C)c = O ∩ C ∩Oc ∪O ∩ C ∩ Cc

= O ∩ C ∩Oc,

which is an intersection of two closed sets and therefore
closed. The final equality follows from the fact that O ∩ C∩
Cc ⊆ O ∩ C ∩ Cc = O ∩ C ∩ Cc = ∅. ⇐: Suppose that

∨
A

is closed. Since for every A, A = A \
∨
A, we have that A is a

difference of closed sets, and is, therefore, locally closed.

Proof of theorem 2. To see that (1) implies (2), sup-
pose that λ solves P in the limit. For each w, choose
Ew ∈ Lock(λ,w). Then {Ew : w ∈ W} is a (countable)
cover of W by locking information. Let Fw =

⋃{E ∈ I :
E ⊂ Ew and λ(E) 6= Q(w)}. Then Ew \Fw is locally closed.
We claim that A =

⋃
w∈AEw \ Fw for each A ∈ Q. Let

w ∈ A. Then w ∈ Ew, and w /∈ Fw, since Ew is locking
for w. So w ∈ Ew \ Fw ⊆

⋃
w∈AEw \ Fw. Suppose that

v ∈ ⋃
w∈AEw \ Fw. Then, for some w ∈ A, v ∈ Ew \ Fw.

Suppose that Q(v) = B 6= A. Then there is Ev ∈ Lock(λ, v),
and λ(Ev ∩Ew) = B 6= A. But then v ∈ Fw. Contradiction.
We have shown that each A ∈ Q is a countable union of
locally closed propositions.

To see that (2) implies (3), suppose that A =
⋃
i∈N Li, where

Li is locally closed, for each A ∈ Q. It is a standard fact
that the constructible propositions are closed under finite
union and complementation. Letting Ci = Li \

⋃
j<i Lj we

have that each A is a disjoint union of constructible propo-
sitions Ci. Furthermore, by a result from [2], proposition
P is constructible iff there is a least integer n such that P
admits a decomposition into n disjoint, locally closed sets.
Therefore, each Ci is a disjoint union of finitely many locally
closed propositions. So A is a countable, disjoint union of
locally closed sets.10

To see that (3) implies (1), suppose that Q is locally
closed. Enumerate the elements of Q as A1, A2, . . . . By The-
orem 1, each Ai can be written canonically as a difference

of open sets (
∨
Ai)

c \Aic. Define:

λ(E) =





min
Ai∈Q

E ⊆ (
∨
Ai)

c and E * Ai
c

if defined;

Q(E) otherwise.

Let w ∈ Ai. For j < i, either w /∈ (
∨
Aj)

c, or w ∈ Ajc. Let:

E =
⋂

j<i and w∈Aj
c

Aj
c ∩ (

∨
Ai)

c.

Let F ∈ I(w) such that F ⊆ E. Then F ⊆ E ⊆ (
∨
Ai)

c and,
since F ∈ I(w), we have that F * Ai

c
. Furthermore, since

F ∈ I(w), it follows that F * (
∨
Aj)

c, or F ⊆ Aj
c
, for all

j < i. So λ(F ) = Q(Ai) = Q(w). So E ∈ Lock(λ,w), as
required.

10The proof strategy for this step was suggested by Alexan-
dru Baltag in personal communication.
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Proof of theorem 3. Recall the solution given in the
proof of theorem 2. Let E ∈ I be non-empty. Suppose that
λ(E) = Q(E). Then E ∩ λ(E) = E ∩ Q(E) = E 6= ∅.
Suppose that λ(E) = Q(Eσ(E) \ Fσ(E)). Then E ⊆ Eσ(E)

and E 6⊆ Fσ(E), so E∩λ(E) = E∩Q(Eσ(E)\Fσ(E)) 6= ∅.

Proof of theorem 4. The result follows immediately
from theorem 2 and the fact that a set is locally closed in
the subspace topology I|C iff it is the intersection of C with
a locally closed set.

Lemma 1. For arbitrary B ⊆W,

An|B ∩An−1|B ∩ . . . ∩A1|B ∩A0|B

⊆ An|B ∩An−1 ∩ . . . ∩A1 ∩A0,

where, for convenience, we have taken A|B as shorthand for
A ∩B.

Proof of Lemma 1. In the base case n = 1. We have
that: A1|B ⊆ A1|B . By the induction hypothesis, we have
that:

An+1|B ∩An|B ∩An−1|B ∩ . . . ∩A1|B ∩A0|B

⊆ An+1|B ∩An|B ∩An−1 ∩ . . . ∩A1 ∩A0

⊆ An+1|B ∩An ∩An−1 ∩ . . . ∩A1 ∩A0,

where in each step we have used the fact that if B ⊆ C, then
A ∩B ⊆ A ∩ C.

Proof of theorem 5. ⇐: Suppose that λ is a solution

to P, and A0 ∩A1 ∩ . . . ∩An−1 ∩An 6= ∅. Let:

w0 ∈ A0 ∩A1 ∩ . . . ∩An−1 ∩An;

wi+1 ∈
⋂

j≤i
Ej ∩Ai+1 ∩Ai+2 ∩ . . . ∩An−1 ∩An;

where Ej ∈ Lock(λ,wj). Letting e = (
⋂
j≤iEj)

n
i=0, we have

that λ(e) ≤ a.

⇒: Suppose that P is solvable. We proceed by induction
on n. Base case: n = 0. Suppose that A0 = ∅. By the-
orem 3, there is a solution λ such that λ(E) 6= ∅ for all
nonempty E ∈ I. So a = (A0) is not forcible. For the in-

ductive case, suppose that A0 ∩ A1 ∩ . . . ∩An ∩An+1 = ∅.

Let C = A1 ∩ . . . ∩An ∩An+1. To make the subsequent
expressions manageable, write A|B for A∩B. By Lemma 1,

A1|Cc ∩ . . . ∩An|Cc ∩An+1|Cc ⊆ A1|Cc ∩ . . . ∩An ∩An+1

= C
c ∩ C = ∅.

So, by the induction hypothesis, (A1, ..., An+1) is not forcible
in the P|Cc subproblem. Let λ2 be a solution that never
performs that reversal sequence in P|Cc . Furthermore, let
λ1 be a solution to the P|C subproblem. The solutions to
both subproblems exist by theorem 4. Furthermore, we can
assume that solution λ1 is consistent, by proposition 3. Now,
define the method:

λ∗(E) =

{
Q(λ1(E ∩ C)) if C ∩ E 6= ∅;

Q(λ2(E)) otherwise.

Since C is refutable, it is possible to focus on the P|C sub-

problem, until C is refuted. Since, by assumption, A0∩C =
∅, the solution λ1 never conjectures A0. Therefore, λ1

cannot perform the reversal sequence (A0, A1, . . . , An+1).
Furthermore, since λ2 never performs the reversal sequence
(A1, ..., An+1), we have that λ∗ solves P, and never performs
the reversal sequence (A0, A1, . . . , An+1).

Proof of theorem 6. ⇐: Suppose that λ performs a
cycle. Then there is a nested information sequence e =
(Ei)

n
i=0 such that λ(En) ⊆ λ(E0) and m such that 1 < m <

n, and λ(Em) ⊆ λ(E0)c. By consistency ∅ 6= λ(En)∩En ⊆
λ(En) ∩Em ⊆ λ(E0) ∩Q(Em) = λ(E0) ∩Q(E0 ∩Em). But
λ(E0) ∩ λ(E0 ∩ Em) = ∅.
⇒: Suppose that λ is not reversal monotone. Then there

are E,F ∈ I such that λ(E ∩ F ) is disjoint from λ(E), al-
though λ(E) ∩ Q(E ∩ F ) 6= ∅. Let w ∈ E ∩ F such that
Q(w) ⊆ λ(E) ∩ Q(E ∩ F ) and G ∈ Lock(λ,w). Then
λ(E ∩ F ∩G) = Q(w) ⊆ λ(E) and λ performs a cycle.

Proof of theorem 7. This is a direct consequence of
Proposition 2 and Theorem 17 in [4].

Proof of theorem 8. ⇒: Suppose that λ is a solution
to P, and for some A ∈ Q, there is w ∈ A ∩ ∪A⊥. Let
E ∈ Lock(λ,w). Then there is v ∈ E, and P = A1 ∩
. . . ∩An−1 ∩An, such that v ∈ P and P ∈ A⊥. Let F ∈
Lock(λ, v). Then since P is forcible in P|E∩F by theorem 5,
λ performs the reversal (A,A1, . . . , An), but by assumption,

A∩A1 ∩ . . . ∩An−1 ∩An = ∅, so by theorem 5, that rever-
sal sequence is not forcible.

⇐: Suppose that P is locally closed, and that for every
A ∈ Q, A ∩ ∪A⊥ = ∅. Enumerate the elements of Q:
A1, A2, . . . . Define Root(E) to be the first element in the

enumeration such that E ⊆ (
∨
A)c ∩ ∪A⊥c, if it exists, and ω

otherwise.

λ(E) =

{
Root(E) if Root(E) 6= ω,

Q(E) otherwise.

First we show that λ is a solution to P. Let w ∈ Ai, for
some Ai ∈ Q. As in the proof of theorem 2, there is E ∈
I(w) that refutes all Aj such that j < i and w ∈ Aj

c
.

Furthermore, for j < i such that w ∈ Aj , clearly E * (
∨
Aj)

c,

since E ∈ I(w). So E ∩ (
∨
Ai)

c ∩ ∪Ai⊥
c

is locking for λ
in w. We proceed to show that λ is reversal optimal, by
induction on the length of reversal sequences. Base case:
n = 1. Since λ is a solution, any singleton reversal sequence
(A0) is forcible. For the inductive step, suppose that λ(e) =
(λ(Ei))

n
i=0 is a reversal sequence. WLOG, each λ(Ei) ∈ Q.

By hypothesis (λ(Ei))
n
i=1 is forcible. But by construction

λ(E0) ∩ λ(E1) ∩ . . . ∩ λ(En) 6= ∅. So by Theorem 5, λ(e) is
forcible.

Proof of theorem 9. Let A,B,C ∈ Q, A ≺ B, and
B ≺ C. Thus, A ⊆ B ⊆ C. So it remains only to show that
A 6= C. Each proposition is disjoint from its frontier, so

B ⊆ (
∨
B)c. Furthermore, if B locally closed (

∨
B)c is open, by

theorem 1. So, since A ⊆
∨
B, (

∨
B)c is an open set containing

B and disjoint from A. Therefore B ⊀ A, and A 6= C as
required.
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Proof of theorem 10. Suppose that λ is not Ockham.
Then for some E ∈ I there is w ∈ λ(E)≺ ∩ E. Let F ∈
Lock(λ,w), then λ(E ∩ F ) = Q(w) is disjoint from λ(E),
although λ(E) ⊆ Q(E∩F ), since w is in the frontier of λ(E).
Therefore λ is not reversal monotone. So by Theorem 6, λ
is not cycle free.

Proof of theorem 12. Suppose that λ is not patient.
Then for some E ∈ I there is Q ⊆ Q(E) such that for all
Q′ ⊆ λ(E), Q′ ∩ Q = ∅. Therefore λ(E) ∩ Q = ∅. Let
w ∈ E ∩ Q and F ∈ Lock(λ,w). Then λ(E ∩ F ) = Q
is disjoint from λ(E). So (λ(E), λ(E ∩ F )) is a λ-reversal

sequence, but λ(E)∩λ(E ∩ F ) = ∅. So by Theorem 5, that
sequence is not forcible, and λ is not reversal optimal.

Proof of theorem 13. It suffices to notice that the method
constructed in the proof of theorem 8 always conjectures an
answer closed in the subspace of current information.
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ABSTRACT
We conducted an experiment where participants played a
perfect-information game against a computer, which was
programmed to deviate often from its backward induction
strategy right at the beginning of the game. Participants
knew that in each game, the computer was nevertheless op-
timizing against some belief about the participant’s future
strategy.

It turned out that in the aggregate, participants were
likely to respond in a way which is optimal with respect
to their best-rationalization extensive form rationalizability
conjecture - namely the conjecture that the computer is after
a larger prize than the one it has foregone, even when this
necessarily meant that the computer has attributed future
irrationality to the participant when the computer made the
first move in the game. Thus, it appeared that participants
applied forward induction. However, there exist alternative
explanations for the choices of most participants; for exam-
ple, choices could be based on the extent of risk aversion that
participants attributed to the computer in the remainder of
the game, rather than to the sunk outside option that the
computer has already foregone at the beginning of the game.
For this reason, the results of the experiment do not yet pro-
vide conclusive evidence for Forward Induction reasoning on
the part of the participants.

Categories and Subject Descriptors
Applied computing [Law, Social and Behavioural Sci-
ences]: Economics

Keywords
game theory, experiment, forward induction

1. INTRODUCTION
Backward Induction (BI) is a canonical approach for solv-

ing extensive-form games with perfect information. In generic
games with no payoff ties, BI yields the unique subgame
perfect equilibrium [13, 22]. Nevertheless, BI embodies a
conceptual difficulty: in subgames following a deviation of
some player (or players) from their BI strategy, it is not
obvious why players should necessarily believe that the de-
viators will ‘return to their senses’ and realign their behavior
in the subgame with the BI dictum. Because such certainty
is absent, BI might itself be suboptimal for players who are
skeptical about such re-adherence to rationality. Thus, the

epistemic assumptions underpinning BI are those of relent-
lessly reborn optimism (see e.g. the surveys in [21] and [23]),
with all players, under all contingencies, commonly believing
in everybody’s future rationality, no matter how irrational
players’ past behavior has already proven: “after all, tomor-
row is another day!”

An alternative, more sober approach on the part of a
player may be to employ Forward Induction (FI) reason-
ing, and to try to rationalize her opponent’s past behavior
in order to assess his future moves. For example, even in
a subgame where there exists no strategy of the opponent
which is consistent with common knowledge of rationality
and his past behavior, she may still be able to rationalize
his past behavior by attributing to him a strategy which is
optimal as against a presumed suboptimal strategy of hers.
Or, even better, it may sometimes be possible for her to at-
tribute to him a strategy which is optimal with respect to a
rational strategy of hers, which is, though, in return only op-
timal as against a suboptimal strategy of his. If the player
pursues this rationalizing reasoning to the highest extent
possible [3] and reacts accordingly, she will end up choosing
an Extensive-Form Rationalizable (EFR) strategy [4, 20].

EFR strategies may thus be distinct from BI strategies,
as an example by Reny [24] shows (see game 1 in Figure 1).
Given this difference, it is therefore a completely non-trivial
result that in perfect information games with no relevant
ties,1 there is nevertheless a unique EFR outcome, which co-
incides with the unique BI outcome [4,7,8,14,22]. Only when
relevant payoff ties are allowed, an outcome-discrepancy be-
tween the two solution concepts may appear. In such cases,
the EFR outcomes constitute a subset of the BI outcomes
[7, 8, 22], and the inclusion may be strict, as demonstrated
by Chen and Micali [8] (see game 3 in Figure 1).

We note here that experimental studies in behavioral eco-
nomics have shown that the backward induction outcome
is often not reached in large centipede games. Instead of
immediately taking the ‘down’ option, people often show
partial cooperation, moving right for several moves before
eventually choosing ‘down’ [6, 16, 19]. Nagel and Tang [19]
suggest that people sometimes have reason to believe that
their opponent could be an altruist who usually cooperates
by moving to the right and McKelvey and Palfrey [16] sug-
gest that players may believe that there is some possibility
that their opponent has payoffs different from the ones the
experimenter tries to induce by the design of the game.

1That is, where each player has a strict ranking over all the
game-tree leaves following each of her decision nodes.
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Figure 1: Collection of the main games used in the experiment. The ordered pairs at the leaves represent
pay-offs for the computer (C) and the participant (P ), respectively.

We could also ask the following question: Are people in-
clined to use forward induction when they play a game, and
in particular in games like those of Reny or Chen-Micali
mentioned above? This question was the motivation for the
experiment on which we report here. Our pivotal interest
was to examine participants’ behavior following a deviation
from BI behavior by their opponent right at the beginning
of the game.

1.1 Designing an experiment about forward
induction behavior

When designing an experiment to tackle the question whe-
ther people are inclined to use FI when they play dynamic
perfect-information games, such as the Reny or Chen-Micali
games mentioned above, a first challenge was to neutralize
repeated-game effects across repetitions of the same game.
Such visible repetitions could enable a folk-theorem style
augmented cooperation level among participants playing one
against the other, bypassing their cooperation opportunities
in a one-shot play of the same game (cf. [9]). We chose to
address this challenge by letting participants, adult univer-
sity students with little or no knowledge of game theory,
knowingly play against a computer.2

2Another important advantage of using computer opponents
in experiments with dynamic games is that the experimenter
can control the strategies used by the computer opponent,
which allows better interpretation of the participants’ deci-
sions. Using a computer opponent also has disadvantages,
for example, players might reason quite differently about
their opponent if they know they are playing against a
human player. Interestingly, Hedden and Zhang [12] mis-
informed a part of their subjects that they were playing
against a human opponent while in fact everyone was play-
ing against a computer. They found little difference between
the decisions of these groups, and only around 10 % of par-

We programmed the computer so as to follow, in each
repetition of each game, a strategy which is optimal with
respect to some strategy of the human participant. This
strategy for the computer was decided in advance for each
round, so that the computer did not learn from experience in
previous games. This information was honestly and simply
conveyed to the participants at the beginning of the exper-
iment, by the following item on the instruction sheet (see
Appendix A):

How does the computer reason in each particular
game of the experiment?

- The computer thinks that you already have a
plan for that game, and it plays the best response
to the plan it thinks that you have for that game.

- However, the computer does not learn from pre-
vious games and does not take into account your
choices during the previous games.

Given that the participants were playing against a com-
puter, a second challenge was to create variability in the
appearance of repetitions of the same game, so that each
repetition looks different and forces the participant to think
anew about her or his strategy in the current repetition.
This was achieved by two measures:

- repeating in each round a set of 6 games, distinct in
terms of pay-off structures (see more on the games in
Section 2); and

- presenting the game to the participant in a different
graphical fashion in each round in which the game

ticipants expressed a suspicion on an exit questionnaire that
they were playing against a computer rather than a person.
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Figure 2: Truncated versions of Game 1 and Game 3. The ordered pairs at the leaves represent pay-offs for
C and P , respectively.

was repeated. The game play was animated, and pro-
ceeded by consecutive dropping of a marble through
trapdoors controlled alternately by the players, lead-
ing ultimately to one of several possible bins with or-
ange marbles for the participant and blue marbles for
the computer.3 In repetitions of the same extensive-
form game, changes were made in right/left directions
of trapdoors in junctions on paths leading to each bin
(see, for example, screenshots of different representa-
tions of the same game in Appendix C, Figure 6).

In the earlier experiments that investigated FI reason-
ing in human participants, the experimental games mostly
considered an outside option together with some form of
imperfect information games, see, e.g., [2, 5, 15, 26]. Such
games are more complicated in nature than the dynamical
games of perfect information we consider here. The nov-
elty of the current experiment lies in its simplicity, using
perfect-information games only.

2. EXPERIMENTAL GAMES
The list of games that were used in the experiment is given

in Figure 1 and Figure 2. In these two-player games, the
players play alternately. Let C denote the computer, and
let P denote the participant. In the first four games (Figure
1), the computer plays first, followed by the participant, and
each of the players can play at two decision nodes. In the last
two games (Figure 2), which are truncated versions of two
of the games in Figure 1, the participant gets first chance to
move. We will now discuss the BI and EFR (FI) strategies
of all the 6 games; these are summarized in Table 1.

2.1 BI and EFR strategies in four main games
Game 1 has been introduced by Reny [24]. Here, the

unique Backward Induction (BI) strategies for player C and
player P are a; e and c; g, respectively. In case the last de-
cision node of the game is reached, player P will play g
(which will give P better payoff at that node) yielding 0 for
C. Thus, in the previous node, if reached, C will play e
to be better off. Continuing like this from the end to the
start of the game (by BI reasoning) it can be inferred that
whoever is the current player will play so as to end the game
immediately.
3The game presentation was inspired by Ben Meijering’s
‘marble drop’ games, also used in [10,17,18].

Forward induction, in contrast, would proceed as follows.
Among the two strategies of player C which are compatible
with reaching the first decision node of player P , namely
b; e and b; f , only the latter is rational for player C. This
is because of the fact that b; e is dominated by a; e, while
b; f is optimal for player C if she believes that player P
will play d;h with a high enough probability. Attributing
to player C the strategy b; f is thus player P ’s best way to
rationalize player C’s choice of b, and in reply, d; g is player
P ’s best response to b; f . Thus, the unique Extensive-Form
Rationalizable (EFR) strategy of player P is d; g, which is
distinct from her BI strategy c; g. Nevertheless, player C’s
best response to d; g is a; e, which is therefore player C’s EFR
strategy. Hence the EFR outcome of the game (with the
EFR strategies a; e, d; g) is identical to the BI outcome. This
is an instance of the general theorem [1, 4, 8, 14] mentioned
in the Introduction, by which in perfect-information games
with no relevant payoff ties, the unique BI outcome coincides
with the unique EFR outcome (even when, as in this game,
for some player the EFR strategy is different from the BI
strategy).

Game 2 is popularly known as the Centipede game [25].
Here, the structure of the tree is as in the Reny game (cf.
Figure 1, game 1), but the payoffs of player C following a
and e are interchanged. As in game 1, the unique Backward
Induction (BI) strategies of player C and player P are also
a; e and c; g, respectively (and the BI outcome is the leaf
following a). However, when considering FI reasoning for
game 2, unlike in game 1, there does exist a belief of player
C with respect to which b; e is optimal. This is the belief
that player P is playing with high probability the strategy
d; g, a strategy that is actually optimal for player P if P
believes that C is playing with high probability b; f , which
in turn is optimal for player C if C believes that player P is
playing with high probability d;h and is thus irrational only
at the last decision node. For this reason, in game 2 it turns
out that a; e and c; g are the unique EFR strategies of the
corresponding players, and hence coincide with their unique
BI strategies.

Game 3 has been introduced by Chen and Micali [8]. Note
that player P has identical payoffs at both leaves following
her second and final decision node. As a result, there are
two ways to fold the game backwards, and every action of
every player at each decision node is a Backward Induction
(BI) choice. Consequently, all possible outcomes of the game
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are BI outcomes. However, the strategy b; e of player C
is dominated by its strategy a; e; and thus b; e is not an
Extensive-Form Rationalizable (EFR) strategy for player C.
In contrast, b; f is optimal for player C under the belief that
player P will pursue d;h with a high enough probability.
Hence, if player P finds herself in her first decision node,
her best way to rationalize player C’s first move of b is to
attribute to it the strategy b; f , to which only d; g and d;h
are best replies. Therefore, the path b; c with the eventual
payoffs (0, 3) for players C and P , respectively, is not an
EFR outcome of the game. This is an instance of the general
result by [7, 8] mentioned in the Introduction, by which the
set of EFR outcomes is a (possibly proper) subset of the set
of BI outcomes.

Finally, in game 4, the structure of the tree is as in the
Chen and Micali game (cf. Figure 1, game 3), but the payoffs
of player C following a and e are interchanged with respect
to game 3. Here too, every action of every player at each
decision node is a BI choice, and hence all possible outcomes
of the game are BI outcomes. However, in this case, each
of the three strategies that player C has – namely strategy
a, strategy b; e and strategy b; f – is a best reply to some
conjecture about player P ’s strategy. Similarly to the game
2 scenario, b; e is a best reply to the conjecture that player P
is likely playing d; g, and b; f is a best reply to the conjecture
that player P is likely playing d;h. Thus, for player P , in
case her first decision node is reached, both her choices c
and d constitute rationalizable (EFR) choices. Hence, in
this case, all possible outcomes are EFR outcomes as well,
identical to the BI outcomes.

2.2 BI and EFR strategies in truncated games
Game 1′ is a truncated version of game 1, with player P

being the starting player. The BI strategy for player P in
this game is to play c. In case player P plays d and the
first decision node of player C is reached, both BI and EFR
strategies for player C are the same − to play e. Thus the
EFR strategy for player P in this game is to play c, and
the BI and EFR outcomes coincide, as they should in finite
perfect-information games without relevant ties.

Game 3′ is a truncated version of game 3, with player
P starting the game. Player P has identical payoffs at the
leaves following her second decision node. Here again, every
action of every player at each decision node is a BI choice,
and hence all possible outcomes of the game are BI out-
comes. In case the first decision node of player C is reached,
each of the two strategies that player C has – namely strat-
egy e and strategy f – is a best reply to some conjecture
about player P ’s strategy. Strategy e is a best reply to the
conjecture that player P is likely playing d; g, and f is a
best reply to the conjecture that player P is likely playing
d;h. Thus, for player C, in case its second decision node is
reached, both its choices e and f constitute rationalizable
(EFR) choices. Hence, in this case also, all possible out-
comes are EFR outcomes as well, identical to the BI out-
comes, in contrast to what happens in game 3.

3. EXPERIMENTAL PROCEDURE
The experiment was conducted at the Institute of Arti-

ficial Intelligence (ALICE) at the University of Groningen,
The Netherlands. A group of 50 Bachelor’s and Master’s stu-
dents from different disciplines at the university took part in
this experiment. The participants had little or no knowledge

Games | Strategies BI strategy EFR strategy

Game 1 C: a; e C: a; e

P: c; g P: d; g

Game 2 C: a; e C: a; e

P: c; g P: c; g

Game 3 C: a; e, b; e, a; f, b; f C: a; e, a; f, b; f

P: c; g, d; g, c;h, d;h P: d; g, d;h

Game 4 C: a; e, b; e, a; f, b; f C: a; e, b; e, a; f, b; f

P: c; g, d; g, c;h, d;h P: c; g, d; g, c;h, d;h

Game 1′ C: e C: e

P: c; g P: c; g

Game 3′ C: e, f C: e, f

P: c; g, d; g, c;h, d;h P: c; g, d; g, c;h, d;h

Table 1: BI and EFR (FI) strategies for the 6 ex-
perimental games in Figures 1 and 2

of game theory, so as to ensure that neither backward induc-
tion nor forward induction reasoning was already known to
them. The participants played the finite perfect-information
games in a graphical interface on the computer screen (cf.
Figure 3). In each case, the opponent was the computer,
which had been programmed to play according to plans that
were best responses to some plan of the participant. The
participants were instructed accordingly. In each game, a
marble was about to drop, and both the participant and the
computer determined its path by controlling the orange and
the blue trapdoors: The participant controlled the orange
trapdoors, and the computer controlled the blue trapdoors.
The participant’s goal was that the marble should drop into
the bin with as many orange marbles as possible. The com-
puter’s goal was that the marble should drop into the bin
with as many blue marbles as possible.

At first, 14 practice games were played (see Figure 5, Ap-
pendix C), which were simpler than the 6 games outlined in
Section 2. At the end of each practice game, the participant
could see how many marbles he or she had gained in that
game, and also the total number of marbles gained so far.
These games were presented in increasing levels of difficulty
in terms of the reasoning the participants needed to per-
form with respect to their and the opponent’s (computer’s)
choices, to maximize their gains.

The 14 practice games were followed by 48 experimental
games and the participants got access to similar informa-
tion regarding the number of marbles gained. There were 8
rounds, each comprised of the 6 games that were described
in Section 2. Different graphical representations of the same
game were used in different rounds (cf. Figure 6, Appendix
C). A break of 5 minutes was given after the participants fin-
ished playing 4 rounds of the experimental games. The par-
ticipants earned between 10 and 15 euros for participating
in the experiment. The amount depended on the number of
marbles won during the experimental phase, and they were
told about this before the start of the experiment. They
earned 10 euros for participation, and each marble a partic-
ipant won added 4 cents to the amount. The final amount
was rounded off to the nearest 5 cents mark.

At some points during the experimental phase, the par-
ticipants were asked a multiple-choice question as follows:
“When you made your initial choice, what did you think the
computer was about to do next?” (cf. Figure 4). Three
options were given regarding the likely choice of the com-
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THE  GAME

The  computer  decides  here.

The  computer  decides  here.

You  decide  here.

You  decide  here.

Figure 3: Graphical interface for the participants.
The computer controls the blue trapdoors and ac-
quires pay-offs in the form of blue marbles (rep-
resented as dark grey in a black and white print),
while the participant controls the orange trapdoors
and acquires pay-offs in the form of orange marbles
(light grey in a black and white print).

puter: “I thought the computer would most likely play left”
or “I thought the computer would most likely play right” or
“neither of the above”. The first two answers translated to
the moves e or f of the computer, respectively. In case of
the third answer, we assumed that the participant was un-
decided regarding the computer’s next choice. The partici-
pants had been randomly divided into two groups: Group A
and Group B, each consisting of 25 persons. The members
of group A were asked the question about the computer’s
next possible move once they had played at their first deci-
sion node in each game in rounds 3, 4, 7, and 8, whereas the
members of group B were asked the same question but less
often, namely only in each game in rounds 7 and 8.

At the end of the experiment, each participant was asked
the following question: “When you made your choices in
these games, what did you think about the ways the com-
puter would move when it was about to play next?” The par-
ticipant needed to describe the plan he or she thought was
followed by the computer on its next move after the partic-
ipant’s initial choice, in his or her own words. In summary,
during the experiment, the participants had to perform the
tasks specified in Table 2 in the order given there.

During the 48 games of the experimental phase, played
by each participant, a varied amount of data were collected.
In particular, for each participant, for each game, for each
round of the game, we collected the following data:

- Participant’s decision at his/her first decision node, if
the node was reached. In particular, whether move c

Figure 4: Question on computer’s behavior

Step 1 Introduction and instructions.

Step 2 Practice Phase: 14 games.

Step 3 - Experimental Phase: 48 game items, divided into

8 rounds of 6 different games each, in terms of

isomorphism class of pay-off structures;

- Each of the 6 games occurs once in each round;

these games occur in the same order in each round;

- Question on computer’s behavior (cf. Figure 4) in

several rounds: Group A in rounds 3, 4, 7, 8; Group B

in rounds 7, 8.

Step 4 Final Question.

Table 2: Steps of the experiment

or d had been played.4

4. RESULTS AND ANALYSIS
As mentioned above, we report and analyze only the be-

havior of the participants in their first decision node, that is
their choice between actions c or d whenever that decision
node was reached. We found no significant variation (Pro-
portion test, p = 0.21) between the behavior of the 25 par-
ticipants of Group A, who were asked questions (cf. Figure
4) after each game in rounds 3, 4, 7, and 8, and the 25 par-
ticipants of Group B, who were asked those questions only

4In addition, we also took note of other aspects, such as
the participant’s behavior at the second decision node and
time taken by the participant at various stages. We leave
out the details, because these are not relevant for our main
research question, whether participants are applying forward
induction. See Appendix B for recorded data types, and
see [11] for a typology of players’s reasoning strategies based
on these richer data.
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after the games in rounds 7 and 8. Therefore henceforth, we
will analyze the data of all 50 participants together.

The 6 graphs on the next page give the sequence of choices
(across the repetitions of each game) at the first decision
node, per participant (named A1 . . . A25, B1 . . . B25). The
dark grey color corresponds to the rounds the participant
played the move c, and the light grey color corresponds to
the rounds the participant played move d, whenever the par-
ticipant’s first decision node was reached. They clearly show
that d was played more often in game 1 than in game 2
(which has the same payoffs as game 1 except for C’s payoffs
interchanged at two leaves). Moreover, d was played more
often in game 3 than in game 4 (which similarly has the
same payoffs as game 3 except for C’s payoffs interchanged
at two leaves). These observations may initially suggest cor-
roboration of FI reasoning because (as the reader can check
in Table 1), d is P ’s only EFR move in game 1 while c is
the only EFR move in game 2, and d is the only EFR move
in game 3 while both c and d are EFR moves in game 4.
This would provide a positive answer to our research ques-
tion whether players apply forward induction when playing
against a computer which sometimes deviates from rational
behavior.
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However, a closer look at individual choices while also tak-
ing the truncated games 1′ and 3′ of Figure 2 into account,
casts doubt that these findings can be attributed to any sub-
stantial FI reasoning. When comparing game 1 to game 1′,
EFR prescribes d in game 1 and c in game 1′ (see Table
1). However, only two participants out of 50 (4%) played
d much more often in game 1 than in game 1′;5 four ad-
ditional participants (8%) played d in game 1 only slightly

5The verbal elaboration of one of the two participants at the
end of the experiment is indeed compatible with EFR, see
Appendix D.
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more often than in game 1′; but 24 other participants (48%)
actually played d more often in 1′ than in 1!

Similarly, when comparing game 3 to game 3′, EFR pre-
scribes d in game 3, while in game 3′, both c and d are
compatible with EFR. However, only two participants out
of 50 (4%) played d much more often in game 3 than in
game 3′; ten additional participants (20%) played d in game
3 only slightly more often than in game 3′; but 17 other par-
ticipants (34%) actually played d more often in game 3′ than
in game 3. In summary, comparing games 1 and 3 to their
truncated versions does not lend support for FI reasoning.

Now, comparing game 3 to game 4, we find that 47 par-
ticipants (94%) played d at least as often in game 3 as in
game 4, and the remaining three players (6%) played d only
slightly less often in game 3 than in game 4. As mentioned
at the beginning of this section, at first glance this may then
suggest support for EFR behavior (since EFR prescribes d
in game 3 and allows for both c and d in game 4). However,
because we did not see support for EFR when comparing
game 3 to game 3′, it could very well be that a cardinal
effect rather than an ordinal effect has played a role here:

- In game 4, a participant’s playing d implied that the
computer would have to choose between a payoff 3 that
it could reach for certain by going down, and a ‘lot-
tery’ between the payoffs 1 and 4 that it would meet if
it would continue to the right to the next P -node, due
to the fact that at P ’s last decision node, the partic-
ipant P gains the same payoff of 4 points after either
choice. Consequently, most participants might have
feared that the computer would go for the certain pay-
off 3, so preempted that by choosing c.

- In game 3, in contrast, a participant’s playing d im-
plied that the computer would have to choose between
the relatively low payoff 2 that it could achieve for
sure by going down, and again a ‘lottery’ between the
payoffs 1 and 4. Consequently, most participants may
have been betting that the computer would go for the
‘lottery’, and hence chose d.6

Similarly, comparing game 1 to game 2, we find that 42 out
of 50 participants (84%) played d at least as often in game
1 as in game 2. Here again, at first glance this may seem
to lend support for EFR behavior, since EFR prescribes d
in game 1 and c in game 2. However, here too, a cardinal
effect may have played a role, as follows:

- In game 2, a payoff of 3 may have seemed (in the eyes of
most participants) to tempt the computer to go down
at its second decision point and settle for it for sure,
rather than hoping that the participant would err at
the end by choosing h – an error which would yield only
a slightly better payoff of 4 to the computer, while C’s
pay-off would be only 0 if the participant did not err
at the end.

- In game 1, in contrast, participants may have attributed
a greater temptation to the computer to gamble for the
payoff 4 (which is what the computer would get if the

6Some verbal comments at the end attributed to the com-
puter a 50%-50% belief in this lottery and expected payoff
maximization, which is indeed consistent with choosing c in
game 4 and d in game 3.

participant were to err by choosing h) versus 1 (if the
participant did not err); the participant would com-
pare this ‘lottery’ with what C could settle for with
certainty by going down at its second decision point,
which is only 2.

These considerations may have led most players to choose
d more often in game 1 than in game 2, irrespective of any
FI considerations.

5. CONCLUSION
To the best of our knowledge, the experiment carried out

and reported here is the first experiment that has been
designed to test Forward Induction (FI) behavior (partic-
ularly, Extensive-Form Rationalizable (EFR) behavior) in
extensive-form games with perfect information.

In the experiment, 50 participants played against a com-
puter, which they knew to have been programmed so as not
to make deductions or learn from previous game rounds, but
rather to optimize, in each round, against some belief about
the participant’s strategy. Moreover, different rounds of the
same game were interspersed in between different rounds
of other games, and in different rounds of the same game
the game tree was presented to the participants in distinct
interactive “marble-drop” forms. Thus, unlike in other ex-
periments where each pair of participants plays repeatedly
many rounds of the same game, our design was structured
so as to neutralize, as much as possible, repeated-game co-
operation considerations on the part of each participant.

In the aggregate, the participants were more likely to re-
spond in a way which is optimal with respect to their best-
rationalization EFR conjecture - namely the conjecture that
the computer is after a larger prize than the one it has fore-
gone, even when this necessarily meant that the computer
has attributed future irrationality to the participant when
the computer made the first move in the game. Thus, it
appeared that participants did apply forward induction.

However, there exist alternative explanations for the choi-
ces of most participants, and such alternative explanations
also emerge from several of the participants’ free-text ver-
bal descriptions of their considerations (cf. Appendix D),
as solicited from them at the end of the experiment. These
alternative considerations have to do with the extent of risk
aversion that participants attributed to the computer in the
remainder of the game, rather than to the sunk outside op-
tion that the computer has already foregone at the beginning
of the game. For this reason, the results of the experiment
do not yet provide conclusive evidence for Forward Induc-
tion reasoning on the part of the participants.

In current ongoing work, we are using data from this ex-
periment, such as response times and answers to questions,
in order to investigate how participants can be divided into
meaningful classes according to other cognitive considera-
tions, for example, whether they are applying quick, instinc-
tive thinking or contemplative, slower deliberation, whether
they are applying higher orders of theory of mind, and so on,
see [11]. In future work, we aim to investigate which strate-
gies participants actually apply in dynamic games with per-
fect information in which the opponent occasionally deviates
from backward induction. We plan to use new games with
different pay-off structures and will perform an eye-tracking
study to check the points in the games to which participants
attend while reasoning.
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Appendix A: Instruction sheet
- In this task, you will be playing two-player games. The

computer is the other player.

- In each game, a marble is about to drop, and both you
and the computer determine its path by controlling the
orange and the blue trapdoors.

- You control the orange trapdoors, and the computer
controls the blue trapdoors.

- Your goal is that the marble drops into the bin with
as many orange marbles as possible. The computer’s
goal is that the marble drops into the bin with as many
blue marbles as possible.

- Click on the left trapdoor if you want the marble to go
left, and on the right trapdoor if you want the marble
to go right.

- How does the computer reason in each particular game?

The computer thinks that you already have
a plan for that game, and it plays the best
response to the plan it thinks that you have
for that game.

However, the computer does not learn from
previous games and does not take into ac-
count your choices during the previous games.

- The first 14 games are practice games. At the end of
each practice game, you will see how many marbles
you gained in that game, and also the total number of
marbles you have gained so far.

- The practice games are followed by 48 experiment games.
At the beginning of the experiment games, the total
number of marbles won will be set at 0 again. At the
end of each experiment game, you will see how many
marbles you gained in that game, and also the total
number of marbles you have gained so far.

- You will be able to start each game by clicking on the
“START GAME” button, and move to the next game
by clicking on the “NEXT” button.

- At some points during the experiment phase, you will
be asked a few questions regarding what guided your
choices.

- There will be a break of 5 minutes once you finish 24
of the 48 experiment games.

- The money you will earn is between 10 and 15 eu-
ros and depends on how many marbles you have won
during the experiment phase. You will get 10 euros
for participation, and each marble you win will add 4
cents to your amount. The final amount will be given
to you rounded off to the nearest 5 cents mark.7

Appendix B: Recorded data types
As mentioned earlier, 50 students participated in this exper-
iment. The participants were first requested to provide the
following information:

Name; Age; Gender; Field of study.

Then they were given instruction sheets mentioning what
they were supposed to do (see Appendix A) together with
a representative figure (cf. Figure 3) of the graphical inter-
face of the games they were supposed to play. Once they
got accustomed with what they were expected to do, the
participants played the first 14 practice games. As men-
tioned in Section 3, at the end of each game, a participant
could see how many orange marbles he or she had won till
that moment - this was to show how his/her winnings were
getting calculated. At the end of the practice phase, the
experimental phase began.

Here, each participant played 48 experimental games, play-
ing each of the six games depicted in Figures 1 and 2, eight
times, in different representations. During these 48 games,
played by each participant, a varied amount of data were col-
lected. For each participant, for each game, for each round
of the game, we collected the following data:

- participant’s decision at his/her first decision node, if
the node was reached. In particular, whether move c
or d had been played;

- participant’s decision at his/her second decision node,
if the node was reached. In particular, whether move
g or h had been played;

- time taken by the participant in starting the game, i.e.
the time between the moment the game was shown to
the participant, and the moment he/she clicked on the
“start” button;

- time taken by the participant in making his/her deci-
sion at the first decision node, if the node was reached,
i.e. the time between the moment the computer passed
the playing marble to the participant on its first deci-
sion node, and the moment he/she clicked on the next
trapdoor for the marble to be dropped;

- time taken by the participant in making his/her de-
cision at the second decision node, if the node was
reached, i.e. the time between the moment the com-
puter passed the playing marble to the participant
on its second decision node, and the moment he/she
clicked on the next trapdoor for the marble to be dropped.

7We chose the relatively large ‘show-up fee’ because Dutch
student participants tend to complain in case of large differ-
ences in pay between participants. However, most partici-
pants attained a fairly large award, so in future we aim to
incentivise participants more by offering a lower show-up fee
and a higher fee per marble.
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Level 1 Level 2

Level 3 Level 4

Figure 5: Levels of practice games

The first two items correspond to categorical or qualita-
tive data, whereas the next three, which are response times
recorded in milliseconds, correspond to numerical or quan-
titative data. As mentioned in Section 3, the participants
were randomly divided into two groups. namely Group A
and Group B, where members of group A were asked to an-
swer a question (cf. Section 3) in rounds 3, 4, 7, 8, and mem-
bers of group B were asked to answer the same questions but
only in rounds 7 and 8. For each participant, depending on
the group (Group A or Group B), we collected the following
data:

- participant’s answer to the given question (cf. Figure
4) at the ends of the rounds in which it was asked.
In particular, whether the answer was e or f or unde-
cided;

- time taken by the participant in giving the answer,
i.e. the time between the moment the question ap-
peared on the screen and the moment he/she clicked
on his/her choice of answer.

The first data item is categorical, whereas the second one,
recorded in milliseconds, is numerical. Finally, at the end of
the experiment each participant was asked a final question
(cf. Section 3), the answers to which were recorded in a
separate sheet. A limited amount of space was given in
which the answer was to be formulated.

Appendix C: Experimental interface
During the training phase, the participants were given 14
training games of increasingly difficult levels in terms of
number of decision points, as explained in Section 3. Fig-
ure 5 shows example games for each of the four levels.

In each of the 8 rounds of the experimental phase, partici-
pants were confronted with all 6 games described in Section
2. Different graphical representations of the same game were
used in different rounds. As an example, Figure 6 shows six
visually different variations of game 1.

Figure 6: Experimental games, various representa-
tions of game 1 of Figure 1

Appendix D: Answers to the final question
As mentioned in Section 3, at the end of the experiment,
each participant was asked the following question: “When
you made your choices in these games, what did you think
about the ways the computer would move when it was about
to play next?” The participant needed to describe the plan
he or she thought was followed by the computer on its next
move after the participant’s initial choice, in his or her own
words.

We found that one student who had made choices in the
game that were consistent with FI reasoning, also provided
an answer that suggested FI reasoning:

- “I first thought it would try to maximize the outcomes,
taking into account that I would do the same. But I
noticed that it did not always do that. Sometimes it
did and sometimes it didn’t. So after the break, I tried
to maximize my outcomes, assuming the computer did
the same, but if I noticed that the computer was not
assuming that I would maximize my outcomes, I took
a risk and I won a lot more.”

Here follows a selection of answers provided by the other
participants, which shows that participants might have given
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more importance to risk aversion and/or expected gains,
rather than considering the outside option which the com-
puter has already foregone.

- “I thought the computer took the option with the high-
est expected value. So if on one side you had a 4 blue
+ 1 blue marble and on the other side 2 blue marbles
he would take the option 4+1= 2.5.”

- “It was going to take the turn with the highest reward,
considering the risk. For example, when the computer
can take a reward of 2 marbles instantly or choose to let
the ball roll to an orange gate which has the potential
of rewarding 4 marbles, the computer would go for the
orange gate. With a difference of 1 marble between
choices the computer is most likely to take the easiest
way.”

- “It would choose for the safe 2/3 marble option instead
of the dangerous 0/1 or 4 marble option.”

- “I made my choices based on how many marbles I could
miss if the computer would turn left or right. In most
cases I made the safe choice.”

- “My thoughts were about which most profitable route
the computer would take, by looking at how many mar-
bles the computer would get in comparison to me. If
they were even or less then I think the computer would
play safely and take the best and safest option avail-
able at that point.”

- “Look at the potential payoffs for blue in relation to the
potential payoff for orange and check for probabilities.”
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ABSTRACT
The semantics for counterfactuals due to David Lewis has
been challenged on the basis of unlikely, or impossible, events.
Such events may skew a given similarity order in favour of
those possible worlds which exhibit them. By updating the
relational structure of a model according to a ceteris paribus
clause one forces out, in a natural manner, those possible
worlds which do not satisfy the requirements of the clause.
We develop a ceteris paribus logic for counterfactual rea-
soning capable of performing such actions, and offer several
alternative (relaxed) interpretations of ceteris paribus. We
apply this framework in a way which allows us to reason
counterfactually without having our similarity order skewed
by unlikely events. This continues the investigation of formal
ceteris paribus reasoning, which has previously been applied
to preferences [22], logics of game forms [9], and questions
in decision-making [25], among other areas [16].

1. INTRODUCTION
The principal task of this paper is to work towards inte-

grating ceteris paribus modalities into conditional logics so
that some dissonant analyses of counterfactuals may be rec-
onciled. We also suggest that ceteris paribus clauses may be
understood dynamically, in the sense of dynamic epistemic
logic [23], and we interpret our resulting ceteris paribus logic
accordingly. Ceteris paribus clauses implicitly qualify many
conditional statements that formulate laws of science and
economics. A ceteris paribus clause adds to a statement
a proviso requiring that other variables or states of affairs
not explicitly mentioned in the statement are kept constant,
thus ruling out benign defeaters. For instance, Avogadro’s
law says that if the volume of some ideal gas increases then,
everything else held equal, the number of moles of that gas
increases proportionally. Varying the temperature or pres-
sure could provide situations that violate the plain statement
of the law, but the ceteris paribus clause accounts for those.
It specifically isolates the interaction between volume and
number of moles by keeping everything else equal. In the
same spirit, the Nash equilibrium in game theory is a solu-
tion concept that picks strategy profiles in which none of the
agents could unilaterally (i.e., keeping the actions of others
constant, or equal) deviate to their own advantage.

We may understand a ceteris paribus clause as a linguistic
device intended to shrink the scope of the sentence qualified
by the clause. For instance, when I make the utterance “I
prefer fish to beef, ceteris paribus” I may mean something
different from if I simply uttered “I prefer fish to beef.” By
enforcing the ceteris paribus condition I rule out some situa-

tions which affect my preference. For example if, whenever I
eat fish I’m beaten with a mallet, while whenever I eat beef
I’m left in peace, I might retract the second utterance and
maintain the first. The ceteris paribus clause reduces the
number of states of affairs under consideration. For modal
logicians, ‘ruling out’ states of affairs amounts to strengthen-
ing an accessibility relation, consequently changing the rela-
tional structure of a model. This bears similarity to the epis-
temological forcing of Vincent Hendricks [10], which seeks
to rule out ‘irrelevant alternatives’ in a way which allows
knowledge in spite of the possibility of error. Wesley Hol-
liday [11] develops several interpretations of the epistemic
operator K based on the relevant alternatives epistemology;
namely, that in order for an agent to have knowledge of a
proposition, that agent must eliminate each relevant alter-
native. Holliday’s semantics are based on the semantics for
counterfactuals due to David Lewis [13], which we will recall
in the next section. One could see relevant worlds as those
which keep things equal. When reasoning using Avogadro’s
law, the relevant possible worlds are those where the tem-
perature and pressure have not changed. Thus, in order for
an agent to have knowledge, that agent must eliminate the
alternatives among the worlds which ‘keep things equal.’

Previously, ceteris paribus formalisms have been given for
logics of preference [22] and logics of game forms [9]. Here we
extend the analysis to counterfactual reasoning. The impor-
tance of counterfactuals in game theory is well known (see,
for instance, [17]). For example, Bassel Tarbush [21] argues
that the Sure-Thing Principle1 ought to be understood as an
inherently counterfactual notion. We will motivate our dis-
cussion by thinking through Kit Fine’s well-known ‘minor-
miracles’ argument [8], a putative counterexample to Lewis’
semantics. We will argue that ceteris paribus logic, suit-
ably adapted to conditionals, provides a natural response
to this kind of argument. Moreover, we will see that ce-
teris paribus logic reveals a useful feature missing from the
standard formalisation of counterfactuals; namely, the ex-
plicit requirement that certain propositions must have their
truth remain fixed during the evaluation of the counterfac-
tual. This is implicitly thought to hold, to some degree,
when one works with models which have similarity orders or
systems of spheres. The conditional logic of Graham Priest
[15] makes just that assumption, but with no syntactic as-
surance. Ceteris paribus logic provides, in addition to the

1An outcome o of an action A is a sure-thing if, were any
other action A′ to be chosen, o would remain an outcome.
The Sure-Thing Principle [18] states that sure-things should
not affect an agent’s preferences.
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underlying similarity order over possible worlds, a syntac-
tic apparatus to reason with such ceteris paribus clauses
directly in the object language.

2. COUNTERFACTUALS
Here we shall formalise counterfactuals in the style of

Lewis. Let Prop be a set of propositional variables. We
are concerned with models of the formM = (W,�, V ) such
that the following obtain.

1. W is a non-empty set of possible worlds.

2. � is a family {�w}w∈W of similarity orders, i.e., rela-
tions on Ww ×Ww (with Ww ⊆W ) such that:

• w ∈Ww,

• �w is reflexive, transitive and total, and

• w ≺w v for all v ∈Ww \ {w}.

3. V is a valuation function assigning a subset V (p) ⊆W
to each propositional variable p ∈ Prop.

Intuitively, Ww is the set of worlds which are entertainable
from w. Worlds which are not entertainable from w are
deemed simply too dissimilar from w to be considered. Say
that u is at least as similar to w as v is when u �w v, and
that it is strictly more similar when u ≺w v.

IfM satisfies each of the three requirements we callM a
conditional model. A relation ≤ is said to be well-founded if
for every non-empty S ⊆W the set

MinM≤ (S) = {v ∈ S ∩W : there is no u with u < v} (1)

is non-empty.2 We will suppress the superscript M if
it is clear from the context which model we’re discussing.
If a model M = (W,�, V ) has only well-founded similarity
orders we say thatM satisfies the limit assumption. For ease
of exposition, we will assume that our conditional models
satisfy the limit assumption. Of course, we may generalise
the semantics for counterfactuals in the usual way [13], so
that our results work for models which do not satisfy the
limit assumption as well.

Definition 1 (Language L�). The language L� of
counterfactuals is given by the following grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ� ψ.

We define ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ, ϕ�
ψ := ¬(ϕ� ¬ψ).

Definition 2 (Semantics). Let M = (W,�, V ) be a
well-founded conditional model. Then

JpKM = V (p)
J¬ϕKM = W \ JϕKM

Jϕ ∨ ψKM = JϕKM ∪ JψKM
Jϕ� ψKM = {w ∈W : Min�w (JϕKM) ⊆ JψKM}.

Let w ∈ W . If w ∈ JϕK we write M, w |= ϕ, and if w 6∈ JϕK
we write M, w 6|= ϕ.

2As usual, u < v is defined as u ≤ v and not v ≤ u

3. THE NIXON ARGUMENT
There is a problem dating back to the 1970s [1, 3, 8] sur-

rounding the semantics for counterfactuals proposed by Lewis.
We have found that our ‘ceteris paribus counterfactuals’ (de-
fined below) provide a unique perspective on the problem
(a putative counterexample). The argument goes as follows.
Assume, during the Cold War, that President Richard Nixon
had access to a device which launches a nuclear missile at
the Soviets. All Nixon is required to do is press a button on
the device. Consider the counterfactual if Nixon had pushed
the button, there would have been a nuclear holocaust. Call
it the Nixon couterfactual. It is not so difficult to see that
the Nixon counterfactual could be true, or could be imag-
ined to be true. Indeed, one could argue that the Nixon
counterfactual ought to be true in any successful theory of
counterfactuals. Fine and Lewis both agree (and so do we)
that the counterfactual is true ([8, p. 452], [14, p. 468]), but
Fine used the Nixon counterfactual to argue that the Lewis’
semantics yields the wrong verdict. This is because “a world
with a single miracle but no holocaust is closer to reality
than one with a holocaust but no miracle.” [8, p. 452] In
response, Lewis argues that, provided the Nixon situation is
modelled using a similarity relation which respects a plausi-
ble system of priorities (see below), the counterfactual will
emerge true. We will provide a different response using ce-
teris paribus counterfactuals, but first let us see how Fine
and Lewis model the situation.

Consider two classes of possible worlds. One class, u, con-
sists of those worlds in which Nixon pushes the button, and
the button successfully launches the missile. The second, v,
consists of those worlds in which Nixon pushes the button,
but some small occurrence – such as a minor miracle – pre-
vents the button’s correct operation. Certainly those worlds
where the button does not launch the missile bear more sim-
ilarity to the present world than those where it does. This
is Fine’s interpretation of Lewis’ semantics. Any world in u
has been devastated by nuclear warfare, countless lives have
been lost, there is nuclear winter, etc., whereas worlds in v
continue on as they would have done.

To illustrate Fine’s interpretation, let p, s,m, h be the
propositions:

p = “Nixon pushes the button,”
s = “the missile successfully launches,”
m = “a miracle prevents the missile being launched,”
h = “a nuclear holocaust occurs,”

and consider the following model, the Fine model :

•
w

F
•
u1

•
u2

•
un

u

p, s, h

•
v1

•
v2

•
vk

v
p,m

An arrow from x to y indicates relative similarity to w, so
u1 is more similar to w than u2 is. Arrows are transitive, and
the ‘snake’ arrow between u and v indicates that vi �w uj
for every i, j. For each ui ∈ u, F , ui |= p∧s∧h; and for each
vi ∈ v, F , vi |= p∧m. World w is intended to represent the
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real world: Nixon did not push any catastrophic anti-Soviet
buttons,3 no nuclear missile was successfully launched at
the Soviets, no miracle prevented any such missile, and no
nuclear holocaust occurred. World v1 is more similar to w
than any world in u is, since in any u-world Nixon pushes
the button and begins a nuclear holocaust. By (1), v1 is
therefore the minimal p-world. At v1 the proposition h is
false, and so F , w 6|= p� h. Therefore, Fine concludes, the
Nixon counterfactual is false in Lewis’ semantics.

In response, Lewis argues that the proper similarity rela-
tion to model the Nixon counterfactual should respect the
following system of priorities:

1. It is of the first importance to avoid big, widespread,
diverse violations of law.

2. It is of the second importance to maximize the spatio-
temporal region throughout which perfect match of
particular fact prevails.

3. It is of the third importance to avoid even small, lo-
calized, simple violations of law.

4. It is of little or no importance to secure approximate
similarity of particular fact, even in matters that con-
cern us greatly. ([14, p. 472])

Based on this system of priorities world u1 is more sim-
ilar to w than v1 is because “perfect match of particular
fact counts for much more than imperfect match, even if
the imperfect match is good enough to give us similarity in
respects that matter very much to us.” [14, p. 470] That
is, worlds in v in which a small miracle prevents the mis-
sile being launched may look quite similar to our world, but
only approximately so. And in Lewis’ system of priorities,
perfect match outweighs approximate similarity. The Lewis
model, then, looks like this:

•
w

L
•
u1

•
u2

•
un

u

p, s, h

•
v1

•
v2

•
vk

v
p,m

In the Lewis model, u1 is the world most similar to w, and
in u1 the missile successfully launches, there is a nuclear
holocaust, and so the Nixon counterfactual is true. Lewis
thus responds to Fine by defending a similarity order that
favours u1 over v1. He is justified by prioritising perfect over
approximate match in a similarity relation according to the
aforementioned system.

The interpretation of the Nixon counterfactual we will of-
fer is in line with Lewis’, though we do not rely on his system
of priorities. We will achieve a resolution similar to his with-
out having to defend a model different from Fine’s. After
all, as Lewis says: “I do not claim that this pre-eminence of
perfect match is intuitively obvious. I do not claim that it
is a feature of the similarity relations most likely to guide

3Although there is no way for us to know this, for the sake
of the argument we assume that it is so.

our explicit judgments. It is not; else the objection we are
considering never would have been put forward.”[14, p. 470]
Instead, we will treat the Nixon counterfactual with an ex-
plicit ceteris paribus clause, dispatching with the unintuitive
pre-eminence of perfect match in constructing the similarity
relation.

Our interpretation of the Nixon counterfactual is much
like in preference logic, where formal ceteris paribus reason-
ing was first applied [7, 22, 24]. Consider the following dia-
gram, which shows a preference of a raincoat to an umbrella,
provided wearing boots is kept constant:

•raincoat
no boots

• umbrella
no boots

•raincoat
boots

• umbrella
boots

Arrows point to more preferred alternatives, and are transi-
tive. Evidently, having an umbrella and boots is preferred
to having a raincoat and no boots. The variation of hav-
ing boots skews the preference. If a ceteris paribus clause
is enforced, guaranteeing that in either case boots will be
worn or boots will not be worn, then the correct preference
is recovered. A similar situation occurs in the logic of coun-
terfactuals. The variation of certain propositions can skew
the similarity order. In Fine’s argument, this is done by the
variation of physical law, a miracle. If we were to restrict the
worlds considered during the evaluation of the counterfac-
tual to those that agree with w on the proposition m, then in
F the world v1 would no longer assume the role of minimal
p-world. Rather, u1 would. In world u1 a nuclear holocaust
does occur, whence the counterfactual becomes true, as de-
sired. This is our resolution of the Nixon argument, which
we next formalise.

4. CETERIS PARIBUS SEMANTICS
We introduce into our language a new conditional oper-

ator which generalises the usual one. In particular, it ac-
commodates explicit ceteris paribus clauses. The authors
in [22] were the first to define object languages in this way.
They developed a modal logic of ceteris paribus preferences
in the sense of von Wright [24]. For now we will take the
ordinary conditional operator and embed within it a finite
set of formulas Γ understood as containing the other things
to be kept equal.4

Definition 3 (Language LCP). Let Γ be a finite set
of formulas. Then the language LCP is given by the gram-
mar5

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | [ϕ,Γ]ψ.

We understand the modality [ϕ,Γ]ψ as the counterfactual
ϕ � ψ subject to the requirement that the truth of the

4The choice of Γ finite is largely technical. We will mention
some possibilities and difficulties regarding the case where
the ceteris paribus set Γ may be infinite in our concluding
remarks.
5We redefine the language more precisely as Definition 8
in the appendix. For simplicity we work with the one now
stated.
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formulas in Γ does not change. We define ϕ ∧ ψ := ¬(¬ϕ ∨
¬ψ), ϕ → ψ := ¬ϕ ∨ ψ, 〈ϕ,Γ〉ψ := ¬[ϕ,Γ]¬ψ. We call
the conditional [ϕ,Γ]ψ a ceteris paribus conditional, or, if
the antecedent is false, a ceteris paribus counterfactual. LCP

is interpreted over standard conditional models, and thus
requires no additional semantic information.

Some additional notation is required, however. Let M =
(W,�, V ) be a conditional model and let w, u, v ∈ M. Let
Γ ⊆ LCP be finite.

• Define the relation ≡Γ over W by u ≡Γ v if for all γ ∈
Γ, M, u |= γ iff M, v |= γ. Then ≡Γ is an equivalence
relation.6

• Set [w]Γ = {u ∈ Ww : w ≡Γ u}, the collection of
w-entertainable worlds which agree with w on Γ.

• Define �Γ
w :=�w ∩ ([w]Γ × [w]Γ), the restriction of

�w to the above worlds.

Thus if u, v ∈ [w]Γ then either u�Γ
w v or v �Γ

w u.

Definition 4 (Semantics). Let M = (W,�, V ) be a
conditional model. Then

J[ϕ,Γ]ψKM = {w ∈W : Min�Γ
w

(JϕKM) ⊆ JψKM}.

The semantics for the regular connectives are the same as
those in Definition 2. Notice that we recover the ordinary
counterfactual ϕ� ψ with [ϕ, ∅]ψ.

Consider again the Fine model F . As before we have
F , w 6|= p� h, but now

F , w |= [p, {m}]h. (2)

We thus think about the Nixon counterfactual by way of
ceteris paribus reasoning. Allowing the truth of arbitrary
formulas to vary during the evaluation of a counterfactual
can distort the given similarity order, thereby attributing
falsity to a sentence which may be intuitively true. By forc-
ing certain formulas to keep their truth status fixed one can
rule out these cases, which has just been demonstrated with
(2). This ceteris paribus qualification is done in preference
logic, and indeed in more general scientific and economic
practice.7 The Nixon counterfactual is simply a situation in-
volving a defeater, or an irrelevant alternative, which ought
to be forced out.

5. CETERIS PARIBUS AS A DYNAMIC AC-
TION

The modality [ϕ,Γ]ψ behaves like a dynamic operator,
in the sense of dynamic epistemic logic. For modality-free
formulas ϕ and ψ, evaluating [ϕ,Γ]ψ at w ∈ W amounts to
transforming

M = (W, {�w}w∈W , V )

into

[Γ]M = (W, {�Γ
w}w∈W , V )

and evaluating ϕ� ψ at [Γ]M, w. This dynamic action is
possible since we are altering the relational structure of M
with only a finite amount of information from Γ.

6Technically, the relation ≡Γ should be defined together
with the semantics in Definition 4 by mutual recursion.
Again, we favour the simpler presentation.
7See Schurz [19] on comparative ceteris paribus laws.

Note that the set Ww on which �w is defined on may
change after the update. By updating the model M with
a ceteris paribus clause Γ, worlds which disagree on Γ are
relegated to the class W \ Ww of infinitely dissimilar (in-
deed, irrelevant) worlds. Figure 1 shows how the Fine model
changes after being updated by a ceteris paribus clause forc-
ing agreement on m. This forces out the v-worlds from con-
sideration during the evaluation of the counterfactual; in
some sense syntactically ‘correcting’ the provided similarity
order. Of course, if each world already agreed with w on
{m} the ceteris paribus clause would have no effect.

Before F

•
w

•
u1

•
u2

•
un

u

p, s, h

•
v1

•
v2

•
vk

v
p,m

After [{m}]F

•
w

•
u1

•
u2

•
un

u

p, s, h

•
v1

•
v2

•
vk

v
p,m

Figure 1: The Fine model before and after �w is

upgraded to �{m}w .

The modality-free condition on ϕ and ψ cannot be re-
moved. In particular, one cannot iterate the dynamic ceteris
paribus action and retain agreement with the static ceteris
paribus counterfactual operator. To see this, consider the
example in Figure 2. Taking Γ = {s} and ∆ = ∅, one has
M, w |= [p,Γ][q,∆]r, but [Γ]M, w 6|= p� [q,∆]r.

6. UNIFORMLY SELECTING CETERIS
PARIBUS CLAUSES

Having created a formalism which accommodates explicit
ceteris paribus clauses, one might desire a method for uni-
formly selecting the ceteris paribus set Γ. For von Wright
[24], ceteris paribus means fixing every propositional vari-
able which does not occur in the universe of discourse of
the ceteris paribus expression under consideration. More
precisely, let UD(ϕ) be the set of all propositional variables
occurring in the formula ϕ, defined inductively as follows.
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M
[∆][Γ]M

w •
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•
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•
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•
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q, r

•
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•
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p, s

•
v1

q, s

•
v2

q, r

u •
w

•
s

u

•

p, s

v1

•

q, s

v2

q, r

•
w

s
•
u

p, s

•
v1

q, s

•
v2

q, r

Figure 2: The horizontal panels labelled w and u
define the similarity orders �w and �u respectively.

UD(p) = {p}
UD(¬ϕ) = UD(ϕ)
UD(ϕ ∨ ψ) = UD(ϕ) ∪ UD(ψ)
UD([ϕ,Γ]ψ) = UD(ϕ) ∪ UD(Γ) ∪ UD(ψ)
UD({γ1, . . . , γn}) = UD(γ1) ∪ · · · ∪ UD(γn).

Then the ceteris paribus counterfactual if ϕ were the case
then, ceteris paribus, ψ would be the case amounts to the
expression

[ϕ,Prop \ (UD(ϕ) ∪ UD(ψ))]ψ. (3)

Now all propositional variables not occurring in the universe
of discourse of the counterfactual antecedent or consequent
are fixed.

Updating the Fine model with respect to von Wright’s
ceteris paribus set yields the following model:

•
w

[{s,m}]F
•
u1

•
u2

•
un

u

p, s, h

•
v1

•
v2

•
vk

v
p,m

We have F , w |= [p, {m, s}]h, but vacuously! It appears
that the relation�Γ is too strong to interact with von Wright’s
definition. We are requiring that everything else is kept
equal. This is questionable metaphysics, to say the least.
Lewis made a similar observation in [13], about the counter-
factual ‘if kangaroos had no tails, they would topple over’ :

We might think it best to confine our attention
to worlds where kangaroos have no tails and ev-
erything else is as it actually is; but there are
no such worlds. Are we to suppose that kanga-
roos have no tails but that their tracks in the

sand are as they actually are? Then we shall
have to suppose that these tracks are produced
in a way quite different from the actual way. [...]
Are we to suppose that kangaroos have no tails
but that their genetic makeup is as it actually
is? Then we shall have to suppose that genes
control growth in a way quite different from the
actual way (or else that there is something, un-
like anything there actually is, that removes the
tails). And so it goes; respects of similarity and
difference trade off. If we try too hard for ex-
act similarity to the actual world in one respect,
we will get excessive differences in some other
respect. ([13, p. 9])

In fact, for the logic of ceteris paribus counterfactuals to
function in a meaningful fashion, every formula occurring in
Γ must be independent from the counterfactual antecedent.
In the Fine model, we insist that the truth values of s and
m are kept fixed. These propositions, however, are nomo-
logically related to p, so we can’t change the truth value of
p without affecting the truth values of s and m. This is why
the counterfactual [p, {m, s}]h is vacuously true, but then
so is the counterfactual [p, {m, s}]¬h. To accommodate a
uniform method for selecting ceteris paribus clauses, more
flexibility is required. What ought to be kept equal when
we can’t keep everything else equal? In the next section we
will consider two strategies for relaxing the interpretation of
ceteris paribus to address this question.

7. RELAXING THE CETERIS PARIBUS
CLAUSE

7.1 Naïve counting
We will now introduce another interpretation for the modal-

ity [ϕ,Γ]ψ. Let us write J[ϕ,Γ]ψKMCP for the set J[ϕ,Γ]ψKM
from Definition 4, and let |=CP act as the ordinary satisfac-
tion relation for Boolean formulas, but with

M, w |=CP [ϕ,Γ]ψ iff w ∈ J[ϕ,Γ]ψKMCP .

Whereas in Definition 4 we required strict agreement on
the set Γ, in order to develop a logic for ceteris paribus coun-
terfactuals with a weaker semantics we will instead relax the
requirement to maximal agreement. The best we can do is
preserve the set Γ as much as possible for any given model.

Let Γ ⊆ LCP be finite, and letM = (W,�, V ) be a condi-
tional model. Define AMΓ : W ×W → 2Γ by

AMΓ (u, v) = {γ ∈ Γ :M, u |= γ iff M, v |= γ}. (4)

Define the relation �Γ
w on Ww by u �Γ

w v iff

either |AMΓ (u,w)| > |AMΓ (v, w)|,
or |AMΓ (u,w)| = |AMΓ (v, w)| and u �w v.

The relation�Γ
w can be seen as a transformed�w, reorder-

ing the similarity order so that worlds closer to w preserve
at least as much of Γ as worlds further away, and if any
two worlds agree on Γ to the same quantity, then the nearer
world is more similar to w with respect to �.

Definition 5 (Semantics). Let M = (W,�, V ) be a
conditional model satisfying the limit assumption. Let Γ ⊆
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LCP be finite. Then

J[ϕ,Γ]ψKMNC = {w ∈W : Min�Γ
w

(JϕKM) ⊆ JψKM}.

We write M, w |=NC [ϕ,Γ]ψ iff w ∈ J[ϕ,Γ]ψKMNC.

Fact 1. Let M = (W,�, V ) be a conditional model. Let
w ∈W , and let X ∈ {CP,NC}. Then the following are true,
where ±α is shorthand which uniformly stands for either α
or ¬α:

1. M, w |= ϕ� ψ iff M, w |=X [ϕ, ∅]ψ

2. M, w |=X (±α ∧ 〈ϕ,Γ〉(±α ∧ ψ))→ 〈ϕ,Γ ∪ {α}〉ψ

3. M, w |=CP 〈ϕ,Γ〉ψ ⇒M, w |=NC 〈ϕ,Γ〉ψ

4. M, w |=NC [ϕ,Γ]ψ ⇒M, w |=CP [ϕ,Γ]ψ

The original ceteris paribus preference logic [22] could be
axiomatised using standard axioms together with Fact 1.2
and its converse. A crucial difference with NC semantics is
that the converse of Fact 1.2 does not hold. The existence
of a ϕ ∧ ψ-world which maximally agrees on Γ ∪ {α} does
not ensure that α actually holds at that world. In fact, it is
not guaranteed that any formula from Γ ∪ {α} is obtained.

7.2 Maximal supersets
An approach to counterfactuals familiar to the AI commu-

nity [4–6,12] makes use of a selection function which chooses
the ‘closest’ world according to maximal sets of propositional
variables. More specifically, each world w satisfies some set
Pw ⊆ Prop of propositional variables, and a world u is a
world closest to w if there is no v with Pu ⊂ Pv ⊆ Pw.
Taking this as a kind of ceteris paribus formalism we obtain
the following variant of our ceteris paribus counterfactuals.
First let us define the relation vΓ

w on Ww by u vΓ
w v iff

either AMΓ (v, w) ⊂ AMΓ (u,w),

or AMΓ (v, w) = AMΓ (u,w) and u �w v.

Definition 6 (Semantics). Let M = (W,�, V ) be a
conditional model satisfying the limit assumption. Let Γ ⊂
LCP be finite. Then

J[ϕ,Γ]ψKMMS = {w ∈W : MinvΓ
w

(JϕKM) ⊆ JψKM}.

We write M, w |=MS [ϕ,Γ]ψ iff w ∈ J[ϕ,Γ]ψKMMS. Now Γ is
maximally preserved in the sense that worlds which pre-
serve the same propositions as another, and furthermore
preserve additional propositions from Γ, are deemed to ap-
proximate Γ more closely; while worlds u, v with neither
AMΓ (u,w) ⊆ AMΓ (v, w) nor AMΓ (v, w) ⊆ AMΓ (u,w) are con-
sidered incomparable.

Fact 2 (Extends Fact 1). Let M = (W,�, V ) be a
conditional model. Let w ∈W . Then the following are true.

1. M, w |= ϕ� ψ iff M, w |=MS [ϕ, ∅]ψ

2. M, w |=MS (±α ∧ 〈ϕ,Γ〉(±α ∧ ψ))→ 〈ϕ,Γ ∪ {α}〉ψ

3. M, w |=CP 〈ϕ,Γ〉ψ ⇒M, w |=MS 〈ϕ,Γ〉ψ

4. M, w |=MS [ϕ,Γ]ψ ⇒M, w |=CP [ϕ,Γ]ψ

8. DYNAMICS AND THE NIXON
COUNTERFACTUAL

Given a ceteris paribus interpretation X ∈ {CP,NC,MS},
let us write [Γ]XM for the modelM updated with a ceteris
paribus clause Γ according to interpretation X. Specifically,
we have the following definition.

Definition 7. LetM = (W,�, V ) be a conditional model,
and let Γ ⊆ LCP be a finite set of formulas. We define the
updated models [Γ]XM, for X ∈ {CP,NC,MS}, by

[Γ]CPM := (W,�Γ, V );
[Γ]NCM := (W,�Γ, V );
[Γ]MSM := (W,vΓ, V ).

This provides us with three dynamic ceteris paribus up-
dates. Let us see how they treat the Nixon counterfac-
tual. We have already witnessed the CP update with ce-
teris paribus sets {m} and {m, s}, and concluded that both
make the counterfactual true (vacuous truth with {m, s}).
NC and MS updates agree on the truth of the Nixon counter-
factual with the CP update on {m}, but disagree on {m, s}.
Updating the Fine model with von Wright’s ceteris paribus
clause {m, s} according to the NC interpretation yields F
again. Thus F , w 6|=NC [p, {m, s}]h. Updating Fine’s model
with {m, s} according to the MS interpretation gives the
following model:

•
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•
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•
u2

•
un

u

p, s, h

•
v1

•
v2

•
vk

v
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In [{m, s}]MSF the Nixon counterfactual is not true, and
neither is p� ¬h.

We summarise the truth of the Nixon counterfactuals p�
h and p� ¬h in the various updated Fine models in the
following table.

Interpretation
Counterfactual Clause CP NC MS

p� h
{m} true true true
{m, s} true false false

p� ¬h {m} false false false
{m, s} true true false

The rows labelled with p� h and p� ¬h indicate the
truth value of those counterfactuals in the updated models
[Γ]XF , where Γ is given by the cell in the Clause column
and X is given by the Interpretation column.

Formally, the table illustrates how different truth values
for the Nixon counterfactual may be obtained by combining
the various interpretations of ceteris paribus (CP,NC,MS)
with the different ceteris paribus sets (the selected set {m}
or von Wright’s set {m, s}). But this doesn’t mean that all
combinations are legitimate formalisations of Fine’s argu-
ment. Fine’s story is about small miracles that can interfere
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with Nixon’s ploy, not about whether the missile would suc-
cessfully launch should Nixon press the button. That the
proposition s must be able to vary is crucial to the story,
so one shouldn’t attempt to keep it equal, on a par with
m. We adhere to our favoured formalisation of the Nixon
argument in which the proposition m is the only one that
needs to be kept equal. We have given principled reasons for
this choice, and our selection makes the counterfactual true
– all interpretations agree on that. The point of the table is
a formal one, namely that the truth-values of counterfactu-
als vary with different ceteris paribus updates according to
their interpretation.

9. THEOREMS
In the appendix (Corollary 1) we prove that the logic Λ

LCP
C

of ceteris paribus counterfactuals over the class of condi-
tional frames C is complete for CP/NC/MS semantics. The
proof works by translating formulas of LCP into formulas of
a comparative possibility language, in the style of Lewis, and
axiomatising the equivalent logic. This permits a clearer re-
duction of ceteris paribus modalities to basic comparative
possibility operators, albeit with a translation exponential
in the size of Γ.

10. CONCLUDING REMARKS
This paper has introduced a ceteris paribus logic for coun-

terfactual reasoning by adapting the formalism in [22]. We
have introduced some variants on ceteris paribus logic in
light of philosophical difficulties arising in the application of
conditionals. We apply our framework to the Nixon coun-
terfactual, and with this bring a new perspective to the
problem. We have suggested and explored the dynamic
perspective of our various syntactic interpretations of ce-
teris paribus, which has resulted in a richer understanding
of so-called comparative ceteris paribus reasoning in formal
settings. We have provided completeness theorems which
demonstrate that the ceteris paribus logics so obtained ulti-
mately reduce to the underlying counterfactual logic; in our
case Lewis’ VC. With our framework we defend Lewisian
semantics by appealing to examples from preference logic,
where ceteris paribus reasoning is more widely discussed.

Finally, we outline some limitations of our framework and
directions for future research.

Iterated ceteris paribus actions. We saw in Section 5 that
iterated ceteris paribus counterfactuals deviate in truth from
the corresponding update-then-counterfactual sequence. While
this is undesirable, it is not so uncommon to face such tech-
nical difficulties with iterated counterfactuals. It remains to
further understand the interaction between the two.

Cardinality restrictions on Γ. In general, ceteris paribus
reasoning requires keeping equal as much information as
possible, and sometimes unknown information (for exam-
ple, unanticipated defeaters of laws). Keeping everything
else equal may indeed mean keeping equal an indefinite, and
possibly infinite, set of things. Exploring ceteris paribus
logic without cardinality restrictions to Γ is thus more than
a mere technical exercise. But it is not so straightforward to
extend the present framework to accommodate the presence
of infinite Γ. The translations presented in the appendix
only carry over to the infinite case for infinitary languages,
which is not much of a solution. For the strict ceteris paribus
semantics, we instead suggest following the δ-flexibility ap-

proach of [20]. For the relaxed ceteris paribus semantics,
there are conceptual difficulties which arise with the compar-
ison of infinite sets: when should we say of two infinite sets
that one keeps more things equal than the other? Clearly
näıve counting will not suffice. Minimising distance with re-
spect to vΓ is more promising, but has it’s own problems.
We leave this challenging technical enterprise for future re-
search.
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APPENDIX
We first recast Definition 3 in a more formally precise man-
ner.

Definition 8. For each ordinal α let Lα be given by

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∨ ψ | [ϕ,Γ]ψ

where Γ ⊆ Lβ is finite and β < α. LCP is then defined to be⋃
α Lα.

This ensures the sets Γ are well-defined. One can define
a language L of comparative possibility in a similar style,
though we will only give the following grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ � ψ | ϕ �Γ ψ | ϕ�Γ ψ

| ϕ vΓ ψ.

We further set
ϕ ≺ ψ := ¬(ψ � ϕ); ϕ ≺Γ ψ := ¬(ψ �Γ ϕ);
ϕ�Γ ψ := ¬(ψ �Γ ϕ); ϕ <Γ ψ := ¬(ψ vΓ ϕ);
3ϕ := ϕ ≺ ⊥; �ϕ := ¬3¬ϕ.

Definition 9 (Semantics). LetM, w be a conditional
model. Then

JpKM = V (p);
J¬ϕKM = W \ JϕKM;

Jϕ ∨ ψKM = JϕKM ∪ JψKM;
Jϕ � ψKM = {w ∈W : ∀u ∈Ww ∃v ∈Ww such that

if u ∈ JψKM then v ∈ JϕKM and v �w u};
Jϕ �Γ ψKM = {w ∈W : ∀u ∈Ww ∃v ∈Ww such that

if u ∈ JψKM then v ∈ JϕKM and v �Γ
w u};

Jϕ�Γ ψKM = {w ∈W : ∀u ∈ [w]Γ ∃v ∈ [w]Γ such that
if u ∈ JψKM then v ∈ JϕKM and v �Γ

w u};
Jϕ vΓ ψKM = {w ∈W : ∀u ∈Ww ∃v ∈Ww such that

if u ∈ JψKM then v ∈ JϕKM and v vΓ
w u}.

Lemma 1. The modal operator [ϕ,Γ]ψ under NC seman-
tics is definable in L.

Proof. We show that

M, w |=NC [ϕ,Γ]ψ iff M, w |= 3ϕ→ (ϕ ∧ ψ) ≺Γ (ϕ ∧ ¬ψ).

⇒: Assume M, w |= 3ϕ. Then there is a world x ∈ Ww

such that M, x |= ϕ. By assumption there exists y ∈ Ww

such that y �Γ
w x, M, y |= ϕ and for all z �Γ

w y, we have
M, z |= ϕ→ ψ. Since y �Γ

w y, we obtain M, y |= ϕ ∧ ψ. So
there is u ∈ Ww such that for all v ∈ Ww, if M, u |= ϕ ∧ ψ
and v �Γ

w u then M, v 6|= ϕ ∧ ¬ψ. This is exactly M, w |=
(ϕ ∧ ψ) ≺Γ (ϕ ∧ ¬ψ).
⇐: By contrapositive. Assume M, w 6|= [ϕ,Γ]ψ. By the

semantic definition there exists x ∈Ww such thatM, x |= ϕ
and for all y ∈ Ww with y �Γ

w x and M, y |= ϕ, there
is z ∈ Ww such that z �Γ

w y and M, z |= ϕ ∧ ¬ψ. Since
M, x |= ϕ we have M, w |= 3ϕ. Now, take an arbitrary
world u ∈Ww such thatM, u |= ϕ∧ψ. Either (i) u �Γ

w x or
(ii) x �Γ

w u. If (i), then the fact thatM, u |= ϕ and u �Γ
w x

implies the existence of u′ ∈ Ww such that u′ �Γ
w u �Γ

w x
and M, u′ |= ϕ ∧ ¬ψ. If (ii), then M, x |= ϕ and x �Γ

w x
together imply that there exists x′ ∈Ww with x′ �Γ

w x �Γ
w u

andM, x′ |= ϕ∧¬ψ. Either way we have that for all u ∈Ww

there exists v ∈Ww such that ifM, u |= ϕ∧ψ then v �Γ
w u

andM, v |= ϕ∧¬ψ, whenceM, w 6|= (ϕ∧ψ) ≺Γ (ϕ∧¬ψ).

Lemma 2. The modal operator [ϕ,Γ]ψ under CP seman-
tics is definable in L.

Proof. Replace �Γ
w with �Γ

w in the above proof to show
that the following equivalence

M, w |=CP [ϕ,Γ]ψ iff M, w |= 3ϕ→ (ϕ ∧ ψ)�Γ (ϕ ∧ ¬ψ).

holds.

Lemma 3. The modal operator [ϕ,Γ]ψ under MS seman-
tics is definable in L.

Proof. Replace �Γ
w with vΓ

w in the above proof to show
that the following equivalence holds

M, w |=MS [ϕ,Γ]ψ iff M, w |= 3ϕ→ (ϕ ∧ ψ) <Γ (ϕ ∧ ¬ψ).

Denote by L− the L-fragment given by

ϕ ::= p ∈ Prop | ¬ϕ | ϕ ∨ ϕ | ϕ � ψ.
Given a set Γ ⊆ L or Γ ⊆ L−, let Γ be the set of all

possible conjunctions of formulas and negated formulas from
Γ; that is, the set of all ψ such that ψ =

∧
γ∈Γ

±γ, where

+γ = γ and −γ = ¬γ . So if Γ = {p,¬q} then

Γ = {p ∧ q,¬p ∧ q, p ∧ ¬q,¬p ∧ ¬q}.
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We will often identity a conjunction ϕ1 ∧ · · · ∧ ϕn with the
set {ϕ1, . . . , ϕn}.

Lemma 4. The modal operator �Γ of L is expressible in
L−.

Proof. We show that

ϕ�Γ ψ ↔
∧

Γ∈Γ

[
Γ→ (ϕ ∧ Γ) � (ψ ∧ Γ)

]
. (5)

⇒: Without loss of generality writeM, w |= Γ. Let u ∈Ww

and suppose M, u |= ψ ∧ Γ. By hypothesis there exists
v ∈ [w]Γ such that M, v |= ϕ and v �Γ

w u. Now v ≡Γ w, so
M, v |= Γ, and v �w u as required.
⇐: WriteM, w |= Γ. ThenM, w |= (ϕ∧Γ) � (ψ∧Γ). Let

u ∈ [w]Γ and suppose that M, u |= ψ. Then M, u |= ψ ∧ Γ,
so there exists v ∈ Ww with M, v |= ϕ ∧ Γ and v �w u.
Then v ≡Γ w, and so v �Γ

w u.

Lemma 5. The modal operator vΓ of L is expressible in
L−.

Proof. We show that

ϕ vΓ ψ ↔
∧

Γ∈Γ

(Γ→
∧

Λ⊆Γ

([(ϕ ∧ Λ) ∨ (
∨

Λ⊂Σ⊆Γ

Σ ∧ ϕ)] � ψ ∧ Λ)).

(6)

⇒: Suppose M, w |= ϕ vΓ ψ with M, w |= Γ, for some
Γ ∈ Γ. Let u ∈ Ww be arbitrary and Λ ⊆ Γ such that
M, u |= ψ ∧ Λ. Then by hypothesis there is v ∈ Ww such
that v vΓ

w u and M, v |= ϕ. We have the following two
cases.

Case 1: AMΓ (w, u) ⊂ AMΓ (w, v).
Then since Λ ⊆ AMΓ (w, u) and M, v |= AMΓ (w, v) ∧ ϕ we

have

M, v |=
∨

Λ⊂Σ⊆Γ

Σ ∧ ϕ

which shows the implication.
Case 2: AMΓ (w, u) = AMΓ (w, v) and v �w u.
Then M, v |= Λ ∧ ϕ, which shows the implication.

⇐: Let u ∈ Ww be arbitrary such that M, u |= ψ. Then
M, u |= AMΓ (w, u) ∧ ψ. Let Γ be the unique element of Γ
such that M, u |= Γ. By hypothesis there exists v ∈ Ww

such that v �w u and

M, v |= (ϕ ∧AMΓ (w, u)) ∨ (
∨

AM
Γ (w,u)⊂Σ⊆Γ

Σ ∧ ϕ). (7)

If the second disjunct from (7) holds then there is Σ with
AMΓ (w, u) ⊂ Σ ⊆ Γ such that M, v |= Σ ∧ ϕ. Hence
AMΓ (w, u) ⊂ AMΓ (w, v). Thus u vΓ

w v, as required.
If the second disjunct from (7) fails then M, v |= ϕ ∧

AMΓ (w, u). In particular AMΓ (w, u) = AMΓ (w, v), otherwise
the second disjunct would be true. Combining this with
v �w u we have v vΓ

w u, as required.

Lemma 6. The modal operator �Γ of L is expressible in
L−.

Proof. Replace the subset condition
∨

Λ⊂Σ⊆Γ

Σ ∧ ϕ

in (6) with the cardinality condition
∨

|Λ|<|Σ|≤|Γ|

Σ ∧ ϕ

and repeat the above process.

Notice that, if Γ∪{ϕ,ψ} ⊆ L−, then the right hand sides
of the equivalences established above are in L−. This allows
us to apply the translation to a formula from the inside-out,
the resulting formula belonging to L−.

By a conditional frame we mean a pair F = (W,�), such
that (F, V ) is a conditional model for any valuation function
V . Let C be the class of conditional frames. Using the
notation from [2], we write ΛL

C for the set of L-formulas
valid over C.

Theorem 1. The logic ΛLC is complete.

Proof. We take as our axiomatisation the axioms for VC
[13], plus the translations from Lemmas 4, 5, and 6.

Corollary 1. The logic Λ
LCP
C is complete for CP/NC/MS-

semantics.
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ABSTRACT
We propose an integrated theoretical framework that cap-
tures preferences for acquiring or avoiding information as
well as preferences for exposure to uncertainty (i.e., risk or
ambiguity) by allowing utility to depend not just on mate-
rial payoffs but also on beliefs and the attention devoted to
them. We use this framework to introduce the concept of an
information gap – a specific uncertainty that one recognizes
and is aware of. We characterize a specific utility function
that describes feelings about information gaps. We suggest
that feelings about information gaps are the source of cu-
riosity as well as a second motive to manage one’s thoughts
through information acquisition or avoidance. In addition,
we suggest that feelings about information gaps also con-
tribute to risk- and ambiguity preferences.

Keywords
Ambiguity, curiosity, information gap, motivated attention,
ostrich effect, risk

1. INTRODUCTION
In a seminal paper titled “The Mind as a Consuming Or-

gan,” Thomas Schelling (1987) pointed out that much con-
sumption is not of the material sort, but takes place largely
“in the mind.” Research in psychology, decision theory, and
economics has identified a number of motives underlying in-
formational consumption, from the powerful force of curios-
ity (Loewenstein, 1994) to the pleasures of knowledge and
insight (Karlsson et al., 2004). Moreover, even when miss-
ing information is not available to an individual, demand for
this information plays a role in decision making under un-
certainty. Here we propose a unified theoretical framework
that allows us to model feelings about information and about
information gaps – specific uncertainties that an individual
recognizes and is aware of. We present a specific utility func-
tion that takes as input beliefs and the attention devoted to
them (as well as material payoffs). This utility model can
be applied to decision making about information acquisition
or avoidance as well as to decision making under risk and
ambiguity (as described in Table 1).

In one branch of the economics literature, preferences about
information have been viewed as derivative from risk prefer-
ences (e.g., Kreps and Porteus, 1978; Wakker, 1988; Grant
et al., 1998; Dillenberger, 2010). We take a complemen-
tary perspective, considering preferences about information
as primitive and viewing preferences about risk and ambi-
guity as derivative of them.

Decision about: Domain of:
Whether to address an
uncertainty

Information acquisition
or avoidance

Whether to expose one-
self to an uncertainty

Risky or ambiguous
choice

Table 1: Two domains of decision making affected
by feelings about uncertainty.

The standard account of preferences about information
holds that information is valuable because, and only to the
extent that, it enables people to make superior decisions that
raise their expected utility (Hirshleifer and Riley, 1979). Of-
ten, however, individuals seek information purely to satisfy
curiosity, which refers to the desire for information for its
own sake – i.e., specifically not for its ability to improve de-
cision making. Curiosity correlates with brain activity in
regions thought to relate to anticipated reward (Kang et
al., 2009), suggesting that information is a reward in and
of itself. Loewenstein (1994) proposed an information-gap
account of curiosity, and our framework allows us to capture
this motive for information acquisition within an expanded
utility model. While curiosity is a powerful motive for infor-
mation acquisition, there nevertheless are many situations in
which people actively choose to avoid information, e.g., not
obtaining a costless medical test. We hypothesize that infor-
mation avoidance derives from a desire to avoid increasing
attention on a negative anticipated outcome. More gener-
ally, we suggest that individuals have an inclination to seek
(or avoid) information whenever they anticipate that what
they discover will be pleasurable (or painful). Of course,
ex-ante beliefs about such events are already good or bad
respectively (Eliaz and Spiegler, 2006), but there can be a
big difference between discovering something for sure and
simply considering it a likely possibility. Our additional as-
sumption is that obtaining news tends to increase attention
to it (as in Gabaix et al., 2006; Tasoff and Madarász, 2009),
which leads to the implication that people will seek infor-
mation about questions they like thinking about and will
avoid information about questions they do not like thinking
about. We explore the implications of our proposed utility
model for information acquisition or avoidance in a compan-
ion paper (Golman and Loewenstein, 2015a), and we outline
this analysis in Section 5.

The standard account of preferences about risk and ambi-
guity considers these preferences to be primitives in a model
(e.g., Anscombe and Aumann, 1963; Klibanoff et al., 2005).
However, research has shown that missing information has
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a profound impact on decision making under risk and ambi-
guity. For example, Ritov and Baron (1990) studied hypo-
thetical decisions concerning whether to vaccinate a child,
when the vaccine reduces the risk of the child dying from a
disease but might itself be harmful. When the uncertainty
was caused by salient missing information about the risks
from vaccination – a child had a high risk of being harmed
by the vaccine or no risk at all but it was impossible to find
out which – subjects were more reluctant to vaccinate than
in a situation in which all children faced a similar risk and
there was no salient missing information. In a second com-
panion paper (Golman and Loewenstein, 2015b) we argue
that the information-gap concept developed here underlies
an alternative account of risk and ambiguity aversion (and
seeking) that is conceptually different from, and has dif-
ferent testable implications from, the usual account of risk
aversion involving loss aversion and the usual account of am-
biguity aversion involving vague probabilities.1 In Section 6
we outline our argument that salient information gaps can
either increase or decrease preference for uncertain gambles
depending on whether it is painful or pleasurable to think
about the information one is missing.

Our expanded utility model builds on the insights of Caplin
and Leahy (2001).2 Caplin and Leahy recognize that an-
ticipatory feelings about prizes that might be received in
the future can affect utility. We follow them (and Köszegi
(2010) as well) in applying expected utility theory to psy-
chological states rather than to physical prizes, but we ex-
pand the domain of psychological states that people can
have feelings about. In doing so, we incorporate Tasoff and
Madarász’s (2009) insight that information stimulates at-
tention and thus complements anticipatory feelings. Kreps
and Porteus (1978) present a model capturing preferences
for early or late resolution of uncertainty, and Dillenberger
(2010) captures preferences for one-shot or sequential reso-
lution of uncertainty; this line of research thus deals with
when, but not whether, an individual prefers to acquire in-
formation. Our model focuses just on the latter issue, but
with it one could address the timing of uncertainty resolution
by making additional assumptions about time preference.

We rely on a reduced form model of knowledge and aware-
ness to describe information gaps – and the desire to fill
them or ignore them – in order to avoid the complications of
working with information partitions in a state-space model
of knowledge (as in Aumann, 1976). The standard parti-
tional state-space framework permits a distinction between
two states of affairs – knowing and not knowing – but makes
it difficult to capture unawareness (Modica and Rustichini,
1994; Dekel et al., 1998). We introduce a question-answer
knowledge structure that allows us easily to draw an im-
portant distinction between three different states: knowing
(represented by a question and a particular answer); not
knowing, but knowing that one doesn’t know (represented
by a question and a set of possible answers); and not know-
ing and not knowing what one doesn’t know (represented by
the absence of an activated question). This third state cor-
responds to pure unawareness (Li, 2008), in the sense that

1For example, we show that low-stakes risk aversion (Ra-
bin, 2000) could be attributed to the discomfort of thinking
about uncertainties.
2Many have considered the notion that people derive utility
from their beliefs (Abelson, 1986; Geanakoplos et al., 1989;
Asch et al., 1990; Yariv, 2001; Kadane et al., 2008).

an individual is unaware of the question itself and does not
even distinguish different possible answers. (In contrast, our
question-answer structure does not capture partial unaware-
ness, in the sense of an individual being aware of a question
and proper subset of possible answers, but unaware of some
other remaining possible answers.) The question-answer
structure is consistent with, and could be cast in terms of, a
generalized state-space model (e.g., Modica and Rustichini,
1999; Heifetz et al., 2006), but we find the question-answer
structure convenient to use.

The question-answer knowledge structure is intended to
reflect human information-processing capabilities. Our cog-
nitive maps of the world are not sets of possible states, each
described in exquisite detail to account for all possible con-
sequences of all possible decisions. Instead, people attend
to a few relevant aspects of a situation and use limited in-
formation to make a broad judgment that can be refined
later, if necessary. People tend to set goals and monitor
their progress toward them in order to navigate a complex
world (Miller et al., 1960; Locke and Latham, 1990; Loewen-
stein, 1999). We advance the idea that the acquisition of
knowledge is also goal-oriented. We don’t simply seek out
information to maximize the data available to us or even
to optimize future decisions, but instead tend to seek an-
swers to questions that are either posed to us or that we
pose to ourselves. Questions are, therefore, very much like
informational goals or reference points. Indeed, focusing on
a question that one cannot answer – e.g., a puzzle one can-
not figure out – can torment a person and at the same time
motivate the search for an answer, much as a high reference
point can simultaneously detract from utility and motivate
one to strive to reach it.

2. THEORETICAL FRAMEWORK

2.1 Cognitive States
Traditional economic theory assumes that utility is a func-

tion of consumption bundles or material outcomes, or (per-
haps subjective) distributions thereof. Our basic premise
is that utility depends not only on such material outcomes
but also on one’s cognitive state, encompassing the attention
paid to each of the issues or questions that one is aware of
as well as subjective judgments about the possible answers
to these questions. While people have preferences about
their beliefs (and the attention paid to them), we do not
treat beliefs (or attention) as choice variables. People can
choose whether or not to acquire information that will in-
fluence beliefs, but we assume that one’s beliefs, given one’s
information, are constrained by Bayesian inference.

While there surely is an infinite set of possible states of the
world, we assume, realistically we believe, that a person can
only conceive of a finite number of questions at any one time.
We represent awareness with an array of ‘activated’ questions
and a remaining set of ‘latent’ questions. Activated ques-
tions are those that the individual is aware of. Latent ques-
tions are those that the individual could become, but is not
currently, aware of. The finite subset of questions a person is
aware of (i.e., paying at least some attention to) is denoted
Q. We label these activated questions as Q1, . . . , Qm. A vec-
tor of attention weights w = (w1, . . . , wm) ∈ Rm+ indicates
how much attention each activated question gets.3 These

3We can think of the (presumably infinite) set of latent ques-
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attention weights depend on three factors that we designate
“importance,”“salience,” and “surprise.” We return to define
and discuss these concepts in Section 3.

A question Qi has a countable set4 of possible (mutu-
ally exclusive) answers Ai = {A1

i , A
2
i , . . .}.5 A person may

not know the correct answer to a given question, but rea-
sonably has a subjective belief about the probability that
each answer is correct.6 (The subjective probabilities across
different questions may well be mutually dependent.) This
framework allows us to capture information gaps, which are
represented as activated questions lacking known correct an-
swers, as depicted in Table 2.

Question Answer Belief
Latent – Unawareness

Activated
Unknown Uncertainty l information gapKnown Certainty

Table 2: The question-answer knowledge structure.

Anticipated material outcomes, or prizes, can also be in-
corporated into this framework. We let X denote a count-
able set of prizes – i.e., material outcomes. The subjective
probability over these prizes is in general mutually depen-
dent with the subjective probability over answers to acti-
vated questions; that is, the receipt of new information of-
ten leads to revised beliefs about the likelihood of answers
to many different questions as well as about the likelihood
of different material outcomes. Denote the space of answer
sets together with prizes as α = A1 × A2 × · · · × Am ×X.
Thus, given a state of awareness defined by the set of acti-
vated questions Q,7 we represent a person’s cognitive state
C with a subjective probability measure π defined over α
(i.e., over possible answers to activated questions as well as
eventual prizes) and a vector of attention weights w. We de-
note the set of all possible cognitive states as C = ∆(α)×Rm+
(with the notation ∆(α) referring to the space of probability
distributions over α with finite entropy. The restriction to
distributions with finite entropy serves a technical purpose,
but it should not trouble us – intuitively, it means that a
person cannot be aware of an infinite amount of informa-
tion, which is also the basis for our assumption that the set
of activated questions is finite.). Each marginal distribution
πi specifies the subjective probability of possible answers to
question Qi, and similarly πX specifies the subjective prob-
ability over prizes.8

The formal representation of a cognitive state is depicted
in Table 3. Consider, for example, a college professor decid-
ing whether or not to look at her teaching ratings. The set

tions as having attention weights of zero.
4We use the term countable here to mean at most countable.
The restriction of a countable set of answers to a countable
set of possible questions does still allow an uncountable set
of possible states of the world, but as awareness is finite, the
precise state of the world would be unknowable.
5We assume that there is no such thing as an answer that
is disconnected from a question.
6By subjective probability, we mean personal probability,
but we take it to be observable by direct elicitation.
7In most cases, we will assume that activation of questions
is determined exogenously – i.e., by the environment. We
don’t model growing awareness (see Karni and Vierø, 2013).
8For any Ã ⊆ Ai, we have πi(Ã) = π(A1 × · · · × Ai−1 ×
Ã ×Ai+1 × · · · × Am ×X).

of activated questions (and possible answers) might include:
“How many of my students liked my teaching?” (0, 1, 2, . . . );
“Did they applaud on the last day of class?” (yes/no); “How
good a teacher am I?” (great, good, so-so, bad, awful); “Will
I get tenure?” (yes/no). Prior belief about the first ques-
tion might be quite uncertain. The answer to the second
question, on the other hand, might already be known with
certainty. There may or may not be much uncertainty about
the third and fourth questions. All of these beliefs (to the
extent they are uncertain) are jointly dependent. The mate-
rial outcome might be next year’s salary, which would also
depend on (but not be completely determined by) whether
or not she gets tenure. Looking at the ratings will defini-
tively answer the first question and may resolve some, but
not all, of the uncertainty surrounding the other issues.

2.2 Actions
A decision maker has the possibility of taking actions with

two kinds of effects: informational actions contribute to sub-
jective judgments about the world by answering a question;
and instrumental actions affect the chances of receiving var-
ious prizes (outcomes). For example, wagering on the color
of a ball drawn from an urn is an instrumental action. Ex-
amining the contents of the urn is an informational action.
Informational actions affect the subjective probability mea-
sure through the conditioning of beliefs on the discovered an-
swer. Instrumental actions affect beliefs directly by changing
the distribution over prizes conditional on subjective judg-
ments. Both instrumental and informational actions also
impact attention weights through their respective effects on
importance and surprise. Note that some actions will have
both instrumental and informational effects. Examples in-
clude paying a fee for a property value appraisal or hiring a
private eye.

At any point in time an individual can be characterized
by a prior cognitive state consisting of subjective probabil-
ity measure π0 and attention weight vector w0. Actions, in
general, are operators on cognitive states that map to new
cognitive states or to distributions over cognitive states. A
purely instrumental action acting on the prior cognitive state
determines a particular new cognitive state. Typically, it
preserves the prior subjective judgment about the probabil-
ity of each answer set and then specifies a new distribution
over prizes conditional on each possible answer set. An in-
strumental action may also affect the importance of various
questions (as formalized in the next section) and thereby in-
fluence the attention weights. For example, the decision to
participate in a karaoke session will likely raise the attention
weight on the question “Am I a good singer?”

Acquiring information also changes one’s cognitive state.
Ex ante, as one does not know which answer will be dis-
covered, the prospect of acquiring information offers the de-
cision maker a lottery over cognitive states. Upon learn-
ing answer Ai to question Qi, one’s subjective probability
measure over ∆(α) changes from π0 to πAi = π0(·|Ai).9
We assume Bayesian updating here, which means that ex
ante, before one knows what one will discover, an informa-
tional action determines a distribution over subjective judg-
ments such that the expectation of this distribution equals
the prior judgment. That is, by the law of total probability,

9We thus denote a belief with complete certainty in A×x as
πA×x.
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Activated Questions Possible Answers Subjective Probabilities∗ Attention Weights

Q1 A1 = {A1
1, A

2
1, . . .} [π1(A1

1), π1(A2
1), . . .] w1

...
...

...
...

Qm Am = {A1
m, A

2
m, . . .} [πm(A1

m), πm(A2
m), . . .] wm

Possible Prizes
N/A X = {x, x′, x′′, . . .} [πX(x), πX(x′), . . .] N/A

∗Answers to different questions are not generally independent. Typically, the joint probability measure π 6= π1 · · ·πm · πX .

Table 3: Representation of a cognitive state.

∑
Ai∈Ai

π0
i (Ai)π

Ai = π0. An informational action would
decrease expected entropy because conditioning reduces en-
tropy (see, e.g., Cover and Thomas, 1991, pg. 27). New
information generates surprise (as formalized in the next
section), which changes the attention weights too. Given
the prior attention weight vector w0 based on salience and
importance, we let wAi denote the new attention weight vec-
tor immediately after learning Ai, resulting from surprise at
this discovery.

2.3 Preferences over (Distributions of) Cogni-
tive States

The conventional theory of choice under risk assumes that
a lottery over outcomes is evaluated according to its ex-
pected utility. Given that we may think of an informational
action as creating a lottery over cognitive states, we make
the natural assumptions leading to an expected utility rep-
resentation in this new domain.

Independence Across Cognitive States
We assume that there is a complete and transitive prefer-

ence relation � on ∆ (C) that is continuous (with respect to
an appropriate topology)10 and that satisfies independence,
so there exists a continuous expected utility representation
u of � (von Neumann and Morgenstern, 1944).

The assumption here is that when information could put
a person into one of many possible cognitive states, prefer-
ence is consistent with valuing each possible cognitive state
independently of any other cognitive states the person might
have found herself in.

This might seem to imply that the utility of a state of
uncertain knowledge is equal to the expected utility of each
of the possible beliefs – e.g., that being uncertain of whether
the object of my desire reciprocates my affections provides
the same utility as the sum of probabilities times the utilities
associated with the possible outcome belief states. It need
not, because (as we discuss in detail below) obtaining the
information, and indeed the specific information one obtains,
is likely to affect one’s attention weights. Such a change in
attention can encourage or discourage a decision maker from
resolving uncertainty, depending on whether the news that
will be revealed is expected to be good or bad.

2.4 Choosing Between Sequences of Actions
The discovery of information following an initial action

can change the availability or desirability of subsequent ac-
tions. For example, the information in a college professor’s

10The induced topology on C (derived from the order topol-
ogy on ∆ (C)) should be a refinement of the order topology
on C (see Nielsen, 1984).

teaching ratings could help her decide whether to enroll in
a teacher improvement class. A sequence of actions can be
analyzed with the convention that an action operator passes
through a distribution over cognitive states.11 Thus, we
represent a sequence of actions s acting on a cognitive state
(π,w) as s·(π,w) ∈ ∆(C).

Choice from among a set of sequences of actions S, where
early actions may reveal information that will inform later
actions, is represented as utility maximization: a sequence
s∗ ∈ S may be chosen by a decision maker in the cogni-
tive state (π,w) if s∗ ∈ arg maxs∈S u (s·(π,w)). We find
it useful to define a utility function over cognitive states,
contingent on the set of sequences of actions that may sub-
sequently be chosen:

U(π,w | S) = max
s∈S

u (s·(π,w)) . (1)

In the example of the professor’s teaching ratings, the set
of available subsequent actions is to enroll in the teacher
improvement class or not to enroll in the class. Looking
at the ratings resolves a lottery over cognitive states, each
of which having utility that is conditional on making the
optimal choice of one of these subsequent actions.

We define the desirability of a sequence of actions s in cog-
nitive state (π,w) as D(s |π,w) = u (s·(π,w))−u (π,w).12

Desirability is simply marginal utility relative to the trivial
‘action’ of doing nothing.

3. PSYCHOLOGICAL INSIGHTS
In this section we introduce a number of specific psycho-

logical insights that lead us to specify a utility function that
generates a wide range of testable predictions concerning
informational phenomena. These insights help us charac-
terize the factors that influence the level of attention paid
to a question as well as to identify distinctly the valence of
beliefs and the desire for clarity.

3.1 Attention
Neuroeconomic research indicates that attention shapes

preference (Fehr and Rangel, 2011). Attention weights in
our model specify how much a person is thinking about par-
ticular beliefs and, in turn, how much those beliefs directly
impact utility. We may think of beliefs as having intrinsic
value, which is then amplified by these attention weights.

11Analogous to the standard assumption in decision under
risk, the model assumes reduction of compound distributions
over cognitive states. This does not imply the traditional
reduction of compound lotteries.

12The degenerate distributions in ∆ (C) correspond to indi-
vidual states of knowledge. With the standard abuse of no-
tation, we refer to the utility of the degenerate distribution
on (π,w) ∈ C as u(π,w).

144



Our model (assuming monotonicity with respect to atten-
tion weights, as described in Section 4) provides a natural
distinction between beliefs that have positive or negative
intrinsic value: beliefs are positive specifically when more
attention enhances utility and are negative in the opposite
case. That is, a person likes thinking about (i.e., putting
more attention weight on) positive beliefs and does not like
thinking about negative beliefs.

Here we formalize the concepts of importance, salience,
and surprise, all of which, we assume, contribute to atten-
tion weight. The importance γi of a question Qi reflects the
degree to which one’s utility depends on the answer. Thus,
for example, for an egocentric, but insecure, individual, the
question, “Do other people like me?” is likely to be of great
importance because the answer matters to the individual.
Salience, distinctly, reflects the degree to which a particular
context highlights the question. If, for example, an individ-
ual hears that another person was talking about her (with
no further details), the question of whether the comments
were favorable or not will become highly salient. We denote
the salience of question Qi as σi ∈ R+. Finally, surprise
is a factor that reflects the dependence of attention on the
dynamics of information revelation, and specifically on the
degree to which receiving new information changes one’s be-
liefs. If, having believed that she was generally well-liked,
our individual were to discover that the comments about
her were actually unfavorable, the discovery, necessitating a
radical change in her belief, would be quite surprising (and,
as we presently assume, would increase her attention to the
question). We denote the surprise associated with a revised
belief about question Qi as δi. We assume that the attention
wi on an activated question Qi is a strictly increasing func-
tion of this question’s importance γi, its salience σi, and the
surprise δi associated with it.

Importance
The importance of a question depends on the spread of the
utilities associated with the different answers to that ques-
tion. The degree to which an individual’s utility varies with
the answers to a question depends both on the magnitude of
the utility function and on the perceived likelihood of differ-
ent answers. Continuing with the example of the question
of how well-liked an individual is, one could distinguish two
relevant traits: egocentrism – the degree to which the in-
dividual cares about being well-liked; and insecurity – the
dispersion of the individual’s subjective probability distribu-
tion across possible answers. By our definition of the con-
cept, importance should be positively related to both traits.

Given a particular prior subjective probability measure
π0 and a set S of sequences of actions available to the deci-
sion maker, the importance γi of question Qi is a function
(only) of the likelihood of possible answers and the utilities
associated with these answers, captured as

γi = φ

(〈
π0
i (Ai), U

(
πAi ,wAi | S

)〉
Ai∈ supp(π0

i )

)

where U is the utility function defined in Equation (1).
Without specifying the precise form of this function φ, we
assume only that it (i.e., importance) increases with mean-
preserving spreads of the (subjective) distribution of utilities
that would result from different answers to the question, and
that it is invariant with respect to constant shifts of util-
ity. Thus, a question is important to the extent that one’s

utility depends on the answer. Raising the stakes increases
importance. On the other hand, if an answer is known with
certainty, then by this definition nothing is at stake, so the
underlying question is no longer important. While acquiring
information will affect the importance of the questions being
addressed, it takes time to adapt to news, so there should be
some delay. We assume that the importance of a question is
updated only when the new information is incorporated into
a new default subjective probability measure.

Our definition of importance is, admittedly, circular. Im-
portance depends on utility, which in turn depends on the
attention weight, but importance also contributes to atten-
tion weight. There is, likely, some psychological realism to
this circularity which captures the dynamic processes giving
rise to obsession: attention to a question raises its impor-
tance, and the elevated importance gives rise to intensified
attention. If we assume that these processes unfold instanta-
neously, then importance (and, in turn, attention weight and
utility) will be a fixed point of this composition of functions.
We can make simple comparisons of importance without go-
ing to the trouble of specifying precise values.

Salience
The salience of a question depends on a variety of exogenous
contextual factors. For example, a question could be salient
if it has recently come up in conversation (i.e., it has been
primed) or if other aspects of the environment remind an
individual about it. Alternatively, a question could be more
salient to an individual if the answer is, in principle, know-
able, and even more so if other people around her know the
answer but she does not.

Often a question may be salient despite being unimpor-
tant. Continuing the prior example, even if an individual
deems others’ perceptions of her as unimportant, the ques-
tion of her popularity might nonetheless be highly salient
if the individual was asked, “Do you know what x thinks
of you?” Conversely, there are myriad questions that are
important by the definition just provided, but which lack
salience. There might be numerous people whose opinion of
us we would care about and be unsure of, but unless some-
thing raises the issue in our mind, we are unlikely to focus
on it. It seems natural to think that some degree of salience
is a necessary, and sufficient, condition for attention (while
some degree of importance is not). Thus, we assume that
a question Qi is activated (i.e., has strictly positive atten-
tion weight wi > 0) if and only if it has positive salience
σi > 0. Further, we assume that attention weight wi has
strictly increasing differences (i.e., a positive cross-partial
derivative, if we assume differentiability) in (γi, σi). That
is, an increase in importance produces a greater increase in
attention for a more salient question.

Surprise
The third factor that we posit influences attention is the sur-
prise one experiences upon acquiring new information. Sur-
prise reflects the degree to which new information changes
existing beliefs. A natural measure of surprise was proposed
in a theoretical paper by Baldi (2002) and, in an empiri-
cal follow-up investigation (Itti and Baldi, 2009), shown to
predict the level of attention paid to information. Incor-
porating the insights from this line of research, we assume
that when the answer to a particular question Qj is learned,
thereby contributing information about the answers to asso-
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ciated questions and causing their subjective probabilities to
be updated, the degree of surprise associated with a new be-
lief about question Qi can be defined as the Kullback-Leibler

divergence of π
Aj

i against the prior π0
i :

δi(π
Aj

i ||π0
i ) =

∑

Ai∈Ai

π
Aj

i (Ai) log
π
Aj

i (Ai)

π0
i (Ai)

.

Surprise is positive with any new information, and is greatest
when one learns the most unexpected answer with certainty.
However, the feeling of surprise is not permanent. We as-
sume that when the decision maker adapts and gets used
to this new knowledge (formally, when the default subjective
probability measure is reset), it is no longer surprising.

The Belief Resolution Effect
The impact of new information on attention is greatest when
uncertainty about a question is resolved completely. Sur-
prise immediately spikes, but in the long run fades, and the
underlying question becomes unimportant because, with the
answer known, there is no longer a range of possible answers.
Taken together, these factors create a pattern of change in
attention weight following the discovery of a definitive an-
swer, what we call the belief resolution effect – when an an-
swer is learned with certainty, there is an immediate boost
in attention weight on it, but over time this attention weight
falls to a lower level. Specifically, when the decision maker
adapts and the certain belief is incorporated into the de-
fault subjective probability measure, the question then re-
ceives less attention. It is as if the brain recognizes that
because a question has been answered, it can move on to
other questions that have yet to be addressed. Janis (1958)
recognized the belief resolution effect when he observed that
surgical patients getting information about their upcoming
procedures initially worry more about the surgery but sub-
sequently experience less anxiety.

3.2 Valence and Clarity
It is useful to distinguish two sources of a belief’s intrin-

sic value: valence and clarity. Valence refers to the value
attached to answers to questions. To illustrate the concept
of valence, we return to the example of a professor’s belief
about her teaching ability. Being a good (or bad) teacher
carries intrinsically positive (or, respectively, negative) va-
lence. Clarity refers to preferences between degrees of cer-
tainty, independent of the answers one is certain of. We
assume that, ceteris paribus, people prefer to have greater
clarity (i.e., less uncertainty or more definitive subjective
beliefs). The aversion that people feel towards uncertainty
is reflected in neural responses in the anterior cingulate cor-
tex, the insula and the amygdala (Hirsh and Inzlicht, 2008;
Sarinopoulos et al., 2010). It manifests in physiological re-
sponses as well. Subjects who know to expect an electric
shock, but who are uncertain whether it will be mild or in-
tense, show more fear – they sweat more profusely, and their
hearts beat faster – than subjects who know for sure that
an intense shock awaits (Arntz et al., 1992).

When valence and clarity pull in opposite directions, it
may be the case that people prefer a certain answer to a
subjective belief that dominates it on valence or that people
prefer uncertainty when it leaves space for better answers.
While the preference for clarity violates Savage’s (1954) sure-
thing principle, we do assume a weaker version of it:

One-Sided Sure-Thing Principle
For any π ∈ ∆(α), let supp(π) ⊆ α denote the support of
π. If for all A×x ∈ supp(π) we have u(π′,w) ≥ u(πA×x,w),
then u(π′,w) ≥ u(π,w), with the latter inequality strict
whenever there exist A′×x′ and A′′×x′′ ∈ supp(π) such
that A′ 6= A′′.

The one-sided sure-thing principle asserts that people al-
ways prefer a certain answer to uncertainty amongst answers
that all have valences no better than the certain answer
(holding attention weight constant).

A Measure of Uncertainty
The assumption of a preference for clarity means that there
is a preference for less uncertain subjective beliefs. A useful
measure of the uncertainty about a particular question is the
entropy of the subjective probability distribution over an-
swers (Shannon, 1948). The entropy of a subjective (marginal)
probability πi is H(πi) = −∑Ai∈Ai

πi(Ai) log πi(Ai) (with

the convention that 0 log 0 = 0).13 At one extreme, entropy
is high when there are many equally likely possible answers;
at the other extreme, there is minimal entropy of 0 when a
single answer is known for sure.

3.3 A Specific Utility Function
To make precise predictions about preferences for (or to

avoid) information, we consider a specific utility function
incorporating the preference for clarity and the role of at-
tention weights:

u(π,w) =
∑

x∈X
πX(x)vX(x) +

m∑

i=1

wi


 ∑

Ai∈Ai

πi(Ai)vi(Ai) −H(πi)


 . (2)

We represent the value of prize x as vX(x) and the valence
of answer Ai as vi(Ai). We now describe properties (some
quite strong and almost certainly not always satisfied) that
characterize (and necessarily imply) this utility function (see
Theorem 1 below).

4. CHARACTERIZATION OF THE UTILITY
FUNCTION

4.1 Properties
The utility function in Equation (2) satisfies the following

seven properties.

Independence Across Prizes
In Section 2 we assumed independence across cognitive states.
Independence might extend, as in traditional models, to ma-
terial outcomes, holding beliefs constant.

P1. Holding the rest of the cognitive state constant, the
preference relation satisfies independence across prizes if
u(πA,w) =

∑
x∈X π

A
X(x)u(πA×x,w).

Property (P1) implies belief-dependent expected utility over
lotteries that are independent of beliefs about the world. If

13The base of the logarithm in the entropy formula is arbi-
trary and amounts to a normalization parameter.
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we also were to assume belief-independent utility for prizes,
then we would gain the ability to reduce compound lot-
teries consisting of horse races as well as roulette lotter-
ies (Anscombe and Aumann, 1963) to single-stage lotteries.
However, we believe it is often the case that utility is belief-
dependent. We might say that a decision maker often has a
horse in the race.

Separability Between Questions
Additive separability of utility between questions means that
a person can place a value on a belief about a given question
without needing to consider beliefs about other questions.

P2. A utility function satisfies additive separability be-
tween questions if u(π,w) = uX(πX) +

∑m
i=1 ui(πi, wi).

14

Property (P2) may seem quite strong because we can imag-
ine representations of sensible preferences that are not ad-
ditively separable. For example, the value of a belief about
whether a car on sale has a warranty intuitively could de-
pend on the cost of the car in the first place (not to mention
one’s desire for a new car, one’s estimation of the costs of car
repairs, etc.). However, we may be able to represent these
preferences as separable after all. We might suppose that
these beliefs do have separable values but that they corre-
late with some other highly valued belief, perhaps about how
good a deal one can get on the car. That is, while intuition
tells us that the value of beliefs about different questions
(e.g., “does she like me?” and “does she have a boyfriend?”)
is often interdependent, this dependence may be mediated
by the existence of additional questions (e.g., “will she go
out with me?”), beliefs about which may be mutually de-
pendent, but independently valued.

Monotonicity with respect to Attention Weights
Preferences satisfy the property of monotonicity with re-
spect to attention weights if whenever increasing attention
on a given belief enhances (or diminishes) utility, it will do
so regardless of the absolute level of attention weight. At a
psychological level, the interpretation of this monotonicity
property is that when a belief is positive, more attention
to it is always better, and when a belief is negative, more
attention is always worse. In fact, the property provides a
natural definition of whether a belief is positive or negative.

P3. Preferences satisfy monotonicity with respect to at-
tention weights if for any w, ŵ, and ˆ̂w ∈ Rm+ such that
wi = ŵi = ˆ̂wi for all i 6= j and ˆ̂wj > ŵj > wj , we have
u(π, ŵ) ≥ u(π,w) if and only if u(π, ˆ̂w) ≥ u(π, ŵ), with
equality on one side implying equality on the other, for all
π ∈ ∆(α).

In the case that these inequalities hold strictly, we say that
πj , the belief about question Qj , is a positive belief. If they
hold as equalities, we say that πj is a neutral belief. And, in
the case that the inequalities hold in the reverse direction,
then πj is a negative belief.

14A subset of questions Q̃ ⊂ Q can also be separable, in
which case u(π,w) =

∑
i:Qi∈Q̃ ui(πi, wi) + u−Q̃(π−Q̃,w−Q̃)

where π−Q̃ is the marginal distribution over answers to the
remaining questions and prizes and the vector w−Q̃ contains
the remaining components of w.

Linearity with respect to Attention Weights
The next property describes how changing the attention on
a belief impacts utility. For any given attention weight, the
marginal utility of a change in belief depends on what those
beliefs are and how much the individual values them. The
property of linearity with respect to attention weights means
that, in general, the marginal utility associated with such a
change in belief (assuming the utility of this belief is sepa-
rable) is proportional to the attention on that belief.

P4. When the utility of question Qi is separable, linearity
with respect to attention weights is satisfied if for any wi and
ŵi ∈ R+ and π′i and π′′i ∈ ∆(Ai), we have

ui(π
′
i, ŵi)− ui(π′′i , ŵi) =

ŵi
wi

(
ui(π

′
i, wi)− ui(π′′i , wi)

)
.

Property (P4) allows us, in the case of separable utility, to
assign an intrinsic value v to beliefs such that ui(π

′
i, wi) −

ui(π
′′
i , wi) = wi (vi(π

′
i)− vi(π′′i )). We abuse notation by re-

ferring to the valence of answer Ai as vi(Ai), with it being
defined here as the intrinsic value vi of belief with certainty
in Ai. We have taken the liberty of specifying a precise
relationship between attention weights and utility as a con-
venient simplification; it should be noncontroversial because
we do not claim to have a cardinal measure of attention
weight.

Label Independence
Intuitively, the value of a belief should depend on how an
individual values the possible answers and on how probable
each of these answers is, and these factors (controlling for
attention weight of course) should be sufficient to determine
the utility of any (uncertain) belief. In particular, the value
of a belief should not depend on how the question or the
answers are labeled.

P5. Label independence is satisfied if, when the utility of
questions Qi and Qj are separable, a bijection τ : Ai →
Aj , such that vi(Ai) = vj(τ(Ai)) and πi(Ai) = πj(τ(Ai)),
implies that vi(πi) = vj(πj).

Reduction of Compound Questions
The intuition behind the assumption of label independence
also seems to suggest that the utility of a belief perhaps
should not depend on the way the question giving rise to
the belief is asked, i.e., on whether a complicated question
is broken up into pieces. We should recall, however, that the
activation of a particular question directs attention to the
belief about this question. Thus, in general, the utility of a
belief will not be invariant to the question being asked. Still,
it may be the case that utility remains invariant when a com-
pound question is broken into parts as long as the attention
on each part is weighted properly. If utility remains invari-
ant upon setting attention weights on conditional questions
to be proportional to the subjective probabilities of the hy-
pothetical conditions, then we say that the utility function
satisfies the reduction of compound questions property. Fig-
ure 1 demonstrates the reduction of a compound question
with appropriate attention weights on each subquestion.

P6. A separable utility function satisfies the reduction of
compound questions property if whenever there is a partition
ζ of the answers Ai (to question Qi) into ζ = {Ai1 , . . . ,Ain}
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Question Qi 
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Answers 
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Question Qj 
 

Attention   
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Question Qi1  
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weight .6 w  

Question Qi2  

Attention   
weight .4 w  

60% 

40% 

Answers 
 

 A1 

 
 A2 

 
 
 
 

A3 

 
A4 

67% 

33% 

75% 

25% 

Figure 1: Decomposition of a compound question.

and a bijection τ : ζ → Aj into the answers to some question
Qj such that for any h ∈ [1, n] and any Ai ∈ Aih ,

vi(Ai) = vj(τ(Aih)) + vih(Ai)

and

πi(Ai) = πj(τ(Aih)) · πih(Ai),

it follows that

ui(πi, ω) = uj(πj , ω) +

n∑

h=1

uih(πih , πj(τ(Aih)) · ω).

Ruling Out Unlikely Answers Increases Clarity
A final property operationalizes the preference for clarity.
Controlling for the valence of one’s beliefs, by considering
situations in which one is indifferent between different pos-
sible answers to a question, there should be a universal aver-
sion to being uncertain about the answer to an activated
question. As a building block toward quantifying the un-
certainty in a subjective belief, we assert here that when an
unlikely (and equally attractive) answer is ruled out, uncer-
tainty decreases (and thus the utility of that uncertain belief
increases).

P7. Ruling out unlikely answers increases clarity if, when
the utility of question Qi is separable and all answers to
this question have the same valence, i.e. vi(Ai) = vi(A

′
i) for

all Ai and A′i ∈ Ai, then for any π where without loss of
generality πi(A

h
i ) is weakly decreasing in h and for any π′

such that π′i(A
h
i ) ≥ πi(A

h
i ) for all h ∈ [1, h̄] (with at least

one inequality strict) and π′i(A
h
i ) = 0 for all h > h̄, for some

h̄, we consequently have vi(π
′
i) > vi(πi).

4.2 Utility Representation Theorem

Theorem 1. If the properties P1-P7 are satisfied, then

u(π,w) =
∑

x∈X
πX(x)vX(x) +

m∑

i=1

wi


 ∑

Ai∈Ai

πi(Ai)vi(Ai) −H(πi)


 .

Proof. Linearity with respect to attention weights al-
lows us to pull an attention weight on question Qi outside
of the utility ui(πi, wi) = wivi(πi) (using a neutral belief to
calibrate vi). A partition of Ai into singletons Aih such that
vi(Ai) = vih(Ai) allows us, by reduction of the compound
question, to determine that the function F (πi) = vi(πi) −∑
Ai∈Ai

πi(Ai)vi(Ai) does not depend on vi(Ai) for any

Ai ∈ Ai. Moreover, −F (·) satisfies Shannon’s (1948) axioms
(continuity, increasing in the number of equiprobable an-
swers, and reduction of compound questions) characterizing
the entropy functionH(πi) = −∑Ai∈Ai

πi(Ai) log πi(Ai).

5. INFORMATION ACQUISITION AND AVOID-
ANCE

We can apply our utility function to decisions about infor-
mation acquisition or avoidance. We develop our analysis in
a companion paper (Golman and Loewenstein, 2015a), and
we provide a broad outline here of its implications. The de-
sire for information, in our model, can be decomposed into
three distinct motives: recognition of the instrumental value
of the information; curiosity to fill the information gap(s);
and motivated attention to think more or less about what
could be discovered. The instrumental value of informa-
tion arises from its impact on subsequent actions. As in the
standard account of informational preferences, it is defined
as the difference between the expected utility of subsequent
actions conditional on having the information and the util-
ity expected in the absence of the information. Curiosity
arises from the expected reduction in uncertainty upon ac-
quiring information. It is defined as the expected utility of
revised beliefs, given prior levels of attention. The magni-
tude of curiosity depends on the attention devoted to each
information gap that stands to be addressed. Motivated at-
tention arises from the surprise upon acquiring information.
It is defined as the expected utility from increased attention
on whatever happens to be discovered, conditioning on all
possible outcomes. Motivated attention is a motive to ac-
quire information that’s expected to be good and to avoid
information that’s expected to be bad.

Putting the three motives together, our model makes many
predictions about when, and the degree to which, informa-
tion will be sought or avoided. When anticipated answers
are neutral or even potentially positive, information should
be sought. The strength of the desire for this information
should increase with the number of attention gaps that can
be addressed, the attention paid to them, and the valence of
the possible outcomes. However, when anticipated outcomes
are sufficiently negative, information would be avoided. This
“ostrich effect” when anticipating bad outcomes is consis-
tent with a growing body of empirical evidence (see, e.g.,
Karlsson et al., 2009; Eil and Rao, 2011). In addition, the
belief-resolution effect in our model leads to a novel predic-
tion: individuals who discount the future less should be less
likely to exhibit the ostrich effect and more likely to acquire
information despite anticipated bad news.

6. RISK AND AMBIGUITY PREFERENCE
Section 5 outlines how the model we have developed allows

us to describe a desire to acquire or to avoid information.
We can apply this same model to an entirely new domain:
preferences about wagers that depend on missing informa-
tion. Risk and ambiguity aversion are complex topics, and
we develop these applications in depth in a companion pa-
per (Golman and Loewenstein, 2015b). Here, we provide a
broad outline of the model’s implications in this domain.

Decision making under risk and under ambiguity both ex-
pose decision makers to information gaps. Imagine a choice
between a gamble and a sure thing. Deciding to play the
gamble naturally focuses attention on the question: what
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will be the outcome of the gamble? Of course, deciding to
not play the gamble does not stop an individual from pay-
ing some attention to the same question (or, if not choos-
ing the gamble means it will not be played out, the related
question: what would have been the outcome of the gam-
ble?) but playing the gamble makes the question more im-
portant, and that brings about an increase in the attention
weight on the question. If the individual is aware of this ef-
fect, which is natural to assume, then whether it encourages
risk taking or risk aversion will depend on a second factor:
whether thinking about the information gap is pleasurable
or aversive. When thinking about the missing information
is pleasurable, then the individual will be motivated to in-
crease attention on the question, which entails betting on it.
Conversely, when thinking about the missing information is
aversive, the individual will prefer to not bet on it. This
may help to explain why, for example, people generally pre-
fer to bet on their home teams rather than on other teams,
especially in comparison to the home team’s opponent.

Decision making involving uncertainties that are ambigu-
ous is similar to the case with known risks, but with an
additional wrinkle: with ambiguity, there are additional in-
formation gaps. In a choice between a sure thing and an
ambiguous gamble, for example, a second relevant ques-
tion (in addition to the one above about the outcome of
the gamble) is: what is the probability of winning with the
ambiguous gamble? (And there may be additional relevant
questions that could inform someone about this probability,
so even a Bayesian capable of making subjective probabil-
ity judgments would be exposed to these information gaps.)
Again, betting on the ambiguous gamble makes these ques-
tions more important and thus will increase the attention
weight on them. So, desire to play the gamble will be in-
creasing with the degree to which thinking about the gamble
is pleasurable. To the extent that abstract uncertainties are
not pleasurable to think about, this model provides a novel
account of standard demonstrations of ambiguity aversion,
including those first generated by Ellsberg (1961) in his sem-
inal paper on the topic.

7. DESIRE FOR WISDOM
Our utility model can be used to describe preferences be-

tween knowing and not knowing. But another comparison
is also of interest, albeit harder to investigate empirically –
the difference between awareness and unawareness. While
we cannot easily give a person the choice whether or not
to become aware of a question, we can at least introspect.
We might posit that awareness of meaningful questions is
a source of utility. Equation (2), the utility function which
represents preferences between cognitive states given a fixed
set of activated questions Q, might be augmented with a
term vQ(Q) capturing the intrinsic value of awareness of
particular issues.

Wisdom, the combination of awareness and clarity,15 is,
or at least tends to be, preferable to ignorance. We of course
must allow exceptions if we are serious that beliefs have va-

15We are aware that this may not be the most common usage
of the word wisdom, but the distinction between knowledge
acquired from a state of uncertainty and knowledge acquired
from a state of unawareness is rarely made explicit. The
term, “wisdom” seems to adequately capture this distinction
if we think of a wise man or woman as not only having the
right answers, but also asking the right questions.

Question Answer Belief
Latent – Unawareness↓ Awareness↓WisdomActivated

Unknown Uncertainty ↓ Clarity
Known Certainty

Table 4: Wisdom, the combination of awareness and
clarity.

lence that may be negative. The popular adage that “ig-
norance is bliss” expresses concern for the negative beliefs
that awareness may entail. However, in many natural situ-
ations, a person may reasonably anticipate that newfound
awareness will bring about neutral or even positive beliefs.
In such contexts, information and awareness may be simul-
taneously acquired. For example, a bird-watcher typically
would strictly prefer to learn the name of a previously un-
noticed songbird rather than to remain unaware of its exis-
tence. Curiosity is behind the desire to catch the name upon
becoming aware of the bird’s existence, even though the par-
ticular name does not really matter, but utility from aware-
ness implies that opening, and then immediately closing, an
aversive information gap need not be zero sum. Rather,
discovering the new bird’s name, acquiring both the ques-
tion and the definitive answer, produces a net positive util-
ity gain, which is what we designate, in the context of our
model, the utility of wisdom. We find the desire for wis-
dom in individuals’ varied pursuits of insight and expertise,
from a naturalist’s passion for identifying flora and fauna to
a fan’s thirst for new baseball statistics or a connoisseur’s
discriminating taste for wine.16

Aristotle in 350 B.C. asserted,“All men by nature desire to
know.” John Stuart Mill agreed, in his classic Utilitarianism,
arguing that, “It is better to be a human being dissatisfied
than a pig satisfied; better to be Socrates dissatisfied than a
fool satisfied.” We too assert that knowledge can be a very
real source of utility. A perspective that information derives
value solely from its ability to yield material consumption
fails to appreciate the most profound benefits provided by
information, the knowledge and wisdom it confers.
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ABSTRACT
Backward and forward induction can be viewed as two styles
of reasoning in dynamic games. Since each prescribes tak-
ing a different attitude towards the past moves of the other
player(s), the strategies they identify as rational are some-
times incompatible. Our goal is to study players who are able
to deliberate between backward and forward induction, as
well as conditions under which one is superior to the other.
This extended abstract is our first step towards this goal. We
present an extension of Stalnaker’s game models [34, 35], in
which the players can make “trembling hand” mistakes. This
means that when a player observes an unexpected move, she
has to figure out whether it is a result of a deliberate choice
or a mistake, thereby committing herself to one of the two
styles of reasoning.

1. INTRODUCTION AND MOTIVATION
We begin with a motivating example. Consider the game

G1 depicted in Figure 1. There are two players: Ann (A) and
Bob (B). Ann moves first (node h0) and can either choose
to go out (O), immediately ending the game, or stay in the
game (I). If she chooses to stay in, node h1 is reached. At h1,
Ann and Bob move simultaneously (Ann’s available actions
are u and v while Bob’s are a, b and c). The structure of this
game is similar to the extensively studied Battle of the Sexes
with an Outside Option (see, for instance, [7, 14, 37]).

A, B

h1

2, 2 2, 0 2, 1 1, 1 1, 5 4, 0

A

h0

3, 3

I

O u, a u, c d, a d, cu, b d, b

Figure 1: Motivating Example
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Suppose that Bob initially believes that Ann is going to
choose O. To his amazement, however, Ann stays in the
game. Now Bob has to figure out why Ann decided to play
I, what she will choose at node h1, and, most importantly,
what is his own best response. There are two plausible “lines
of reasoning” for Bob. The first goes as follows: Ann chose
I at h0 because she is hoping for a payoff greater than 3.
Thus, Ann must be hoping that the game will terminate in
the rightmost node. Hence, the rational choice for Bob is
b, which—assuming his conjecture about Ann is correct—

would result in a payoff of 5. Alternatively, Bob can avoid
speculating about the reasons behind Ann’s move and focus
on trying to figure out what is the rational thing for her to
do at h1. Although Ann might hope initially that the game
will end in the rightmost node, she must realize that Bob
will never choose c since it is strictly dominated by a. So,
guaranteeing a payoff of 2, u is Ann’s rational choice at h1.
Clearly, if Bob convinces himself that Ann is choosing u,
playing a is his best response. The two lines of reasoning,
thus, lead to different recommendations for Bob. The first
is an example of the so-called “forward induction reasoning”
requiring that the players think critically about the observed
past choices of their opponent(s) and find plausible explana-
tions for these choices [7, 24, 28, 35, 37]. The second can be
called “backward induction reasoning” requiring the players
to only reason about their opponents’ future behavior and
not about their past moves [2, 12, 28, 30, 35].

There are many characterizations of both forward and
backward induction reasoning in the game theory literature
(cf. [7, 28, 35]). These formal renderings match the infor-
mal explanation given above, recommending that Bob plays
a and b, respectively. However, the formal models do not
solve what we take to be Bob’s real challenge, namely, de-
ciding which of these two lines of reasoning is more plausi-
ble in the present case.1 Notice that a wrong choice leads
to an unwelcome consequence. Suppose that Bob interprets
Ann’s choice of I as an attempt to get a higher payoff, but
it turns out that she did it for some other reason—e.g. she
was careless—and that, at h1, she decides to play u. In this
case, Bob ends up with 0. Now, suppose that Bob disre-
gards Ann’s previous move, as backward induction suggests
he should, but it turns out that Ann is hoping to get 4. In
this case, Bob’s payoff is 1 instead of 5.

These considerations bring us to the following general
question: How can a player deliberate between backward and
forward induction in cases in which both seem plausible (at
least prima facie) while dictating incompatible choices? Ad-
mittedly, in the above situation, Bob seems to be faced with
a particularly difficult choice, since his information does not
seem to sway the scales in favor of one or the other style of
reasoning. But suppose that he is in a situation in which the
players are prone to making mistakes relatively frequently—
we elaborate on this notion below; for now simply think of

1We do not mean to suggest that Bob is explicitly applying
backward or forward induction himself. Rather, a theorist
can identify his reasoning as an instance of one or the other.
In our models, the players’ “choice” of reasoning style will
be traced back to their prior beliefs about how likely it is
that their opponents may make a mistake.
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the so-called“trembling hand mistakes” [32]: Ann chooses O,
but plays I instead. In this case, backward induction reason-
ing should be preferred. Or let’s say that Ann and Bob are
playing a different game, G2, in which mistakes are still pos-
sible, but Ann has two opportunities to go out before reach-
ing the node at which the players move simultaneously—see
Figure 2. Intuitively, if Bob observes Ann play I1, it is rea-
sonable for him to interpret her move as a mistake. Suppose,
however, that Bob subsequently observes that Ann plays I2.
Now, the interpretation of her previous choices that is sug-
gested by forward induction seems more plausible (we could
of course modify the game further by adding more opportu-
nities for Ann to exit the game). What this all suggests is
that additional information about the context of the game—
e.g., how probable it is that players make mistakes—can help
the player settle on a style of reasoning.

Our ultimate goal is to study players that are able to de-
liberate between forward and backward induction, as well
as conditions which make each style of reasoning superior to
the other. The above considerations suggest that to do so
we need to endow standard game theoretic agents with (rel-
atively) rich beliefs. We use a model introduced by Stalnaker
[33, 34, 35, 36] to describe the players’ beliefs. In addition
to having beliefs about their opponents’ strategies and the
game—standard for Epistemic Game Theory [16, 27, 29]—
our players can also interpret observed behavior as either
the result of deliberate action or as a mistake.

This paper is structured as follows. Section 2 describes
the formal framework that allows us to represent the two
lines of reasoning discussed above: extensive games with si-
multaneous moves (Section 2.1), our extension of Stalnaker’s
model (Section 2.2), two notions of rationality (Section 2.3),
as well as an illustrative example (Section 2.4). In Section 3,
we argue that our model offers an illuminating perspective
on epistemic characterizations of backward induction and is
a conservative extension of Stalnaker’s model. Finally, Sec-
tions 4 and 5 discuss related work and outline a number of
directions for future research.

2. FRAMEWORK

2.1 Extensive games with simultaneous moves
The examples from the introduction are extensive games

with simultaneous moves.2 Following [26, Section 6.3.2],
we describe them as structures 〈N,Act,H, τ, {ui}i∈N 〉, where:

2We assume that the reader is familiar with the basics of
game theory. The formal definitions are included here to fix
notation.

• N is a finite set of players.

• Act is the set of actions available to the players. To
simplify notation, we assume that Act is partitioned
into sets of actions for each player. For player i ∈ N ,
let Acti ⊆ Act denote player i’s actions.

• H is a set of finite sequences of finite sequences of
elements of Act. Elements h ∈ H are called histories.
We assume H satisfies the following constraints:

– ε ∈ H, where ε denotes the empty history.

– If h ∈ H and h′ � h, then h′ ∈ H, where h′ � h
means that h′ is a initial segment of h. Formally,
we write h′ � h provided h = h′u where u is a
sequence of sequences from Act, and h′u denotes
the concatenation of h′ with u.

– Each h ∈ H is finite. That is, we restrict attention
to finite horizon games.3 We write len(h) for the
length of h (i.e., the number of elements in h).

A history h ∈ H is called a terminal history if
there is no h′ ∈ H such that h′ 6= ε and hh′ ∈ H.
Let Z ⊆ H denote the set of terminal histories. Let
V = H − Z be the set of non-terminal histories. Each
non-terminal history is associated with a simultaneous
decision problem for a set of players. For this reason,
we sometimes call elements of V decision nodes. For
h ∈ V , let A(h) be the possible extensions of h:

A(h) = {~a | h~a ∈ H and ~a is a sequence of actions}.

• τ is a turn function τ : V → ℘(N) assigning a set of
players4 to each non-terminal history h ∈ V . For each
i ∈ N , let Vi = {h ∈ V | i ∈ τ(v)} be the set of
non-terminal histories where player i moves. Similarly,
we define the set of actions available to i at a decision
node h ∈ Vi. For each h ∈ V and i ∈ τ(h), let Ai(h)
be the set of actions available to i at h:

Ai(h) = {a ∈ Acti | there is an ~a ∈ A(h) containing a}

If i 6∈ τ(h), then let Ai(h) = ∅. We impose an addi-
tional constraint to ensure that each decision node is

3This is a standard restriction in the literature on epistemic
characterization of backward induction.
4Throughout this article, we assume that for all h ∈ V ,
τ(h) 6= ∅. If we drop this assumption, then histories in
which τ(h) = ∅ should be interpreted as a move by nature.
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associated with a strategic game:5

– For each h ∈ V , A(h) = Πi∈τ(h)Ai(v).

• For each i ∈ N , ui : Z → R is a utility function.

A strategy for player i assigns an action to each of i’s
decision nodes. Formally, a strategy for player i is a function
si : Vi → Act where for all h ∈ Vi, si(h) ∈ Ai(h). Let Si
be the set of all strategies for player i. As usual, a strategy
profile is a sequence of strategies, one for each player (i.e.,
an element of Πi∈NSi). Given a strategy profile s, let si be
player i’s component of s and s−i the sequence of strategies
from s for all players except i (i.e., s−i ∈ Πj 6=iSj). Each
profile of strategies s generates a terminal history ρs ∈ Z.
We say that a non-terminal history is reached by a strategy
profile provided h is an initial segment of ρs.

A strategy for player i represents her conditional plan for
the game. It prescribes a choice for player i at all of i’s
decision nodes, including those that are ruled-out by the
strategy itself. Suppose that h ∈ Vi. An action a ∈ Acti(h)
rules out a decision node h′ ∈ Vi provided h � h′, but
h~a 6� h′ for any ~a ∈ A(h) containing a. In addition, we say
that a rules out action a′ provided a′ ∈ Ai(h

′) for some
decision node h′ ∈ Vi that is ruled-out by a.6 For example,
in Figure 1, A’s action O at h0 rules out the actions u and
d (because O rules out h1).

2.2 Game models
A game model describes the players’ beliefs during a

play of the game. As discussed in the introduction, we are
interested in representing players that allow for the possi-
bility that one or more of their opponents made a mistake.
This means that we must include states in which the moves
of player i (i.e., the observed behavior of player i) does not
match i’s choices. To make this precise, each state in the
game model will be associated with both strategies for the
players and sequences of actions representing the observed
behavior of the players.

The players’ behavior in a game is represented by a se-
quence of actions. Recall that histories h ∈ H are sequences
of sequences of actions (one action for each player whose turn
it is to move). For each h ∈ H, let behi(h) be the sequence
of i’s actions in h. Formally, behi is defined by induction on
the length of histories: behi(ε) = ε (at the initial node, none
of the players have made a choice), and

behi(h~a) =

{
behi(h)a if i ∈ τ(h) and ~a contains a

behi(h) i 6∈ τ(h)

5There is a hidden notational difficulty here. Since differ-
ent players move at different decision nodes, the indices of
the sequences of actions change from decision node to deci-
sion node. Formally, we represent a sequence ~a at decision
node h as a function ~a : τ(h) → ∪i∈τ(h)Ai(h) where for
each i ∈ τ(h), ~a(h) ∈ Ai(h). We write ~ai to denote the ac-
tion a ∈ Ai(h) such that ~a(i) = a and say ~a contains a.
This implicitly assumes that i ∈ τ(h) (otherwise ~ai is not
well-defined). Alternatively, we could assume that all players
move at every decision node and introduce notation to dis-
tinguish “active” players from “passive” players. The passive
players at a decision node would only have a single action
available for their choice. We follow the first approach in this
article.
6We are implicitly assuming that all the action labels are
unique. This assumption can be dropped, although it does
simplify the notation.

If X is a set, then X∗ is the set of all finite strings of X.
An i-history is a sequence of actions such that α = behi(h)
for some h ∈ H. Given an i-history α and a decision node
h ∈ Vi, let αh be the component of α describing the action
chosen at h. If α does not specify a move at h (either because
the previous moves in α rule out h or α is not a maximal
history), then αh is undefined. For instance, in Figure 1,
there are four A-histories (ε, O, Iu, and Id) and four B-
histories (ε, a, b, and c). We use Ou to denote the strategy
sA in which sA(h0) = O and sA(h1) = u (similarly, for
Od). Furthermore, we have Iuh0 = I, Iuh1 = u, and Oh1 is
undefined.

A player history may be a partial description of what that
player does in the game. This happens when the i-history α
does not specify a choice for i at a decision node h not ruled
out by α. Of course, if an i-history α specifies an action for
player i at a decision node h ∈ Vi, then α specifies an ac-
tion for i at each h′ such that h′ � h and h′ ∈ Vi. We are
interested in sets of player histories that represent possible
plays of the game. A set of player histories {αi}i∈N is co-
herent if there is a history h ∈ H such that for all i ∈ N ,
behi(h) = αi. Note that a set of i-histories may be coherent,
yet not completely describe a path trough the game. For in-
stance, {I, c} is a coherent set of player histories in the game
pictured in Figure 1: There are two histories h = (I)(u, c)
and h′ = (I)(d, c) such that behB(h) = behB(h′) = c and
behA(h) = behA(h′) = I. However, there is a unique history
representing the play of the game associated with a coher-
ent set of player strategies. The play of the game generated
by a coherent set of i-histories {αi}i∈N is the longest his-
tory h such that h � h′ for each h′ such that for all i ∈ N ,
behi(h

′) = αi. The play of the game associated with the co-
herent set {I, c} in the game in Figure 1 is h = (I). The play
of the game associated with a coherent set of player histo-
ries may be empty and need not be maximal. For example,
the following table lists the coherent sets of strategies and
the corresponding play of the game for the game pictured in
Figure 1.

Coherent sets player strategies Play of the game
{ε, ε} ε

{O, ε} (O)

{I, a}, {I, b}, {I, c}, {I, ε} (I)

{Iu, ε}, {Id, ε} (I)

{Iu, a} (I)(u, a)

{Iu, b} (I)(u, b)

{Iu, c} (I)(u, c)

{Id, a} (I)(d, a)

{Id, b} (I)(d, b)

{Id, c} (I)(d, c)

The sets {O, a}, {O, b} and {O, c} are not coherent.
Suppose that W is a nonempty set, elements of which

are called states. Each player i will be associated with two
functions βi and σi subject to the following constraints:

1. For each i ∈ N , βi(w) is a (possibly empty) i-history
and σi(w) is a strategy for player i.

2. The i-histories {βi(w)}i∈N are coherent.

We say that a player made a mistake at a history h ∈ Vi
in the world w provided her behavior is different than what
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is prescribed by her chosen strategy σi(w) at h. Formally, i
made a mistake at h ∈ Vi provided βi(w)h 6= σi(w)(h) (if
βi(w)h is defined).

Example. Recall the game in Figure 1 and consider three
states w1, w2 and w3. Suppose that σA(w1) = σA(w2) =
σA(w3) = Ou (recall that Ou is the strategy in which A
chooses O at h0 and u at h1, but it is not an A-history)
and βA(w1) = βA(w2) = βA(w3) = I. Thus, A made a
mistake at h0. The strategies for player B are σB(w1) = a,
σB(w2) = b, σB(w3) = c (again, these are the strategies
in which B chooses, respectively, a, b, and c at h1), and
βB(w1) = βB(w2) = βB(w3) = c. These states are pictured
as follows:

A : Ou;B : a

A : I;B : c

w1

A : Ou;B : b

A : I;B : c

w2

A : Ou;B : c

A : I;B : c

w3

The strategies σA(w) and σB(w) are displayed in the top
half of the circles and the histories βA(w) and βB(w) in
the bottom half (where w ∈ {w1, w2, w3}). If these states
describe A’s beliefs (i.e., they are the set of doxastic possi-
bilities for A), then A is certain that B will play c, but is
uncertain about exactly why B is playing c. It might be be-
cause B made a mistake (as in states w1 and w2) or because
B simply followed through on his plan to play c. Further-
more, A arrived at these beliefs under the supposition that
she (contrary to her chosen strategy) selected I at h0.

The players’ beliefs and belief revision policies are repre-
sented in the standard way (cf. [4, 10, 36]). Each player i ∈ N
is associated with a prior probability on the set of states,
Pi ∈ ∆(W ),7 and a plausibility ordering �i⊆ W × W
satisfying the following constraints: for each i ∈ N and for
each w ∈ W , Pi(w) > 0 (i.e., Pi is a full support prob-
ability measure); �i is a locally connected (for all w, v, x,
if w �i x and w �i v, then v �i x or x �i v) partial
order (reflexive and transitive relation) on W . The plausi-
bility ordering �i represents player i’s belief revision pol-
icy. For each i ∈ N and states w, v ∈ W , let w ≈i v iff
w �i v or v �i w. Since, �i is a locally complete par-
tial order, ≈i is an equivalence relation. For w ∈ W , let
[w]i = {v | w ≈i v} denote the equivalence class of w for
≈i, called i’s information cell. The intended interpretation
is that w ≈i v means that w and v are subjectively indistin-
guishable to player i (i’s beliefs, knowledge, and conditional
beliefs are the same in both states).8 The players’ full be-
liefs at a state w are defined as usual: For each w ∈ W , let
max�i([w]i) = {x | there is no y ∈ [w]i such that y �i x},
where y �i x means that y �i x but x 6�i y.

Definition 1. For each w ∈W and i ∈ N , player i’s (par-
tial) beliefs at state w are given by the probability measure
Pi,w ∈ ∆(W ) defined as follows: For each E ⊆W ,

Pi,w(E) = Pi(E | max
�i

([w]i))

7For a set X, let ∆(X) be the set of all probability measures
on X. In this paper, we assume that the set of states is finite,
so we can assume that P is defined on all subsets of W .
8That is, the equivalence classes of ≈i are the different
“types” for player i.

The players’ partial beliefs Pi,w represent their beliefs
about the possible choices, behaviors and beliefs of their op-
ponents at state w.9 The belief revision policy describes how
the players revise their beliefs given any evidence F ⊆W :

Pi,w(E | F ) = Pi(E | max
�i

(F ∩ [w]i)).

Note that this conditional probability is well-defined for any
set F such that F ∩ [w]i 6= ∅. In particular, there may be a
set F such that Pi,w(F ) = 0, yet Pi,w(· | F ) is well-defined.
This is a very general model of belief revision for the players,
since it describes how each player revises her beliefs given
any evidence consistent with her current information (i.e.,
any F such that [w]i ∩ F 6= ∅). However, we are primarily
interested in how the players revise their beliefs given the
actions that they observe in the game.10 Each state w ∈W
is associated with a history h ∈ H as follows. Let hw be
the history corresponding to the play of game associated
with {βi(w)}i∈N (see the discussion above). Note that hw
need not be a maximal history, so hw is the behavior that is
observed at state w. For any h ∈ H, let [h] = {w | βi(w) =
behi(h) for all i ∈ N} be the event that the players behaved
according to history h. Then, Pi,w(E | [hw]) is i’s probability
of E given her most plausible explanation of the actions she
observed at state w. Thus, the belief revision policy describes
how the players’ beliefs change during a play of the game.11

Putting everything together, a game model for a game
G is a tupleMG = 〈W, {(βi, σi)}i∈N , {�i}i∈N , {Pi}i∈N 〉. In
addition, we impose the following two constraints:

• For all w ∈ W and i ∈ N , if v ∈ [w]i, then σi(w) =
σi(v). That is, players know their own strategy.12

• For all w ∈W and i ∈ N , for each initial segment h′ ⊆
hw (including the empty history), there is a w′ ∈ [w]i
such that hw = h′.

The last constraint ensures that if a sequence of choices in
the game is consistent with a player’s information, then all of
its initial segments must be consistent with the player’s in-
formation. This is a consequence of assuming that the struc-
ture of the game is (commonly) known to all the players and
that players cannot think it is possible to observe a history
without observing the sequence of choices that generated
the history. Compare the above constraint with the stronger
assumption that for all w ∈ W , for all h ∈ H, there is a
w′ ∈ [w]i such that hw′ = h. This ensures that it is consis-
tent with the players’ information that every possible history
in the game could be realized. Of course, ex ante, the players
do not rule out any histories.13 However, our models repre-
sent the players’ ex iterim beliefs. In such models, it may be
9That is, beliefs about the possible types of their opponents.

10Our models of games are closely related to Bayesian exten-
sive games with observable actions [26, Section 12.3]. How-
ever, there are important methodological and conceptual
differences between Bayesian games and epistemic models
of games (see [27, Section 1.4]). For this reason, we post-
pone a complete comparison between our game models and
Bayesian extensive games with observable actions to the full
version of the paper.

11Thus, our models are related to the type spaces based on
conditional probability systems from [7, Section 2.2].

12Each player can be associated with a standard knowledge
operator where for all E, Ki(E) = {w | [w]i ⊆ E}.

13Assuming that all the players are aware (in the sense of
[22, 23]) of the structure of the game.
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consistent with a player’s information (which includes her
chosen strategy) that some history of the game will not be
played (cf. the discussion of richness conditions on the model
in Section 5).

2.3 Rationality
A player chooses rationally provided her strategy choice

at a state maximizes the players subjective expected util-
ity with respect to her beliefs about the past and expected
moves of her opponents. We do not assess the rationality of
the players’ moves themselves. Thus, a player may choose
rationally at a state, though she may not carry out her plan
because she made a mistake.

Suppose that G is an extensive game with simultaneous
moves and MG = 〈W, {(βi, σi)}i∈N , {�i}i∈N , {Pi}i∈N 〉 is a
game model for G. For each w ∈W , the strategy realized at
w by player i is si(w) : Vi → Acti defined as follows:

si(w)(h) =

{
βi(w)h if βi(w)h is defined

σi(w)(h) otherwise

Then, s(w) = (s1(w), . . . , sn(w)) is a profile of strategies,
and let Out(s) be the (unique) terminal history generated
by s.

Definition 2. For any strategy si ∈ Si for player i, the
expected utility of si at state w is:

EUi,w(si) =
∑

w′∈W
Pi,w({w′} | [hw])ui(Out(si, s−i(w))).

A player chooses optimally at state w provided her cur-
rent strategy maximizes her subjective expected utility at
w, given the actions that she observed. Let Si(w) ⊆ Si be
the set of strategies for player i that conform to player i’s
moves in state w. That is, si ∈ Si(w) implies that for all
h ∈ Vi, if βi(w)h is defined, then si(h) = βi(w)h. Then,

Opti = {w | σi(w) maximizes expected utility
with respect to Pi,w and Si(w)}.

If w ∈ Opti, then player i is adopting the best possible strat-
egy given i’s observations at w. Rationality is more demand-
ing. There are two versions of rationality. The first requires
that a player is rational at a state w provided her strategy
at w is optimal given her beliefs at w and was optimal at all
previous decision nodes given her beliefs at the moment of
decision. We say that a state w′ ∈ [w]i is an earlier choice
state provided βi(w

′) is an initial segment of βi(w).

Definition 3. Player i is rational-1 at state w provided
w′ ∈ Opti for all earlier choice states w′. Let Rat1i be the
set of all states w such that i is rational-1 in w.

A player may be rational-1 even if she does not correctly
implement her strategy. The second version of rationality
requires that a player’s strategy is optimal even when the
player learns that her beliefs are mistaken. That is, the strat-
egy is optimal and remains optimal after any belief revision.

Definition 4. Player i is rational-2 at state w provided
w′ ∈ Opti for all states w′ ∈ [w]i. I.e., [w]i ⊆ Opti. Let Rat2i
be the set of all states w such that i is rational-2 in w.

Of course, Rat1i ⊆ Rat2i (if a player is rational-1, then the
player is rational-2). However, in general, the converse is not
true (this is illustrated by an example in the next section).

2.4 Example
Figure 3 depicts models of the games from Figures 1 and

2. These models represent the players’ initial beliefs and dis-
positions to change their beliefs that we discussed in the in-
troduction. The model on the left, M1, represents one play
of the game in Figure 1, and the model on the right, M2,
represents a play of the game in Figure 2. We draw an ar-
row from state v to state w when w �i v. The solid arrows
represent Bob’s plausibility ordering �B and the dashed
arrows represent Ann’s plausibility ordering �A (we only
represents Bob’s beliefs in M2). To keep down the clut-
ter in the pictures, we assume that the remaining arrows
can be inferred by transitivity and reflexivity. The strate-
gies σA(w) and σB(w) are displayed in the top half of the
circles and the histories βA(w) and βB(w) in the bottom
half (empty histories are left blank). We think of the play-
ers strategy choices and moves as discrete random variables.
Thus, [Choosehi = a] = {w | σi(w)(h) = a} is the event
that player i chooses action a at decision node h. Similarly,
[Movehi = a] = {w | βi(w)h = a} is the event that player i
played a at history h. The (common) prior probabilities are
displayed next to the states.

Suppose that w4 is the actual world in model M1. Thus,
Ann chose the strategy Ou, but made a mistake and played
I followed by u (as originally planned). Bob chose strategy
a which he correctly implemented when given the chance to
move. His (overall) most plausible worlds are w1 and w2.
This means that he is certain that Ann plays O at h0 (i.e.,

PB,w4([Chooseh0
A = O]) = 1). Moreover, he (initially) thinks

that Ann’s strategies Ou and Od are equally likely (i.e.,

PB,w4([Chooseh1
A = u]) = PB,w4([Chooseh1

A = d]) = 0.5).
If Ann surprises Bob by playing I, he is disposed to inter-
pret this as a mistake on her part, rather than as revealing
that she is following a different strategy (i.e., max�B ([w4]B∩
[Moveh0

A = I]) = {w3}, βA(w3) = I while σA(w3) = Ou).
Furthermore, after observing Ann play I, Bob is certain that
her next move will be u: PB,w4([Chooseh1

A = u] | [Moveh0
A =

I]) = 1. This model also illustrates what it means for a
player to be rational-1. Note that Ann made a mistake in
w4, yet she is still rational-1 (w4 ∈ Rat1A). Both w1 and w3

are earlier choice states for Ann (as is w4), and she chooses
optimally in all these states: OptA = {w1, w2, w3}.

The modelM2 in Figure 3 represents Bob’s beliefs in the
game from Figure 2 in which Ann has two opportunities
to exit the game. Suppose that w6 is the actual world. No
mistakes are made with Ann playing I1I2c and Bob play-
ing u. Initially, Bob believes that Ann is going to choose O1

(max�B ([w6]B) = {w1, w2} with σA(w1)(h0) = σA(w2)(h0) =
O1). On the condition that Ann actually plays I1, he is dis-
posed to interpret her move as a mistake, predicting that she
is going to go out at the next opportunity (max�B ([w6]B ∩
[Moveh1

A = I1]) = {w3, w4}, σA(w3)(h1) = σA(w4)(h1) =
O2. If Ann surprises Bob the second time by playing I2, he
is disposed to conclude that it is very likely that Ann ac-
tually chose to play I1 and I2 (PB,w6([Chooseh0

A = I1] ∩
[Chooseh1

A = I2] | [Moveh0
A = I1] ∩ [Moveh1

A = I2]) = .9).
Intuitively, if Ann surprises Bob, he is disposed to reason
in the backward induction style (ignoring her mistake), but
if she surprises him a second time, Bob switches to forward
induction and conjectures that (it is highly probable that)
Ann is going to play d. The modelM2 also illustrates the dif-
ference between rationality-1 and rationality-2. In w2, Bob
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A:O1O2u; B:a

A:I1I2; B:

.04

w5
A:I1I2d; B:a

A:I1I2; B:

.36

w6

A:O1O2u; B:a

A:I1; B:

.15

w3
A:O1O2d; B:a

A:I1; B:

.15

w4

A:O1O2u; B:a

A: ; B:
w1

.15

A:O1O2d; B:a

A: ; B:

.15

w2

A:Ou; B:a

A:Iu ; B:a
w4

.25

A:Ou; B:a

A:I ; B:
w3

.25

A:Ou; B:a

A: ; B:

.25

w1
A:Od; B:a

A: ; B:

.25

w2

Figure 3: The models M1 and M2

12

Figure 3: The models M1 and M2

is rational-1, since {w1, w2} ⊆ OptB , but he is not rational-
2, since w6 ∈ [w2]B , but w6 /∈ OptB . That is, the strategy
that Bob chooses at w2 is not optimal with respect to the
beliefs he would have after revising his initial beliefs with
the information that Ann plays I1 and I2.

3. STALNAKER AND AUMANN
It is easy to see that our game model is a conservative

extension of Stalnaker’s [34, 35, 36]. Since we extend his
model by allowing states in which the players’ moves differ
from what is prescribed by their chosen strategy, the players
can know each other’s strategies and still be uncertain about
the way the game is going to end. In spite of this, however,
our models can accommodate the standard epistemic char-
acterizations of backward induction found in the literature,
and, in particular, Aumann’s classic characterization.

Aumann proved that if there is common knowledge that
all of the players are rational, then the backward induc-
tion path will be realized [2]. Our models are richer than
Aumann’s: We describe the players’ beliefs and belief revi-
sion policies in addition to the players’ knowledge. Recently,
Samet extended Aumann’s result to doxastic models, which
are much closer to the models we use. He proved that if there
is common belief 14 that all the players’ strategies are doxas-
tically substantively rational, then the backward induction
path is realized [31]. Since we allow for mistakes, we will
have models in which there is common belief that the play-
ers choose optimally, but the backward induction path does
not obtain. There is another difference between our models
and Aumann’s and Samet’s. The behavior functions can be
viewed as a temporal parameter. That is, our model includes
states that describe the players’ beliefs at different moments
during the play of the game (cf. [5, 12]). In general, the play-
ers’ beliefs may change even if the game unfolds according to
their chosen strategies. We can recover Samet’s characteri-

14We assume that the reader is familiar with the formal def-
inition of common belief. See Appendix A for the formal
definition in our framework.

zation of backward induction with an additional constraint:

For all i ∈ N and w,w′ ∈ W , if w′ ∈ [w]i, then for each
w′′ ∈ max�i([w]i ∩ [hw′ ]) there is a w′′′ ∈ max�i([w]i) such
that σi(w

′′) = σi(w
′′′) for all i ∈ N .

This constraint says that the players cannot learn any-
thing about their opponents’ strategies that they did not
already know at the beginning of the game.

Proposition 1. Suppose that G is an extensive game
(without simultaneous moves) in “general position” (see Ap-
pendix A) and MG is a model for G satisfying the above
constraint and that every possible mistake is considered: for
all w ∈ W , every possible mistake that i can make given
i’s strategy at w is realized by the behavior at some state
w′ ∈ [w]i. Suppose that w ∈ W is a state in which the his-
tories (β1(w), . . . , βn(w)) generate a maximal path through
the game. If there are no mistakes in w and common belief
at w that all the players are rational-1, then the path that is
generated by the histories is the backward induction path.

There are many other epistemic characterizations of back-
ward induction.15 What is more relevant for our purposes is
Stalnaker’s criticism of Aumann’s epistemic characterization
of backward induction [35, Section 5]. The problem lies with
Aumann’s notion of rationality which is captured and re-
fined by our rationality-1. A player is rational-1 provided
her strategy is optimal (given a sequence of moves) and was
optimal at all previous choices with respect to her beliefs at
the moment of choice. Stalnaker argues that this notion of
rationality is much too strong.16 His idea is that a strategy

15It is beyond the scope of this article to survey all of the
different approaches. See [29, Section 8.11] and [27] for a
discussion and pointers to the literature.

16We will not repeat Stalnaker’s argument here. The gist of
it is that it is important not to conflate “action a would be
optimal if node v were reached” and “if node v is reached,
then action a is optimal”.
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for player i is optimal provided i would choose optimally
at node v (according to his strategy) given i’s beliefs under
the hypothesis that node v is reached. To formalize this idea,
Stalnaker introduces the notion of perfect rationality: “In
cases where two or more [strategies] are [optimal], the agent
should consider, in choosing between them, how he should
act if he learned he was in error about something.” [34, pg.
148]. It is not hard to see that our definition of rationality-2
is equivalent to Stalnaker’s definition of perfect rationality.
Thus, our models can accommodate both Stalnaker’s and
Aumann’s analysis of backward induction. Of course, this,
by itself, is not new (cf. [5] and [19]). However, our analysis
also opens the door for further refinements of the notions of
rationality they use.

For instance, perfect rationality (or rationality-2) requires
that a player’s strategy is robustly optimal. That is, it is opti-
mal even after the player learns that her beliefs are mistaken.
Variants of rationality-2 can be defined by fixing the set of
evidence that may induce a change of belief for a player. For
instance, we can require that a player’s strategy must be
robustly optimal with respect to evidence about her oppo-
nents’ moves (cf. [7, Section 2.2]), strategy choices, beliefs,
or even evidence about the player’s own moves. A complete
analysis of the different options will be left for the full ver-
sion of the paper.

4. RELATED WORK
Our model allows for states in which the players’ moves

differ from what is prescribed by their chosen strategy. This
general idea (i.e., trembling hand mistakes) was used by
Selten and others to characterize refinements of the Nash
equilibrium (cf. [18, 32]). Within the equilibrium refinement
program, Bicchieri’s work on forward and backward induc-
tion [9] comes closest to ours. In [9], the players respond to
(hypothetical) surprising moves in an extensive game (that
may be the result of a trembling-hand mistake) by revising
their beliefs à la AGM [1]. Our models differ in both impor-
tant technical details and the underlying motivations. Most
importantly, we downplay the role that the Nash equilib-
rium (and its refinements) plays in the analysis of rational
behavior in game situations (this is in line with much of the
epistemic game theory literature, cf. [13]).

More recently, Cubitt and Sugden develop a model in
which a player’s behavior may, in principle, differ from her
(rational) choice [15]. They include a postulate stating that
the players’ behavior must all conform to the same principles
of rational choice. Among other things, they are interested
in highlighting the role that this assumption plays in the
players’ reasoning about what to do in a game situation (cf.
also Bacharach’s discussion of the transparency of reason in
[3, Section 4.2]). There are some intriguing connections be-
tween our work and theirs, but a complete discussion will
be left for the full version of this paper.

5. CONCLUDING REMARKS
We have imposed only two minimal constraints on our

models: every information cell must include the player’s be-
liefs at all previous choice points, and the players “know”
their own strategy choice. The literature on forward induc-
tion, and, more generally, belief revision in games [5, 11,
35], contains other natural constraints that we may want to
impose. One belief revision policy that has been extensively

discussed in relation to forward induction reasoning is the
so-called rationalizability principle [8]: “A player should
always try to interpret her information about the behavior
of her opponents assuming that they are not implementing
‘irrational’ strategies.” (cf. [6]). In order to represent this
belief revision policy, Stalnaker includes a “richness” condi-
tion on his models [35, pg. 35, footnote 5] ensuring that the
players have the conditional beliefs needed to rationalize any
observed behavior.17 With such a richness condition, we can
formally prove Stalnaker’s characterization of the belief re-
vision policy in which the players apply the rationalizability
principle at most once.18

Another direction for future research is to compare our
approach to belief revision with non-standard probabilities,
lexicographic probability systems, and conditional probabil-
ity systems [21, 25]. Once the relationship between these
different models is understood, we can connect our work
with Battgalli and Siniscalchi’s characterizations of com-
mon strong belief of rationality [7] and Halpern’s recent epis-
temic characterizations of trembling-hand equilibria using
non-standard probabilities [20].

Finally, note that the games in Figures 1 and 2 have the
same reduced normal form. However, our analysis in this pa-
per suggests that there are strategically relevant differences
between the two games (cf. [24]). In particular, the players
may be able to learn about their opponents’ strategies dur-
ing a play of the game. This suggests possible connections
with models of learning in extensive games [17].
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[22] J. Halpern and L. Rêgo. Extensive games with
possibly unaware players. Mathematical Social
Sciences, 70:42 – 58, 2014.

[23] A. Heifetz, M. Meier, and B. Schipper. Interactive
unawareness. Journal of Economic Theory, 130(1):78 –
94, 2006.

[24] E. Kohllberg and J. Francois Mertens. On the
strategic stability of equilibria. Econometrica,
54(5):1003 – 1037, 1986.

[25] D. Lehman and M. Magidor. What does a conditional
knowledge base entail? Artificial Intelligence, 55(1):1
– 60, 1992.

[26] M. J. Osborne and A. Rubinstein. A Course in Game
Theory. MIT Press, 1994.

[27] E. Pacuit and O. Roy. Epistemic foundations of
games. In E. N. Zalta, editor, Stanford Encyclopedia of
Philosophy, 2015.

[28] A. Perea. Backward induction versus forward

induction reasoning. Games, 1(3):168–188, 2010.

[29] A. Perea. Epistemic Game Theory: Reasoning and
Choice. Cambridge UP, 2012.

[30] A. Perea. Belief in the opponents’ future rationality.
Games and Economic Behavior, 83:231 – 254, 2014.

[31] D. Samet. Common belief of rationality in games of
perfect information. Games and Economic Behavior,
79:192 – 200, 2013.

[32] R. Selten. A reexamination of the perfectness concept
for equilibrium points in extensive games.
International Journal of Game Theory, 4:25 – 55,
1975.

[33] R. Stalnaker. On the evaluation of solution concepts.
Theory and Decision, 37(1):49 – 73, 1994.

[34] R. Stalnaker. Knowledge, belief and counterfactual
reasoning in games. Economics and Philosophy,
12(02):133 – 163, 1996.

[35] R. Stalnaker. Belief revision in games: forward and
backward induction. Mathematical Social Sciences,
36(1):31 – 56, 1998.

[36] R. Stalnaker. Extensive and strategic forms: Games
and models for games. Research in Economics,
53(3):293 – 319, 1999.

[37] E. van Damme. Stable equilibria and forward
induction. Journal of Economic Theory, 48:476 – 496,
1989.

APPENDIX
A. PROOF OF PROPOSITION 1

In this appendix, we restrict attention to extensive games
G = 〈N,Act,H, τ, {ui}i∈N 〉 without simultaneous moves.
So, for all decision nodes v ∈ V , |τ(v)| = 1. In this case,
we can view histories as sequences of actions rather than
sequences of sequences of actions. Furthermore, following
[2], we assume that the payoff for each of the players is
different at different terminal nodes (the game is in “general
position”). This implies that the result of applying the back-
ward induction algorithm19 is uniquely defined.

Belief operators: Suppose that

MG = 〈W, {(βi, σi)}i∈N , {�i}i∈N , {Pi}i∈N 〉
is a game model. For each event E ⊆W , we say that player
i believes E, Bi(E), provided E is implied by i’s full beliefs.
That is, Bi(E) = {w | max�i([w]i) ⊆ E}.

Samet’s game model: Samet’s game model is a tuple
〈W, {Πi, ti}i∈N , s〉, where W is a non-empty set of states,
for each i ∈ N , Πi is a partition on W , ti : W → ∆(W ) is a
type function assigning a probability measure to each state,
and s : W → S (where S = ΠiSi) assigns a strategy to
each state. Let [si(w) = si] be the set of states w such that
si(w) = si. The knowledge and belief operators are defined
as usual: for all E ⊆ W , Ki(E) = {w | Πi(w) ⊆ E} and
Bi(E) = {w | ti(w)(E) = 1}. Samet includes the following
constraints:

19The terminal nodes are labeled with the payoffs for each
player. For each non-terminal history h with τ(h) = {i},
label h with the maximum of all the labels of the succes-
sors of h. This labeling is then used to identify the so-called
backward induction path.
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• For all w ∈W , if v ∈ Πi(w), then ti(w) = ti(v)

• For all w ∈W , ti(w)(Πi(w)) = 1

• For all w ∈ W , if v ∈ Πi(w), then [si(w) = si] ⊆
Bi([si(w) = si]).

Rationality in Samet’s model: Building on the no-
tation introduced in Section 2, for a strategy profile s, let
Outh(s) be the (unique) terminal history that is reached if
the players follow their strategies in s starting at h. Then,
for a state w ∈ W and strategy si ∈ Si, Outv(si, s−i(w))
is the terminal node that is reached, starting at h, if player
i follows the strategy si and the other players follow the
strategies associated with state w. Then, let

[Outh(si, s−i) >i Outh(s)] = {w | ui(Outh(si, s−i(w))) >
ui(Outh(s(w)))}.

Player i is said to be doxastically substantively rational
at all states when:

Rdsi =
⋂

h∈Vi

⋂

si∈Si

¬Bi([Outh(si, s−i) >i Outh(s)])

Let Rds =
⋂
i∈N R

ds
i .

Common belief: Given belief operators Bi : ℘(W ) →
℘(W ) for each player i ∈ N (defined in Samet’s game model
or our game model), we define a common belief operator
CB : ℘(W )→ ℘(W ) in the usual way. First, define everyone
believes: For all E ⊆ W , B(E) =

⋂
i∈N Bi(E). Then define

the nth power of B, Bn, as follows: for all E ⊆W , B1(E) =
B(E) and for n > 1, Bn(E) = B(Bn−1(E)). Finally, com-
mon belief of an event E is CB(E) =

⋂
n≥1B

n(E)

Samet’s Theorem 3 states that, in any of his models,
CB(Rds) ⊆ I, where I is the set of states in which the
backward induction path is played.

Suppose thatMG = 〈W, {(βi, σi)}i∈N , {�i}i∈N , {Pi}i∈N 〉
is a game model for our game G. The forgetful projec-
tion of MG, denoted M◦G, is the tuple 〈W, {Πi, ti}i∈N , s〉,
where for each w ∈ W , let Πi(w) = [w]i, ti(w) = Pi,w, and
s(w) = (σ1(w), . . . , σn(w)). It is not hard to see that M◦G
satisfies the constraints imposed by Samet. For instance, we
have, for all w′ ∈ Πi(w), ti(w) = ti(w

′), since if w′ ≈i w,
then max�i([w]i) = max�i([w

′]i).
We first state and prove a simple Lemma that will be used

to relate Samet’s notion of doxastic substantive rationality
with our rationality-1.

Lemma 1. Suppose that the game G and game modelMG

and state in w satisfy the assumption of Proposition 1. Then,
for all players i ∈ N , for all w′ ∈ W , if w ∈ Rat1i , then
for all v ∈ Vi, there is some w′ ∈ max�i([w]i) such that
ui(Outh(s(w′)) > ui(Outh(si; s−i(w

′))).

Proof. First of all, it is easy to see that if a strategy si is
optimal for player i at state w, then for all strategies ti 6= si,
there must be at least one state w′ ∈ max�i([w]i∩[Movewi =
βi(w)) such that ui(Out(si; s−i(w))) > ui(Out(ti; s−i(w))).

Suppose that w ∈ Rat1i . Then, for all h ∈ Vi, if βi(w)h
is defined (i.e., h on the path generated by the behavior
of the players in state w), then for all si ∈ Si(w), there
is at least one state w′ ∈ max�i([w]i ∩ [hw]) such that
ui(Outh(s(w))) > ui(Outh(si; s−i(w))). Note that we can

move from Out(·) to Outh(·) since we restrict attention to
strategy profiles that conform to the behavior of the play-
ers at w. By the constraint stated before Proposition 1,
this implies that there is a w′′ ∈ max�i([w]i) such that
ui(Outh(s(w′′))) > ui(Outh(si; s−i(w

′′))). This, together
with the assumption that all mistakes are realized by some
state in i’s information cell, ensures that, for every decision
node h ∈ Vi, there is some w′ ∈ max�i([w]i) such that

ui(Outh(s(w′))) > ui(Outh(si; s−i(w
′))).

This completes the proof of the Lemma.

The proof of the proposition follows immediately:

Proof of Proposition 1. Suppose that w ∈ W and
(β1(w), . . . , βn(w)) generate a maximal path through the
game. If w ∈ CB(

⋂
j Rat

1
j ) in MG, then Lemma 1 implies

that w ∈ CB(Rds) in the forgetful projection M◦G. Since
M◦G is a Samet model of a game, Samet’s Theorem 3 im-
plies that w ∈ I. Since no mistakes are made in w, this
implies that (β1(w), . . . , βn(w)) is the backward induction
path.
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ABSTRACT
The impossibility theorem of Dekel, Lipman and Rustichini
[8] has been thought to demonstrate that standard state-
space models cannot be used to represent unawareness. We
first show that Dekel, Lipman and Rustichini do not estab-
lish this claim. We then distinguish three notions of aware-
ness, and argue that although one of them may not be ade-
quately modeled using standard state spaces, there is no rea-
son to think that standard state spaces cannot provide mod-
els of the other two notions. In fact, standard space models
of these forms of awareness are attractively simple. They al-
low us to prove completeness and decidability results with
ease, to carry over standard techniques from decision theory,
and to add propositional quantifiers straightforwardly.

Keywords
awareness, standard state space models, epistemic logic

1. INTRODUCTION
Dekel, Lipman and Rustichini [8], hereafter, “DLR”, claim

to show that“standard state space models preclude unaware-
ness”. Their claim has achieved the status of orthodoxy.1 The
first task of this paper is to clear the way for standard state
space models of unawareness by showing that the formal
result DLR present does not establish their headline conclu-
sion. DLR informally motivate certain axioms concerning
unawareness, but in their formal impossibility result, they
rely on the claim that these axioms hold at all states in
the model. As section 2 argues, the assumption that axioms
hold at all states of the model is unwarranted; in fact, DLR
themselves reject it. While DLR’s formal results are valid,
they are not sufficiently general to rule out standard state
space models of unawareness. As we show, the impossibility
results do not hold if one assumes only that DLR’s explicit
assumptions about unawareness hold at some “real” states,
as opposed to at all states. Even strengthening those explicit
assumptions considerably does not reinstate the results.

But this does not yet vindicate standard state space mod-
els of unawareness. Section 3 presents a novel impossibility
result which uses widely shared assumptions about aware-
ness. The new impossibility theorem relies on the assump-
tion that an agent who is aware of a conjunction is aware

∗A draft of the full version of this paper is available at
http://users.ox.ac.uk/~hert2388/
1See, e.g., [53, p. 2], [54], [24, p. 78], [25, p. 305], [26, p. 101],
[40, p. 220], [31, p. 2790], [39, pp. 977–978], [27, p. 2454], [28,
p. 257], [15, p. 42], [58, p. 516], and [57].

of its conjuncts. If awareness satisfies this assumption, then
standard state space models do in fact preclude unaware-
ness. We then distinguish three notions of awareness, and
suggest that two important ones do not satisfy this assump-
tion, leaving open the possibility that they could be ade-
quately modeled by standard state space models.

The remainder of the paper continues in a more positive
vein. We describe a simple class of standard state space mod-
els which represent key features of awareness. In section 4, we
establish completeness and decidability for the logic of these
models. We also show that adding propositional quantifiers,
a topic which has presented major difficulties for existing
approaches to awareness, is straightforward in our standard
state space models. In section 5, we present one way of imple-
menting a choice-based approach to decision theory within
these models, and show how non-trivial unawareness is con-
sistent with speculative trade. Section 6 concludes.

2. DLR’S TRIVIALITY RESULT

2.1 Standard State Space Models
Standard state space models for the knowledge and aware-

ness of a single agent can be understood as certain tuples
〈Ω, k, a〉. Ω is required to be a set, called the set of states,
from which a set of events is derived by taking an event to
be a set of states. k and a are functions on events, which rep-
resent the agent’s knowledge and awareness, respectively: k
maps each event E to the event k(E) of the agent knowing
E; a similarly takes each E to the event a(E) of the agent
being aware of E.

Such models are straightforwardly used to interpret a for-
mal language in which one can talk about knowledge and
awareness. Let L be such a language built up from propo-
sition letters p, q, . . . , using a unary negation operator ¬, a
binary conjunction connective ∧ and two unary operators
K and A, respectively ascribing knowledge and awareness
to the agent. Formulas of this language are interpreted rel-
ative to a model M = 〈Ω, k, a〉 and a valuation function v
which maps each proposition letter p to the event v(p). The
interpretation uses a function J·KM,v which maps each for-
mula ϕ of L to the event expressed by ϕ in M , which can
be understood as the set of states in which ϕ is true in M .
To state the constraints on such a function let −E = Ω\E.

JpKM,v = v(p)

J¬ϕKM,v = −JϕKM,v
Jϕ ∧ ψKM,v = JϕKM,v ∩ JψKM,v
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JKϕKM,v = k(JϕKM,v)

JAϕKM,v = a(JϕKM,v)

The agent being unaware of something can of course be un-
derstood as it not being the case that she is aware of it.
We therefore syntactically use Uϕ as an abbreviation for
¬Aϕ. Similarly, we introduce the other connectives of clas-
sical propositional logic as abbreviations, using ∨ for dis-
junction, → for material implication, ↔ for bi-implication,
and > and ⊥ for an arbitrary tautology and contradiction,
respectively. On the semantic side, we adopt the convention
of writing fg for the composition of functions f and g, which
allows us two write, e.g., k − a(E) instead of k(−(a(E))).

In order to express general constraints on these models,
we say that a formula ϕ is valid on M if JϕKM,v = Ω for each
valuation function v; this can be understood as requiring ϕ
to be true in every state of M according to every valuation
function. In order to limit this constraint to a particular
state ω ∈ Ω, we say that ϕ is valid in ω if ω ∈ JϕKM,v for
each valuation function v.

These models count as “standard” in the sense of DLR.
First, the events expressed by Aϕ and Kϕ are each a func-
tion of the event expressed by ϕ. (DLR call this “event-
sufficiency”.) Second, negation is interpreted as set-comple-
ment and conjunction as intersection, so that all tautologies
of classical propositional logic, such as p ∨ ¬p, are inter-
preted as the set of all states in every model. (DLR call this
assumption “real states”.)

2.2 DLR on Standard State Space Models
DLR introduce three constraints on awareness, which can

be stated using the following three axioms:

Plausibility: Up→ (¬Kp ∧ ¬K¬Kp)

KU -Introspection: ¬KUp

AU -Introspection: Up→ UUp

Their constraints on knowledge can be stated using the fol-
lowing three axioms:

Necessitation: K>

Monotonicity: K(p ∧ q)→ (Kp ∧Kq)

Weak Necessitation: Kp→ K>
Their main results are then:

Theorem 1 (DLR). Let M = 〈Ω, k, a〉 be a model on
which Plausibility, KU -Introspection and AU -Introspection
are valid.

1(i) If Necessitation is valid on M , then Ap is valid on M .

1(ii) If Monotonicity is valid on M , then Kp→ Aq is valid
on M .

2 If Weak Necessitation is valid on M , then Kp→ Aq and
Ap↔ Aq are valid on M .

Our presentation of DLR’s result differs in superficial re-
spects from their original presentation. DLR do not present
their constraints in terms of the validity of certain axioms.
Thus, for example, instead of requiring KU -Introspection to
be valid on M , they require k − a(E) = ∅ for all events E.

However, it is a routine exercise to show that this condi-
tion is equivalent to the validity of our corresponding ax-
iom. The same point holds for the other axioms. In short,
our later models will not be escaping their triviality result
by a sleight of hand which depends on this presentation.

One reason for the variant presentation is that it will facil-
itate the later exposition. It also serves to demonstrate that
standard state space models as discussed here are equiva-
lent to what are now commonly known as neighborhood or
Scott-Montague frames (see [55] and [44]). It is well known
that given certain restrictions on the function interpreting
knowledge, this function can be turned into a binary relation
among states along the lines of those used by [37] and [29].
This representation as a binary relation is, in turn, formally
interchangeable with the “possibility correspondences” in-
troduced by [2] (see also [3]) and used throughout economic
theory (see, e.g. [11]).

2.3 Two Kinds of States
In response to their triviality results, DLR suggest distin-

guishing informally between “real” states and “subjective”
states. As we understand it, this distinction can be explained
as follows. An epistemic model makes predictions about how
an agent or group of agents will or would behave in partic-
ular situations. The model makes predictions about these
situations by including states which represent them. The
real states in a model are the states which represent situa-
tions the model is intended to describe. The model predicts
an agent will behave a certain way in a particular situation
just in case the agent behaves that way in the real state
which represents that situation. The predictions of a single
model are given by what holds at all its real states; the be-
havioral theory of a class of models is given by what holds
at all real states in all its models.

A state in an epistemic model is subjective if it figures
in the specification of what the agent knows or is aware of
at some real state. According to this way of understanding
real and subjective states, states may be both real and sub-
jective. Suppose we wish to represent an agent who knows
that a particular coin will be flipped, but who will not learn
the outcome of this coin flip. If our model is intended to
make predictions no matter how the coin lands, the subjec-
tive states needed to specify the agent’s knowledge (heads
and ignorant, tails and ignorant) will be exactly the real
states; every state will be both real and subjective. But as
DLR recognize, there is no reason to require all states to
play both roles. In the earlier example, if we only wanted
to make predictions about the situation in which the coin
comes up heads, we would not count one of the states (tails
and ignorant) as a real state; even so, to represent the agent’s
ignorance given heads, a state where the coin comes up tails
would still have to be included as a subjective state. The
point can also be illustrated with a less artificial example.
Consider an analyst who wishes to model the interactions of
agents who are rational, but who do not believe each other
to be rational. To represent the beliefs of these agents, the
analyst must include subjective states in which the agents
are irrational. But although she includes these subjective
states, the analyst has no intention of eliminating the claim
that the agents are rational from the predictions of her the-
ory. Rather, it is understood informally that these subjective
states are not real; they do not represent situations the an-
alyst aims to describe.
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Put in the terms of our presentation, DLR’s proposal is to
allow subjective states in which the law of excluded middle,
p ∨ ¬p, may not be true. DLR have no intention of elimi-
nating the law of excluded middle from the predictions of
their theory. Rather, they introduce these subjective states
to specify the agent’s knowledge and unawareness at real
states where classical logic holds. The theory of DLR’s mod-
els is given by what holds at these classical real states, not
by what holds at all states whatsoever. Still, since classical
tautologies may fail in DLR’s subjective states, their models
violate the “real states” assumption, and so are not standard
state space models.

But once we acknowledge that some states may not be in-
tended to represent situations the analyst wishes to describe,
a question arises: Why should one require DLR’s three ax-
ioms on unawareness to be valid in all states? DLR do not
argue for this assumption. At best, their arguments in favor
of their axioms only motivate imposing these axioms at real
states. These arguments provide no motivation for impos-
ing the axioms on subjective states that are not real, since
these states are merely included in the model to specify the
agent’s knowledge and unawareness at real states.

There is a general methodological principle in epistemic
modeling that axioms are to be imposed at all states. But
in the literature on awareness, following DLR, this method-
ological principle has long been abandoned. DLR’s own non-
standard models violate this requirement, as do the current
leading proposals for representing awareness, for example
that of [24]. The subjective states in DLR’s models include
states in which logical axioms, including the law of excluded
middle, do not hold. In DLR’s models, as in the ones we
will propose, even logical axioms are allowed to fail at some
states. The only difference between our proposal and theirs
concerns which axioms are allowed to fail. DLR preserve
their own axioms at all states, and move to non-standard
models in which classical propositional logic may fail at sub-
jective states. We will preserve classical propositional logic
at all states, and work with standard models in which DLR’s
axioms may fail at subjective states.

Still, one might ask: How should we understand a state
where DLR’s axioms are false? DLR interpret their own sub-
jective states as “descriptions of possibilities as perceived by
the agent” (p. 171). This interpretation does not seem ap-
propriate for our models, in which DLR’s axioms may fail at
subjective states. But such metaphorical interpretations of
these states are unnecessary. Subjective states where the ax-
ioms of awareness are invalid are simply to be understood in
terms of the agent’s knowledge and awareness at real states
where the axioms are valid.

In fact, we can give a direct argument for not imposing
DLR’s axioms at all states, and in particular, for includ-
ing states where KU -Introspection is invalid. First, by AU -
Introspection, if an agent is unaware of p, then she must be
unaware of being unaware of p. But then, by Plausibility,
the agent does not know that she does not know that she is
unaware of p. (Essentially, DLR already give this argument
on p. 169.) In epistemic models, we generally represent an
agent’s not knowing q by including a state in which q is false.
So, to allow for real states in which the agent does not know
that she does not know that she is unaware of p, we must
include subjective states in which the agent knows that she

is unaware of p, and so violates KU -Introspection.2

To sum up: after rejecting standard state space models,
DLR propose that we should use models in which the laws of
logic fail at subjective states. They implement this proposal
by countenancing states where propositional logic fails, so
that their models are non-standard. But if we allow models
in which the law of excluded middle may fail at subjective
states, we must also consider models in which other axioms,
including DLR’s, may fail at subjective states. DLR’s formal
results only apply to standard state space models in which
their axioms are imposed at all states; the results do not
concern standard state space models in which the axioms are
imposed only at real states. As a consequence, these formal
results cannot provide a basis for the conclusion DLR draw:
that standard state space models preclude unawareness.

2.4 Non-Triviality
We have not argued against the validity of DLR’s three

axioms in real states – states representing the situations to
be modeled. In our setting, we can formalize the distinction
between real states and subjective states which are not real,
by only assuming the validity of the axioms in some subset
of the states in a model. We can then ask: is assuming the
validity of the three axioms in such distinguished real states
enough to lead to triviality? The following example shows
that it is not:

Theorem 2. There is a model M = 〈Ω, k, a〉, state α ∈
Ω and event E ⊆ Ω such that Necessitation is valid on
M , Plausibility, AU -Introspection and KU -Introspection are
valid in α, and α /∈ a(E).

Proof. Let Ω = {α, ω1, ω2}. Define a binary (accessibil-
ity) relation R on Ω as follows:

α
��

�� ��
ω1

$$
ω2

zz

R induces a possibility correspondence P such that P (σ) =
{τ : Rστ}. With P , define k and a such that for all F ⊆ Ω:

k(F ) = {σ ∈ Ω : P (σ) ⊆ F}

a(F ) =

{
{ω2} if ω1 ∈ F and ω2 /∈ F
Ω otherwise

It is routine to check that M = 〈Ω, k, a〉, α and E = {α, ω1}
witness the claim to be proven.3

This shows that DLR’s Theorem 1(i) cannot be extended
to standard state space models in which DLR’s three axioms
are only required to be valid in real states. In fact, the model
used in the above proof of Theorem 2 can also be used to

2This argument differs from DLR’s main proof of triviality,
since it only assumes that the axioms hold at the real state.
3As suggested in [43], one might consider an extension of
Plausibility along the following lines: For each natural num-
ber n, let n-Plausibility be Up → (¬K)np, where (¬K)nϕ
is defined inductively by the two clauses (¬K)1ϕ = ¬Kϕ
and (¬K)n+1ϕ = ¬K(¬K)nϕ. For each natural number n,
n-Plausibility is valid in α.
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show that DLR’s other two results cannot be extended ei-
ther. For 1(ii), note that Monotonicity is valid on M , and
that α ∈ k(Ω) although α /∈ a(E). For 2, note first that Weak
Necessitation is valid on M , and that α ∈ a(Ω) but as before
α ∈ k(Ω) and α /∈ a(E). More generally, any state in any
model which satisfies both Necessitation and Monotonicity,
in addition to DLR’s three axioms, will be a counterexample
not just to extensions of DLR’s Theorem 1(i), but also to
extensions of their Theorems 1(ii) and 2.

We conclude that none of DLR’s three triviality results
show that standard state space models preclude unaware-
ness. One might wonder whether plausible strengthenings
of the axioms on knowledge and unawareness allow us to
reinstate the triviality results. In the full paper, we argue
first that this cannot be achieved by strengthening their ax-
ioms governing knowledge, and, second, that it cannot be
achieved by a particular strengthening of the axioms gov-
erning unawareness. The theorems and proofs may be found
in Appendix A.

3. THREE KINDS OF AWARENESS

3.1 A New Triviality Result
DLR’s result had limited implications for state space mod-

els because it depended on the validity of their axioms at all
states. Is there a triviality result which only uses the validity
of axioms on awareness in real states, rather than their va-
lidity in all states? In fact, as we now show, widely accepted
axioms on awareness do lead to triviality even if they are
imposed only at real states. The result uses the following
two axioms:

AS: A¬p→ Ap

AC: A(p ∧ q)→ (Ap ∧Aq)
Awareness is widely assumed to satisfy both of these axioms;
see, e.g., [43, pp. 274–275], [18, p. 331] (axioms A1 and A2)
and [25, p. 309] (axioms 1 and 2).

As the next theorem shows, these axioms lead straightfor-
wardly to triviality.

Theorem 3. Let M = 〈Ω, k, a〉 be a model and α ∈ Ω
such that AS and AC are valid in α. Then Ap→ Aq is valid
in α.

Proof. Consider any events E and F , and assume α ∈
a(E). Since E = E ∩ Ω, α ∈ a(E ∩ Ω), and so by AC,
α ∈ a(Ω). By AS, α ∈ a(∅). Since ∅ = ∅ ∩ F , α ∈ a(∅ ∩ F ),
and so by AC, α ∈ a(F ).

The crucial difference between this and DLR’s triviality
result is that AS and AC are only assumed to be valid in
a distinguished state, for which it is shown that non-trivial
unawareness in it is ruled out.

But does awareness really satisfy both AS and AC? In the
following, we will focus in particular on AC, arguing that
for some important notions of unawareness, being aware of
a conjunction does not entail being aware of its conjuncts.

3.2 Attending vs. Conceiving vs. Processing
In the literature on awareness, it is uncontentious that

there is no single attitude of awareness; what is expressed
by “aware” is a loose cluster of notions. This was noted at
the very start of the literature, as witnessed by the lengthy

discussions in [10]; another detailed discussion can be found
in [54]. We will argue that that at least some important no-
tions of awareness do not satisfy AC (for others, as we will
see, the situation is more complex).. In order to do so, we
roughly distinguish the following three ways of understand-
ing a claim of the form “The agent is aware of . . . ”:

(i) The agent is attending to . . .

(ii) The agent has the conceptual resources required to
conceive of . . .

(iii) The agent is able to process . . .

We will introduce these notions – and distinguish between
them – using various examples found in the literature.

Consider first attention. An influential example, which
first appeared in [16], and which is discussed at length by
DLR and numerous places in the subsequent literature, is
based on the following quote from one of Arthur Conan
Doyle’s Sherlock Holmes stories [9]:

“‘Is there any other point to which you would
wish to draw my attention?’
‘To the incident of the dog in the night-time.’
‘The dog did nothing in the night-time.’
‘That was the curious incident’ remarked Sher-
lock Holmes.”

Holmes’s interlocutor is Inspector Gregory, a Scotland Yard
detective. Before Holmes pointed out to Gregory that the
dog did nothing in the night-time, Gregory was unaware of
the dog doing nothing in the night-time. Gregory’s state of
unawareness is naturally understood as one of inattention
– Holmes makes Gregory aware of the dog doing nothing
in the night time in the sense of bringing this fact to his
attention.

Gregory’s failing to attend to the dog doing nothing in the
night-time must be sharply distinguished from Gregory’s not
being able to conceive of the the dog doing nothing in the
night-time. Before Holmes alerted Gregory to the dog doing
nothing in the night-time, Gregory possessed the concepts
required to entertain thoughts about the dog doing nothing
in the night time. Contrast this with the following example
for unawareness from [10, p. 40]:

“How can someone say that he knows or doesn’t
know about p if p is a concept he is completely
unaware of? One can imagine the puzzled frown
of a Bantu tribesman’s face when asked if he
knows that personal computer prices are going
down!”

The relevant state of unawareness in this example is not
merely a matter of the agent failing to attend to the relevant
event or subject matter. For example, if one is unaware in the
sense of being unable to conceive of an event, it must be that
one does not understand the words for those notions in any
language. Contrast this with the case of Inspector Gregory.
Gregory understands what Holmes says: he can conceive of
the dog’s doing nothing. But the purported example of in-
conceivability does not have this structure: the tribesman is
supposed to be unable to think about computers using any
of his conceptual resources, no matter what he attends to.
The two notions of awareness – attending to versus being
able to conceive of – are therefore clearly distinct.
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The third notion of unawareness we want to single out is
one which [10] (see also [19] and [20]) focus on; it can be
understood as an attempt to deal with what is known as
the “problem of logical omniscience” in epistemic logic. In
standard state spaces, if two sentences ϕ and ψ are equiv-
alent in classical propositional logic, then Kϕ and Kψ will
be true in the same states. In particular, if K(p∨¬p) is true
in a given state, then so is Kτ for any propositional tautol-
ogy τ . One of Fagin and Halpern’s reasons for developing a
logic of awareness is to obtain logics which do not have this
property. They write:

“The notion of awareness we use in this approach
is open to a number of interpretations. One of
them is that an agent is aware of a formula if he
can compute whether or not it is true in a given
situation within a certain time or space bound.
This interpretation of awareness gives us a way
of capturing resource-bounded reasoning in our
model.”

Being unaware of ϕ in the sense of not being able to pro-
cess ϕ is clearly distinct from failing to attend to ϕ: al-
though Gregory did not attend to the dog doing nothing in
the night-time, he had no difficulties processing the claim
that the dog did nothing in the night-time. Not being able
to process ϕ is also clearly distinct from not being able to
conceive of ϕ: Gregory might not have been able to process
an extremely complicated propositional tautology using only
negation, conjunction and the sentence “the dog did nothing
in the night-time”, but he clearly possessed all the concepts
required to entertain it.

3.3 Awareness of Conjunctions
Let’s return to the new triviality result introduced at the

start of this section. As already advertised, we believe that
the principle AC, which says that an agent who is aware of
a conjunction is aware of its conjuncts, may be plausible for
one notion of awareness, but it is not for the other two.

Consider first awareness as the ability to process. This is
plausibly a relation of agents to sentences, as part of what
it takes to process . . . is to be able to find out what the
sentence “. . . ” means. AC may hold if awareness is under-
stood as the ability to process: It is natural to assume that
an agent who is able to process a conjunction “... and —” is
also able to process “...” and “—”. As noted already in [10,
p. 54], even this may fail: an agent might be able to recog-
nize that a very long sentence has the form ϕ∧¬ϕ, and so be
able to process it, although she is unable to process the com-
plex ϕ on its own. Resolving this controversy may require
distinguishing further among different notions of processing,
and the appropriate resolution may depend on the intended
application.

The relations of attention and conceivability are different
from the ability to process. In particular, they are plausibly
relations agents have not to sentences but to what sentences
express. We might call these entities contents or proposi-
tions, but in keeping with the terminology employed above,
we call them events. In the full paper, we discuss the differ-
ence between sentences and events in more detail, and mo-
tivate the assumption of a coarse-grained theory of events,
according to which events form a complete atomic Boolean
algebra. A consequence of this assumption – which is im-
plicit in all standard state-space based modeling techniques

– is that sentences which are equivalent in propositional logic
have identical contents.

With this understanding of attention and conceivability
as relations of agents to coarse-grained events, consider first
attention. Assume that after the conversation with Holmes
quoted above, Gregory is alone thinking about the case, and
attending to the event of the dog barking in the night (p).
He is not, however, attending to event of Holmes at that
moment smoking a pipe (q). It is then natural to say that
Gregory is also not attending to the conditional event that if
Holmes is currently smoking a pipe then the dog barked in
the night (q → p). But notice that according to the coarse-
grained Boolean theory of events, the event that the dog
barked in the night (p) is identical to the event that if Holmes
is smoking a pipe then the dog barked in the night, and
the dog barked in the night ((q → p) ∧ p). So if AC were
valid, then since Gregory is attending to the event of the
dog barking in the night, he would be attending to the event
that if Holmes is smoking a pipe then the dog barked in the
night. But by assumption Gregory is not attending to this
last event. Thus it follows from the coarse-grained theory of
events that AC must be rejected.

A similar example can be given if we understand aware-
ness as conceivability. Assume our agent does not have the
conceptual resources to entertain the event of there being a
black hole. According to the assumed coarse-grained theory
of content, the event of there being a black hole and there
being no black hole is identical to any event expressed by
a propositional contradiction, such as the event of there be-
ing a sheep and there being no sheep. The agent might well
have the conceptual resources to entertain the event of there
being a sheep and there being no sheep, without having the
conceptual resources to entertain the event of there being a
black hole.

If we adopt, as usual, a theory of events which identifies
the event expressed by sentences which are equivalent in
propositional logic, AC appears to be inappropriate. Thus
the new triviality result with which we started this section
also does not establish that standard state space models
preclude unawareness understood as inattention or inability
to conceive.

4. PARTITIONAL MODELS
So far, we have shown that standard state-space models

escape certain putative impossibility results for models of at-
tention and conceivability. But this does not establish that
standard space models can provide fertile models of these
notions. In the remainder of the paper, we define, motivate,
and examine a class of standard state space models for rep-
resenting attention and the ability to conceive.

To show that our models generalize smoothly to the multi-
agent case, from now on we use a language LI parametrized
to an arbitrary set of agent-indices I which is defined as the
language L above, except that the operators Ai and Ki are
indexed to i ∈ I. Models are consequently tuples of the form
〈Ω, ki, ai〉i∈I .

The models we will be working with are defined as follows:

Definition 1. 〈Ω, Ri,≈i〉i∈I is a partitional model if Ω
is a set and for each i ∈ I, Ri is a binary relation on Ω
which is reflexive and transitive, and ≈i a function which
maps each ω ∈ Ω to an equivalence relation ≈iω on Ω.

Here and in what follows, we make use of the fact that each
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equivalence relation corresponds to a unique partition, and
vice versa; accordingly, we treat them as interchangeable.

Partitional models can be used to generate standard mod-
els in the following way: Ri specifies states of knowledge just
as in Theorem 2. The idea behind ≈i is that the events the
agent is aware of at ω are the events which are unions of sets
of equivalence classes of ≈iω (equivalently: unions of sets of
cells of the induced partition). So for each i ∈ I, let Ri and
≈i determine functions ki and ai on events on Ω as follows:

ki(E) = {σ ∈ Ω : P i(σ) ⊆ E}, where P i(σ) = {τ : Riστ}

ai(E) = {σ ∈ Ω : for all ρ and τ such that ρ ≈iσ τ , ρ ∈ E iff
τ ∈ E}

Let the standard model determined by a partitional model
〈Ω, Ri,≈i〉i∈I be 〈Ω, ki, ai〉i∈I , with ki and ai as just defined.
On such a standard model, LI can be interpreted as above;
obviously, this induces a way of interpreting LI directly on
partitional models.

4.1 The Attitude of Attention
In order to motivate partitional models as models of lim-

ited attention, we suggest that attention in the sense we
have been using the term should primarily be understood
as an attitude towards questions. There are many available
formal approaches to modeling questions (for an overview,
see [35]). For concreteness, we’ll adopt a standard approach,
representing questions as partitions of the state space (see
[17], building on [23] and [32]). Although we think the at-
titude to questions is primary, we will follow the literature
on awareness, in axiomatizing a notion of attention which
has events as its objects. The relationship between this at-
titude to events and the attitude toward questions will be
as follows: an agent attends to the question Q if and only if
the agent attends to every partial answer to Q. Using parti-
tions to model questions, partial answers are unions of sets
of cells, corresponding to how standard models are derived
from partitional models.4

4.2 Partitions for Conceivability
To motivate the use of partitional models of conceivabil-

ity, assume that the agents to be modeled have the concept
of negation and (infinitary) conjunction, so that the set of
events they can conceive of are closed under complement
and arbitrary intersection. This is mathematically equiva-
lent to requiring that this set is derived from an equivalence
relation as above.

4.3 An Example
It will be useful to have a concrete partitional model be-

fore us, as a running example. The following model shows
that there are non-trivial partitional models; for simplicity, a
single-agent case is specified. Let M = 〈Ω, R,≈〉, with ωRν
iff ω = 1 or ω = ν, and ≈ given by the following equivalence
classes:

≈1: {1}, {2, 3, 4}

≈2: {1}, {2}, {3, 4}

≈3: {1}, {3}, {2, 4}
4Section 5 discusses related models developed in [33, 34].

≈4: {1}, {4}, {2, 3}

Thus, at 1, the strongest event known by the agent is Ω, and
at each other state n, it is {n}. At each state n, the events
the agent is aware of are the events which don’t distinguish
between any states in Ω\{1, n}.

Drawing the four states in a circle, starting with 1 at the
top and going clockwise, we can draw each equivalence re-
lation in a similar smaller circle, connecting two states by a
sequence of lines if they are related by the relevant equiva-
lence relation:

This is a partitional model in which there is non-trivial un-
awareness at each state. We will appeal to it below in order
to show the consistency of various constraints.

4.4 Axioms
Given a class of models C, a set of sentences Σ ⊆ LI is

the logic of C if and only if Σ contains exactly those sen-
tences which are valid on C. Characterizing the logic of a
class of models gives us a formal perspective from which to
assess what assumptions our models encode about agents
knowledge and awareness.

Thus we may ask: What is the logic of partitional models?
Standard techniques on completeness results in modal logic
are easily adapted to obtain the following result.

Theorem 4. A formula is valid on all partitional models
if and only if it is derivable in the calculus with the following
axiom schemas and rules:

PL: Any substitution instance of a theorem of proposi-
tional logic.

K-K: Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)

K-T: Kiϕ→ ϕ

K-4: Kiϕ→ KiKiϕ

A-Neg: Aiϕ→ Ai¬ϕ

A-M: (Aiϕ ∧Aiψ)→ Ai(ϕ ∧ ψ)

A-N: Ai>

K-RN: From ` ϕ infer ` Kiϕ

A-RE: From ` ϕ↔ ψ infer ` Aiϕ↔ Aiψ

Moreover, the logic is decidable.

A proof is given in Appendix B.

4.5 DLR Once More
Consider again DLR’s three axioms. Given our discussion

above, it is natural to consider partitional models where
DLR’s axioms are required to be valid in some distinguished
state:
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Definition 2. 〈Ω, α,Ri,≈i〉i∈I is a partitional DLR mod-
el if 〈Ω, Ri,≈i〉i∈I is a partitional model and Plausibility,
KU -Introspection and AU -Introspection (for each i ∈ I) are
valid in α.

We now show that DLR’s triviality result cannot be re-
vived in partitional models:

Theorem 5. There is a partitional DLR model 〈Ω, α,Ri,
≈i〉i∈I and an event E ⊆ Ω such that α ∈ U(E).

Proof. Simply distinguish state 1 in the model presented
in section 4.3.

We conjecture that the logic of partitional DLR models
can be axiomatized as follows:

Conjecture 1. Add the following axioms to the theo-
rems of the axiom system in Theorem 4 and close under
modus ponens:

P: Uiϕ→ (¬Kiϕ ∧ ¬Ki¬Kiϕ)

AU: Uiϕ→ UiUiϕ

A formula is derivable in this calculus if and only if it is
valid in every distinguished state of every partitional DLR
model.

Note that ¬KUϕ can be derived using P, AU and K-T.
The present result shows that we can impose the DLR ax-

ioms without trivializing partitional models. But we confess
to doubts about whether these axioms are appropriate. Just
as with AC, once we understand more clearly the charac-
ter of attention and conceivability, as well as the distinction
between sentences and what they express, DLR’s axioms be-
come much less compelling. The clearest case concerns Plau-
sibility and attention. A consequence of the contrapositive
of Plausibility is Kϕ → Aϕ. But this principle is false for
attention. You know that there are more than four stars in
the universe, but we doubt that you were attending to the
question of how many stars there are prior to reading the
previous clause. As we discuss in more detail in the full pa-
per, the coarse-grained conception of content together with
clarity about the notion of awareness to be modeled cast
doubt on DLR’s axioms.

4.6 Propositional Quantification
A challenge to some approaches to unawareness is to rep-

resent propositionally quantified statements. E.g., earlier mod-
els by Halpern made the claim that the agent knew she was
unaware of something unsatisfiable (cf. [21] and [22]). In
standard state space models such as ours, it is trivial to add
propositional quantifiers without any such consequences. To
do so, we write v[E/p] for the valuation function which maps
p to E and every other proposition letter q to v(q):5

J∀pϕKM,v =
⋂
E⊆ΩJϕKM,v[E/p]

To illustrate that these quantifiers behave just as one would
expect, note that in state 1 of the example described in
section 4.3, the agent knows that she is unaware of something
without there being something that she knows to be unaware
of: K∃pUp ∧ ¬∃pKUp is true in this state.

5See already [36], and [12] for a more systematic develop-
ment. See [13] for results on the complexity of propositional
quantifiers in the related setting of [14].

4.7 Closure and Automorphisms
In partitional models, what agents are aware of (attend

to/can conceive) is closed under negation and conjunction.
One might wonder whether we can also impose the con-
straints that what agents are aware of must be closed under
awareness and knowledge. In other words, whether there are
models on which the following axioms are valid:

A-4ij Aip→ AiAjp

AK-4 Aip→ AiKjp

To provide models which validate these principles we adapt
the coherence constraint of [14].6 The idea behind it is most
easily described for awareness as conceivability, taking the
equivalence relations of partitional models to represent a
relation of indistinguishability using conceptual resources
available to the relevant agent at the relevant state. Co-
herence requires that if two states are indistinguishable in
this way, then there must be a way of permuting the state
space in a way which preserves all structural facts about
knowledge and awareness, as well as all the events which
the relevant agent is aware of at the relevant state.

Let M = 〈Ω, Ri,≈i〉i∈I be a partitional model. A permu-
tation f of Ω is an automorphism of M if for all i ∈ I,

(i) for all x, y, z ∈ Ω, y ≈ix z iff f(y) ≈if(x) f(z), and

(ii) for all x, y ∈ Ω, Rixy iff Rif(x)f(y).

A state x ∈ Ω coheres if for all i ∈ I and y, z ∈ Ω such that
y ≈ix z there is an automorphism f of M such that f(y) = z
and f ⊆ ≈ix (i.e., ω ≈ix ω for all ω ∈ Ω). It’s routine to
verify that A-4ij and AK-4 are valid in any coherent state
of a partitional model.

Once again, the model presented in section 4.3 demon-
strates the satisfiability of this constraint: every state in this
model is coherent. Since the model also satisfies the DLR ax-
ioms at state 1, it shows that even if we were to uphold the
DLR axioms, imposing them together with coherence would
not trivialize state space models of awareness.

5. DECISION THEORY
In section 4.5 the example of the number of stars illus-

trated how one may believe and know things to which one is
not attending; clearly this kind of inattention may also affect
choice-behavior. One advantage of standard state spaces is
that we can use the usual decision-theoretic framework to
represent the effects of inattention on choice-behavior.7

The usual decision theoretic representation of an agent’s
beliefs is given by a measure-space 〈S,B, µ〉.8 To generate
a partitional model, we enrich this description of the agent
by selecting BC , a complete atomic subalgebra of B, to gen-
erate a representation of what the agent attends to in the
context of choice: 〈S,B, µ,BC〉. The atoms of BC are a parti-
tion of S, so this structure gives rise to a partitional model of
unawareness. The distribution the agent “uses” in a choice

6The following notion of coherence differs importantly from
that of [14] in that ≈ix here need not relate x only to x.
7We do not here attempt to back-form what the agent is
aware of from her choice-dispositions, as [46, 47] do for belief,
and [51, 52] do for awareness.
8This can be derived in any of the standard ways: e.g. [50],
[59], [1], [5], [30], [6].
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context is given by letting µC(E) = µ(E) for all E ∈ BC
and undefined otherwise. The events the agent “explicitly
believes” in the context can then be defined as the events of
which the agent is certain in µC . The algebra BC can also be
used to parametrize“expanding”and more generally“chang-
ing” awareness, represented as transitions between different
complete atomic sub-algebras of B.9 Since different algebras
will determine different explicit beliefs in different contexts,
this changing awareness can also represent effects of limited
attention such as framing effects or failures of recall.

An approach along these lines has already proven fruitful
in epistemic game theory. [33] and [34] develop Harsanyi type
spaces in which players’ beliefs may be defined on different
σ-algebras. If the algebras are taken as the events the agent
is attending to, one may interpret these models as examples
of agents who fail to attend to questions about the higher-
order beliefs of others, and thus do not have explicit beliefs
over events which can be defined only by the level-n beliefs
of others for large enough n.

5.1 Speculative Trade
An important test of approaches to unawareness has been

how they fare with speculative trade ([26]). Building on the
work of [2], [41] proved their famous “no-trade” theorem,
illustrating the extreme strength of S5 knowledge together
with a common prior. One aim of representing “bounded”
agents such as those with limited attention is to escape such
paradoxes (for this perspective, see [45], [38]). Accordingly,
we now provide a partitional DLR model with a common
prior in which speculative trade is possible.

As is well known (see [16], [49], [48]), the “no-trade” theo-
rem does not hold in general if agents’ accessibility relations
Ri are merely transitive and reflexive, but are not required
to form an equivalence relation. Plausibility is incompati-
ble with the Ri forming an equivalence relation ([42]). Still,
the DLR axioms together with partitional awareness mod-
els impose substantial further constraints, which might be
thought to rule out speculative trade. We now construct a
partitional DLR model to show that speculative trade can
still occur in the presence of DLR’s axioms and nontrivial
unawareness.

Let the states be W = {1, 2, 3, 4, 5} and the agents be
Alice, A, and Bob B. The accessibility relations are defined
so that: 1RAx iff x 6 3; 5RAx iff x > 3 and otherwise
wRAx iff w = x, while RB = W × W . The partitions of
the agents are induced by ≈A1 =≈A2 = {{1}, {2, 3}, {4}, {5}};
≈A4 =≈A5 = {{1}, {2}, {3, 4}, {5}}; and for all w, ≈Bw=≈A3 =
{{1}, {2}, {3}, {4}, {5}}. The agents’ common prior is the
uniform one, and two acts f and g have utility as follows:
f(1) = f(5) = 1, f(2) = f(4) = 5, f(3) = 7; g(w) = 4
for all w ∈W . If the agents update by conditionalization on
their implicit knowledge, then Alice will invariably maximize
utility by choosing f (since in states 2, 3, 4 she is certain it
does better, and in states 1 and 5 she expects to gain 1/3·1+
1/3 · 5 + 1/3 · 7 > 4). Bob meanwhile does not update at all,
so that he strictly prefers g (since 4 > 2/5·1+2/5·5+1/5·7).

6. CONCLUSION
Standard state space models of attention and conceivabil-

ity are at least as successful as current non-standard state
space models. The non-standard models are, however, more

9See the full paper for an alternative related to that of [31].

complicated, and it is unclear that this complexity affords
any advantages in predictive strength or accuracy. Standard
state space models of these phenomena promise to lead to
a rich and rewarding theory, posing technical and concep-
tual challenges, and offering connections to related work by
linguists, philosophers and logicians – as well as work on
bounded reasoning elsewhere in economic theory.
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knowledge of unawareness. Games and Economic
Behavior, 67(2):503–525, 2009.

[22] J. Y. Halpern and L. C. Rêgo. Reasoning about
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A.1 Stronger Assumptions about Knowledge
The model used in Theorem 2 already validates a number

of attractive axioms on knowledge, suggesting that strength-
ening DLR’s constraints on knowledge is unlikely to yield an
interesting triviality result. In particular, the following ax-
ioms are valid on the model:

Distribution: (Kp ∧Kq)→ K(p ∧ q)
Anti-Necessitation: ¬K⊥
Reflexivity: Kp→ p

Positive Introspection: Kp→ KKp

We can show more systematically that any strengthening
of the axioms of knowledge which rules out unawareness
does so trivially in the same way as Negative Introspection
does. On the very mild assumption that the agent doesn’t
know the contradiction⊥, we can characterize the conditions
under which a given model for the knowledge of an agent can
be extended to an unawareness model in which the agent is
unaware of a given p at a given point α in which DLR’s three
axioms are valid. Let a model M ′ extend a knowledge model
M = 〈Ω, k〉 just in case M ′ = 〈Ω, k, a〉 for some function
a : 2Ω → 2Ω.

Theorem 6. Let M = 〈Ω, k〉 be a knowledge model, α ∈
Ω and E ⊆ Ω such that Anti-Necessitation is valid in α. M
has an extension such that Plausibility, KU -Introspection
and AU -Introspection are valid in α and α /∈ a(E) if and
only if

(i) α ∈ −k(E) ∩ −k − k(E), and
(ii) there is an event F such that a ∈ F ∩ −k(F ) ∩ −k −

k(F ).10

Proof. Assume first that (i) and (ii). Let a : 2Ω → 2Ω

be defined so that a(E) = a(F ) = −F , and a(G) = Ω for all
other events G, and consider the model M ′ = 〈Ω, k, a〉. It
is routine to verify that Plausibility, KU -Introspection and
AU -Introspection are valid in α, and α /∈ a(E), appealing
to Anti-Necessitation in the proof for KU -Introspection.

For the converse, note that (i) follows the validity of Plau-
sibility in α. For (ii), let F = −a(E). Then α ∈ F , by
AU -Introspection, α /∈ a(F ), and so by Plausibility, α ∈
−k(F ) ∩ −k − k(F ).

In particular, as long as the constraints on knowledge al-
low for there to be an event E and a state α ∈ E such that
α ∈ −k(E) ∩ −k − k(E), standard state space models and
DLR’s three axioms will not preclude non-trivial unaware-
ness.

A.2 Stronger Assumptions about Awareness
These results demonstrate that no plausible strengthening

of the axioms governing knowledge will re-instate triviality.
But what if we strengthen the axioms on awareness them-
selves?

To investigate this issue formally, extend the language L
by a unary operator CK for common knowledge. To de-
fine its interpretation on a model M = 〈Ω, k, a〉, derive the
following functions on events: k1(E) = k(E), kn+1(E) =
kkn(E), and ck(E) =

⋂
1≤n<ω k

n(E).

JCKϕKM,v = ck(JϕKM,v)

10This result also holds if we replace Plausibility by n-
Plausibility, for all natural numbers n, and (i) and (ii) by
the correspondingly iterated conditions.

With this, we consider the following additional axioms on
awareness:

CK -Plausibility: Ap→ CK (Up→ (¬Kp ∧ ¬K¬Kp))
CK -KU -Introspection: Ap→ CK (¬KUp)
CK -AU -Introspection: Ap→ CK (Up→ UUp)

These additional axioms are also compatible with non-
trivial unawareness. In fact, they are valid in state α of the
example in the proof of Theorem 2. More generally, Theo-
rem 6 can be extended straightforwardly to these three addi-
tional axioms, given the weak assumption that Necessitation
and Anti-Necessitation are valid:

Theorem 7. Let M = 〈Ω, k〉 be a knowledge model in
which Necessitation and Anti-Necessitation are valid, α ∈ Ω
and E ⊆ Ω. M has an extension such that Plausibility, KU -
Introspection, AU -Introspection, CK -Plausibility, CK -KU -
Introspection and CK -AU -Introspection are valid in α and
α /∈ a(E) if and only if

(i) α ∈ −k(E) ∩ −k − k(E), and
(ii) there is an event F such that α ∈ F ∩ −k(F ) ∩ −k −

k(F ).11

Proof. We establish (i) and (ii) as in the proof of The-
orem 6. Assuming (i) and (ii), we define a as in the proof
of Theorem 6, where it is noted that Plausibility, KU -Intro-
spection and AU -Introspection are valid in α, and α /∈ a(E).
For the CK -conditions, consider any event G such that α ∈
a(G). Then by construction of a, a(G) = Ω. Therefore a(G)∪
H = Ω for any event H, and so α ∈ ck(a(G)∪H) by Necessi-
tation, which establishes the validity of CK -Plausibility and
CK -AU -Introspection in α. For CK -KU -Introspection, note
that by Anti-Necessitation, k−a(G) = ∅, so −k−a(G) = Ω,
from which α ∈ ck(−k − a(G)) follows again by Necessita-
tion.

B. PROOF OF THEOREM 4
Proof. Since the formulas derivable in this calculus form

a classical model logic in the sense of [56], we can apply the
standard canonical model construction technique; in partic-
ular, consider the smallest canonical model (see [7, chap-
ter 9], especially p. 254). Consider any formula ϕ not prov-
able in the above calculus, and let Γ be the set of subfor-
mulas of ϕ closed under Boolean combinations. A standard
filtration of the canonical model through Γ produces a finite
model in which ϕ is false. It is routine to prove that the
neighborhood function for Ai associates with each state a
field of sets; since the model is finite this field is generated
by an equivalence relation, as required. The above filtration
can be chosen in such a way as to preserve the transitivity of
the relation for Ki; reflexivity is preserved by any filtration
(see, e.g. [7, chapter 3], especially p. 106, or [4] p. 80).

The above argument also establishes that the logic thus
axiomatized has the finite model property and so is decid-
able.

11Again, we can extend this result to n-Plausibility for all n
analogously to the extension in the previous footnote.

172



An Axiomatic Approach to Routing

Omer Lev
Hebrew University and

Microsoft Research, Israel
omerl@cs.huji.ac.il

Moshe Tennenholtz
Technion

moshet@ie.technion.ac.il

Aviv Zohar
Hebrew University and

Microsoft Research, Israel
avivz@cs.huji.ac.il

ABSTRACT
Information delivery in a network of agents is a key issue for
large, complex systems that need to do so in a predictable,
efficient manner. The delivery of information in such multi-
agent systems is typically implemented through routing pro-
tocols that determine how information flows through the
network. Different routing protocols exist each with its own
benefits, but it is generally unclear which properties can
be successfully combined within a given algorithm. We ap-
proach this problem from the axiomatic point of view, i.e.,
we try to establish what are the properties we would seek
to see in such a system, and examine the different proper-
ties which uniquely define common routing algorithms used
today.

We examine several desirable properties, such as robust-
ness, which ensures adding nodes and edges does not change
the routing in a radical, unpredictable ways; and proper-
ties that depend on the operating environment, such as an
“economic model”, where nodes choose their paths based on
the cost they are charged to pass information to the next
node. We proceed to fully characterize minimal spanning
tree, shortest path, and weakest link routing algorithms,
showing a tight set of axioms for each.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign; C.2.2 [Computer Systems Organization]: Computer-
Communication Networks—Network Protocols; C.2.6 [Computer
Systems Organization]: Computer-Communication Net-
works—Internetworking ; G.2.2 [Mathematics of Com-
puting]: Discrete Mathematics—Graph Theory

General Terms
Design, Algorithms, Theory

Keywords
Routing, Axiomatic Approach, Routing algorithms

1. INTRODUCTION
The proper way to distribute power, disseminate infor-

mation, or establish hierarchies in organizations is an issue
encountered whenever there is a large enough network of
agents that needs to interact in an orderly manner. For ex-
ample, when trying to establish efficient lines of communica-
tions between agents which all need to reach a central hub,

there are various properties we may desire in our system. We
might want the system to be able to handle small changes
in connections without causing disruptions throughout the
network; we may want it to be flexible when we change its
parameters so that various routing options are possible, and
more. Indeed, the search for the right communication struc-
ture has played a role in early work on the foundations of
the area of multi-agent systems [7, 15, 5], based on classical
work in organization theory [8, 16].

More concretely, examining networking, one of the most
important aspects of the design of a communication net-
work is the way it routes information through its physi-
cal links. Routing protocols, such as those used in packet
switching networks, circuit switching, or ad-hoc networks
are designed with many goals in mind. They must adapt
to changing network conditions, withstand failures, and op-
erate in a distributed fashion while constructing a “good”
routing scheme. Nodes in the network are, in fact, au-
tonomous agents that can control the flow of information
through them and can choose to forward it according to
their own considerations. Agents may be controlled by dif-
ferent economic entities (such as in the internet, where differ-
ent internet service providers control some of the routers),
and may route according to complex preferences that are
derived from economic relations [9, 14]. Even in the cooper-
ative local-network setting where all routers are controlled
by a single network operator, different considerations such as
bandwidth utilization, latency, and the risks of link failures
come into play.

The multitude of previous treatments of the problem sug-
gest a myriad of routing protocols, each with their own ben-
efits and shortcomings. In contrast, this work examines the
routing problem through the lens of the axiomatic approach,
which seeks to formulate different elementary properties that
are desirable in this context. One approach to an axiomatic
treatment, which we take in this work, is that of character-
ization: a set of elementary properties is shown to uniquely
determine some routing algorithm, and hence the routing
outcome on any specific graph. From the designer’s per-
spective, such a result implies a great deal – any additional
property that is not already achieved by the protocol cannot
be added to it without giving up on another basic property.
The approach thus provably bounds the design space of algo-
rithms and makes explicit the choices made when selecting
one over the other.

As we are not aware of any previous axiomatic treatment
of routing, we focus our attention on a domain that most
closely resembles the internet as it is built today, and fo-

173



cus our efforts within this domain on what one may con-
sider classic, or natural routing schemes. In particular, we
assume that routing choices are independent of the conges-
tion on links (such is the case in the internet, where routing
protocols such as BGP first establish paths, and congestion
control protocols such as the one embedded into TCP man-
age the load on each flow’s path and ensures that rates are
throttled to match the bottleneck of the flow). Further-
more, as with internet routing where routers decide on the
next hop of each packet using a routing table that maps its
destination to the next hop, routing choices made to dif-
ferent destinations are done independently. Finally, packets
addressed to the same destination are not split between dif-
ferent paths, and are routed in the same manner regardless
of their source. These choices, which greatly restrict the
power of any routing algorithm may seem arbitrary, but are
in fact derived from real-world design considerations. For
example, the need to quickly forward packets towards their
destination at each router mandated that most routing be
done in specialized hardware. No complex computation is
performed (only a lookup into a routing table) and no deep
inspection of the packet is performed. Keeping routing sim-
ple has made it fast and robust.

More advanced routing schemes that have been proposed
in the literature may split traffic, allow routing choices to
depend on the source of the packet or its previous hops, or
may even change the routes in response to link congestion.
These are notoriously difficult to coordinate and to imple-
ment. We leave treatment of these more advanced schemes
to future work.

Our set of axioms or “desirable properties” are also moti-
vated by similar considerations. For example, one of the fun-
damental features we desire in our algorithms is one of ro-
bustness, which is the ability of a system to endure changes
in the network without creating disruption in parts of the
network that have not undergone changes.

A different feature, which might be desirable only in cer-
tain cases, is “first hop”, which is particularly relevant for
diffuse networks with independent nodes. It means, broadly,
that network nodes care only about their immediate sur-
roundings, or the “next step” in the network data transfer.
Such a property might be relevant when nodes pursue an
“economic model”, paying for transferring information, and
hence only caring about the cost they need to pay to move
their information to the next node, and following that, they
have no preference on the route the information should pass
en route to its destination. Other properties, desirable only
in some cases include an indifference between two parallel
paths, as long as they change their weights by the same
amount concurrently.

Ultimately, after devising our axioms we successfully fully
characterized 3 natural routing algorithms:

• Minimum spanning tree: A tree with the smallest
overall weight is a result, among others, of the “first
hop” axiom (the “economic model”).

• Shortest path: A tree where each node has the short-
est possible path to its destination is a result, among
other axioms, of viewing as immaterial to the routing
decision any parallel paths which change their weight
by the same amount.

• Weakest link tree: A tree where each node takes the
path with the maximal “lightest” weight available to

it. This results from considering higher edge-weights
as beneficial (e.g., representing bandwidth which one
wishes to increase in contrast to delay that one wishes
to decrease), and from considering designers that choose
between parallel paths in a slightly different manner.

We proceed to review relevant previous research and then
continue to define our model and expand on the axioms,
which are motivated with a brief explanation and presented
formally. Following that we show (and prove) our character-
ization of the minimal spanning tree, the shortest path tree,
and the weakest link tree.

2. RELATED WORK
In the past decade, as routers became more flexible, re-

search on routing (particularly inter-domain) and its tech-
niques has been rekindled and extended beyond the techni-
cal issues dealt with in the past. The harbinger for much of
this research was [10], which was further expanded by sev-
eral researchers (see updating report here: http://www.cl.

cam.ac.uk/~tgg22/metarouting/ ). However, this line of
research, while introducing many interesting mathematical
and theoretical concepts to the field of routing, has refrained
from phrasing its models as requirements by users, to be
filled by various routing algorithms.

The axiomatic approach, which does approach problems
with this outlook, has been first introduced in CS contexts
as extensions to the classical theory of choice [4], and has
been applied to ranking systems [1, 2] and trust systems [3],
as well as to other multi-agent setups such as multi-level
marketing [6].

In relation to networking, usage of the axiomatic approach
has generally been concentrated in two main areas: apply-
ing to general graph theory (e.g., [18]) or in more technical
approaches to networks: papers such as [13] which deal with
particular wireless models and implementations, and, some-
what closer to our line of work, [12], whose basic axioms are
basic enough to be covered through our models, while the
routing related axioms involve various assumptions on how
routers work (tables, etc.), which we refrain from approach-
ing in our more abstract considerations.

Further work connecting networking and the axiomatic
approach has focused on particular instances of problems:
[11] try to use the axiomatic approach to extract the costs
of multicast routing and decide who is to pay them. Trust
networks and social networks (e.g., recommendation sys-
tems) have been analysed many times using the axiomatic
approach to understand their desirable features and better
understand desirable algorithms in these cases [17, 3]. How-
ever, none of these papers deal with the basic routing mech-
anism by which messages and information arrive at each
node.

3. SETUP
Before introducing our axioms, we begin by setting up

our routing model. It is, naturally, only a simplification of
routing as it is done in large, complex networks such as the
internet, but we believe it is robust enough to display many
networking characteristics.

Our world will be a weighted graph G(V,E,W ) and a
destination d, where V is a set of nodes, E is a set of edges,
and W is a function assigning weights to edges, and d ∈ V .
A routing solution is a tree T over that graph, as defined
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below (we do not concern ourselves with non-tree routing,
as passing through the same node several times does not
serve any purpose).

Definition 1. A routing function fd : G → T is a func-
tion from connected weighted graph G(V,E,W ) ∈ G in which
d ∈ V , to a tree T (V,E,W ) ∈ T such that T ⊆ G.

We can look at the graph as one with directed edges if
we consider each edge’s direction to be the one pointing at
the vertex from which there is a path to d (without going
through the same edge again).

We discuss 3 different routing options:

• Minumum spanning tree (MST): a tree connecting all
nodes in the graph with the minimal weight, i.e., for
every tree T ′ ⊆ G that encompasses all of G’s nodes,∑
e∈fd(G)W (e) ≤∑

e∈T ′ W (e).

• Shortest path: each node is connected to d using a
shortest length path in the graph. For every node v ∈
V , let (e1, . . . , es) be a path without cycles from v to d
such that ei ∈ T , and let (e′1, . . . , e

′
k) a different path

from v to d, then
∑s
i=1W (ei) ≤

∑k
j=1W (e′j).

• Weakest link : looking at each potential path from each
node to d, we give each path the value of its smallest
valued edge. The routing tree will contain, for each
node the path to d with the maximal value. So for
every node v ∈ V , let (e1, . . . , es) be a path without
cycles from v to d such that ei ∈ T , and let (e′1, . . . , e

′
k)

a different path from v to d, then min1≤i≤sW (ei) ≥
min1≤j≤kW (e′j).

Notice that while for the minimal spanning tree and short-
est path routing options weights are interpreted as costs
(e.g. payments, delays), so these algorithms seek to mini-
mize them, the weakest link views weights as measure for ca-
pability such as bandwidth, so seeks to maximize the weight.

4. AXIOMS
Having introduced our framework, we introduce our ax-

ioms, which are, basically, desirable properties of the func-
tion fd (in the axioms below we use f , as these are properties
which do not depend on a specific d destination).

Robustness indicates the routing being quite unsusceptible
to changes – only if a path in the routing is destroyed, will
it require any change. As indicated in Figure 1, the path
from node a changes, but not from node b.

Axiom 1 (Robustness). f is robust if removing an
edge e ∈ E from G(V,E,W ), yielding G′, then for every
vertex v ∈ V : if the cycle-less path from v to d in fd(G) did
not contain e, then this is still the selected path according to
fd(G

′) (see example Figure 1).

The following axioms deal with global changes to the graph
weights, additive or multiplicative:

Axiom 2 (Scale Invariance). f is scale invariant if
for a graph G(V,E,W ), for any positive scalar α ∈ R+,
defining G′(V,E, αW ), for every d ∈ V , fd(G) = fd(G

′).

Axiom 3 (Shift Invariance). f is shift-invariant if for
a graph G(V,E,W ), for any α ∈ R, defining G′(V,E, α +
W ), for every d ∈ V , fd(G) = fd(G

′).

a 

a a 

a b b 

b b 

d d 

d d 

Figure 1: An edge is removed, but only a, whose
path used that edge changes its path (the left side is
the graph, the right side is the routing algorithm’s
output)

The monotonicity axiom below seeks to establish that if an
edge does not have to be in every tree, if its weight increases
enough, it will not be a part of the routing tree:

Axiom 4 (Monotonicity). f is monotone if for a graph
G(V,E,W ) and d ∈ V , for e′ ∈ E, if e′ /∈ fd(G), then
for every G′(V,E,W ′), there is a value MW ′ such that for
W ′′ such that W ′′(e) = W ′(e) for all e ∈ E \ {e′} and
W ′′(e′) ≥ MW ′ , e′ /∈ fd(G′′(V,E,W ′′)). Similarly, we can
define the opposite direction, an edge in fd(G) will not be in
the routing tree if it has a small enough value; we will refer
to it as inverse monotonicity.

While the phrasing of the following axiom is somewhat tech-
nical, the first hop axiom below simply means that if a ver-
tex has several potential edges to connect to a path to d, the
routing only depends on the weights of the edges connecting
it to these potential paths, and unrelated to weights of other
edges in the graph.

Axiom 5 (First Hop). Let G(V,E,W ) be a weighted
graph and let v, d ∈ V and d 6= v. Suppose C = {c1, . . . , cs}
are the vertices such that (v, ci) ∈ E and there is a path from
ci to d in fd(G) which does not pass through v. W.l.o.g., let
(v, c1) be the first step in the path from v to d in fd(G).
We say that f satisfies first hop if for any W ′ such that
W ′(v, ci) = W (v, ci) and if for all ci ∈ C fd(G

′(V,E,W ′))
contains paths to d from ci that do not pass through v, and
there is no c′ /∈ C such that (v, c′) ∈ E and there is a path
from c′ to d in fd(G

′), then the cycle-less path from v to d
in fd(G

′(V,E,W ′)) starts with (v, c1).

The rational for the first hop axiom is to capture a com-
mon economic model, in which edge weights indicate the
cost of passing information. In distributed networks, such
as the internet, each agent only minds the amount it needs
to pay to transfer its data to the next node, not caring about
the path the data will take from there.
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Figure 2: Selected path does not change when each
path from the top node is added 2.

Path cardinal/ordinal invariance intends to see the plan-
ner’s considerations when multiple paths exist. As there
might be many potential behaviours, we only limit ourselves
to examining the narrow case of what the planner considers
important when there is only one cycle in the graph (i.e., the
axiom does not strongly enforce a general behaviour on the
planner). Cardinal invariance deals with adding the same
weight to potential paths, and how it does not effect the
routing. Ordinal invariance similarly does not change the
routing if all that has changed are the weights of the com-
peting paths, as long as edges in each path maintain their
relative position.

Axiom 6 (Path Cardinal Invariance). Let G(V,E,W )
be a graph which contains a single cycle, d ∈ V , and let
d 6= v ∈ V be a part of this cycle. Hence there are two
alternative paths from v to d – p1 ⊂ E and p2 ⊂ E (one
of them is actually a part of fd(G)). f is path cardinal in-
variant if it treats those paths as such: Choosing an edge
e′ ∈ p1 and e′′ ∈ p2, for any α ∈ R, we define W ′ as
W (e) = W ′(e) for e ∈ E \{e′ ∪ e′′} and W ′(e′) = W (e′) +α
and W ′(e′′) = W (e′′) + α, the path from v to d will not
change in fd(G(V,E,W ′)) (see example Figure 2).

Axiom 7 (Path Ordinal Invariance). Let G(V,E,W )
be a graph which contains a single cycle, d ∈ V , and let
d 6= v ∈ V be a part of this cycle. Hence there are two al-
ternative paths from v to d – p1 ⊂ E and p2 ⊂ E (one of
them is actually a part of fd(G)). f is path ordinal invari-
ant if it treats those paths as such: Taking an edge e′ ∈ pi
(i ∈ {1, 2}) that is not maximal or minimal in p1∪p2, we de-
fine W ′ as W (e) = W ′(e) for e ∈ E \ {e′} and allow W’(e’)
to be any value it chooses as long as for every e′′ ∈ pi if
W (e′) ≥ W (e′′) then W ′(e′) ≥ W ′(e′′) = W (e′′), and the
path from v to d will not change in fd(G(V,E,W ′)) (see ex-
ample Figure 3).

5. MINIMAL SPANNING TREE

Theorem 1. A robust, scale invariant, shift invariant,
monotone, first-hop (axioms 1-5) routing function f , for any
graph G(V,E,W ) and d ∈ V , fd(G) will always be a minimal
spanning tree of G.

Reminder 1. As our minimal spanning tree proof relies
on the Kruskal algorithm, we will briefly describe it:

1. Order edges according to weights
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Figure 3: Selected path does not change when the
bottom right edge is slightly increased.

2. Define a set S, initialized to the empty set.

3. Going over edges from lightest to heaviest, if the set
S ∪ {e} has no cycles, S = S ∪ {e}.

Proof Proof of Theorem 1. We shall prove the the-
orem using complete induction on the number of non-cycle
lightest edges in the tree fd(G). Hence, we shall begin by
proving that the lightest edge in the graphG is in the routing
tree T = fd(G). Assuming we are mistaken, let us consider
the lightest edge in G – e = (u, v) ∈ E – and assume e /∈ T .
We create G′(V,E′,W ) = fd(G) ∪ {e}, and thanks to the
robustness axiom, we know fd(G) = fd(G

′).
If v’s path to d in fd(G

′) goes through u, we shall switch
the nodes’ names, so that v’s path to d does not pass through
u. As e is not in fd(G

′), there is an edge e′ = (u, s) that is
the first step from u towards d. We now define x = W (e)
and y = W (e′), and due to our minimality assumption, we
know x < y.

Using the monotonicity axiom, we change graph weights
to W ′ that is identical to W except that e′ weight is large
enough so that we create a tree T ′ in which there is a path
from s to d that does not pass through u (e.g., the same
path that is in fd(G

′)), and v passes through u towards d
(i.e., e ∈ T ′). We define y′ = W ′′(e′).

Using scale invariance we now multiply all edges by y−x
y′−x ,

and using shift invariance, we add to all edges y − y−x
y′−xy

′.
This means the weight of edge e is now

x
y − x
y′ − x + y − y − x

y′ − xy
′ = (x− y′) y − x

y′ − x′ + y = x

While the weight of edge e′ is now

y′
y − x
y′ − x + y − y − x

y′ − xy
′ = y

However, the routing tree contains e and not e′, and a
path from both v and s to d, contradicting the “first hop”
axiom, which should have caused e′ to be chosen over e, as
the edge weights for e and e′ have not changed.

We now turn to the induction step – we assume all bottom
weighted k−1 edges that do not create a cycle are included in
the tree T = fd(G), and we now seek to include the k-lightest
edge that does not create a cycle. We pursue a similar path
as we did as previously, and we shall mark the edge as e =
(u, v), and assume it is not included in T = fd(G), and
instead e′ = (u, s) is included, and there is a path to d from
v and s. Again, we create G′(V,E′,W ) = fd(G) ∪ {e}, and
thanks to the robustness axiom, we know fd(G) = fd(G

′).
Using monotonicity we create weights W ′ that just increase
e′ weight, so that G′′ = (V,E′,W ′) has T ′ = fd(G

′′) which
include the same bottom k which do not create cycles (from
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the induction hypothesis), and u reaches d via the edge e.
Recall that we know the bottom k − 1 edges will definitely
be in fd(G

′′), and we wish to ensure that there will still be a
path from v to d and from s to d. The same arguments used
in the initial step of the induction ensure that, as well as
returning the weights of e and e′ to their values in G, while
routing u through e and not e′ in the routing tree, reaching
a contradiction with our initial assumption due to the “first
hop” axiom.

What is left is to show MST indeed follows our axioms:

Robustness (axiom 1) Trivial thanks to the Kruskal al-
gorithm – if the removed edge (e′) was not in the rout-
ing tree, it means it was not selected in the first place,
and hence the same routing tree will be chosen. If it
was, then any edge added after its removal (e′′) closed
a cycle with it, and hence, if affecting the edges in any
path that did not include e′, it means e′′ closes a cycle
with them, hence e′ would have closed a cycle as well.

Scale invariance (axiom 2) Multiplying all edges by a
fixed amount does not change their order in relation
to others, hence Kruskal will choose the same routing
tree.

Shift invariance (axiom 3) Adding a fixed amount to all
edges does not change their order in relation to others,
hence Kruskal will choose the same routing tree.

Monotonicity (axiom 4) Giving an edge the maximal pos-
sible edge value ensures it will only be selected if no
other edge can replace it – and if there exists a tree
without some edge, we know it will be chosen before.

“First hop” (axiom 5) Kruskal ensures that if there are
the same possible options of connecting a node to the
tree, only the lightest edge will be chosen.

6. SHORTEST PATH

Theorem 2. A robust, scale invariant, monotone, and
path cardinal invariant (axioms 1-2, 4, 6) routing function
f , for any graph G(V,E,W ) and d ∈ V , fd(G) will always
be a shortest path graph to d of G.

Proof. Suppose T = fd(G) is not a shortest path routing
tree. Let u be the closest node to d that is not connected to
d with a shortest path. Hence, there is an edge e = (u, v)
which will make u’s path a shortest path one (v, being closer
to d, is already connected to d with a shortest path), but
e /∈ T , and instead e′ = (u, s) is included in T . Using
robustness, we create G′(V,E′,W ) = T ∪e. G′ contains two
alternate paths from u to d, and fd(G) = fd(G

′).
Using path cardinal invariant, we “move” all the value of

the edges on each path to it’s “source”, i.e., to (u, v) or (u, s)
(we do this by adding to the weight of (u, v) and (u, s) the
value of

∑
e∈(p1∪p2)\(p1∩p2)W (e) − W ((u, v)) − W ((u, s)),

and reduce from W ((u, s)) the weight of all edges of the
path from u to d through (u, v) and vice versa). We shall
refer to W (e) = x and W (e′) = y. We now use monotonicity
to create a new tree, with e but without e′, with the graph’s
weight now W ′ (identical to W except for increase in e′

weight). Once again, we transfer all value of the paths from

u to d to e and e′ respectively, with everything else being 0.
Now, using monotonicity, we increase the weight of e′ above
that of e, with the weight of (u, v) being x (its path weights
have not changed) and (u, s) being y′.

Finally, we multiply all edges by y−x
y′−x (using scale invari-

ance), and using path cardinal invariance, we add to e and
e′ the amount y − y−x

y′−xy
′. The weight of e is now:

x
y − x
y′ − x + y − y − x

y′ − xy
′ = (x− y′) y − x

y′ − x + y = x

While the weight of edge e′ is now

y′
y − x
y′ − x + y − y − x

y′ − xy
′ = y

As all edges are the same weight as before, therefore we
reached a contradiction regarding the inclusion of e′ instead
of e (whose weights are the same as well).

We will now show shortest path follows our axioms:

Robustness (axiom 1) Removing an edge, at most, elim-
inates a potential path from a node to the destination
d. If the path was not on the shortest path, the previ-
ous shortest path remains so.

Scale invariance (axiom 2) Multiplying by a fixed amount
all edges means the value of each path is multiplied by
the same amount, maintaining their relative ordering,
hence what was shortest remains so.

Monotonicity (axiom 4) Giving an edge the value of the
sum of all other edges ensures it will only be selected
if no other path can replace it — and if there exists a
tree without some edge, we know there is such a path.

Path cardinal invariance (axiom 6) Having multiple paths
from a node, adding the same amount to each path
doesn’t change the ordering of the paths (i.e., which
path is“shorter”than another), hence selection of short-
est path will be identical.

7. WEAKEST LINK

Theorem 3. A robust, scale invariant, shift invariant,
inverse monotone, and path ordinal invariant (axioms 1-4,
7) routing function f , for any graph G(V,E,W ) and d ∈ V ,
fd(G) will always be a weakest link graph to d of G.

Proof. Suppose T = fd(G) is not a weakest link routing
tree. Let u be a node that requires just one edge missing
from T that is not connected to d with a weakest link1, and
we mark this edge as e = (u, v). Since e /∈ T , there is an edge
instead e′ = (u, s) that is included in T . Using robustness,
we create G′(V,E′,W ) = T ∪ e. G′ contains two alternate
paths from u to d, and fd(G) = fd(G

′).
Using path ordinal invariant, we change the value of all

edges on each alternate path from u to d to its weakest link
value (we do this by taking the 2nd smallest edge in the path
and changing its value to that of the weakest link, which by

1such a node exists as there is a node not connected by
weakest link in T , hence adding the necessary path for that
node, taking the node just before the final edge that we add
to T (i.e., closest to d), answers our criterion.
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the axiom does not change the path chosen, and we proceed
doing so to all edges on the path). We shall refer to W (e) =
x and W (e′) = y (from assuming u is not in a weakest link
path we know x > y). Using inverse monotonicity, we create
W ′ identical to W except for e′ weight, that is low enough
that it is not included in fd(G

′′(V,E′,W ′)). Once again, we
change the values of the paths from u to d to their weakest
link value (this is only relevant for the path through e′, as
the other path has not changed). We term the the new value
for e′ – y′, and we know x > y′.

Finally, we multiply all edges by y−x
y′−x (using scale in-

variance), and using shift invariance, we add to all edges
y − y−x

y′−xy
′. Edge e now has the weight:

x
y − x
y′ − x + y − y − x

y′ − xy
′ = (x− y′) y − x

y′ − x + y = x

While the weight of edge e′ is now

y′
y − x
y′ − x + y − y − x

y′ − xy
′ = y

As all edges are the same weight as before, hence we
reached a contradiction regarding the inclusion of e′ instead
of e.

We shall now show weakest link also follows our axioms:

Robustness (axiom 1) Removing an edge, at most, elim-
inates a potential path from a node to the destination
d. If the path was not a weakest link, the previous
weakest link remains so.

Scale invariance (axiom 2) Multiplying by a fixed amount
all edges means the value of each path (its smallest
edge) is multiplied by the same amount, maintaining
their relative ordering, hence what was weakest link
remains so.

Shift invariance (axiom 3) Adding a fixed amount all edges
means the value of each path (its smallest edge) is
added the same amount, maintaining their relative or-
dering, hence what was weakest link remains so.

Monotonicity (axiom 4) Giving an edge the value of the
minimum of all other edges ensures it will only be se-
lected if no other path can replace it — and if there
exists a tree without some edge, we know there is such
a path.

Path ordinal invariance (axiom 7) Having multiple paths
from a node, the weakest link edge (the one with small-
est value) of the selected path can’t become lower than
the weakest link of the non-selected path, hence weak-
est link choice does not change.

8. TIGHTNESS OF AXIOMS
We will now show that the above characterizations are

tight, and that without each axiom, other routing algorithms
become possible.

Theorem 4. All MST axioms (1-5) are necessary, and
without even one of them, other routing algorithms are pos-
sible.
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Figure 4: Lack of robustness results in a minimal
spanning tree/shortest path routing (above) ending
up in a routing tree that is weakest link but not
MST or shortest path (below).
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Figure 5: Eliminating scale invariance results in a
minimal spanning tree/shortest path/weakest link
routing (above) ending up in neither (below).

Proof. Going over all MST axioms, we detail potential
algorithms which work with all axioms except that one, and
are not MST. We will refer below to each relaxed axiom,
and to the new/additional system which can obtained by
that relaxation:

Robustness See example in Figure 4. Apply MST to any
other graph that is not a linear transformation of the
bottom one.

Scale invariance See example in Figure 5. On all graphs
except those which contain as a subgraph a linear trans-
formations of the bottom one, apply MST.

Shift invariance See example in Figure 6. On all graphs
except those which contain as a subgraph a linear trans-
formations of the bottom one, apply MST.

Monotonicity A maximal spanning tree implements all
axioms but monotonicity.

First Hop Weakest link implements all of the other ax-
ioms.

Theorem 5. All shortest path axioms (1-2, 4, 6) are nec-
essary, and without even one of them, other routing algo-
rithms are possible.
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Figure 6: Eliminating shift invariance results in a
minimal spanning tree/weakest link routing (above)
ending up in neither (below).

Proof. Going over all shortest path axioms, we detail
potential algorithms which work with all axioms except one,
and are not shortest path. We will refer below to the each
relaxed axiom, and to the new/additional system which can
obtained by that relaxation:

Robustness See example in Figure 4. Apply shortest path
to any other graph that isn’t a scale of the structure
of the bottom one. Any edge in that structure that is
100 times all the others is removed in the tree.

Scale invariance See example in Figure 5. Taking the bot-
tom example and for the group that includes all graphs
for which it is a subgraph and those that can be formed
by path cardinal invariance, and only for them do not
apply shortest path but rather the example (it won’t
trample on the top example, as if the upper example
adds y to lower-right edge, and y to the rest, and the
bottom example adds x, it would require 2+x = 4+x,
reaching an impossibility).

Inverse Monotonicity A longest path tree implements all
axioms but monotonicity.

Path cardinal invariant Minimal spanning tree implements
all other axioms.

Theorem 6. All weakest link axioms (1-4, 7) are neces-
sary, and without even one of them, other routing algorithms
are possible.

Proof. Going over all weakest link axioms, we detail po-
tential algorithms which work with all axioms except one,
and are not weakest link. We will refer below to the each
relaxed axiom, and to the new/additional system which can
obtained by that relaxation:

Robustness See example in Figure 4. Apply weakest link
to any other graph that isn’t of the structure of the
bottom one, Any edge that in that structure that is
100 times less that all the others’ weight is removed.

Scale invariance See example in Figure 5. Taking the
bottom example and for the group that includes all
graphs for which it is a subgraph and those that can
be formed by shift invariance and only for them do not
apply weakest link but rather the example (it won’t
trample on the top example, as it can’t be reached by
shift invariance, and as the edge weights are all min-
imal/maximal, they change change by ordinal invari-
ance).

Shift invariance See example in Figure 6. Taking the
bottom example and for the group that includes all
graphs for which it is a subgraph and those that can
be formed by scale invariance and only for them do not
apply weakest link but rather the example (it won’t
trample on the top example, as it can’t be reached by
shift invariance, and as the edge weights are all min-
imal/maximal, they change change by ordinal invari-
ance).

Monotonicity A strongest link tree implements all axioms
but monotonicity.

Path ordinal invariant Minimal spanning tree implements
all other axioms.

9. DISCUSSION
In this paper we explore the basic issue of routing – how

should information flow through a network and what prop-
erties might this process have. In the process of considering
this issue we developed several properties we believe might
be desirable by system planners. For example, robustness, or
the ability of a routing protocol to keep small changes from
disrupting the whole routing process, is a property especially
required in fast, changing networks.

Naturally, creating a structure from possible interactions
between agents defined by a connections’ graph is not lim-
ited just to information routing in networks such as the in-
ternet. Looking at organizations, where workers are con-
nected according to their ability to work with other work-
ers, and instead of routing messages between them we seek
to construct an organizational hierarchy, we face a similar
challenge. Again, robustness is a desirable property, as it
means that if some workers have a worsening relationship
with others, if they’re not very senior in the organization, it
has little effect on many others. In this case, we may con-
sider the “economic model” (“first hop” axiom) appropriate
as well – if workers only interact with their boss, we only
care about the edge from each worker to his/her boss, and
each worker does not care what happens further up in the
hierarchy2.

Beyond setting up the axioms, we also examined common
routing algorithms – minimal spanning tree, shortest path
and weakest link, and fully characterized them. Obviously,
this is only the beginning of the road for this line of research
– further steps will entail developing more axioms and using
them to characterize more algorithms, with the aim of giving
a set of tools for system designers, allowing them to choose
desirable properties which would dictate appropriate routing
protocols.

Acknowledgments
The authors thank Michael Schapira for his insightful dis-
cussions on this matter. Moshe Tennenholtz carried out this
work while at Microsoft Research, Israel. Aviv Zohar is
supported in part by the Israel Science Foundation (Grants
616/13 and 1773/13), and by the Israel Smart Grid (ISG)
Consortium.

2Similarly, in a highly centralized organization, a path car-
dinal invariance is probably a sensible axiom.

179



10. REFERENCES
[1] A. Altman and M. Tennenholtz. Ranking systems:

The pagerank axioms. In Proceedings of the 6th ACM
conference on Electronic commerce (EC), pages 1–8,
Vancouver, Canada, June 2005.

[2] A. Altman and M. Tennenholtz. An axiomatic
approach to personalized ranking systems. Journal of
the ACM, 57(4):1–35, 2010.

[3] R. Andersen, C. Borgs, J. Chayes, U. Feige,
A. Flaxman, A. Kalai, V. Mirrokni, and
M. Tennenholtz. Trust-based recommendation
systems: an axiomatic approach. In Proceedings of the
17th international conference on World Wide Web
(WWW), pages 199–208, Beijing, China, April 2008.

[4] K. J. Arrow. Social Choice and Individual Values. Yale
University Press, 1951.

[5] E. Durfee, V. R. Lesser, and D. D. Corkill. Coherent
cooperation among communicating problem solvers.
IEEE Transactions on Computers, 36(2):1275–1291,
1987.

[6] Y. Emek, R. Karidi, M. Tennenholtz, and A. Zohar.
Mechanisms for multi-level marketing. In Proceedings
of the 12th ACM conference on Electronic commerce
(EC), pages 209–218, San Jose, Califronia, June 2011.

[7] M. S. Fox. An organizational view of distributed
systems. IEEE Transactions on Systems, Man and
Cybernetics, 11(1):70–80, 1981.

[8] J. R. Galbraith. Designing Complex Organizations.
Addison-Wesley, 1973.

[9] L. Gao and J. Rexford. Stable internet routing
without global coordination. IEEE/ACM Transactions
on Networking, 9(6):681–692, December 2001.

[10] T. G. Griffin and J. L. Sobrinho. Metarouting. In
Proceedings of the 2005 conference on Applications,
technologies, architectures, and protocols for computer
communications (SIGCOMM), pages 1–12,
Philadelphia, Pennsylvania, August 2005.

[11] S. Herzog, S. Shenker, and D. Estrin. Sharing the
”cost” of multicast trees: An axiomatic analysis.
IEEE/ACM Transactions on Networking,
5(6):847–860, December 1997.

[12] M. Karsten, S. Keshav, S. Prasad, and M. Beg. An
axiomatic basis for communication. In Proceedings of
the 2007 conference on Applications, technologies,
architectures, and protocols for computer
communications (SIGCOMM), pages 217–228, Kyoto,
Japan, August 2007.

[13] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and
C. Elliott. Experimental evaluation of wireless
simulation assumptions. In Proceedings of the 7th
ACM international symposium on Modeling, analysis
and simulation of wireless and mobile systems
(MSWiM), pages 78–82, Venice, Italy, October 2004.

[14] H. Levin, M. Schapira, and A. Zohar. Interdomain
routing and games. In Proceedings of the 40th annual
ACM symposium on Theory of computing (STOC),
pages 57–66, Victoria, Canada, May 2008.

[15] T. W. Malone. Informational efficiency in networks
and hierarchies. Sloan School of Management Working
Paper 1849, MIT, 1986.

[16] J. G. March and H. A. Simon. Organizations. John
Wiley and Sons, 1958.

[17] Y. L. Sun, W. Yu, Z. Han, and K. J. Liu. Information
theoretic framework of trust modeling and evaluation
for ad hoc networks. IEEE Journal on Selected Areas
in Communications, 24(2):305–317, September 2006.

[18] T. S. Verma and J. Pearl. Causal networks: Semantics
and expressiveness. In Proceedings of the 4th
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 69–78, 1988.

180



Preference at First Sight

Chanjuan Liu
School of Electronics Engineering and Computer Science, Peking University

Institute for Logic, Language and Computation, University of Amsterdam
chanjuan.pkucs@gmail.com

ABSTRACT
We consider decision-making and game scenarios in which an
agent is limited by his/her computational ability to foresee
all the available moves towards the future – that is, we
study scenarios with short sight. We focus on how short
sight affects the logical properties of decision making in
multi-agent settings. We start with single-agent sequential
decision making (SSDM) processes, modeling them by a new
structure of ‘preference-sight trees’. Using this model, we
first explore the relation between a new natural solution
concept of Sight-Compatible Backward Induction (SCBI)
and the histories produced by classical Backward Induction
(BI). In particular, we find necessary and sufficient con-
ditions for the two analyses to be equivalent. Next, we
study how computational complexity changes when short-
sight is involved, and also, whether computationally costly
larger sight always contributes to better outcomes. Then we
develop a simple logical special-purpose language to formally
express some key properties of our preference-sight models.
Lastly, we show how short-sight SSDM scenarios call for
substantial enrichments of existing fixed-point logics that
have been developed for the classical BI solution concept.
We also discuss changes in earlier modal logics expressing
‘surface reasoning’ about best actions in the presence of
short sight. Our analysis may point the way to logical and
computational analysis of more realistic game models.

1. INTRODUCTION
There is a growing interest in the logical foundations,

computational implementations, and practical applications
of single-agent sequential decision-making (SSDM) problems
[13; 18; 9; 16; 14] in such diverse areas as Artificial Intel-
ligence, Control, Logic, Economics, Mathematics, Politics,
Psychology, Philosophy, and Medicine. Making decisions is
central to agents’ routine and usually, they need to make
multiple decisions over time. Indeed, a current situation is
a result of past sequentially linked decisions, each impacted
by the preceding choices.

It is quite natural in sequential decision-making scenarios,
particularly, in large systems, that agents may have some
uncertainties and limitations on their precise view of the
environment. The current literature [18] has studied uncer-
tainty which an agent faces in recognizing possible outcomes
after taking an action and the probabilities associated with
these outcomes, as well as the partial observability of what
the actual state is like. In addition to these, a realistic aspect
that affects a SSDM process is the short-sightedness of the
agent, which blocks a full view of all the available actions.

Short sight plays a critical role in such a situation, since,
while making a choice, the ability to foresee a variety of
alternatives and predict future decision sequences for each
of them, may make a significant difference. Nonetheless,
such restrictions have not been discussed systematically yet
in decision theory or game theory.

In [6], a game-theoretic framework called games with
short sight was proposed. This framework explicitly models
players’s limited foresight in extensive games and calls
for a new solution termed as Sight-Compatible Backward
Induction (SCBI). However, many essential issues related
to sight remain unclear, such as: What is the exact
role of sight? Will the outcome be better when sight is
larger? What is the relation between SCBI and classical
backward induction(BI)? There are also unexplored issues
pertaining to logical aspects. Which minimal logic is needed
for formally characterizing a short-sight framework? Are
existing logics for BI still applicable, or can they be extended
to fit short-sight scenarios? How different are the logical
properties of the game frames for SCBI and for BI? Without
such a logical analysis, the framework of [6] does not suffice
for disclosing the general features of short sight and the
changes it brings about in thinking about decisions and
games. Additionally, in multi-player games, short sight has
to interact with many other factors, such as agents’ mutual
knowledge and interactive decisions and moves.

Having said this, we still start by focusing on short sight
in single-agent sequential decision-making process. For this,
we propose a model of ‘preference-sight trees’ (P-S trees). As
the term says, a P-S tree combines the agent’s preference
and its sight, as both are essential to decision problems [21].
We will study how the two are correlated, and cooperate to
act on decision-making processes and their final outcomes.

As a preliminary illustration, consider the connection
between larger sight and better outcome. A first impression
might be that an agent will always perform better with
larger sight. Surprisingly, this is not always true. Some-
times, one can see much further into the future but receive a
small payoff, while having one’s vision restricted to a limited
set of future alternatives yields a better payoff.

Example 1.1. Alice has to make sequential decisions at
two stages (shown in Figure 1). For each stage, she can
choose either L or R. Assume that the preference order
(from most preferable to least preferable) among the four
outcomes is RR,LL,RL,LR. Now consider two cases:

Case 1. At the start, Alice sees two paths, LR and RL.
She chooses R since it initiates RL which is preferable to
LR. At the second-stage, Alice then foresees RR and RL.
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She happily makes the best decision RR.
Case 2. Alice sees more, e.g., LL, LR, and RL,

immediately at the first stage. Therefore she thinks that L is
a better initial choice than R. Consequently, at the second-
stage, she can only choose from LL and LR.

Conclusion: Even though Alice could see more in Case 2,
she ultimately obtains a less preferable outcome.

 L R

L R RL

Figure 1: Two-stage decision-making

This example demonstrates some of the crucial features
that govern SSDM situations:

1) What an agent can foresee plays a crucial role in the
decision-making process, since her sight determines the set
of available choices.

2) Sight also updates her preferences over the options, and
thereby the outcomes obtained in rational play.

3) Although in Case 2, Alice does not get the best result,
we can say that, given her sight, she plays optimally in a
local sense. In other words, this is a rational plan for her,
even though it is not equivalent to the rational outcome of
classical decision theory or game theory [19].

In this paper, we address all three challenges, but first
we clarify our approach. To focus on sight, we ignore other
factors such as the probability of moves by Nature. Also, we
model the outcome of a decision as completely determined,
or in other words, possible outcomes for each alternative
and the probability corresponding to each outcome are
encapsulated as a black box.

2. MODELING SINGLE-AGENT SEQUEN-
TIAL DECISION-MAKING

We begin by defining a structure called preference-sight
tree for modelling single-agent sequential decision-making
(SSDM) processes. Using this model, we then clarify the role
that sight plays by discussing a series of changes it produces
in agent’s preferences, decision-making procedures and their
outcomes, as well as computational complexity.

2.1 Models
There are two kinds of models for decision-making sce-

narios corresponding to two perspectives. One is an ex-
plicit model from the perspective of Nature, or an out-
sider/designer; the other is the implicit model from the
perspective of the agent involved, or an insider/decider.
The former is complete and perfect in the sense that the
outsider holds a full view of all the options together with
the objective quality of these options, and thus can explicitly
specify the reward of each situation for the decision-maker.
In contrast with this, the latter’s views are possibly limited
to a near future, especially in large-scale surroundings.
Moreover, owing to limited foresight, the agent may also
reason mistakenly about the quality of different choices,
leading to what we call subjective preference.

Both the above perspectives are essential: the former
offers a whole picture of the environment, the latter shows

the actual play of the decider. In this section, we first
introduce an explicit model of preference trees. After this,
by endowing such trees with the agent’s view of the process
and his/her subjective preference in this view, we formulate
an integrated model of preference-sight trees which allows us
to model both perspectives together.

2.1.1 Preference trees (P trees)
A preference tree is a decision tree with only two elements:

histories and preferences. Each history corresponds to a
situation resulting from previous decision actions, and a
preference represents the objective quality of each of these
situations. To ensure the existence of backward induction
solutions, we confine ourselves to finite histories.

Definition 2.1. (Preference tree) A preference tree is
a tuple T = (H,�) where H is a non-empty set of finite
sequences of actions, called histories; � is a total order
over H. The empty sequence ε is a member of H; If
(ak)k=1,...,K ∈ H and L < K then (ak)k=1,...,L ∈ H.

Let A denote the set of all actions. Any history h can be
written as a sequence of actions: (ak)k=1,...,n, where each
ak ∈ A. If there is no an+1 s.t. (ak)k=1,...,n+1 ∈ H, then
history (ak)k=1,...,n is a terminal one. The set of terminal
histories is denoted Z. The set of actions that are available
at h is denoted A(h) ⊆ A. For any histories h, h′, if h is a
prefix of h′ we write h� h′. The strict part of � is �, with
h1 � h2 if h1 � h2 and not h2 � h1 for any two histories h1

and h2. Accordingly, h1 ∼ h2 iff h1 � h2 and h2 � h1.

Several remarks need to be made on the role of preference
relations in the above definition:

(1) Instead of defining preference merely over terminal
histories, we have defined it over all histories, an idea going
back to [11]. Here preference over intermediate histories
is necessary for our aim of modelling an agent’s decision-
making under limited foresight, which usually consists of
intermediate histories.

(2) For convenience, we do not strictly differentiate the
two main views of preference: qualitative and quantitative.
Although we use qualitative order generally, we sometimes
switch to numerical payoff when it is advantageous.1

2.1.2 Preference-sight Trees (P-S trees)
P tree is an explicit model for decision-making scenarios

which is independent of an agent. However, for an agent,
the tree may appear differently in his/her limited view. [6]
proposes the idea of short sight, where the authors use a
sight function to denote the set of states that players can
actually see at every position in an extensive game. Let us
start by adapting their technique to preference trees.

Definition 2.2. Let T = (H,�) be a preference tree.
A sight function for T is a function s : H → 2H\{∅}
satisfying s(h) ⊆ H|h and |s(h)| < ω, where H|h represents
the set of histories extending h. As a special case, h ∈ H|h.

In words, the function s assigns to each history h a finite
subset of all available histories extending h.

The first effect that sight produces is that given a P tree,
for any history h, it always gives us a restricted tree.
1There is a debate on whether preference and utilities are the
same [9; 2]. Here we adopt the operational understanding
of utility and do not distinguish it from preference.
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Definition 2.3. Let T = (H,�) be a P tree. Given
any history h of T , a visible tree Th of T at h is
a tuple (Hh,�h), where Hh = s(h), i.e., Hh captures
the decider’s view of the decision tree; �h represents the
subjective preference over Hh.

A visible tree is actually an implicit model in our earlier
terms. Hh also contains a set of terminal histories Zh, which
are those without successors in s(h). Note that typically, the
Zh are non-terminal for T .

Further, the preference order �h is different from the
objective preference �. In fact, the formation of �h is an
update via a bottom-to-top process in terms of an agent’s
sight. This updating process involves leaving the payoffs of
Zh as the same as their objective payoffs, then updating the
payoffs of other histories in Hh backwards, starting from the
leaf nodes and proceeding towards the root of the tree.

The reason why we employ such an updating process is
that, while the objective payoffs reflect the goodness of these
situations, they are not the actual reward that an agent can
get if he/she chooses this option. At each decision point, the
subjective payoff of one available option is inherited from the
best reachable terminal histories of the current visible tree.
Therefore, the preference relation �h in Th is not always
consistent with the preference relation � in T .

This updating process is described by Algorithm 1, which
essentially involves a backward computation and update of
the preference over intermediate nodes within the sight:

*For convenience, here we use payoffs P to represent rewards.

Algorithm 1: Preference updating in visible trees

1 PU(T, h, s)
Input: A P tree T = (H,�) (or T = (H,P )), current

history h, and a sight function s
Output: A visible tree Th = (Hh,�h) or

(Th = (Hh, Ph))
2 begin
3 H ∩ s(h)→ Hh;
4 for any z ∈ Zh /* Keep the payoffs of terminal

histories unchanged */ do
5 P (z)→ Ph(z); 1→ flag[z];

6 while flag[h] == 0 do
7 for any h′ ∈ Hh do
8 if (for all (h′a) ∈ Hh, flag[(h′a)] == 1)

/* If all of its children have been

visited, reset its payoff as the

highest one among them */

9 then
10 max{Ph(h′a)} → Ph(h′); 1→ flag[h′];

11 Return Th;

Fact 2.1. Let T = (H,�) be a P tree. Each visible tree
Th = (Hh,�h) is a P tree.

Correspondingly, we denote the prefix relation in Th by
�h, and the actions that are available at h by Ah(h).

Finally we proceed to define our model of preference-sight
trees. A preference-sight tree allows us not only to represent
the outsider’s view, i.e., (H,�), but also to derive a series
of implicit models, i.e., (Hh,�h), one for each h.

Definition 2.4. (Preference-sight tree) A preference-
sight tree (P-S tree) is a tuple (T, s), where T = (H,�) is
a preference tree and s a sight function for T .

In P-S trees, an agent’s sight should satisfy the following
properties: First, if an agent can see a given future history,
then he/she can also see any intermediate history up to
that point. Second, if the agent can see a history two steps
forward, then after moving one step ahead, he/she can still
see it. These features are formally stated as follows.

Fact 2.2. (Properties of sight function) Let (T, s) be a
P-S tree. For all h, h′, h′′ ∈ H, with h�h′�h′′, s satisfies :

DC (Downward-Closed): if h′′ ∈ s(h), then h′ ∈ s(h).

NF (Non-Forgetting): if h′′ ∈ s(h), then h′′ ∈ s(h′).

2.2 Solution concepts
Solution concepts are at the center of all choice problems.

In what follows, we define two solution concepts for P-
S trees, adapted from [20; 6]. After this, we investigate
the conditions for their equivalence, followed by providing
procedures for calculating the number of them.

2.2.1 BI history and SCBI history
Backward Induction (BI) is a well-known process running

like this. First, one determines the optimal strategy of
the player who makes the last move of the game. Using
this information, one can then determine the optimal action
of the next-to-last moving player. The process continues
backwards in this way until all players’ actions have been de-
termined in the whole game. Its adaptation to single-agent
decision-making process becomes a maximality problem for
the agent involved.

In a P-S tree, we say that one history h is max� in a set
of histories Γ ⊆ H, if h ∈ Γ and for any other history h′ in
Γ, it holds that h � h′, and we write this as h ∈ max�Γ.
The strict part for max� is max�.

Definition 2.5. (BI history) Let (T, s) be a P-S tree. A
history h∗ ∈ Z is a BI history of T , iff h∗ ∈ max�Z. Also,
we use BI to denote the set of BI histories in T .

A BI history of a P-S tree is a terminal history that is
most preferable or equivalently, that has a maximal payoff.

Backward induction precludes short-sight, while in prac-
tice it is impossible for an agent to foresee all final outcomes
all the time. In [6], a new solution concept was proposed
to capture optimal play of short-sighted players: sight-
compatible subgame perfect equilibrium. The main idea is
that at each decision point, the current player chooses a
locally optimal move by a local BI analysis within the visible
part. Here, we adapt this notion to P-S trees, yielding the
sight-compatible backward induction history.

Definition 2.6. (SCBI history) Let (T, s) be a P-S tree.
A history h∗ ∈ Z is a Sight-Compatible Backward
Induction history (SCBI history) of T , iff for each history
h with h� h∗, and the action a following h, i.e., (ha) � h∗,
we have that ∃z ∈ max�Zh such that (ha)� z. Also, we use
SCBI to denote the set of SCBI histories in T .

The difference between SCBI and BI histories is obvious.
A BI history is one with highest payoff among the set of
terminal histories in the P-S tree, while for a SCBI history
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every restriction of it should be a local BI history for
the visible tree. Thus, BI histories are the BI outcomes
for the objective model (H,�), while SCBI histories are
a combination of best responses to all subjective models
(Hh,�h). Typically it is the case that SCBI 6= BI.

Example 2.1. Consider the P-S tree (T, s) in Figure 2,
where s(ε) = {L}, and s(L) = {LR}. It is easy to check
that BI 6= SCBI, since BI = {LL}, while SCBI = {LR}.

2 1

L R

L R L R

2 1 1 0

Figure 2: BI 6= SCBI

However, sometimes the two notions can be equivalent.

Example 2.2. Consider a P-S tree, with T and s shown
by Figure 3 (a), and Figure 3 (b) respectively. In (b) the
three dotted circles represent s(ε), s(L) and s(R). For
histories L and R, their objective payoffs in (a) are 1 and
2, respectively. However, in Tε, the subjective payoff of L is
updated to 3 and R to 2. Obviously, BI = SCBI = {LL}.

 

L R

L R L R

1 2

3 1 12

( )a

L R

L R L R

3 2

3 1 12

( )b

Figure 3: (BI = SCBI)

2.2.2 Equivalence condition
Then an interesting question on BI and SCBI histories

arises: are there conditions under which the two will be
equivalent? To get a feeling for this, a first attempt at an
answer looks for a condition related to consistency between
subjective and objective preferences.

Two histories are said to be ‘preference-sight consistent’
if the subjective preference in each sight-restricted tree is
consistent with the objective preference over them:

Definition 2.7. (Preference-sight consistency) Let (T, s)
be a P-S tree, and Th be the visible tree at an arbitrary
history h. Then for any two histories h1, h2 of Th, we say
(h1, h2) satisfies preference-sight consistency at h iff

h1 � h2 iff h1 �h h2

If for any history h ∈ T , the pair of arbitrary two histories
(h1, h2) in Th is preference-sight consistent (at h), then we
say (T, s) is preference-sight consistent .

Is preference-sight consistency an appropriate condition
for BI = SCBI? We have the following observation:

Fact 2.3. Preference-sight consistency does not guaran-
tee that BI = SCBI.

Proof. Consider Figure 2. Suppose that s(R) contains
only one successor. Then it is easy to see that (T, s) is
preference-sight consistent. However, BI 6= SCBI.

Next, does the other direction hold?

Fact 2.4. Preference-sight consistency does not follow
from BI = SCBI.

Proof. The situation in Figure 3 is a counterexample,
in which BI = SCBI = {LL}, but (T, s) is not preference-
sight consistent, since R � L and L �ε R.

What is the exact condition for BI = SCBI? From the
failure of preference-sight consistency, we can draw a lesson.
In Figure 2, the main reason for (T, s) being inconsistent
is that at history L, the branch LL, which in fact forms
a BI history, is non-observable to the agent. This tells us
that the one with maximal payoff should always be visible.
Consider then the example in Figure 3. Here all the options
are within agent’s sight, but we notice that although the
path LL following L finally turns out to be better than that
following R, which makes subjectively L �ε R, the objective
payoff of L itself is lower than R. Thus, it fails to imply the
consistency between preference and sight.

Based on the above analysis, we now isolate necessary
and sufficient conditions for BI = SCBI. First, we define
an auxiliary property of sight-reachability, which intuitively
reflects whether each restriction of a history is visible.

Definition 2.8. (Sight-reachability) A BI history h∗ is
sight-reachable if, for all (ha) � h∗, we have (ha) ∈ Hh,
where h, h′ are histories, and a is an action following h.

Theorem 2.5. (Equivalence Theorem) For any P-S tree
(T, s), SCBI= BI iff the following conditions are satisfied:

I). Any history h∗ ∈ BI is sight-reachable.

II). Any history h∗ ∈ BI is locally optimal: For any history
(hh′) � h∗, if (hh′) ∈ Zh, then (hh′) ∈ max�Zh and
for any other (hh′′) ∈ Zh, (hh′) ∼ (hh′′) iff ∃z ∈ BI
such that (hh′′) � z.

Proof. (⇒) I). We show that every h∗ ∈ BI is sight
reachable. That is, for all (hh′) � h∗, it holds that
(ha) ∈ Hh. By SCBI= BI, we know that any history
h∗ in BI, is also in SCBI. By Definition 2.6, for each
of its prefix h, h∗h is max� in Zh. So h∗h is in Zh. In
addition, by non-emptiness of Zh, h∗h is not an empty
sequence. Thus, for all (ha) � h∗, it holds that (ha) ∈
Hh. So h∗ ∈ BI is sight-reachable.

To show condition II), take any h∗ in BI, we have that
it is in SCBI. Thus, for all (hh′) � h∗, if (hh′) ∈ Zh,
then (hh′) is max� in Zh. Moreover, for any (hu) ∈ Zh
such that (hh′) ∼ (hu), we have (hu) is a prefix of a
BI history, i.e., (hu) ∈ BIh. For suppose not, then
(hu) is not a prefix of SCBI history. Then it must be
(hh′) � (hu). Contradict.

(⇐) Suppose conditions I) and II) are satisfied. It suffices
to show (a)“every BI history is SCBI history of T”, and
(b) “ every SCBI history is BI history of T”.

For (a), take any BI history h∗. By I), all BI histories
are sight reachable. Further by II), for all (hh′) � h∗,
if (hh′) ∈ Zh, then (hh′) is max� in Zh. This is to
say that for each of its prefix h, h∗h is max� in Zh. By
definition 2.6, h∗ is a SCBI history.

For (b), take any SCBI history h∗. We can show it is
a BI history, i.e., h∗ is max� in Z. For suppose not,
then there exists a BI history h′ such that h′ � h∗.
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Notice that there must be some history u which is the
common prefix of h∗ and h′. Since h′ is a BI history,
by condition I) and II), we know that h′u � h∗u. Then
h∗u is not a prefix of a SCBI history. Thus, h∗ is not a
SCBI history. Contradiction.

2.2.3 More sight, better outcome?
We have seen earlier on that, SCBI may loss global

optimality. The BI history definitely has a maximal payoff,
while it might not be the case for SCBI, since each action is
chosen with a limited sight. So BI � SCBI holds without
exception, in the sense that any BI history is no worse than
any SCBI history. One might conjecture that more sight
always contributes to better outcomes. Yet, the fact below
falsifies this.

Fact 2.6. Let T be a P tree. Also, let s1 and s2 be two
sight functions for T satisfying s1(h) ⊆ s2(h) for any history
h in T . Take any two SCBI histories z1 and z2 of (T, s1)
and (T, s2) respectively. Then the following three cases are
all possible: a) z1 � z2; b) z2 � z1; c) z1 ∼ z2.

Proof. Case (a) has been shown in Example 1.1. Case
(b): Obviously, Figure 2 offers an instance for this. Case
(c): The scenario depicted in Figure 3 is an example.

In conclusion, full sight guarantees a maximal payoff.
However, with short sight, increase of sight does not always
improve the outcome. The added sight may bring misleading
information, e.g., a branch which is temporarily nicer but
actually unpromising, and finally gives rise to an even worse
outcome. Still, this does not mean that SCBI is deficient:
rather, these observations seem realistic for real agents.
These issues will be discussed further in Section 4.

3. A LOGICAL ANALYSIS
After modelling decision-making with short sight by pref-

erence tree models, it is instructive to see what a logical lan-
guage looks like for reasoning about these models, especially
the role of sight in a SSDM process. So far, no such logic has
been proposed, though logics of game-theoretic structures
have been extensively studied – see [27; 10] – while there
are a few preliminary logic analyses of sight on its own, [4;
17]. In this section, we design a minimal and natural logical
system that supports reasoning about sight in the context of
single-agent decision-making processes, characterizing basic
properties of preference-sight trees, and formally capturing
the results in the previous section.

3.1 Syntax and Semantics
To reason about the key ingredients (i.e., histories, pref-

erences, and sights) of a P-S tree, we take P (T,s) as a set of
propositional letters, which at least contains the following 2:

• h for each history h.

• h1 ≥ h2 encoding the preference relation of the agent
over all histories, and the strict part of which is h1 > h2.

• s(h) encoding the sight at each history h in T .

Based on P (T,s), we give a language L for reasoning about
P-S trees. In L, we have a key dynamic operator [!ϕ]
for restricting to the worlds satisfying ϕ, and a universal
modality with Aϕ saying that ϕ is true in every world.

2The idea of defining h is motivated by [1], where the authors
define an atomic sentence o for each leaf in a game tree.

Definition 3.1. (Preference-sight language) Take any set

of atomic letters P (T,s). The preference-sight language
L is given by the following BNF, where p ∈ P (T,s):

ϕ ::= p |¬ϕ |ϕ ∧ ψ |[!ϕ]ψ | Aϕ.

We write 〈!ϕ〉ϕ to abbreviate ¬[!ϕ]¬ϕ.

Definition 3.2. (Preference-sight models) For a P-S tree

(T, s), a preference-sight modelM (T,s) is a tuple (H,�,V)
where the following holds:

• H is the set of possible worlds, one for each history,

• � is the reachability (prefix) relation among worlds,

• V : PT → ρ(H) is an evaluation function satisfying:

(1) ∀h ∈ H, V(h) = {h′|h′ � h}.

(2) V(h1 ≥ h2) =

{
H, IF h1 � h2,

∅, Otherwise.

(3) ∀h ∈ H, V(s(h)) =
⋃

h′∈s(h)
V(h′).

Intuitively, h is true at all the worlds leading to h. h1 ≥ h2

is true everywhere if h1 � h2, and nowhere otherwise.
Finally, V(s(h)) is a union of the worlds that make the given
atom true for at least one element of s(h).

There seems to be nothing striking in this syntax. How-
ever, given the special role of atoms, the natural model
update differs from the usual one in dynamic-epistemic logic.

Definition 3.3. (Model update) Given a preference-sight

model M (T,s) = (H,�,V) and a set X ⊂ H, the updated

model M
(T,s)
!X produced by the restriction of X is defined as

a tuple (X,� ∩X2,V!X), where 3

V!X(p) =

{
V!X(h1 ≥ h2), IF p is of the form h1 ≥ h2

V(p) ∩X, Otherwise

V!X(h1 ≥ h2) =





X, IF V(z1 ≥ z2) = H, where

z1 ∈ max�{z ∈ ZX |h1 � z},
z2 ∈ max�{z ∈ ZX |h2 � z}

∅, Otherwise

M
(T,s)
!X is the update of the model M (T,s) restricting the

set of states to X, and the valuation function accordingly.
But crucially, the valuation for preference atoms in the new
model reflects the updating process in the visible tree of
Algorithm 1. In the following, we omit superscripts (T, s).

The semantics for this language is basically standard, [3],
so we only mention the truth condition of [!ϕ]ψ:

Let M be a preference-sight model. For any state h in M ,

M,h |= [!ϕ]ψ iff M,h |= ϕ⇒M!JϕK, h |= ψ,

where JϕK = {h′ ∈ H|M,h′ |= ϕ}.
Validity of formulas is defined as usual, cf. [3].

3In this definition, ZX denotes the terminal histories in X,
i.e., the set of histories that have no successors in X.
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3.2 Main characterization results
Despite its simplicity, L can express our results in previous

sections concerning properties and solutions of P-S trees.
We introduce some helpful syntactic abbreviations, and then
state our main characterization results.

• Zh =
∨{ z | z ∈ Zh}.

• max≥X=
∨{ h | h ∈ X, and h � h′ for ∀h′ ∈ X}.

• BI =
∨{ z | z ∈ BI} (BI holds at T ’s BI histories).

• SCBI =
∨{ z | z ∈ SCBI}, that is, the formula SCBI

holds at the SCBI histories of T .

Proposition 3.1. Let (T, s) be a P-S tree and M be a
L-model for it. Then (T, s) is preference-sight consistent iff
the following formula is valid in M :

∧

h

∧

h1∈Hh

∧

h2∈Hh

((h1 ≥ h2 → [!s(h)]h1 ≥ h2)∧

(〈!s(h)〉h1 ≥ h2 → h1 ≥ h2)).

Lemma 3.2. For any P-S tree (T, s) and model M for it,
a BI history h∗ is sight-reachable if and only if the following
formula holds in M :

(SR) :
∧
h

∧
a∈A(h)

(A((ha)→ h∗)→ (A((ha)→ s(h)))).

Proof. (⇒) Suppose that BI history h∗ is sight-reachable.
By Definition 2.8, we have that, for all (ha) � h∗, it holds
that (ha) ∈ s(h), where h, h′ are histories, and a is an
action following h. More formally, (ha) � h∗ can be defined

by the formula A((ha) → h∗) in the sense that, in T , for

all h and a ∈ A(h), (ha) � h∗ iff M |= A((ha) → h∗).

And similarly (ha) ∈ s(h) is defined by A((ha) → s(h)).
Thus if a BI history h∗ is sight-reachable, then M |=∧
h

∧
a∈A(h)(A((ha)→ h∗)→ (A((ha)→ s(h)))). The other

direction can be proved in a similar way.

Lemma 3.3. Let (T, s) be a P-S tree and M be a L-model
for it. A BI history h∗ is locally optimal iff the following
formula is valid in M :

(LO) : (
∧

h

∧

(hh′)∈Zh

(A((hh′)→ h∗)→

(A((hh′)→ max�Zh)∧
∧

(hh′′)∈Zh

((hh′) ∼ (hh′′)↔
∨

z∈BI

(A((hh′′)→ z))))).

Proof. (⇐) Suppose BI history h∗ is locally optimal.
Then for (hh′) � h∗, if (hh′) ∈ Zh, we have (hh′) is max�
in Zh. And for any (hh′′), (hh′′) ∼ (hh′) iff ∃z ∈ BI s.t.

(hh′′) � z. Similar with the above proposition, A((hh′) →
h∗) captures that (hh′)�h∗. And A((hh′′)→ z) shows that

(hh′′) � z. Finally, ((hh′) → max�Zh) demonstrates that
(hh′) is max� in Zh. Direction (⇒) uses a similar check.

Proposition 3.4. (L-characterization of equivalence) Let
(T, s) be a preference-sight tree and M a model for it. Then
the following formula is valid in M :

|= (A(BI↔ SCBI))↔
∧

h∗∈Z
((A(h∗ → BI))→ (SR ∧ LO)).

Proof. Direction (⇒). We need to prove the following:

1) (A(BI↔ SCBI))→∧
h∗∈Z(A(h∗ → BI)→ SR).

2) (A(BI↔ SCBI))→∧
h∗∈Z(A(h∗ → BI)→ LO).

For 1). It is equivalent to prove that, for any h∗ ∈ Z,
(BI ↔ SCBI) ∧ (A(h∗ → BI)) → SR. Suppose ¬(SR).
Then ∃(ha) � h∗, and (ha) /∈ Th, and so, at h, the branch
leading to h∗ is not visible in Th. Thus, the BI history in
Th could not be a branch leading to h∗. By the definition
SCBI, it follows that h∗ /∈ SCBI. However, by h∗ → BI we
know that h∗ is a BI history. This contradicts BI↔ SCBI.

2) can be proved in a similar style.

Direction (⇐). Suppose that ¬(A(BI↔ SCBI)). Then

(a): ∃z∗ ∈ BI and z∗ /∈ SCBI, or

(b) : ∃z∗ ∈ SCBI and z∗ /∈ BI.

If (a), then, by the antecedent, we have that: ∀(ha) �

z∗, (ha) ∈ Hh. Also, ∀(hh′) ∈ Zh and (hh′) � h∗, it holds
that (hh′) ∈ max�Zh. Then it directly follows that z∗ is a
SCBI history. Contradiction.

If (b), then take any z ∈ BI, which shares a prefix u
with z∗, i.e., u� z and u� z∗. By the antecedent, we have
zu ∈ max�Zh. Since z∗ /∈ BI, it follows that zu > z∗u. Then
z∗ /∈ SCBI. Once more, we have a contradiction.

3.3 Valid principles
The operator [!ϕ] makes L a PAL-like language. However,

the special model-update makes it different from standard
PAL [28]. This suggests a close look at what is and what is
not valid in preference-sight models.

First, some axioms in standard PAL do not hold in
preference-sight models. For example, the !ATOM axiom,
[!ϕ]p↔ (ϕ→ p), is not valid when it is of the form below.

Proposition 3.5. The following is not valid in preference-
sight models, where h, h1, h2 represent arbitrary histories.

!Sight-Preference : [!s(h)]h1 ≥ h2 ↔ (s(h)→ h1 ≥ h2).

This proposition says that subjective preference in visible
trees is not necessarily consistent with objective preference.

Now let us see some interesting valid principles and their
intuitive interpretations.

Lemma 3.6. The formulas shown in Table 1 are valid,
where h, h1, h2, and h3 are arbitrary histories.

Proof. We only prove some cases, proofs for the others
are trivial or standard.

For Ts. Take any state u with M,u |= h. Then u ∈ V(h).
As the sight function is reflexive, i.e., h ∈ s(h), it holds that

V(h) ⊆ V(s(h)). So u ∈ V(s(h)). Thus, M,u |= s(h).
For TM . Take any state u, any history h and any z ∈ Z,

and suppose M,u |= A(z → h). Then for any u′, u′ ∈ V(z)
implies that u′ ∈ V(h). Thus, V(z) ⊆ V(h). It follows that
z ∈ V(h). Given that z is terminal, by the definition of V(h),
it must be that h = z. Thus, M,u |= A(h→ z).

For DC. Take any state u, suppose for some h1 �h2 �h3,
M,u |= A(h3 → s(h1)). Then we know V(h3) ⊆ V(s(h1)).
It follows that h3 ∈ s(h1). As the sight function is downward

closed, we have h2 ∈ s(h1). Thus, M,u |= A(h2 → s(h1)).
For !ATOM\SP. Take any state u, and let M,u |= [!ϕ]p where

ϕ is not of the form !s(h) and p is not of the form h1 ≥ h2. It
holds that M,u |= ϕ implies that M!ϕ, u |= p. By Definition
3.3, M!ϕ, u |= p iff M,u |= p. Therefore, M,u |= ϕ implies
M,u |= p. Equivalently, then, M,u |= ϕ→ p.
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Taut all propositional tautologies

T≥ h ≥ h
4≥ h1 ≥ h2 ∧ h2 ≥ h3 → h1 ≥ h3

to≥ h1 ≥ h2 ∨ h1 ≥ h2

Ts h→ s(h)

TM
∧
z∈Z

∧
h

(A(z → h)→ A(h→ z))

DC
∧
h3

∧
h2�h3

∧
h1�h2

(A(h3 → s(h1))→ A(h2 → s(h1)))

NF
∧
h3

∧
h2�h3

∧
h1�h2

(A(h3 → s(h1))→ A(h3 → s(h2)))

!ATOM\SP [!ϕ]p↔ (ϕ→ p)

(excluding the schema !Sight-Preference)

!NEG [!ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)

!CON [!ϕ](ψ ∧ χ)↔ ([!ϕ]ψ ∧ [!ϕ]χ)

!COM [!ϕ][!ψ]χ↔![ϕ ∧ [!ϕ]ψ]χ

Dual [!ϕ]ψ ↔ ¬〈!ϕ〉¬ψ

Table 1: Valid principles of L

Interpretation of valid principles. Each of these
axioms has some intuitive appeal. T≥, 4 and to≥ show the
reflexivity, transitivity and totality of the preference relation,
respectively. Likewise, Ts says that sight is reflexive. DC
characterizes the (downward-closure) property of sight. NF
encodes the non-forgetting property of sight. TM guarantees
that terminal histories of the P-S tree are actually terminal.
One further interesting point is that there is no correspon-
dence of TM for terminal histories of visible trees.

Fact 3.7. The following formula is not valid in preference-
sight models: ∧

u

∧
z∈Zu

∧
h(A(z → h)→ A(h→ z)).

Other validities in the table are axioms for standard PAL.
We postpone the study of a complete axiomatization of the
logic L until future work.

To conclude this section, in L, the ingredients including
histories, preferences and sights are encoded as primitive
propositions. Various earlier phenomena in P-S trees can
thus be captured in a simple, direct and intuitive manner.
This special-purpose logic, as we will see soon, is model-
dependent, but it can also be formulated generically.

4. BACKGROUND IN GAME LOGICS
In this section, we relate our logic L to existing logics for

classical game theory, showing how ideas can be combined
where useful. Since so far we have been working with BI
and SCBI histories, we first define strategies for P-S trees:

A strategy for a P-S tree (T, s) is a function σ : H → A
such that σ(h) ∈ A(h). That is, σ assigns each history h
an action that follows h. In particular, for a visible tree Th,
a ‘local strategy’ σh is a restriction of σ to Th, such that
σh(h′) = σ(h′) for any h′ ∈ Th.

4.1 Generic formulation of L
In applied logic for structure analysis, there exist two ex-

tremes, viz. model-dependent ‘local languages’ and ‘generic
languages’ that work across models. For a generic logic,
a definition of a property π is a formula ϕ such that for
all models M , M has property π iff M |= ϕ. For a local
language, such a formula can depend on a given model M :

there exists a formula ϕM which depends on M , such that
any model M has the property π iff M |= ϕM . However, in
this case, the defining formula can be trivial. For example,
one might define ϕM simply as follows.

ϕM =

{
>, if M satisfies π

⊥, Otherwise

In this subsection, using a well-known Rationality prop-
erty as an example, we discuss how model-dependent our
earlier language L is, and then show how it can be formu-
lated in a generic way. We first recall the results on classical
BI. Given that we have been dealing with single-agent cases
until now, in this Section, we will adapt the results from the
literature on multi-player games to the single-player case.

The BI strategy [22; 23] is the largest subrelation σ of the
total move relation that has at least one successor at each
node, while satisfying the rationality (RAT) property:

RAT No alternative move for the player yields an
outcome via further play with σ that is strictly better than
all the outcomes resulting from starting at the current move
and then playing σ all the way down the tree.

As argued in [22; 23], this rationality assumption is a
confluence property for action and preference:

CF ∀x∀y(xσy → ∀z(x move z →
∃u(end(u) ∧ yσ∗u ∧ ∀v((end(v) ∧ zσ∗v)→ u ≥ v)))).

We can observe that there is also a corresponding ratio-
nality property for the local BI strategies that constitute
an SCBI, which should however now express a confluence
property for action, preference and sight. Specifically, for a
P-S tree, each local BI strategy for the visible tree Th at h is
the largest subrelation σh of the total move relation in Th,
satisfying 1) σh has at least one successor at each h′ ∈ Th,
and 2) the following rationality property holds:

RATS In the visible tree, there is one outcome obtained
by playing σh from the start to the end, that is no worse
than all the outcomes yielded from any alternative first move
followed by further play with σh.

This confluence property involving sight is expressible as
follows in our language L:

Proposition 4.1. Let (T, s) be a P-S tree, and let M be
any model for it. M satisfies RATS iff M validates the
following L-formula, where σh is the BI strategy for visible
tree at h and where (h(σh)k) stands for the history reached
from h after executing σh for k times.

CFSM
∧

h

∨

z∈Zh

∨

k=l(z)−l(h)
(A((h(σh)k)↔ z)

→ (
∧

a′∈Ah(h)

∧

z′∈Zh

∧

m=l(z′)−l(ha′)
(A((ha′(σh)m)↔ z′))→

z ≥ z′)).
Proof. We first claim that in any preference-sight model

M , and state h ∈ H, for any terminal history z ∈ Zh,
and h′ ∈ Hh, A(h′ ↔ z) implies that h′ = z. This is
straightforward since A(h′ ↔ z) demonstrates that prefixes
of h′ are the same with those of z, which means that h′ = z.
Then M |= CFSM says that there is a terminal history
zh following h by playing a local BI strategy σh, such that
z � z′ for any other z′ ∈ Zh which follows an alternative
first move a′ ∈ Ah(h) via further play of σh. Therefore, we
know that M satisfies RATS.
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However, compared with the generic logic in [24; 23; 22],
the given definition in our logic is local. It is obvious that
CF, the formula defining the property RAT, is insensitive
to models – while our CFSM relies on a given model for
its ranges of big disjunctions and conjunctions, and in its
model-dependent notations like s(h) and h1 ≥ h2. Still, it
is also clearly true that our definition is not as trivial as the
earlier local trick. Therefore, our logic L seems somewhere
between the two extremes of locality and genericity. This
feeling can be made precise by moving to a closely related
truly generic first-order logic of preference-sight trees.

The relevant modified formula involves some natural
auxiliary predicates. x� y says that x is a prefix of y; x^ y
means that x can see y. Corresponding to the BI relation
σ, yσ(x)z says that from y, z is a local backward induction
move in the visible tree at x; σk describes σ being composed
for k times with k ∈ N 4; move and ≥ are still the move
relation and preference relation, respectively, of the game.

Proposition 4.2. Any model M satisfies RATS iff it
validates the following formula.

CFS(FO): ∀x{(∃y(x� y))→

∀u[(xσ(x)u)→ ∀t((x move t ∧ x^t)→
∃z((x^z ∧ ¬∃z′(z � z′ ∧ x^z′) ∧ ∃k(u(σ(x))kz))∧
∀v((x^v ∧ ¬∃v′(v � v′ ∧ v^v′) ∧ ∃l(t(σ(x))lv))→

∧z ≥ v)))]}.
Proof. It is easy to show that

M |= CFS(FO) iff M |= CFSM .

In summary, incorporating basic elements of P-S trees di-
rectly into first-order syntax makes L intuitive and natural.

Even so, other logics exist for dealing with further aspects
of game trees and solution procedures, and we will discuss
a few examples in what follows with a view to how they
behave in the presence of sight.

4.2 Solution procedures and fixed-point logics
Recursive solution procedures naturally correspond to

definitions in existing fixed-point logics, such as the widely
used system LFP(FO). An LFP(FO) formula mirroring the
recursive nature of BI is constructed in [24; 26] to define
the classical BI relation, based on the above property RAT.
Now, we have shown that sight-restricted SCBI, too, is a
recursive game solution procedure. Can LFP(FO) be used
to define SCBI as well – and if so, how?

The answer is yes, but we need an extension. Rather than
a binary relation bi as in [24; 26], characterizing SCBI needs
a ternary relation. First, we define the local BI relation in
visible trees, which will be denoted by bisight. For any states
x, y, z, bisight(x, y, z) means that in the visible tree at x, the
local BI strategy is bisight, which chooses z when the current
state is y. It is then obvious that bisight should satisfy the
following simple first-order definable property, requiring the
relevant states to be visible and reachable:

bisight(x, y, z)→ see(x, y) ∧ see(x, z) ∧move(y, z).

The intuition of bisight(x, y, z) is then captured as follows:

4Here xσky is the abbreviation of ∃y1∃y2 · · · ∃yk(xσy1 ∧
y1σy2 ∧ · · · ∧ yk−1σyk ∧ (yk = y)).

∀x∀y∀z(bisight(x, y, z)→ ∀t((see(x, t) ∧move(y, t))

→ (∃u(endsight(x, u) ∧ bi∗sight(x, z, u) ∧ ∀v((endsight(x, v)∧
bi∗sight(x, t, v))→ u ≥ v))))).

Notice that all occurrences of bisight in the above formulas
are still syntactically positive. This allows us to define local
BI strategy bisight with LFP(FO).

Proposition 4.3. The strategy bisight can be defined as
the relation R in the following LFP(FO) formula.

νR, xyz • ∀x∀y∀z(R(x, y, z)→ ∀t((see(x, t) ∧move(y, t))

→ (∃u(endsight(x, u) ∧R∗(x, z, u) ∧ ∀v((endsight(x, v)∧
R∗(x, t, v))→ u ≥ v))))).

It can be proved formally that bisight is a greatest-fixed-
point of the above formula. Based on bisight, we now proceed
to show that the SCBI relation is LFP(FO) definable.

Corollary 4.4. The SCBI relation scbi for a P-S tree
can be represented in the following formula:

∀x∀y(scbi(x, y)↔ bisight(x, x, y)).

As in the original classical case, this LFP(FO) definability
of scbi exposes an intersection between the logical foun-
dation of computation and the recursive nature of sight-
compatible backward induction solutions for P-S trees.

4.3 Modal surface logic of best action
In contrast with detailed formalism of solutions with

LFP(FO), there is the modal surface logic of [25], which
enables direct and natural reasoning about best actions
without considering the underlying details of recursive com-
putation. First of all, we list its modalities for classical BI.
[bi] and [BI] encode the BI move and BI paths respectively.
[best]ϕ says that ϕ is true in some successor of the current
node that can be reached in one step via the bi move.

M,h |= end iff h ∈ Z.

M,h |= [move]ϕ iff ∀ h′ = (ha) with a ∈ A(h), M,h′ |= ϕ.

M,h |= [best]ϕ iff for all h′ with h′ ∈ bi(h), M,h′ |= ϕ.

M,h |= [bi]ϕ iff for all h′ with h′ ∈ bi(h), M,h′ |= ϕ.

M,h |= [bi∗]ϕ iff M,u |= ϕ for all u with u ∈ (bi)∗(h).

M,h |= [BI]ϕ iff for all z with z ∈ BI, M, z |= ϕ.

The above logic is still applicable in our setting, but it
requires substantial extension for sight-related concepts. In
accordance with [bi] and [BI], we use [scbi] and [SCBI] as
operators for the SCBI strategy and SCBI path, respectively.
For the local BI strategy and path in visible trees, the modal-
ities are [bisight] and [BIsight]. Moreover, recall that M!s(h) is
the updated model obtained in the way of Definition 3.3.

M,h |= [scbi]ϕ iff for all h′ with h′ ∈ scbi(h), M,h′ |= ϕ.

M,h |= [SCBI]ϕ iff for all h′ with z ∈ SCBI, M, z |= ϕ.

M,h |= [!sight]ϕ iff M!s(h), h |= ϕ.

M!s(h), u |= endsight iff u ∈ Zh.
M!s(h), u |= [movesight]ϕ iff for ∀u′ = (ua) with a ∈ Ah(u),

M!s(h), u
′ |= ϕ.

M!s(h), u |= [bestsight]ϕ iff M,u′ |= ϕ for ∀u′ ∈ bih(u).

M!s(h), u |= [bisight]ϕ iff M,u′ |= ϕ for ∀u′ ∈ bih(u).

M!s(h), u |= [(bisight)
∗]ϕ iff M!s(h), u

′ |= ϕ for all u′,
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such that u′ ∈ (bih)∗(u).

M,h |= [BIsight]ϕ iff for all z with z ∈ BIh, M, z |= ϕ.

We give a few illustrations of new issues that arise now.

Capturing the SCBI strategy For a start, we are now
able to characterize the SCBI strategy, in a similar vein as
the frame correspondence for the classical BI strategy in [25].

Proposition 4.5. The BI strategy is the unique relation
bi satisfying this modal axiom for all propositions p:

(〈bi∗〉(end ∧ p))→ ([move][σ∗](end ∧ 〈≤〉p)).
Along the same lines, we can express the SCBI strategy

in P-S trees based on the idea that each scbi move coincides
with a local BI move within the current visible tree.

Proposition 4.6. The SCBI strategy is the relation scbi
satisfying the following axioms for all propositions p:

(1) 〈scbi〉p↔ [!sight]〈bisight〉p.
(2) [!sight](〈(bisight)

∗〉(endsight ∧ p)→
[movesight]〈(bisight)

∗〉(endsight ∧ 〈≤〉p)).
Best action and preference-consistency Turning to
properties of frames for the extended modal logic of best
action with sight, there are interesting differences when
comparing SCBI and classical BI. To see this, we employ
operators 〈best〉, 〈bi∗〉, 〈scbi∗〉, 〈bestsight〉 and 〈(bisight)∗〉.
Now we can make some interesting comparisons.

Proposition 4.7. For classical backward induction, the
axiom 〈best〉〈bi∗〉ϕ↔ 〈bi∗〉ϕ holds.

However, the new frames do not have the corresponding
axiom for the SCBI strategy, since the actions it recommends
are not necessarily the actual best actions according to BI.
Even in visible trees, this is also not true.

Proposition 4.8. The following formulas are not valid:

(a) 〈best〉〈scbi∗〉ϕ↔ 〈scbi∗〉ϕ.
(b) [!sight](〈best〉〈(bisight)∗〉ϕ↔ 〈(bisight)∗〉ϕ).

Nevertheless, there is a certain coherence between the
local BI strategy and local best actions returned by it.

Proposition 4.9. The following formula is valid:

[!sight](〈bestsight〉〈(bisight)
∗〉ϕ↔ 〈(bisight)

∗〉ϕ).

As for the preference relation, SCBI has a property that
classical BI lacks: local BI moves never conflict with the
preferences in submodels. In other words, within a visible
tree, the initial move determined by the local BI strategy is
more preferable for the agent than any other first move.

Proposition 4.10. For SCBI, it holds that

[!sight](〈bestsight〉ϕ→ [movesight]〈≤〉ϕ).

For BI, although it returns a final optimal path, there is
no guarantee that its intermediate histories be preferable.

Proposition 4.11. For BI, the following does not hold:

〈best〉ϕ→ [move]〈≤〉ϕ.

Path terminality and optimality Using a similar style
of modal analysis, we can make the following observations
concerning the obvious operators [BI], [SCBI] and [BI]sight.

Proposition 4.12. We have the following three facts:

(a) The formula[BI]ϕ→ [BI][BI]ϕ is valid.

(b) For SCBI, the following formula does not hold:

[BIsight]ϕ→ [BIsight][BIsight]ϕ.

(c) The formula [SCBI]ϕ→ [SCBI][SCBI]ϕ is valid.

Here (a) says that from a BI outcome only a terminal
history can be reached; (b) shows that the local BI history
may not be a terminal history of the whole tree, and (c) says
the SCBI history for the whole tree is always terminal.

Another phenomenon regarding these operators is the
local optimality of SCBI at the cost of being more realistic
than BI. We have mentioned this point already in Section
2.2.4: now we can present a precise formal version.

Proposition 4.13. Let σ be any strategy profile,

(a). For BI, the following is valid:

〈BI〉ϕ→ [σ]〈≤〉ϕ.

(b). The following does not hold:

〈SCBI〉ϕ→ [σ]〈≤〉ϕ.

(c). For SCBI, it holds that

[!sight](〈BIsight〉ϕ→ [σsight]〈≤sight〉ϕ).

Here (a) shows the global optimality of the BI path. (b)
and (c) together say the SCBI path is not globally optimal,
but each move on this path leads to a locally optimal path.

Altogether, this section has shown the broad logical
foundations of our framework, embedding our local language
in existing broader generic formalisms, but also enriching
and extending these frameworks with aspects of short sight.

5. TOWARD MULTI-PLAYER GAMES
While our models and results are about single-agent

sequential decision-making processes, we believe they are
applicable well beyond that. They can be naturally extended
to multi-player extensive game-scenarios with short sight.
For such a game model, we can build on [6], which makes
an assumption that the current player only knows his own
sight, and that he believes other players can see as much
as he can see and will play according to this belief. That
is, this model precludes more complex forms of interactive
knowledge and reasoning. But using this same assumption,
our model in this paper can be extended to multi-player
cases directly. The only thing we have to do is add agent-
labeling to SSDM: even though players can change with
time, everything including sight, preference, and actions can
be modeled from the current player’s perspective.

We will not state any results for the extended multi-player
model since they are quite similar to what we have shown
already. The case where we drop the above assumption and
allow a more free modeling of players’ mutual knowledge and
beliefs about sight and preference would be more interesting.
We will leave this for future work.
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6. DISCUSSION AND CONCLUSION
Though motivated by single-agent decision-making pro-

cess, we have gone towards a much more general goal. In
the process, our analysis significantly adds to current con-
nections between logic, computation, and game solutions.

In many recent game-theoretic papers centering on bounded
rationality, a model has been used of games with awareness,
[7; 12; 5; 8]. This approach generalizes the classical
representation of extensive games by modeling players who
may not be aware of all the paths. While [6] shows that
games with short sight are a well-behaved subclass of games
with awareness, there exists a fundamental difference in
focus. Players in the latter approach may be unaware
of some branches but they can always see some terminal
histories, while in the former, players’ sight may only
include intermediate histories, ruling out all terminal ones.
Moreover, we have shown how short-sight games allow for a
natural co-existence of two views of a game, that of insiders
and that of outsiders. Having said this, it is clearly an
interesting issue to see if our approach in this paper can
be extended to cover awareness.

Another obvious interface for our logics are heuristic
evaluation approaches for intermediate nodes used by the AI
community for computational game-solving, [15; 21]. This,
too, is a connection that deserves further exploration.

There are many additional topics to pursue. For instance,
we already mentioned multi-player scenarios with non-trivial
interactive reasoning about other agents’ preferences, sights,
and strategies. This has also been identified as a key task
for epistemic game theory.
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1. INTRODUCTION
Suppose that agents, rather than forming a separate pref-

erence judgment for each pair of alternatives, make decisions
using criteria. A criterion orders a small number of cate-
gories, each of which consists of many alternatives. The
potential of a criterion to order alternatives within another
criterion’s categories allow sets of criteria to generate large
numbers of choice distinctions. If an agent has objective
preferences that can be inferred from a large set of suffi-
ciently discriminating criteria, the agent will be better off if
more of the criterion orderings are discovered: the agent will
then be able to determine the optimal allocation from more
choice sets. The uncovering of more criterion discrimina-
tions is costly, however, and we therefore consider efficient
points where the cost of making a given number of choice
distinctions is minimized.

This optimization problem seems to lead to a trade-off.
Given a number of choice distinctions, an agent could either
use a large set of coarse criteria (criteria with only a small
number of categories) or a small set of finer, more discrim-
inating criteria. We show under mild conditions that large
sets of coarse criteria always lead to reductions in decision-
making costs. Binary criteria with only two categories per
criterion therefore provide the only efficient arrangement.
Under mild restrictions on how criteria are aggregated into
decisions, binary criteria lead to rational choice functions,
where decisions are determined by a complete and transitive
binary relation.

We apply our model to the problem of determining the
optimal number of digits in an information storage device.
We show that, even if the marginal cost of additional digits
declines rapidly to 0, binary digits (bits) offer the efficient
solution.

In this short paper, we pay particular attention to the
symmetry conditions that are entailed when sets of criteria
are efficient. A full working paper [2] is available on-line.

2. AN OUTLINE OF THE MODEL
A criterion Ci is an asymmetric binary relation on a

domain of alternatives X and a set of criteria is denoted
C = {C1, ..., CN}. Two alternatives x and y are deemed
Ci-equivalent if x and y share the same set of Ci-superior
alternatives and the same set of Ci-inferior alternatives (see
[1]). A Ci-category is a maximal set of Ci-equivalent al-
ternatives and e(Ci) denotes the number of Ci-categories.
The discrimination vector of C is (e(C1), ..., e(CN )). A Ci
is coarser than C′i if e(Ci) < e(C′i).

Let c be a choice function on a domain of finite subsets of

X. Two alternatives x and y are in the same choice class
of c if c treats them interchangeably: first, when x is chosen
and y is available then y is chosen too, and second, if x but
not y is available then x is chosen if and only if, when y is
available and not x, y is chosen.

A choice function c uses C, denoted (C, c), if c does not
make distinctions that are not already present in the criteria:
for each set of alternatives A that contains only alternatives
that are in the same Ci-category, i = 1, ..., N , there is a
choice class of c that contains A.

Let κ(Ci) denote the cost of criterion Ci. We assume
κ(Ci) is determined by the number of Ci-categories and
therefore also write κ(e) to denote the cost of a Ci with
e categories. We assume that the cost of a set of criteria,
κ[C], equals the sum of the costs of the criteria in C. Let-
ting n(c) be the number of choice classes in c, a pair (C, c)
is more efficient than the pair (C′, c′) if n(c) ≥ n(c′) and
κ[C] ≤ κ[C′], with at least one strict inequality, and (C, c) is
efficient if there does not exist a (C′, c′) that is more efficient
than (C, c).

The fundamental advantage of criteria is that each crite-
rion can discriminate within the categories of other criteria.
Given constraints that specify that criterion Ci can have no
more than ei categories (and assuming that |X| is sufficiently
large), we can find a (C, c) such that (i) there is a partition of

X with
∏N
i=1 ei cells such that x and y are in distinct cells if

and only if they lie in different Ci -categories for at least one
i and (ii) each cell of this partition forms a choice class of
c. Subject to the ei constraints, this (C, c) maximizes n(c)
and accordingly we define (C, c) to maximally discriminate

if n(c) = min
[∏N

i=1 e(Ci), |X|
]
.

3. MAIN RESULTS
(1) Since criteria with only one category make no dis-

criminations and require no decisions, we assume they are
costless. To compare a (C, c) and (C′, c′) that have the same

number of costly categories, suppose that
∑N
i=1 (e(Ci)− 1) =∑N′

i=1 (e(C′i)− 1). Assume also that either (i) the marginal
cost of categories is increasing and the smaller of n(c) and
n(c′) is less than the cardinality of X or (ii) the marginal
costs of categories is strictly increasing. We show that if C
has greater proportions of coarser criteria than does C′ and
if (C, c) maximally discriminates, then (C, c) is more efficient
than (C′, c′).

(2) Fix a set of domains that, for each finite m, contains
a X with m elements and call a domain admissible if it
is drawn from this set. Then, every efficient (C, c) where
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the domain is admissible has a C that contains only binary
criteria if and only if κ(e) > κ(2) dlog2 ee for all integers
e > 2.

Thus the cost of e categories can rise as slowly as log2 e –
in which case the marginal cost of categories descends to 0
– and still the only efficient arrangement is for all criteria to
be binary.

(3) We apply the result in (2) to information storage.
Suppose we wish to store some integer between 1 and n
using N k-ary digits and that the cost of storage equals
κ(k)N . We show that, for all positive integers n, binary
digits are the minimum-cost storage method if and only if
κ(k) > κ(2) dlog2 ke for all integers k > 2.

(4) We specify axioms for how to aggregate sets of cri-
teria into choice functions that generalize weighted voting.
Suppose that the choice function c in the pair (C, c) satisfies
these axioms, that C contains only binary criteria, and that
c satisfies the following Condorcet rule: if there is a x in a
choice set A that is chosen by c from all {x, y} with y ∈ A
then x is chosen from A too. Then c makes selections that
maximize a complete and transitive binary relation. Given
(2), we conclude that in a broad range of cases, efficient
decision-making is rational.

4. SYMMETRY AND MAXIMAL CATEGO-
RIZATION

Maximal discrimination is necessary for decision-making
efficiency since otherwise n(c) could be increased without an
increase in costs. The key feature required for a (C, c) to
maximally discriminate is that the following property of C,
called maximal categorization, is satisfied: the discrimina-
tion partition P of X that places x and y in distinct cells if
and only if x and y lie in different Ci -categories for at least
one i must have

∏N
i=1 e(Ci) cells.

We will now see that if X is a product of attributes and
each criterion orders a distinct attribute, then maximal cate-
gorization is satisfied and conversely if maximal categoriza-
tion is satisfied then we can label alternatives so that X
becomes a product of attributes. By joining this conclusion
to result (2), that only binary criteria are efficient, we can
describe efficient decision-making concisely: to be efficient
agents must be able to describe the alternatives in X so that
they form a product of attributes and each criterion must
divide a distinct attribute into exactly two categories.

The simplest way to achieve maximal categorization is for
X to be formed by a product of attributes and for each Ci
to divide X into categories based only on attribute i. The
domain X might be a set of cars, and the attributes might
be colors, top speeds, and prices. A ‘speed’ Ci would then
order cars based on the ranges of top speeds that Ci deems
to be equivalent.

Formally, an attribute is a set Xi and N attributes define
the domain of alternatives X =

∏N
i=1Xi. We will say that a

set of criteria C is based on a product of attributes if for each

Ci there is a set Xi and a partition of {X1
i , ..., X

e(Ci)
i } of Xi

such that the categories of Ci are the sets Xj
i ×
(∏

k 6=iXk
)

,

j = 1, ..., e(Ci). So, if Ci is an ordering of cars by color then
each Xj

i would represent a color and x and y would be placed
into distinct Ci-categories if and only if the ith coordinates
of x and y indicate different colors: xi ∈ Xj

i and yi ∈ Xk
i

where j 6= k. The cells of the discrimination partition P
would then be the

∏N
i=1 e(Ci) sets Xj1

1 × · · · ×XjN
N where,

for each i, ji is an integer between 1 and e(Ci). Maximal
categorization thus obtains.

This treatment assumes that X is a product space: for
each possible combination of attributes (each possible color-
speed-price combination), there is a corresponding element
of X. But for maximal categorization it is enough that there
is some alternative in X for each combination of attribute
ranges specified by the criteria, that is, it is sufficient for X
to be a subset of

∏N
i=1Xi such that each Xj1

1 × · · · ×XjN
N

intersects X.
A set of criteria C that is based on a product of attributes

enjoys a wide-ranging symmetry property. Fix some Ci in
C, and consider a set E−i formed by an arbitrary union of
the categories of the remaining criteria Cj , j 6= i. Given the
product structure of C, any such E−i must intersect each of
the Ci-categories. To continue the car example, the set of
cars E−i defined by a certain range of top speeds and prices
can be partitioned into all the possible color subsets, say
blue, red, and yellow. If we use Ci to order the cells of
the color partition of the cars in E−i, the ordering will have
the same ‘shape’ as – be order isomorphic to – the original
color ordering Ci of X. If, for example, Ci on X is a cycle
– blue is better than red which is better than yellow which
is better than blue – then the Ci ordering of any set of cars
defined by a range of speeds and prices will also form a cycle.
We conclude that any two sets of cars Y and Z defined by
selections of non-color attributes will be order isomorphic to
each other when each is endowed with the color ordering Ci
(or rather the restrictions of Ci to Y and Z).

This symmetry property may seem to be of limited value
since it appears to apply only to products of attributes. But
in fact the symmetry property characterizes any C that max-
imally categorizes. If for an arbitrary (possibly nonprod-
uct) C, we apply Ci to some E−i and it defines fewer than
e(Ci) Ci-category subsets then the discrimination partition

P would have to contain fewer than
∏N
i=1 e(Ci) cells. And

the only way that E−i and E ′−i can each define e(Ci) Ci-
category subsets is for the Ci ordering of these subsets to be
order isomorphic.

Moreover, if an arbitrary (possibly nonproduct) C enjoys
the symmetry property we can relabel the elements of the
domain X so that C is then based on a product of attributes.
To do this, we associate each Ci with an attribute (e.g.,
color) and identify each Ci-category with an arbitrary value
Xj
i for that attribute (e.g., blue): each cell of P is thus

identified with a vector of attribute values. So, although a
product of attributes looks special, it provides a model for
any set of criteria that maximally categorizes.

The following definitions and theorem make these claims

precise. We use E1
i , ..., E

e(Ci)
i to denote the categories of

criterion Ci.
Given the set of criteria {C1, ..., CN}, E−i is a union of

C−i-categories if E−i =
⋃
j E

j
k for some collection of criterion

categories {Ejk} such that k 6= i for each j. Let C
E−i

i

denote the binary relation defined by E C
E−i

i E′ if and only
if there are Ci-categories Ei and E′i such that E = Ei ∩E−i,
E′ = E′i∩E−i, and xCi y for x ∈ E and y ∈ E′. We then say
C satisfies the order-isomorphism property if for any i and
any two unions of C−i-categories, E−i and E ′−i, the binary

relations C
E−i

i and C
E′−i

i are order-isomorphic.
The set of criteria C has a product representation if (i) for

each i, there is a nonempty set Yi and a partition {Y 1
i , ...,
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Y
e(Ci)
i } of Yi, (ii) there is a set of criteria Ĉ = {Ĉ1, ..., ĈN}

defined on Y =
∏N
i=1 Yi where the categories of each Ĉi are

the sets Y ji ×
(∏

k 6=i Yk
)

, and (iii) for each i, there is a order-

preserving bijection f between the categories of Ci and Ĉi,

that is, EjiCiE
j′
i if and only if f

(
Eji
)
Ĉif

(
Ej
′
i

)
.

We then have the following result.

Theorem. For a set of criteria C, the following statements
are equivalent: (i) C maximally categorizes, (ii) C satisfies
the order-isomorphism property, (iii) C has a product repre-
sentation.
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ABSTRACT
We investigate the decidability of model-checking logics of
time, knowledge and probability, with respect to two epis-
temic semantics: the clock and synchronous perfect recall se-
mantics in partially observed discrete-time Markov chains.
Decidability results are known for certain restricted logics
with respect to these semantics, subject to a variety of re-
strictions that are either unexplained or involve a longstand-
ing unsolved mathematical problem. We show that mild
generalizations of the known decidable cases suffice to ren-
der the model checking problem definitively undecidable. In
particular, for a synchronous perfect recall, a generalization
from temporal operators with finite reach to operators with
infinite reach renders model checking undecidable. The case
of the clock semantics is closely related to a monadic second
order logic of time and probability that is known to be de-
cidable, except on a set of measure zero. We show that two
distinct extensions of this logic make model checking unde-
cidable. One of these involves polynomial combinations of
probability terms, the other involves monadic second order
quantification into the scope of probability operators. These
results explain some of the restrictions in previous work.

1. INTRODUCTION
Model checking is a verification methodology used in com-

puter science, in which we ask whether a given model sat-
isfies a given formula of some logic. First proposed in the
1980’s [CE81], model checking is now a rich area, with a
large body of associated theory and well developed imple-
mentations that automate the task of model checking. Sig-
nificant use of model checking tools is made in industry, in
particular, in the verification of computer hardware designs.

Model checking developed originally in a setting where
the specifications are expressed in a propositional tempo-
ral logic, and the systems to be verified are finite state au-
tomata. This setting has the advantage of being decidable,
and a great deal of work has gone into the development of
algorithms and heuristics for its efficient implementation.
More recently, the field has explored the extent to which the
expressiveness of both the model representations and of the
specification language can be extended while retaining decid-
ability of model checking. Extensions in the systems dimen-
sions considered include real-time systems [ACD90], systems
with a mixed continuous and discrete dynamic [MNP08],
richer automaton models such as push-down automata, ma-
chines with first-in-first out queues etc. In the dimension
of the specification language, extensions considered include
elements of second order logic and specific constructs to cap-

ture the richer properties of the systems models described
above (e.g. in the real time case the specification language
might contain inequalities over time values.)

Model checking for epistemic logic was first mooted in
[HV91], and model checking for the combination of tempo-
ral and epistemic logic has been developed both theoretically
[MS99, EGM07, HM10] and in practice [GM04, LQR09,
KNN+08, Eij04]. A variety of semantics for knowledge are
known to be associated with decidable model checking prob-
lems in finite state systems, in particular, the observational
semantics (in which an agent reasons based on its present
observation) the clock semantics (in which an agent rea-
sons based on its present observation and the present clock
value), and synchronous and asynchronous versions of per-
fect recall, all admit decidable model checking in combina-
tion with quite rich temporal expressiveness [MS99, EGM07,
HM10].

Orthogonally, a line of work on probabilistic model check-
ing has considered model checking of assertions about prob-
ability and time [RKNP04]. Although one might at first
expect this line of work to be closely related to epistemic
model checking, in that probability theory provides a model
of uncertainty, in fact this area has been concerned not with
how subjective probabilities change over time, but with a
probabilistic extension of temporal logic. The focus tends
to be on the prior probability of some temporal property,
or on the probability that some temporal property holds in
runs from a current known state.

Rather less attention has been given to model checking the
combination of subjective probability and temporal expres-
siveness. Of the semantics for knowledge mentioned above,
the clock and synchronous perfect recall semantics are most
suited as a basis for model checking subjective probability.
(The others suffer from asynchrony, which makes it more
difficult to associate a single natural probability space.) Im-
plementations for these semantics presently exist only for a
limited set of formulas, in which the full power of temporal
logic is not used. For example, results in [HLM11] for model
checking the logic of subjective probability (with clock or
synchronous perfect recall semantics) and time restricts the
temporal operators to have only finite reach into the future,
and does not handle operators such as “at all times in the
future”.

A fundamental reason underlying this is that the prob-
lem of model checking probability with a rich temporal ex-
pressiveness seems to be inherently complex. Indeed, it
requires a solution to a basic mathematical problem, the
Skolem Problem for linear recurrences, that has stood un-
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solved since first posed in the 1930’s [Sko34]. Consequently,
the strongest results on model checking probability and time
that encompass the expressiveness required for model check-
ing knowledge and subjective probability state decidability
in a way that requires exclusion of an infinite set of difficult
instances for which decidability is unresolved. Specifically,
[BRS06] shows that a (weak) monadic second order logic
PMLO, containing probability assertions of forms such as
Pr(φ(t1, . . . , tn)) > c, in which the ti take values in the nat-
ural numbers, representing discrete time points, is decid-
able in finite state Markov chains, provided that the ratio-
nal number c is not in a set Hφ depending on φ which can
taken to be of arbitrarily small non-zero measure. This work
leaves open the decidability of the model checking problem
for the language in its full generality, in particular, for the
values of c in Hφ.

Our contribution in this paper is to consider a number of
generalizations of PMLO, motivated by model checking a
logic of time and subjective probability. In particular, our
generalizations arise very naturally when attempting to deal
with the way that an agent conditions probability on its ob-
servations. We show that these generalizations definitively
result in undecidable model checking problems. This clar-
ifies the boundary between the decidable and undecidable
cases of model checking logics of probability and time.

We begin in section 2 by recalling the definition of prob-
abilistic interpreted systems [Hal03], which provides a very
general semantic framework for logics of time, knowledge
and probability. We work with an instantiation of this gen-
eral framework in which systems are generated from finite
state partially observed discrete-time Markov chains. We
define two logics that take semantics in this framework.
The first is an extension of the branching time temporal
logic CTL∗ to include operators for knowledge and proba-
bility, including operators for the subjective probability of
agents. The second is a more expressive monadic second
order logic that also adds a capability to quantify over mo-
ments of time and finite sets of moments of time. In this
logic, the agent knowledge and probability operators are in-
dexed by a temporal variable. This logic generalizes the
logic of [BRS06]. Our logics allow polynomial comparisons
of probability terms, as well as comparisons of agent prob-
ability terms referring to multiple time points. We argue
from a number of motivating applications that this level of
expressiveness is useful in potential applications. We show
in Section 3 that the monadic second order logic is as least
as expressive as our probabilistic extension of CTL∗. In-
deed, some apparently mild extensions of PMLO suffice for
the encoding: the epistemic and subjective probability op-
erators can be eliminated using a universal modality, poly-
nomial combinations of probability expressions, and a more
liberal use of quantification than allowed in PMLO.

We then turn in Section 4 to an investigation of the model
checking problem. Specifically, we show that model checking
even very simple formulas about a single agent’s probability
is undecidable when the agent has perfect recall. A conse-
quence of this result is that an extension of PMLO that
adds second order quantification into the scope of probabil-
ity is undecidable.

This suggests a focus on weaker epistemic semantics in-
stead, in particular, the clock semantics. From the point
of view of PMLO, to express agent’s subjective probabili-
ties with respect to the clock semantics requires polynomial

combinations of simple global probability terms of the form
“ the probability that proposition p holds at time t”. We
formulate a simple class of formulas involving such polyno-
mial combinations, and show that this also has undecidable
model checking.

These results show that even simple model checking ques-
tions about subjective probability are undecidable, and more-
over help to explain some unexplained restrictions on PMLO
in [BRS06]: these restrictions are in fact necessary in order
to obtain a decidable logic. We conclude with a discussion of
future work in Section 5. Related work most closely related
to our results is discussed in the context of presenting and
motivating the results.

2. PROBABILISTIC KNOWLEDGE
We describe in this section the semantic setting for the

model checking problem we consider. We model a set of
agents making partial observations of an environment that
evolves with time. We first present the semantics of the
modal logic we consider, following [Hal03], using the general
notion of probabilistic interpreted system. Since these struc-
tures are not finite, in order to have a finite input for a model
checking problem, we derive a probabilistic interpreted sys-
tem from a partially observed discrete-time Markov chain.
This is done in two ways, depending on the degree of re-
call of the agents. Taking the Markov chain to be finite,
we obtain finitely presented model checking problems whose
complexity we then study.

2.1 Probabilistic Interpreted Systems
Probabilistic interpreted systems are defined as follows.

Let Agt = {1, . . . , n} be a set of agents operating in an en-
vironment e. At each moment of time, each agent is assumed
to be in some local state, which records all the information
that the agent can access at that time. The environment e
records “everything else that is relevant”. Let S be the set
of environment states and let Li be the set of local states
of agent i ∈ Agt. A global state of a multi-agent system is
an (n + 1)-tuple s = (se, s1, . . . , sn) such that se ∈ S and
si ∈ Li for all i ∈ Agt. We write G = S × L1 × . . .× Ln for
the set of global states.

Time is represented discretely using the natural numbers
N. A run is a function r : N → G, specifying a global state
at each moment of time. A pair (r,m) consisting of a run r
and time m ∈ N is called a point. If r(m) = (se, s1, . . . , sn)
then we define re(m) = se and ri(m) = si for i ∈ Agt. If r
is a run and m ∈ N a time, we write r[0..m] for r(0) . . . r(m)
and re[0..m] for re(0) . . . re(m). A system is a set R of runs.
We call R× N the set of points of the system R.

Agent knowledge is captured using a relation of indistin-
guishability. Two points (r,m) and (r′,m′) are said to be
indistinguishable to agent i, if the agent is in the same lo-
cal state at these points. Formally, we define ∼i to be the
equivalence relation on R× N given by (r,m) ∼i (r′,m′), if
ri(m) = r′i(m

′). Relative to a system R, we define the set

Ki(r,m) = {(r′,m′) ∈ R× N | (r′,m′) ∼i (r,m)}
to be the set of points that are, for agent i, indistinguishable
from the point (r,m). Intuitively, Ki(r,m) is the set of all
points that the agent considers possible when it is in the
actual situation (r,m). A system is said to be synchronous
if for all agents i, we have that (r′,m′) ∈ Ki(r,m) implies
that m = m′. Intuitively, in a synchronous system, agents
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always know the time. Since it is more difficult to define
probabilistic knowledge in systems that are not synchronous,
we confine our attention to synchronous systems in what
follows.

A probability space is a triple Pr = (W,F , µ) such that
W is a (nonempty) set, called the carrier, F ⊆ P(W ) is a
σ-field of subsets of W , called the measurable sets in Pr,
closed under complementation and countable union, and µ :
F → [0, 1] is a probability measure, such that µ(W ) = 1 and
µ(

⋃
n Vn) =

∑
n µ(Vn) for every countable sequence {Vn}

of mutually disjoint measurable sets Vn ∈ F . As usual, we
define the conditional probability µ(U |V ) = µ(U ∩V )/µ(V )
when µ(V ) > 0.

Let Prop be a set of atomic propositions. A probabilistic
interpreted system over Prop is a tuple I = (R, Pr1, . . . , Prn, π)
such that R is a system, each Pri is a function mapping each
point (r,m) of R to a probability space Pri(r,m) in which
the carrier is a subset of R× N, and π : R× N → P(Prop)
is an interpretation of some set Prop of atomic propositions.
Intuitively, the probability space Pri(r,m) captures the way
that the agent i assigns probabilities at the point (r,m), and
π(r,m) is the set of atomic propositions that are true at the
point.

We will work with probabilistic interpreted systems de-
rived from synchronous systems in which agents have a com-
mon prior on the set of runs. To define these, we use the
following notation. For a system R, a set of runs S ⊆ R
and a set of points U ⊆ R× N, define

S(U) = {r ∈ S | ∃m : (r,m) ∈ U}
to be the set of runs in S containing some point in the set
U . Conversely, for a set S of runs and a set U of points,
define

U(S) = {(r,m) ∈ U | r ∈ S}
to be the set of points in U that are on a run in S. Note that
if there exists a constant k ∈ N such that (r,m) ∈ U implies
m = k, then the relation r ↔ (r, k) defines a one-to-one
correspondence between S(U) and U(S). In synchronous
systems, which satisfy this condition, this gives a way to
move between sets of points considered possible by an agent
and corresponding sets of runs.

Suppose thatR is a synchronous system, let Pr = (R,F , µ)
be a probability space on the system R, and let π be an
interpretation on R. Intuitively, the probability space Pr
represents a prior distribution over the runs. We assume
that for all points (r,m) ∈ R×N and agents i, we have that
R(Ki(r,m)) ∈ F is a measurable set and µ(R(Ki(r,m))) >
0. (This assumption can be understood as saying that,
according to the prior, each possible local state ri(m) of
agent i at time m has non-zero probability of being the lo-
cal state of agent i at time m.) Under this condition, we
define the probabilistic interpreted system I(R,Pr, π) =
(R, Pr1, . . . , Prn, π) such that Pri associates with each point
(r,m) the probability space Pri(r,m) = (Ki(r,m),Fr,m,i, µr,m,i)
defined by

Fr,m,i = {Ki(r,m)(S) | S ∈ F}
and such that

µr,m,i(U) = µ(R(U) | R(Ki(r,m)) )

for all U ∈ Fr,m,i. Intuitively, because the set of runs
R(Ki(r,m)) is measurable, we can obtain a probability space

with carrier R(Ki(r,m)) by conditioning in Pr. Because of
the synchrony assumption there is, for each point (r,m), a
one-to-one correspondence between points in Ki(r,m) and
runs in R(Ki(r,m)). The construction uses this correspon-
dence to induce a probability space on Ki(r,m) from the
probability space on R(Ki(r,m)). We remark that under
the additional assumption of perfect recall, it is also possi-
ble to understand each space Pri(r,m + 1) as obtained by
conditioning on the space Pri(r,m). See [Hal03] for a de-
tailed explanation of this point.

2.2 Probabilistic Temporal Epistemic Logic
To specify properties of probabilistic interpreted systems,

a variety of logics can be formulated, drawing from the spec-
trum of temporal logics. Our main interest is in a reasoning
about subjective probability and time, so we first consider
a natural way to combine existing temporal and probabilis-
tic logics. For purposes of comparison, it is also helpful to
consider a rather richer monadic second order logic of prob-
ability and time, that is closely related to a logic for which
some decidability results are known.

We may combine temporal and probabilistic logics to de-
fine a logic CTL∗KP that extends the temporal logic CTL∗

by adding operators for knowledge and probability. Its syn-
tax is given by the grammar

φ ::= p | ¬φ | φ ∧ φ | Aφ | Xφ | φUφ | Kiφ | f(P, . . . , P ) ./ c

P ::= Pri(φ) | Priori(φ)

where p ∈ Prop, c is a rational constant, ./ is a relation sym-
bol in the set {≤, <,=, >,≥}, and f(x1, . . . , xk) is multivari-
ate polynomial in k variables x1, . . . xk with rational coeffi-
cients. Instances of P are called basic probability expression.
The instances generated from f(P, . . . , P ) are called proba-
bility expressions, and are expressions of the form f(P1, . . . , Pk),
obtained by substituting a basic probability expression Pi for
each variable xi in f(x1, . . . , xk). For example,

4Pr1(p)5 · Pr2(q)3 +
7

15
Pr1(p)

is an instance of f(P, . . . , P ) obtained from f(x, y) = 4x5y3+
7
15
x by substituting Pr1(p) for x and Pr2(q) for y.
Intuitively, formula Kiφ expresses that agent i knows φ.

The formula Aφ says that φ holds for all possible system
evolutions from the current situation. The formula Xφ ex-
presses that φ holds at the next moment of time. The for-
mula φ1Uφ2 says that φ2 eventually holds, and φ1 holds
until that time. The expression Pri(φ) represents agent i’s
current probability of φ, Priori(φ) represents agent i’s prior
probability of φ, i.e., the agent’s probability of φ at time 0.
The formula f(P1, . . . , Pk) ./ c expresses that this polyno-
mial combination of current and prior probabilities stands
in the relation ./ to c. We use standard abbreviations from
temporal logic, in particular, we write Fφ for trueUφ.

A restricted fragment of the language that may be of in-
terest is the branching time fragment in which the temporal
operators are restricted to those of the temporal logic CTL.
That is, X and U are permitted to occur only in combina-
tion with the operator A, in one of the forms AXφ, EXφ,
Aφ1Uφ2, Eφ1Uφ2, where we write Eφ as an abbreviation for
¬A¬φ. We call this fragment of the language CTLPK. The
motivation for considering this fragment is that the complex-
ity of model checking is in polynomial time for the temporal
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logic CTL, whereas it is polynomial-space complete for the
richer temporal logic CTL∗ [CES86]. The logic CTLPK
is therefore, prima facie, a candidate for lower complexity
once knowledge and probability operators are added to the
logic.

The semantics of the language CTL∗KP in a probabilistic
interpreted system I = I(R,Pr, π) is given by interpreting
formulas φ at points (r,m) of I, using a satisfaction relation
I, (r,m) |= φ. The definition is mutually recursive with
a function [·]I,(r,m) that assigns a value [P ]I,(r,m) to each
probability expression P at each point (r,m). This requires
computing the measure of certain sets. For the moment, we
assume that all sets arising in the definition are measurable.
We show later that this assumption holds in the cases of
interest in this paper.

We first interpret the probability expressions at points
(r,m) of the system I, by

[Priφ]I,(r,m) = µr,m,i({(r′,m′) ∈ Ki(r,m) | I, (r′,m′) |= φ})

[Prioriφ]I,(r,m) = µr,0,i({(r′, 0) ∈ Ki(r, 0) | I, (r′, 0) |= φ})

[f(P1, . . . , Pk)]I,(r,m) = f([P1]I,(r,m), . . . , [Pk]I,(r,m))

The satisfaction relation is then defined recursively, as fol-
lows:

1. I, (r,m) |= p if p ∈ π(r,m)

2. I, (r,m) |= ¬φ iff not I, (r,m) |= φ

3. I, (r,m) |= φ1∧φ2 iff I, (r,m) |= φ1 and I, (r,m) |= φ2

4. I, (r,m) |= Aφ if I, (r′,m) |= φ for all runs r′ with
r′[0 . . .m] = r[0 . . .m],

5. I, (r,m) |= Xφ if I, (r,m+ 1) |= φ

6. I, (r,m) |= φ1Uφ2 holds if there exists k ≥ m such
that I, (r, k) |= φ2, and I, (r, l) |= φ1 for all l with
m ≤ l < k.

7. I, (r,m) |= Kiφ if I, (r′,m′) |= φ for all (r′,m′) ∈
Ki(r,m).

8. I, (r,m) |= f(P1, ..., Pk) ./ c if [f(P1, ..., Pk)]I,(r,m) ./
c.

2.3 Probabilistic Monadic Second Order Logic
Temporal modal logics refer to time in a somewhat im-

plicit way. An alternative approach is to work in a setting
with more explicit references to time, by using variables de-
noting time points. Kamp’s theorem [Kam68] establishes
an equivalence in the first order case, but by adding second
order variables and quantification, one can obtain richer log-
ics, that frequently remain decidable in the monadic case.
In this section, we develop a logic in this style for time and
subjective probability.

We define the logic WMLOKP as follows. We use two
types of variables: time variables t and set variables X.
Time variables take values in N and set variables take fi-
nite subsets of N as values. Probability terms P have the
form Pr(φ) or the form Pri,t(φ) where i ∈ Agt is an agent,
t is a time variable, φ is a formula. Formulas φ are defined
by the following grammar:

φ ::= p(t) | X(t) | t1 < t2 | f(P, . . . , P ) ./ c | ¬φ | φ ∧ φ |
Ki,t(φ) | ∀t(φ) | ∀X(φ)

where t, t1, t2 are time variables, p is an atomic proposition,
X is a set variable, i is an agent, c ∈ Q is a rational con-
stant, f is a rational polynomial (see the discussion above
for CTL∗KP), and ./ is a relation symbol from the set
{=, <,≤, >,≥}.

Intuitively, in this logic formulas are interpreted relative
to a run. Instead of indexing by a single moment of time, as
in the logic above, we relativize the satisfaction relation to
an assignment of values to the temporal and set variables.
Atomic formula p(t) says that proposition p holds at time
t. Similarly, a (finite) set X of times can be interpreted as
a proposition, and we can understand X(t) as stating that
the value of t is in X. (We remark that there is a funda-
mental difference between the types of propositions denoted
by atomic propositions p and set variables X: whereas the
atomic propositions may depend on structural aspects of the
run, such as the global state at time t, the set variables may
refer only to the time.) The atomic formula t1 < t2 has the
obvious interpretation that time t1 is less than time t2. The
constructs ∀t(φ) and ∀X(φ) correspond to universal quantifi-
cation over times and finite sets of times respectively. They
say that φ holds on the current run for all values of the vari-
able. (Taking finite sets amounts to the weak interpretation
of second order quantification. One could also consider a
strong semantics allowing infinite sets of times. We have
opted here for the weak interpretation to more easily relate
our results to the existing literature.)

The probability term Pr(φ) refers to the probability of φ
in the probability space on runs. The meaning of probability
term Pri,t(φ) is agent i’s probability at time t that the run
satisfies φ. Similarly, Ki,tφ says that agent i knows at time
t that the run satisfies φ. Note that, whereas in CTL∗KP,
the formula Kiφ always expresses that agent i knows that φ
holds at the “current time”, in WMLOKP, formulas such
as

∃u(u < t ∧Ki,t(p(u)))

talk about the agent’s knowledge, at some time t, about
what was true at some earlier time u. A similar point applies
to probability expressions.

When dealing with formulas with free time and set vari-
ables, we need the extra notion of an assignment for the time
and set variables. This is a function τ such that for each free
time variable t we have τ(t) ∈ N, and for each free set vari-
able X we have that τ(X) is a finite subset of N. Given such
an assignment, we give the semantics of probability terms
and formulas by a mutual recursion. We give the semantics
of formulas φ by means of a relation I, τ, r |= φ defined as
follows:

1. I, τ, r |= p(t) if p ∈ π(r, τ(t)), when p is an atomic
proposition

2. I, τ, r |= X(t) iff τ(t) ∈ τ(X), if X is a set variable

3. I, τ, r |= ¬φ iff not I, τ, r |= φ,

4. I, τ, r |= φ1 ∧ φ2 iff I, τ, r |= φ1 and I, τ, r |= φ2

5. I, τ, r |= Ki,t(φ) if I, τ, r′ |= φ for all (r′,m′) ∈ Ki(r, τ(t)).

6. I, τ, r |= f(P1, ..., Pk) ./ c if [f(P1, ..., Pk)]I,τ,r ./ c,

7. I, τ, r |= ∀t(φ) if I, τ [t 7→ n], r |= φ for all n ∈ N,

8. I, τ, r |= ∀X(φ) if I, τ [X 7→ U ], r |= φ for all finite
U ⊆ N.
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In item (6), the definition is mutually recursive with the
semantics of probability terms, which are interpreted as real
numbers, relative to a temporal assignment. We define

[Pr(φ)]I,τ,r = µ({r′ | I, τ, r′ |= φ})
and

[Pri,t(φ)]I,τ,r =
µ({r′ | (r, τ(t)) ∼i (r′, τ(t)), I, τ, r′ |= φ})

µ({r′ | (r, τ(t)) ∼i (r′, τ(t))})

[f(P1, . . . , Pk)]I,τ,r = f([P1]I,τ,r, . . . , [Pk]I,τ,r)

As above, we assume measurability of the sets required, and
later justify that this holds in the particular setting of inter-
est in this paper.

A particular class of formulas of WMLOKP will be of
interest below. Define a mixed-time polynomial atomic prob-
ability formula to be a formula of the form

∀t1 . . . tn(f(Pr(φ1), . . . , Pr(φm)) = 0)

where f(x1, . . . , xm) is a rational polynomial and each φi
is an atomic formula of the form p(tj) for some proposition
p and j ∈ {1 . . . n}. We motivate the usefulness of such
temporal mixing of probability expressions in Section 2.5.

The logic WMLOKP generalizes several logics from the
literature. If we restrict the language by excluding the prob-
ability comparison atoms f(P1, . . . , Pk) ./ c and knowledge
formulas Ki,t(φ), we have the Weak Monadic Logic of Or-
der, which is equivalent to WS1S [Buc60]. We obtain the
Probabilistic Monadic Logic of Order considered in [BRS06],
which we denote here by PMLO, if we

• exclude the knowledge operators Ki,t,

• exclude agent’s probability terms Pri,t(φ), and

• limit the global probability comparisons to be of the
form Pr(φ(t1, . . . , tk)) ./ c, containing just a single
probability term Pr(φ(t1, . . . , tk)), with the further con-
straint that the only free variables of φ should be tem-
poral variables t1, . . . tk.

In particular, second-order quantification into probability
expressions, e.g., ∀X[Pr(X(t)) > c] is not permitted in PMLO,
but second order quantification that does not cross a prob-
ability operator, such as Pr(∀X[X(t))]) > c, is allowed. We
note that PMLO does allow first order quantifications into
the scope of probability, such as ∀t[Pr(p(t)) > c].

In the sequel, we refer to quantification into the scope of a
knowledge formula or probability expression as quantifying-
in.

2.4 Partially Observed Markov Chains
Although they provide a coherent semantic framework,

probabilistic interpreted systems are infinite structures, and
therefore not suitable as input for a model checking algo-
rithm. We therefore work with a type of finite model called
an interpreted partially observed discrete-time Markov chain,
or PO-DTMC for short. A finite PO-DTMC for n agents
is a tuple M = (S, PI, PT,O1, ..., On, π), where S is a fi-
nite set of states, PI : S → [0..1] is a function such that∑
s∈S PI(s) = 1, component PT : S × S → [0, 1] is a func-

tion such that
∑
s′∈S PT (s, s′) = 1 for all s ∈ S, and for

each agent i ∈ Agt, we have a function Oi : S → O for some
set O. Finally, π : S → P(Prop) is an interpretation of the
atomic propositions Prop at the states.

Intuitively, PI(s) is the probability that an execution of
the system starts at state s, and PT (s, t) is the probability
that the state of the system at the next moment of time
will be t, given that it is currently s. The value Oi(s) is the
observation that agent i makes when the system is in state
s. (Below, in the context of interpreted systems, we treat
the set of states S as the states of the environment rather
than as the set of global states. Agents’ local states will be
derived from the observations.)

Note that the first three components (S, PI, PT ) of a PO-
DTMC form a standard discrete-time Markov chain. This
gives rise to a probability space on runs in the usual way.
A path in M is a finite or infinite sequence ρ = s0s1 . . .
such that PI(s0) 6= 0 and PT (sk, sk+1) > 0 for all k with
0 ≤ k < |ρ| − 1. We write P∞(M) for the set of all infinite
paths of M . Any finite path ρ = s0s1 . . . sm defines a set

P∞(M) ↑ ρ = {ω ∈ P∞(M) | ω[0 . . .m] = ρ} (2)

That is, P∞(M) ↑ ρ consists of all infinite paths which have
ρ as a prefix.

We now define a probability space Pr(M) = (P∞(M),F , µ)
over the set P∞(M) of all infinite paths of M . The σ-
algebra F is defined to be the smallest σ-algebra over P∞(M)
that contains as basic sets all the sets P∞(M) ↑ ρ for ρ =
s0s1 . . . sm a finite path of M . For these basic sets, the func-
tion µ is defined by

µ(P∞(M) ↑ ρ) = PI(s0) · PT (s0, s1) · . . . · PT (sm−1, sm) .

The fact that µ can be extended to a measure on F is a
non-trivial result of Kolmogorov for more general stochastic
processes [KSK76].

We may construct several different probabilistic interpreted
systems from each PO-DTMC, depending on what agents
remember of their observations. We consider two, one that
assumes that agents have perfect recall of all their obser-
vations, denoted spr, and the other, denoted clk, which
assumes that agents are aware of the current time and their
current observation. Recall that runs in an interpreted sys-
tem map time to global states, consisting of a state of the
environment and a local state for each agent. We interpret
the states of the PO-DTMC M as states of the environment.
To obtain a run, we also need to specify a local state for each
agent at each moment of time. We use the the observations
to construct the local states.

In the case of the synchronous perfect recall semantics,
given a path ρ ∈ P∞(M), we obtain a run ρspr by defining
the components at each time m as follows. The environment
state at time m is ρspre (m) = ρ(m), and the local state of
agent i at time m is ρspri (m) = Oi(ρ(0)) . . . Oi(ρ(m)). Intu-
itively, this local state assignment represents that the agent
remembers all its past observations. We write Rspr(M) for
the set of runs of the form ρspr for ρ ∈ P∞(M). Note that
this system is synchronous: if r = ρspr and r′ = ωspr then
for each agent i and time m ∈ N, if ri(m) = r′i(m

′), then
Oi(ρ(0)) . . . Oi(ρ(m)) = Oi(ω(0)) . . . Oi(ω(m′)), which im-
plies m = m′.

For the clock semantics, we construct a run a ρclk in which
again the environment state at time m is ρclke (m) = ρ(m),
and for agent i we define the local state at time m by
ρclk(m) = (m,Oi(ρ(m)). Intuitively, this says that the
agent is aware of the clock value and its current observa-
tion. We write Rclk(M) for the set of runs of the form
ρclk for ρ ∈ P∞(M) an infinite path of M . This system
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is also synchronous: if r = ρclk and r′ = ωclk then for
each agent i and time m ∈ N, if ri(m) = r′i(m

′), then
(m,Oi(ρ(m))) = (m′, Oi(ω(m′))), hence m = m′. In both
cases of x ∈ {spr, clk}, if T is a subset of P∞(M), we write
T x for {ρx | ρ ∈ T}.

In both cases of x ∈ {spr, clk}, we have a one-to-one
correspondence between the infinite paths P∞(M) and the
runs Rx(M). We therefore can induce probability spaces
Prx(M) on Rx(M) from the probability space Pr(M) on
P∞(M). As described above, the probability space Prx(M)
on runs moreover induces a probability space Prxi (r,m) on
the set of points considered possible by each agent i at each
point (r,m). The PO-DTMC M gives us an interpretation π
on its states, and we may derive from this an interpretation
πx on the points (r,m) of Rspr(M) and Rclk(M) by defining
πx(r,m) = π(re(m)). Using the general construction defined
above, we then obtain the probabilistic interpreted systems
Ix(M) = I(Rx(M),Prx(M), πx) for x ∈ {spr, clk}.

It is necessary to establish the measurability of the sets
corresponding to formulas for the semantic definitions of the
logics above to be complete. This is established in the fol-
lowing result.

Lemma 1. Let M be a finite PO-DTMC and x ∈ {spr, clk}.
For every set S ⊆ R(M) of runs of M such that the semantic
definitions above of CTL∗KP and WMLOKP in Ix(M)
refer to µ(S), the set S is measurable in Pr(M).

2.5 Discussion
We have defined our logics to be quite expressive in the

type of atomic probability assertions we have allowed, which
involve polynomials of probability expressions. In WMLOKP,
these expressions may explicitly refer to different time points.
Some existing logics of probability in the literature use a
more restricted expressiveness, e.g., [FH94] consider a logic
that has only linear combinations of probability expressions,
and many logics [BRS06, RKNP04] allow only inequalities
involving a single probability term. Here give some moti-
vation to show that the richness we have allowed is natural
and useful for applications.

Polynomials: There are several motivations for allowing
polynomial combinations of probability expressions. One, as
noted in [FHM90], is that polynomials arise naturally from
conditional probability. If we would like to include linear
combinations of conditional probability expressions in the
language, we find that this motivates a generalization to
polynomial combinations of probability expressions. Con-
sider the formula Pr(φ1|ψ1) + Pr(φ2|ψ2) ≤ c. Expanding
out the definition of conditional probability, we have

Pr(φ1 ∧ ψ1)

Pr(ψ1)
+

Pr(φ2 ∧ ψ2)

Pr(ψ2)
≤ c .

We see here that there is a risk of division by zero that needs
to be managed in order for the semantics of this formula to
be fully defined. One way to do so is to multiply out the
denominators, resulting in the form

Pr(φ1∧ψ1) ·Pr(ψ2)+Pr(φ2∧ψ2) ·Pr(ψ1) ≤ c ·Pr(ψ1) ·Pr(ψ2)

which is meaningful in all cases. (Should this not have the
desired semantics in case one of the Pr(ψi) is zero, an addi-
tional formula can be added that handles this special case as
desired.) However, although we started with a linear prob-
ability expression, we now have multiplicative terms. This

suggests that the appropriate way to add the expressive-
ness of conditional probability to the language is to admit
atomic formulas that compare polynomial combinations of
probability expressions.

More generally, although it is less of relevance for pur-
poses of model checking, and more of use for axiomatization
of the logic, allowing polynomials also naturally enables fa-
miliar reasoning patterns to be captured inside the logic. In
particular, validities such as Pr(φ1 ∨ φ2) = Pr(φ1) + Pr(φ2)
when φ1 and φ2 are mutually exclusive and Pr(φ1 ∧ φ2) =
Pr(φ1) · Pr(φ2) when φ1 and φ2 are independent show that
both addition and multiplication of probability terms arises
naturally.

Mixed-time: A second way in which our logics are rich is
in allowing probability atoms that refer to different moments
of time. In CTL∗KP this already the case because combina-
tions such as PriorA(φ) = PrA(φ) are allowed, which refer to
both the current time and to time 0. The logic WMLOKP
takes such temporal mixing further by allowing reference to
time points explicitly named using time variables.

Such temporal mixing is natural, since there are potential
applications that require this expressiveness. For example,
in computer security, one often wants to say that the adver-
sary A does not learn anything about a secret from watching
an exchange between two parties. However, it is often the
case that the adversary knows some prior distribution over
the secrets. (For example, the secret may be a password,
and choice of passwords by users are very non-uniform, with
some passwords like ‘123456’ having a very high probability.)
This means that the simple assertion that the adversary does
not know the secret, or that the adversary has a uniform dis-
tribution over the secret, does not capture the appropriate
notion of security. Instead, as recognised already by Shan-
non in his work on secrecy [Sha49], we need to assert that
the adversary’s distribution over the secret has not changed
as a result of its observations. This requires talking about
the adversary’s probability at two time points. For exam-
ple, [HLM11] capture an anonymity property by means of
formulas using terms PriorA(φ) = PrA(φ).

Mixed-time polynomials: Additionally, the logic of
probability applied to formulas referring to different times
leads naturally to polynomial combinations of probability
terms, each referring to a different moment of time. For ex-
ample, although PMLO allows only formulas of the form
Pr(φ(t1, . . . , tn)) ./ c, where the ti are time variables, the
decision algorithm of [BRS06] uses the fact that, when t1 <
t2 < . . . < tn, the formula φ(t1, . . . , tn) is equivalent to a
formula of the form φ1(t1)∧φ2(t2− t1)∧ . . . φn(tn− tn−1)∧
φn+1(tn), where the φi(t) are independent past-time formu-
las for i = 1 . . . n and φn+1(t) is a future time formula. (This
statement is closely related to Kamp’s theorem [Kam68].)
This enables Pr(φ(t1, . . . , tn)) to be expressed as a sum of
products of terms of the form Pr(φi(u)) where φi(u) has
just a single free time variable u. Thus, although mixed-
time probability formulas are not directly expressible in the
logic of [BRS06], specific ones are implicitly expressible, and
the extension is a mild one. It is worth remarking, how-
ever, that the coefficients of the polynomial expansion of
Pr(φ(t1, . . . , tn)) are all positive, so we do not quite have
arbitrary polynomials here. We return to this point below.

3. RELATING THE LOGICS
The logic WMLOKP is very expressive, so it is not sur-
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prising that it can capture all of CTL∗KP. The following
result makes this precise.

For the results below, it is convenient to add to the system
a special agent ⊥ that is blind, and an agent > that that
has complete information about the state. In the context of
PO-DTMC’s these agents are obtained by taking the obser-
vation functions to satisfy O⊥(s) = O⊥(t) and O>(s) = s
for all states s, t. We write 2φ for K⊥,tφ where t is any time
variable. This gives a universal modality : 2φ says that φ
holds on all runs.

Proposition 2. Let M be a PO-DTMC with agent >
and let x ∈ {spr, clk}. For every formula φ of CTL∗KP,
there exists a formula φ∗(t) of WMLOKP with t the only
free variable, such that Ix(M), (r, n) |= φ iff Ix(M), [t 7→
n], r |= φ∗(t) for all runs r.

Proof. The translation is defined by the following recur-
sion:

p∗(t) = p(t), (¬φ)∗(t) = ¬φ∗(t), (φ1 ∧ φ2)∗(t) = φ∗1(t) ∧ φ∗2(t),

(Xφ)∗(t) = ∃u(u = t+ 1 ∧ φ∗(u)), (Kiφ)∗(t) = Ki,t(φ
∗(t)),

(φ1Uφ2)∗(t) = ∃u ≥ t(φ∗2(u) ∧ ∀v(t ≤ v < u⇒ φ∗1(v)))

(Pri(φ))∗(t) = Pri,t(φ
∗(t)), (Priori(φ))∗(t) = Pri,0(φ∗(0))

(f(P1, . . . , Pk) ./ c)∗(t) = f(P ∗1 (t), . . . , P ∗k (t)) ./ c

Note that u = t+ 1 is definable as (u > t ∧ ∀v > t(u ≤ v)),
and u = 0 is definable as ¬∃t(u = t + 1). We can use
(Aφ)∗(t) = K>,t(φ

∗(t)) to translate Aφ in the perfect recall
case. In case of the clock semantics, this translation loses
the information about the initial state, which is required for
correctness of the translation of Priori(φ). In this case, we
introduce without loss of generality new propositions ps for
each state s, such that ps ∈ πe(t) iff s = t, and take

(Aφ)∗(t) =
∧

s∈S
(ps(0)⇒ K>,t(ps(0)⇒ φ∗(t)))

With respect to the specific systems we derive from PO-
DTMC’s with respect to the clock and perfect recall seman-
tics, we are able to make some further statements that sim-
plify the logic WMLOKP by eliminating some of the oper-
ators. These results are useful for the undecidability results
that follow.

For the following results, we note that, without loss of
generality, we may assume that a finite PO-DTMC comes
equipped with atomic propositions that encode the obser-
vations made by the agents. Specifically, when agent i has
possible observations oi,1, . . . , oi,ki , we assume that there are
atomic propositions obsi,j for i ∈ Agt and j = 1 . . . ki such
that for all states s, obsi,j ∈ π(s) iff Oi(s) = oi,j . Thus,
obsi,j(t) holds in a run just when agent i makes observation
oi,j at time t.

Proposition 3. With respect to Iclk(M) for a finite PO-
DTMC M , the operators Ki,t and Pri,t can be eliminated
using the universal operator 2 and polynomial comparisons
of universal probability terms Pr(ψ), respectively. For sim-
ple probability formulas Pri,t(φ) ./ c, only linear probability
comparisons are required.

Proof. The formula
∧

j=i...ki

(obsi,j(t)⇒ 2(obsi,j(t)⇒ φ)

is easily seen to be equivalent to Ki,t(φ) in Iclk(M). Simi-
larly, Pri,t(φ) ./ c can be expressed as

∧

j=i...ki

(obsi,j(t)⇒ Pr(obsi,j(t) ∧ φ) ./ c · Pr(obsi,j(t))) .

A similar transformation applies for more general agent prob-
ability comparisons, but we note that linear comparisons
may transform to polynomial comparisons: similarly to the
discussion of conditional probability in Section 2.5.

Proposition 4. With respect to Ispr(M) for a finite PO-
DTMC M , the probability formulas Pri,t(φ) ./ c can be re-
duced to linear comparisons using only terms Pr(ψ), pro-
vided second-order quantifying-in is permitted. Knowledge
terms Ki,t can be reduced to the universal modality 2, pro-
vided second-order quantifying-in is permitted for this modal-
ity.

Proof. Define κi(X1, . . . , Xki , t) to be the formula

∀t′ ≤ t(
∧

j=1...ki

Xi(t
′)⇔ obsi,j(t

′))

Intuitively, this says that, up to time t, the second order
variables X1, . . . , Xk encode the pattern of occurrence of
observations of agent i up to time t. The formula

∀X1, . . . Xki(κi(X1, . . . , Xki , t)⇒ 2(κi(X1, . . . , Xki , t)⇒ φ)

is easily seen to be equivalent to Ki,t(φ) in Iclk(M). Simi-
larly, Pri,t(φ) ./ c can be expressed as

∀X1, . . . Xki( κi(X1, . . . , Xki , t)⇒
Pr(κi(X1, . . . , Xki , t) ∧ φ) ./ c · Pr(κi(X1, . . . , Xki , t))) .

One might wonder whether the knowledge operators can
be eliminated entirely using probability, treating Kiφ as
Pri(φ) = 1. This is indeed the case for formulas φ in CTLPK.
The essential reason is that because formulas of CTLPK
depend at a point (r,m) only on the run prefix r[0 . . .m], so
the possibility that ¬φ holds on a non-empty set of measure
zero does not occur.

Proposition 5. For all CTLPK formulas φ and PO-
DTMC’s M and x ∈ {clk, spr} we have Ix(M) |= Kiφ ⇔
Pri(φ) = 1.

However, this is not the case for formulas Kiφ where φ
is an LTL formula. Consider the following Markov Chain.
Here we have, at the initial state s, that ¬Ki(F¬q), be-

s t

p

1-p

1

q ¬q

cause the agent considers it possible that always q (this holds
for all choices of observation functions). However, we have
Pri(F¬q) = 1, since the only run where ¬q does not eventu-
ally hold is the run that always remains at s. This run has
probability zero.
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4. UNDECIDABILITY RESULTS
We can now state the main results of the paper concerning

the problem of model checking formulas of (fragments of) the
logics CTL∗KP and WMLOKP in a PO-DTMC M , with
respect to an epistemic semantics x ∈ {spr, clk}. Using
the results of Section 3, we also obtain conclusions about
extensions of PMLO that do not refer to agent probability
and knowledge.

For a formula φ of CTL∗KP, we write M |=x φ, if
Ix(M), (r, 0) |= φ for all runs r ∈ Rx(M). In the case of
WMLOKP, we consider sentences, i.e., formulas without
free variables, and write M |=x φ, if Ix(M), τ, r |= φ for all
runs r ∈ Rx(M) and the empty assignment τ . The model
checking problem is to determine, given a PO-DTMC M , a
formula φ, and semantics x ∈ {clk, spr}, whether M |=x φ.

4.1 Background
For comparison with results below, it is worth stating a

result from [BRS06] concerning decidability of the fragment
PMLO of WMLOKP that omits knowledge operatorsKi,t

and agent probability terms Pri,t(φ), restricts probability
comparisons to the form Pr(φ) ./ c, and prohibits second
order quantification to cross into probability terms. Since
the structure of agent’s local states is irrelevant in this case,
we write simply I(M) for the probabilistic interpreted sys-
tem corresponding to a PO-DTMC M . To state the result,
we define the parameterized variant of a formula φ of PMLO
to be the formula φx1,...,xk , in which each subformula of the
form Pr(ψ) ./ c is replaced by a formula Pr(ψ) ./ xi, with xi
a fresh variable. We call the resulting formulas the parame-
terized formulas of PMLO. For some α ∈ Qk, we can then
recover the original formula φ as the instance φα obtained
from the parameterized variant φx1,...,xk of φ by substituting
αi for xi for each i = 1 . . . k.

Theorem 6 ([BRS06]). For each parameterized sentence
φx1,...,xk of PMLO, one can compute for all ε > 0 a repre-
sentation of a set Hφ ⊂ Rk of measure at most ε, such that
the problem of determining if I(M) |= φα is decidable for
α ∈ Q \Hφ.

Intuitively, the complement of Hφ contains the points that
are bounded away from limit points of the Markov chain, and
comparisons can be decided using convergence properties.

The reason for excluding the set Hφ is that the limit point
cases seem to require a resolution of problems related to
the Skolem problem concerning zeros of linear recurrences
[Sko34]. A sequence of real numbers {un} is called a linear
recurrence sequence (LRS) of order k if there exist a1, . . . ak
with ak 6= 0 such that for all m ≥ 1,

uk+m = a1uk+m−1 + a2uk+m−2 + · · ·+ akum .

We consider the following decision problems associated with
a LRS {un}.

1. Skolem problem. Does there exist n such that un =
0?

2. Positivity problem. Is it the case that for all n,
un ≥ 0?

3. Ultimate positivity problem. Does a positive in-
teger N exist such that for all n ≥ N , un ≥ 0?

We will deal with sequences with rational entries. By clear-
ing denominators the rational version of the above prob-
lems can be shown to be polynomially equivalent to similar
problems stated using sequences with integer entries. There
has been a significant amount of work on these problems
[ESPW03], but they have stood unresolved since the 1930’s.
To date, only low order versions of these problems have been
shown to be decidable [HHHK05, OW14, TMS84].

The above problems have an equivalent matrix formula-
tion. A proof of the following can be found in [HHHK05].

Lemma 7. For a sequence u0, u1, . . . , the following are
equivalent.

1. {un} is a rational LRS.

2. For n ≥ 1, un = (An)1k for a square matrix A with
rational entries.

3. For n ≥ 1, un = vTAnw where A is a square matrix,
and v and w are vectors with entries from {0, 1}.

In the usual formulation of the Skolem, positivity and ul-
timate positivity problems, the associated matrices A may
contain negative numbers, and numbers not in [0, 1], so are
not stochastic matrices. However, [AAOW15] show that
these problems can be reduced to a decision problem stated
with respect to stochastic matrices:

Lemma 8. Given an integer k×k matrix A, one can com-
pute a k′ × k′ stochastic matrix B, a length k′ stochastic
vector v, a length k′ vector w = (0, . . . , 0, 1) and a con-
stant c such that (An)1,k = 0 ((An)1,k > 0) iff vTBnw = c
(respectively, vTBnw > c).

As noted in [AAOW15], it follows that the logic PMLO is
able to express the Skolem and positivity problems, using
model checking questions of the form

M |= ∃t(Pr(p(t)) = c)

and

M |= ∃t(Pr(p(t)) > c)

for c a nonzero constant and M a DTMC. (The ultimate
positivity problem can also be expressed.) It is worth not-
ing that in the special case of the constant c = 0, these model
checking questions are decidable, as shown in [BRS06]. (Es-
sentially, in this case the problems reduce to graph reacha-
bility problems, and the specific probabilities in M are ir-
relevant.) The transformation from arbitrary matrices A to
stochastic matrices B in Lemma 8 requires that the constant
0 of the Skolem problem be replaced by a non-zero constant
c.

The above model checking problems of the quantified logic
PMLO can be seen to be already expressible in the propo-
sitional logic CTL∗KP, as the problems

M ′ |=clk AF(pri(p) = c)

M ′ |=clk AF(pri(p) > c)

M ′ |=clk AFAG(pri(p) > c)

where we obtain the PO-DTMC M ′ from the DTMC M by
defining Oi(s) = ⊥ for all states s. That is, agent i is blind,

202



so considers all states reachable at time n to be possible at
time n. (We remark that this implies that all the operatorsA
can be exchanged with E without change of meaning of the
formulas.) It follows, that with respect to clock semantics,
a resolution of the decidability of model checking even these
simple formulas of CTL∗KP for all c ∈ [0, 1] would imply
a resolution of the Skolem problem. In view of the effort
already invested in the Skolem problem, this is likely to be
highly nontrivial.

4.2 Perfect Recall Semantics
Model checking with respect to the perfect recall seman-

tics is undecidable, even with respect to a very simple fixed
formula of the logic CTL∗KP, as shown by the following
result.

Theorem 9. The problem of determining, given a PO-
DTMC M , if M |=spr EF (Pri(p) > c), for p an atomic
proposition, is undecidable.

Proof. (Sketch) By reduction from the emptiness prob-
lem for probabilistic finite automata [Paz71]. Intuitively,
the proof sets up an association between words in the ma-
trix semigroup and sequences of observations of the agent.

A probabilistic finite automaton is a tupleA = (Q,Σ,v0, A, F, λ),
where Q is a finite set of states, Σ is a finite alphabet,
v0 : Q→ [0, 1] is a probability distribution over states, rep-
resenting the initial distribution, A : Σ → (Q × Q → [0, 1])
associates a transition probability matrix A(a) with each
letter a ∈ Σ, component F ⊆ Q is a set of final states, and
λ ∈ (0, 1) is a rational number. Each matrix A(a) satisfies∑
t∈S A(a)(s, t) = 1 for all s ∈ Q. Let vF be the column

vector indexed by Q with vF (s) = 0 if s 6∈ F and vF (s) = 1
if s ∈ F . Treating v0 as a row vector, for each word
w = a1 . . . an ∈ Σ+, define f(w) = v0A(a1) . . . A(an)vF .
The language accepted by the automaton is defined to be
L(A) = {w ∈ Σ+ | f(w) > λ}. The emptiness problem for
probabilistic finite automata is then, given a probabilistic
finite automaton A, to determine if the language L(A) is
empty. This problem is known to be undecidable [Paz71,
CL04].

Given a probabilistic finite automaton A, we construct an
interpreted finite PO-DTCM MA for a single agent (called
i rather than 1 to avoid confusion with other numbers) such
that MA |=spr EF (Pri(p) > λ) iff A is nonempty. This
system is defined as follows. We let N = |Σ|,

1. S = Q× Σ,

2. PI(q, a) = µ0(q)/N ,

3. PT ((q, a), (q′, b)) = A(b)(q, q′)/N

4. Oi((q, a)) = a

5. p ∈ π((q, a)) iff q ∈ F .

Note that
∑

(q,a)∈S PI((q, a)) =
∑
a∈Σ

∑
q∈Q µ0(q)/N =∑

a∈Σ 1/N = 1, so PI is in fact a distribution. Similarly,
for each (q, a) ∈ S, we have

∑
(q′,b)∈S PT ((q, a), (q′, b)) =∑

b∈Σ

∑
q′∈QA(b)(q, q′)/N =

∑
b∈Σ 1/N = 1, so PT is in

fact a stochastic matrix.
Note that for each w = a1 . . . an ∈ Σ∗ and a ∈ Σ, we get a

row vector µaw = µ0A(a1) . . . A(an) with
∑
q∈Q µaw(q) = 1,

which can be understood as a distribution on Q. For each
run r ∈ Rspr(MA) and m ≥ 0, we have that that agent

i’s local state ri[0 . . .m] at (r,m) is a word in Σ+. Let
B(q,m) be the set of runs r ∈ Rspr(MA) in which re(m) =
(q, a) for some a ∈ Σ. We claim the following about the
probability measures µr,m,i in the probabilistic interpreted
system Ispr(MA), for each point (r,m) and q ∈ Q:

µr,m,i(Ki(r,m)(B(q,m))) = (v0A(ri(1)) . . . A(ri(m)))(q) .

It is immediate from this that Ispr(MA), (r,m) |= Pri(p) =
c where c = f(r[1 . . .m]), and the desired result follows.

We remark that this result stands in contrast to the sit-
uation for model checking the logic of knowledge and time.
Write CLTL∗K for the logic obtained from CTL∗KP by
omitting the probability comparison atoms f(P1, . . . , Pk) ./
c. Model checking the logic CLTL∗K with respect to per-
fect recall, i.e., deciding M |=spr φ for M a PO-DTMC and
φ a formula is decidable [MS99]. (Here, for the semantic
structures M , it suffices to replace the initial distribution
PI in M by the set I = {s ∈ S | PI(s) > 0}, and replace
the transition distribution function PT in M by the relation
R of possibility of transitions between states defined by sRt
if PT (s, t) > 0. The results in [MS99] use linear time tem-
poral logic as a basis, but, as noted in [MW03], the modality
A of the branching time logic CTL∗ can be understood as a
special case of a knowledge modality: see Proposition 2.)

For probabilistic automata the minimum size of the state
space giving undecidability directly stated in the literature
appears to be 25 [Hir06]. We remark that the proof of Theo-
rem 9 can also be done by reduction of the following matrix
semigroup problem: given a finite set of matrices of order n,
generating a matrix semigroup S, determine whether there
is M ∈ S such that (M)1n = 0 [Hal97]. The case of k gener-
ators of size n×n can be reduced to probabilistic automata
with 2kn+1 states. Recent results on the matrix semigroup
problem are given in [CHHN14].

Huang et al [HSZ12] have previously used a reduction from
probabilistic automata to show undecidability of an proba-
bilistic epistemic logic with respect to perfect recall. Com-
pared to our simple CTL temporal operators, their logic uses
more expressive setting of alternating temporal logic opera-
tors.

4.3 Clock Semantics
The undecidability of the perfect recall semantics for such

simple formulas suggests that we weaken the epistemic se-
mantics to the clock case. The combination of the trans-
lation from CTL∗KP to WMLOKP (Proposition 2) and
Theorem 6 then enables some cases of CTL∗KP to be de-
cided. We do not obtain a full decidability result, however,
since we face the problem that, with respect to the clock se-
mantics, the formula AF (Pri(p) = c) can express the Skolem
problem, so resolving its decidability is a very difficult prob-
lem. Rather than attempt to resolve this question, we con-
sider here just how much extra expressiveness is required
over the logic of Theorem 6 for us to obtain a definitive un-
decidability result, instead of a decidability result with some
excluded and unresolved cases.

Note that one of the restrictions on PMLO used in The-
orem 6 is that second order quantification should not cross
into probability terms. It turns out that this restriction is
essential, as shown by the following result.

Theorem 10. It is is undecidable, given a PO-DTMC M
and a formula φ of WMLOKP with linear combinations of
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probability terms Pr(φ) and quantifying-in of second-order
quantifiers, whether M |= φ.

Proof. This follows from the fact that, using second or-
der quan-tifying-in, we can express perfect recall (Proposi-
tion 4), and the undecidability of model checking perfect
recall (Theorem 9).

Note that the result refers to |= rather than |=clk, since
epistemic operators are not required. This is really a re-
sult about a generalization of PMLO. One of the other
restrictions in Theorem 6 is that only simple probability
comparisons of the form Pr(φ) ./ c are permitted. More
general comparisons of probability terms are needed in ap-
plications (see discussion in Section 2.5), so it is of interest to
study their impact on decidability. Unfortunately, it turns
out to be quite negative. Even the simple case of mixed
time polynomial atomic probability formulas is enough for
undecidability.

Theorem 11. It is undecidable, given a DTMC M and a
mixed-time polynomial atomic probability formula ψ, whether
M |= ψ.

Proof. (Sketch) By reduction from Hilbert’s tenth prob-
lem, i.e., the problem of determining whether a polynomial
with integer coefficients has solutions in the natural num-
bers. This was shown to be undecidable by Matiyasevich
[Mat93].

Write ej for a basic column vector (of the appropriate di-
mension) with 1 in the jth place and 0 elsewhere. Given a
PO-DTMC with transition matrix M , with a proposition for
each state, we can express the values eTi M

tej using terms
of the form c.Pr(p(t)) where p is an atomic proposition and
c a rational constant. This means that using linear sums of
probability expressions of the form Pr(p(t)) for some propo-
sition p, we can capture fTM tg for arbitrary rational vectors
f ,g.

We show that we can find a stochastic matrix M such that
for each function f(t) = t · λt and f(t) = λt with λ = −1/6,
there are rational vectors f ,g such that f(t) = fTM tg.
Given a polynomial p(x1, . . . , xn), we can construct a vari-
ant polynomial q′ over a larger set of variables, such that
an appropriate substitution of such functions ti · λti and
λti , for the xi and the additional variables yields an expres-
sion λk1t1+...+kntn ·p(t1, . . . , tn), where the ki are constants.
This has a zero in the t1 . . . tn iff p(x1, . . . , xn) has a zero.
It follows using the result of the previous paragraph that
mixed-time polynomial atomic probability formulas can ex-
press Hilbert’s tenth problem.

We remark that the possibility of encoding Hilbert’s tenth
problem is not immediate from the fact that we are deal-
ing with polynomials, since our polynomials are over ratio-
nal values generated in a very specific way from Markov
chains, rather than arbitrary integers. Indeed, there are de-
cidable logics containing polynomials, such as the theory of
real closed fields [Tar51].

As noted in Section 2.5, formulas (allowed by Theorem 6)
of the form Pr(φ(t1, . . . , tn)) ./ c can be written as a poly-
nomial of probability expressions, so it is natural to ask
whether such formulas also suffice to make the logic unde-
cidable. This does not seem to be the case: the polynomials
involved have only positive coefficients. Since Hilbert’s tenth
problem is trivially decidable for polynomials with only pos-
itive coefficients, our proof does not apply to this case.

5. CONCLUSION
Our results have by no means resolved Skolem’s problem,

which remains an apparent barrier to resolving the gap be-
tween the decidability results of [BRS06] and the undecid-
ability results of the present paper.

However, in work to be presented elsewhere, we show that
the results of [BRS06] can be extended both by reducing
the set Hφ of cases that needs to be excluded to obtain de-
cidability, as well as enhancing the expressiveness to cover
epistemic probabilistic terms of the form Pri(φ), interpreted
with respect to the clock semantics.
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ABSTRACT
The Knowledge of Preconditions principle (KoP) is pro-
posed as a widely applicable connection between knowledge
and action in multi-agent systems. Roughly speaking, it as-
serts that if some condition ϕ is a necessary condition for
performing a given action α, then knowing ϕ is also a neces-
sary condition for performing α. Since the specifications of
tasks often involve necessary conditions for actions, the KoP
shows that such specifications induce knowledge precondi-
tions for the actions. Distributed protocols or multi-agent
plans that satisfy the specifications must ensure that this
knowledge be attained, and that it is detected by the agents
as a condition for action. The knowledge of preconditions
principle is formalised in the runs and systems framework,
and is proven to hold in a wide class of settings. Well-known
connections between knowledge and coordinated action are
extended and shown to derive directly from the KoP: a
common knowledge of preconditions principle is established
showing that common knowledge is a necessary condition for
performing simultaneous actions, and a nested knowledge of
preconditions principle is proven, showing that coordinating
actions to be performed in linear temporal order requires a
corresponding form of nested knowledge.

Keywords
Knowledge, multi-agent systems, common knowledge, nested
knowledge, coordinated action, knowledge of preconditions
principle

1. INTRODUCTION
While epistemology, the study of knowledge, has been a

topic of interest in philosophical circles for centuries and
perhaps even millennia, in the last half century it has seen
a flurry of activity and applications in other fields such as
AI [19], game theory [2] and distributed computing [13]. At
least in the latter two fields a particular, information-based,
notion of knowledge plays a prominent and useful role.

This paper proposes an essential connection between knowl-
edge and action in such a setting. Using doesi(α) to denote
“Agent i is performing action α” and Kiϕ to denote that
Agent i knows the fact ϕ, the connection can intuitively be
formulated as follows:

∗The Israel Pollak academic chair at Technion. This work
was supported in part by ISF grant 1520/11.

The Knowledge of Preconditions Principle (KoP):

If ϕ is a necessary condition for doesi(α)

then Kiϕ is a necessary condition for doesi(α)

This statement appears deceptively simple. In fact, many
successful applications of knowledge to the design and anal-
ysis of distributed protocols over the last three decades are
rooted in the KoP. Moreover, some of the deeper insights
obtained by knowledge theory in this field can be derived
in a fairly direct fashion from the KoP. We will argue and
demonstrate that this principle lies at the heart of coordi-
nation in many distributed and multi-agent systems.

This paper is structured as follows. Section 1.1 illustrates
the central role of knowledge in a natural distributed systems
application. Section 1.2 provides a high-level discussion of
the knowledge of preconditions principle and its connection
to coordinating actions. In Section 2 we review and discuss
the modelling of knowledge in the runs and systems model of
distributed systems based on [11]. A formal statement and
proof of the KoP are presented in Section 3. Then, in Sec-
tion 4, the KoP is used to establish a common knowledge
of preconditions principle. It states that in order to per-
form simultaneously coordinated actions, agents must first
attain common knowledge of any of the actions’ precondi-
tions. An example of its use is provided in Section 4.1. Sec-
tion 5 present an additional use of the KoP, and shows that
coordinating a sequence of actions to occur in a prescribed
temporal order requires attaining nested knowledge of their
preconditions. Finally, Section 6 discusses additional appli-
cations, extensions and future directions.

1.1 The Case for Knowledge in Distributed
Systems

Why should knowledge play a central role in distributed
computing? As pointed out in [13], most everyone who de-
signs or even just tries to study the workings of a distributed
protocol is quickly found talking in terms of knowledge, mak-
ing statements such as“once the process receives an acknowl-
edgement, it knows that the other process is ready. . . ”. An
essential aspect of distributed systems is the fact that an
agent chooses which action to perform based on the local
information available to it, which typically provides only a
partial view of the overall state of the system. To get a sense
of the role of knowledge in distributed systems, consider the
following example.

Example 1. Given is a distributed network modeled by a
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75 100 80 100

Figure 1: A simple four-agent system

graph, with agents located at the nodes, and the edges stand-
ing for communication channels (see Figure 1). In the prob-
lem we shall call Computing the Max (or CtM for short),
each agent i starts out with a natural number vi ∈ N as an
initial value. The goal is to have Agent 1 print the maximum
of all of the initial values (we denote this value by Max), and
print nothing else. In the instance depicted in Figure 1, the
maximal value happens to be 100. Initially, Agent 1 clearly
can’t print its own initial value of 75. Suppose that Agent 1
receives a message µ , “v2 = 100” from Agent 2 reporting
that its value is 100. At this point, Agent 1 has access to the
maximum, and printing 100 would satisfy the problem spec-
ification. Compare this with a setting that is the same in
all respects, except that Agent 3’s value is v3 = 150. In this
case, of course, Max 6= 100 and so printing 100 is forbid-
den. But if Agent 1 can receive the same message µ under
similar circumstances in both scenarios, then it is unable to
distinguish whether or not Max = 100 upon receiving µ. In-
tuitively, even in the first scenario, the agent does not know
that Max = 100.

What information does Agent 1 need, then, in order to be
able to print the maximum? Notice that it, is not necessary,
in general, to collect all of the initial values in order to print
the maximum. For example, suppose that the agents follow
a bottom-up protocol in which values are sent from right to
left, starting from Agent 4, and every agent passes to the left
the larger of its own value and the value it received from its
neighbor on the right (if such a neighbor exists). In this pro-
tocol, Agent 1 can clearly print the maximum after receiving
the message “v2 = 100”, and seeing just one value besides
its own. Interestingly, even collecting all of the values is
not a sufficient condition for printing the Max. Imagine a
setting in which the network is as in Figure 1, but Agent 1
considers it possible that there are more than four nodes in
the network. In this case, even if Agent 1 receives all (four)
values, it may still need to wait for proof that there is no
additional, larger, value in the system. �

CtM is a simplified example in the spirit of many dis-
tributed systems applications. Leader election, for example,
is often solved by computing a node with maximal ID [1,
17]. The solution to such a problem is typically in the form
of a set of short computer programs (jointly constituting
a distributed protocol) each executed at one of the nodes.
When the nodes follow such a protocol, the resulting execu-
tion should satisfy the problem specification. Of course, the
programs are written in a standard programming language,
without any reference to knowledge or possibility. In the
vast majority of cases, the programs in question do not enu-
merate and/or explore possible states or scenarios. Indeed,

the program designer is typically unfamiliar with formal no-
tions of knowledge. This being the case, what sense does
it make to talk of Agent 1 in Example 1 “knowing” or “not
knowing” that Max = c? Can it make sense to say that the
Agent “considers it possible that there may be more than
four nodes in the system”? After all, we may be talking
about a ten-line program. It has no soul. Does it have
thoughts, doubts and mental states?

Since agents act based on their local information, a pro-
tocol designer must ensure that agents obtain the neces-
sary information for a given task, and that this informa-
tion is applied correctly. Using the information-based no-
tion of knowledge, the designer can ascribe knowledge to an
agent without requiring it to have a soul, feelings, and self-
awareness. As seen in the CtM example, it is natural to
think in terms of whether or not Agent 1 knows Max = c
at any given point in a run of CtM. (A formal definition
of knowledge will be provided in Section 2.) Suppose that
a protocol is designed to solve CtM in networks that may
have a variety of sizes. If Agent 1 does not start out with
local information ensuring that there are no more than four
nodes in the system, then from the point of view of an out-
side observer the agent can be thought of as “considering it
possible” that there may be more than four nodes.

Even in a simple network as in Figure 1, the CtM prob-
lem can be posed in different models, which can differ in
essential aspects. A solution to CtM in one model might
not solve the problem in another model. Indeed, the ratio-
nale behind distinct solutions, as well as their details, may
vary considerably. Are there common features shared by all
solutions to CtM?

Interestingly, all solutions to CtM, in all models, share
one property: Agent 1 must know that Max = c in or-
der to print the value c. Indeed, the ability to print the
answer in a protocol for CtM reduces to detecting when
the Max value is known. Of course, once Agent 1 knows
that Max = c it can safely print c. Hence, knowing that
Max = c is not just necessary, but also a sufficient condition
for printing c. The CtM problem shows that knowledge and
attaining knowledge can be a central and crucial aspect of a
standard distributed application.

The need to know Max = c in solving CtM suggests that
we consider a natural question: When does Agent 1 know
that Max = c? The answer is less straightforward than we
might initially expect. What is known depends in a crucial
way on the protocol that the agents are following. Thus, in
the setting of Example 1, if the agents follow the bottom-up
protocol, then Agent 1 knows the maximum once it receives
a single message from Agent 2. Knowledge is also signifi-
cantly affected by features of the model. In CtM, if there is
an upper bound (say 100) on the possible initial values, then
an agent that sees this value knows the maximum. Knowl-
edge about the network topology and properties of commu-
nication play a role as well. For example, consider a model
in which Agent 1 has a clock, and a single clock cycle suf-
fices for a message to be delivered, digested, and acted upon.
Suppose that the protocol is such that all agents start simul-
taneously at time 0 and an agent forwards a value towards
Agent 1 only if this value is larger than any value it has pre-
viously sent. Then in the network of Figure 1 Agent 1 will
receive a message with value 100 from Agent 2 at time 1, and
no further messages. If Agent 1 knows that the diameter of
the network is 3, it will not know the maximum upon receiv-

208



ing this message. However, without receiving any further
messages, at time 3 Agent 1 will know that the maximum is
100; no larger value can be lurking in the system.

1.2 KoP and Coordination
The fact that Max = c is a necessary condition for print-

ing c is an essential feature of the CtM problem. We have
argued that, in fact, K1(Max = c) is also a necessary condi-
tion for printing c, as the KoP would suggest. But this is
just one instance. Let us briefly consider another example.

Example 2. Consider a bank whose ATMs are designed
in such a way that an ATM will dispense cash only to a
customer whose account shows a sufficiently large positive
balance. Along comes Alice, who has a large positive bal-
ance, and tries to obtain a modest sum from the ATM. On
this day, however, the ATM is unable to communicate with
the rest of the bank and it declines to pay Alice. Thus, de-
spite the fact that Alice has good credit, the ATM frustrates
her and denies her request. Apparently, given its specifica-
tion, the ATM has no choice. Intuitively, in order to satisfy
the credit restriction, the ATM needs to know that a cus-
tomer has good credit before dispensing cash. If the ATM
may pay a customer that is not known to have good credit,
there will be possible scenarios in which the ATM will vio-
late its specification, and pay a customer that does not have
credit. Notice, however, that the specification said nothing
about the ATM’s knowledge. It only imposed a restriction
on the ATM’s action, based on the state of Alice’s account.
�

Both the CtM problem and the ATM example are instances
in which the KoP clearly applies. The intuitive argument for
why the KoP should apply very broadly is straightforward.
If ϕ is a necessary condition for performing α, and agent i
ever performs α without knowing ϕ, then there should be
a possible scenario that is indistinguishable to agent i, in
which ϕ does not hold. Since the two scenarios are indistin-
guishable, the agent can perform α in the second scenario,
and violate the requirement that ϕ is a necessary condition.
A formal statement and proof requires a definition of nec-
essary conditions, knowledge, as well as capturing a sense
in which an action at one point implies the same action at
any other, indistinguishable, point. This will be done in
Section 3.

Most tasks in distributed systems are described by way
of a specification. Such specifications typically impose a va-
riety of necessary conditions for actions. The KoP implies
that even though such specifications often do not explic-
itly discuss the agents’ knowledge, they do in fact impose
knowledge preconditions. Observe that the KoP applies to
a task regardless of the means that are used to implement
it. Any engineer implementing a particular task will have to
ensure that preconditions are known when actions are taken.
This is true whether or not the engineer reasons explicitly
in terms of knowledge, and it is true even if the engineer is
not even aware of the knowledge terminology. (Normally,
neither may be the case, of course.) The need to satisfy
the KoP suggests that the design of distributed implemen-
tations must involve at least two steps. One is to make sure
that the required knowledge is made available to an agent
who needs to performed a prescribed action, and the other
is ensuring that the agent detect that it knows the required
preconditions. This is quite different from common practice

in engineering distributed implementations [28].
We remark that the KoP can be expected to hold in a

variety of multi-agent settings well beyond the realm of dis-
tributed systems. Thus, for example, suppose that a jellyfish
is designed so that it will never sting its own flesh. By the
KoP, the cell activating the sting at a given point needs to
know that it is not stinging the jellyfish’s body when it“fires”
its sting. The jellyfish is thus designed with some form of a
“friend or foe” mechanism that is used in the course of acti-
vating the sting. Various biological activities can similarly
be considered in light of the KoP: How does the organism
know that certain preconditions are met? Our last example
will come from the social science arena. Suppose that a so-
ciety designs a legal system, that is required to satisfy the
constraint that only people who are guilty of a particular
crime are ever put in jail based on this crime. By the KoP,
the judge (or jury) must know that the person committed
this crime in order to send him to jail.

As discussed above, specifications impose preconditions.
Typically, these conditions relate an action to facts about
the world (e.g., the maximal value, or the customer’s good
credit). In many cases, however, actions of different agents
need to be coordinated. Consider a variant of CtM in which
in addition to Agent 1 printing the maximum, Agent 4 needs
to perform an action (say print the same value or print the
minimal value), but not before Agent 1 does. Then Agent 1
performing her action is a condition for 4’s action. In partic-
ular, Agent 4 would need to know that Agent 1 has already
come to know Max = c for some c before 4 acts. In some
cases, the identity of actions performed needs to be coordi-
nated.

For a final example, suppose that Alice 1 should perform
an action αA only if Bob performs an action αB at least 5
time steps earlier. Then she needs to know that Bob acted at
least 5 steps before when she acts. Indeed, if ψ is a necessary
condition for α′, then Alice must know that Bob performed
“Bob knew ψ at least 5 time steps ago”when she acts (see [4,
5]). As these examples illustrate, given KoP, coordination
can give rise to nested knowledge.

Simple instances of the KoP are often quite straightfor-
ward. Ensuring and detecting K1(Max = c) is often fairly
intuitive, and it not justify the overhead involved in develop-
ing a theory of knowledge for multi-agent systems. However,
satisfying statements involving nested knowledge in partic-
ular models of computation can quickly become nontrivial.
For this, it is best to have a clear mathematical model of
knowledge in multi-agent systems. The next section reviews
the runs and systems model.

2. MODELING KNOWLEDGE USING RUNS
AND SYSTEMS

We now review the runs and systems model of knowledge
of [11, 13]. The interested reader should consult [11] for
more details. A global state is an “instantaneous snap-
shot” of the system at a given time. Let G denote a set
of global states. Time will be identified with the natural
numbers N = {0, 1, 2, . . .} for ease of exposition. A run is
a function r : N→ G associating a global state with each
instant of time. Thus, r(0) is the run’s initial state, r(1) is
the next global state, and so on. A system is a set R of
runs. The same global state can appear in different runs,
and in some systems may even appear more than once in

209



the same run.
A central notion in our framework is that of an agent’s

local state, whose role is to capture the agent’s local infor-
mation at a given point. The precise details of the local
state depend on the application. It could be the complete
contents of an agent’s memory at the given instant, or the
complete sequence of events that it has observed so far. for
example. The rule of thumb is that the local state should
consist of the local information that the agent may use when
deciding which actions to take. Thus, for example, if agents
are finite-state machines, it is often natural to identify an
agent’s local state with the automaton state that it is in.
Formally, we assume that every global state determines a
unique local state for each agent. We denote agent i’s
local state in the global state r(t) by ri(t). Moreover, a
global state with n agents A = {1, . . . , n} will have the form
r(t) = 〈re(t), r1(t), . . . , rn(t)〉, where re(t) is called the local
state of the environment, and will serve to represent all as-
pects of the global state that are not included in the agents’
local states. For example, it could represent messages in
transit, the current topology of the network including what
links may be down, etc.

2.1 Syntax and Semantics
We are interested in a propositional logic of knowledge,

in which propositional facts and epistemic facts can be ex-
pressed. Facts will be considered to be true or false at a
point (r, t), with respect to a system R. More formally, given
a set Φ of primitive propositions and a set P = {1, . . . , n}
of the agents in the system, we define a propositional lan-
guage LKn (Φ) by closing Φ under negation ‘¬’ and conjunc-
tion ‘∧’, as well as under knowledge operators Ki for all
i ∈ P (see [14]). Thus, for example, if p, q ∈ Φ are primitive
propositions and i, j ∈ P are agents, then ¬Kip∧KjKi¬Kjq
is a formula in LKn (Φ). We typically omit the set Φ and call
LKn the language for knowledge with n agents.

In a multi-agent system facts about the world, as well
as the knowledge that agents have, can change dynamically
from one time point to the next. We thus consider the truth
of formulas of LKn at points of a system R, where a point
is a pair (r, t) ∈ R × N, and it is used to refer to time t
in the run r. We denote the set of points of a system R
by Pts(R) , R × N. Points will play the role of states of a
Kripke structure.

The set Φ of primitive propositions used in the analysis
of any given multi-agent system R will depend on the ap-
plication. Their truth at the points of the system needs
to be explicitly defined. This is done by an interpretation
π : Φ× Pts(R)→ {T, F}, where π

(
q, (r, t)

)
= T means that

the proposition q holds at (r, t). Formally, an interpreted sys-
tem w.r.t. a set Φ of primitive propositions is a pair (R, π)
consisting of the system R and interpretation π for Φ over
Pts(R). Just as we typically omit explicit reference to Φ, we
shall omit π as well, when this is unambiguous.

We assume from here on that the environment’s state re(t)
in a global state r(t) contains a “history” component h that
records all actions taken by all agents at times 0,1,. . . ,t− 1.
Formally, we take h to be a set of triples 〈α, i, t′〉, which
grows monotonically in time. An action α is considered to
be performed by i at the point (r, t) if and only if the triple
〈α, i, t〉, denoting that action α was performed by agent i at
time t, appears in the history component h of re(t

′) for all

times t′ > t.1 For the analysis in this paper, we will also
assume that Φ includes propositions of the form doesi(α)
and didi(α) for agents i ∈ P and actions α. With this
assumption, what actions are performed at any given point
(r, t) is uniquely determined by the run r.

We will consider interpretations π that, on these proposi-
tions, are defined by

π
(
doesi(α), (r, t)

)
= T iff agent i performs α at (r, t)

π
(
didi(α), (r, t)

)
= T iff π

(
doesi(α), (r, t′)

)
= T

holds for some t′ ≤ t
We allow t′ = t in the definition of didi(α) for technical

convenience; it simplifies our later analysis slightly.
Our model of knowledge will follow the standard Kripke-

style possible worlds approach. The possibility relations that
we use are induced directly from the system R being an-
alyzed; two points are considered indistinguishable to an
agent if its local states at the two points are the same. More
formally:

Definition 2.1. If ri(t) = r′i(t
′), then (r, t) and (r′, t′)

are called indistinguishable to i, denoted by (r, t) ≈i (r′, t′).

Formulae of LKn are interpreted at a point (r, t) of an in-
terpreted system (R, π) by means of the satisfaction relation
‘|=’, which is defined inductively by:

(R, r, t) |= p iff (r, t) ∈ π(p);

(R, r, t) |= ¬ϕ iff (R, r, t) 6|= ϕ;

(R, r, t) |= ϕ ∧ ψ iff both (R, r, t) |= ϕ and (R, r, t) |= ψ;

(R, r, t) |= Kiϕ iff (R, r′, t′) |= ϕ for all (r′, t′) ∈ Pts(R)
such that (r′, t′) ≈i (r, t).

We say thatϕ is valid in the systemR, and writeR |= ϕ,
if (R, r, t) |= ϕ for all points (r, t) ∈ Pts(R). We say that
ϕ validly implies ψ in R if ϕ ⇒ ψ is valid in R. Since,
by Definition 2.1, the ≈i relations are equivalence relations,
each knowledge operatorKi satisfies the S5 axiom system [14].
In particular, it satisfies the knowledge property (or ax-
iom) that Kiϕ⇒ ϕ is valid in all systems.

It is instructive to relate our modeling using runs and sys-
tems to standard multi-agent Kripke structures. As shown
in [11], for every system R there is a corresponding Kripke
structure MR = (SR, π,∼1, . . . ,∼n) for n agents such that
SR = Pts(R) and ‘∼i’ = ‘≈i’ for every i. For every point
(r, t) ∈ Pts(R) = SR and formula ϕ ∈ LKn (Φ) it is the case
that (R, r, t) |= ϕ iff MR, (r, t) |= ϕ.

The system R will determine the space of possible runs
and possible points, which play a crucial role in determining
the truth of facts involving knowledge. For example, con-
sider a run r in which Alice sends Bob a message at time 1,
and Bob receives it at time 2. If R is a system in which mes-
sages may be lost, or may take longer than one time step
to be delivered, then Alice would not know at time 2

(
i.e.,

w.r.t. (R, r, 2)
)

that her message has been delivered, because
there is another run r′ ∈ R that she cannot tell apart from r
at time 2, in which her message is not (or not yet) delivered
by that time. The same run r also belongs to another sys-
tem R′ in which messages are always reliably delivered in

1Our definition does not imply or assume that the actions
are observed, observable or recorded by any of the agents.
Whether that may be the case depends on the application.
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exactly one round. With respect to (R′, r, 2), however, Alice
would know at time 2 that her message has been delivered.

Our definition of knowledge is rather flexible and widely
applicable. The set R of the possible runs immediately in-
duces what the agents know. Observe that the definition
of knowledge is completely external. It ascribes knowledge
to agents in the system even if the protocol they follow, as
well as the actions that they perform, do not involve the
knowledge terminology in any way. Moreover, the agents
do not need to be complex or sophisticated for the defini-
tion to apply. Indeed, in a model of a very simple system
consisting of a bed lamp and its electric cable, a switch in
the OFF state can be said to know that the lamp is not lit;
what the same switch would know in the ON state would
depend on the system R under consideration, which deter-
mines the runs considered possible. E.g., if R contains a run
in which the lamp is burnt out, then in the ON state the
switch would not know that the lamp is shining light. On
the other hand, if the lamp can never burn out, and the cord,
plug and switch are in proper working order in all runs of R,
then in the ON state the switch would know that the lamp is
shining light. As this example shows, knowledge under this
definition does not require the “knower” to compute what
it knows. Indeed, this definition of knowledge is not sensi-
tive to the computational complexity of determining what is
known. In most cases, of course, we will ascribe knowledge
to agents or components that can perform actions, which is
not the case in the light switch example. And agents might
need to explicitly establish whether they know relevant facts.
We now provide a statement and proof of the knowledge of
preconditions principle KoP.

3. FORMALIZING THE KNOWLEDGE OF
PRECONDITIONS PRINCIPLE

Intuitively, the KoP states that if a particular fact ψ is a
necessary condition for an agent to perform an action α, then
the agent must in fact know ψ in order to act. In other words,
knowing ψ is also a necessary condition for performing the
action. We formalize the claim and prove it as follows. We
say that ψ is a necessary condition for doesi(α) in R
if (R, r, t) |= doesi(α) holds only if (R, r, t) |= ψ, for all
(r, t) ∈ Pts(R). Clearly, the customer’s good credit is a
necessary condition for the ATM dispensing cash. That is,
suppose that a bank makes use of a correct implementation
of an ATM protocol, which satisfies the credit requirement.
Then, in the system R consisting of the set of all possible
histories (runs) of the bank’s (and the ATM’s) transactions,
good credit is a necessary condition for receiving cash from
the ATM.

It is often of interest to consider facts whose truth depends
only on a given agent’s local state. Such, for example, may
be the receipt of a message, or the observation of a signal, by
the agent. Whether x = 0 for a local variable x, for example,
would be a natural local fact. Moreover, if an agent has
perfect recall, then any events that it has observed in the
past will give rise to local facts. Finally, since knowledge
is defined based on an agent’s local state, then a fact of
the form Kiϕ constitutes a local fact. Indeed, there is a
simple way to define the local facts above, using knowledge.
Namely, we say that ϕ is i-local in R if R |= (ϕ⇒ Kiϕ).

The formalism of [11] defines protocols as explicit objects,
and defines contexts that describe the possible initial states

and the model of computation. This provides a convenient
and modular way of constructing systems. Namely, given
a protocol P and a context γ, the system R = R(P, γ) is
defined to be the set of all runs of protocol P in γ. The
runs of this system embody all of the properties of the con-
text, as they arise in runs of P . This includes, for example,
any timing assumptions, possible values encountered, pos-
sible topologies of the network, etc. They also embody the
relevant properties of the protocol, because in all runs con-
sidered possible the agents follow P .

In this paper, we do not define protocols and contexts.
Rather, we treat the KoP in a slightly simpler and more
abstract setting. We say that an action α is a conscious
action for i in R if doesi(α) is an i-local fact in R, so that
whenever (R, r, t) |= doesi(α) holds, (R, r, t) |= Kidoesi(α)
holds as well. In other words, the fact that α is a conscious
action for i in R implies that if α is ever performed at a
point of R in which i’s local state is `i, then α must be
performed whenever i’s state is `i. Conscious actions are
quite prevalent in many systems of interest. For example,
suppose that agent i follows a deterministic protocol, so that
its action at any given point is a function of its local state.
If, in addition, agent i is allowed to move at every time step,
then all of its actions are conscious actions.

We are now ready to prove a formal version of the KoP:

Theorem 3.1 (The KoP Principle). Let α be a con-
scious action for i in R. If ψ is a necessary condition for
doesi(α) in R, then Kiψ is also a necessary condition for
doesi(α) in R.

Proof. We will show the contrapositive. Let α be a con-
scious action for i in R, and assume that Kiψ is not a nec-
essary condition for doesi(α) in R. Namely, there exists a
point (r, t) ∈ Pts(R) such that both (R, r, t) |= doesi(α) and
(R, r, t) 6|= Kiψ. Given the latter, we have by the definition
of ‘|=’ for Ki that there exists a point (r′, t′) ∈ Pts(R) such
that both (r′, t′) ≈i (r, t) and (R, r′, t′) 6|= ψ. Since α is a
conscious action for i in R and (R, r, t) |= doesi(α) we have
that (R, r, t) |= Kidoesi(α). It follows from (r′, t′) ≈i (r, t)
by the definition of ‘|=’ for Ki that (R, r′, t′) |= doesi(α)
holds. But since (R, r′, t′) 6|= ψ, we conclude that ψ is not
a necessary condition for doesi(α) in R, establishing the
countrapositive claim.

Theorem 3.1 applies to all multi-agent systems. It im-
mediately implies, for example, that Katm(good_credit) is
a necessary condition for dispensing cash. The theorem is
model independent; it does not depend on timing assump-
tions, on the topology of the system (even on whether agents
communicate by message passing or via reading and writing
to registers in a shared memory), or on the nature of the
activity that is carried out. For every necessary condition
for a conscious action, knowing that the condition holds is
also a necessary condition.

4. COORDINATING SIMULTANEOUS
ACTIONS

Recall that the language LKn contains formulas in which
knowledge operators can be nested to arbitrary finite depth.
It is sometimes useful to consider a state of knowledge called
common knowledge that goes beyond any particular nested
formula. Intuitively, a fact ψ is common knowledge if every-
one knowing that everyone knows . . . , that everyone knows
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the fact ψ, to every finite depth. Common knowledge has a
number of equivalent definitions, one of which is as follows:

Definition 4.1 (Common Knowledge). Fix a set of
agents G and a fact ψ. We denote by CGψ the fact that
ψ is common knowledge to G. Its truth at points of a
system R is defined by:

(R, r, t) |= CGψ iff (R, r, t) |= Ki1Ki2 · · ·Kimψ

for all 〈i1, i2, . . . , im〉 ∈ Gm,

and all m ≥ 1.

Common knowledge, a term coined by Lewis in [18], plays
an important role in the analysis of games [2], distributed
systems [13], and many other multi-agent settings. Clearly,
common knowledge is much stronger than “plain” knowl-
edge. Indeed, CGψ validly implies Kjψ, for all agents j ∈ G.
Since common knowledge requires infinitely many facts to
hold, it is not a priori obvious that CGϕ can be attained at
a reasonable cost, or even whether it can ever be attained
at all, in settings of interest (see [7, 11, 13]). We will now
show that there are natural applications for which attaining
common knowledge is essential.

Intuitively, distinct actions are simultaneous in R if they
can only be performed together; whenever one is performed,
all of them are performed simultaneously. It is possible to
define simultaneous coordination formally in terms of nec-
essary conditions:

Definition 4.2 (Simultaneous Actions). Let G be a
set of agents. We say that a set of actions A = {αi}i∈G is
(necessarily) simultaneous in R if doesi(αi) is a necessary
condition for doesj(αj) in R, for all i, j ∈ G.

Suppose that the actions in A are simultaneous in R in the
above sense. Then the KoP immediately implies (by Theo-
rem 3.1) that a necessary condition for performing an action
in A is knowing that the other actions are also (currently)
being performed. In fact, however, much more must be true.
We now present a strong variant of the KoP, which shows
that in order to perform simultaneous actions agents must
attain common knowledge of their necessary conditions. No-
tice that in order to allow a set of actions by the agents
in G to be simultaneous, the system R must be sufficiently
deterministic to ensure that if i, j ∈ G are distinct agents
and (R, r, t) |= doesi(α) holds, then j will be scheduled to
perform an action at (r, t). For otherwise, there would be
no way to ensure simultaneous execution of the actions by
the agents in G. Conscious actions fit this setting well in
this case. We proceed as follows.

Theorem 4.3 (C-K of Preconditions). Let G be a
set of agents and let A = {αi}i∈G be a set of necessarily
simultaneous actions in the system R. Moreover, suppose
that each action αi ∈ A is a conscious action for its agent i
in R. If ψ is a necessary condition for doesi(αi) for some
i ∈ G, then CGψ is a necessary condition for doesj(αj), for
all j ∈ G.

Proof. Assume that A is a set of necessarily simultane-
ous actions for G in R. It is straightforward to show the
following claim

Observation 1. Let αi, αj ∈ A be the actions for agents i
and j, respectively. If a fact ϕ is a necessary condition
for doesi(αi) in R then ϕ is also a necessary condition for
doesj(αj) in R.

To prove this observation notice that, by assumption, both
(a) R |= doesj(αj)⇒ doesi(αi) and (b) R |= doesi(αi)⇒ ϕ
hold. For all (r, t) ∈ Pts(R), if (R, r, t) |= doesj(αj) then
(R, r, t) |= doesi(αi) by (a) and so (R, r, t) |= ϕ by (b).
Thus, ϕ is a necessary condition for doesj(αj) in R.

Assume that ψ is a necessary condition for doesi(αi), for
some i ∈ G. We shall prove by induction on m ≥ 0 that
Ki1Ki2 · · ·Kimψ is a necessary condition for doesj(αj) in R,
for every j ∈ G and all sequences 〈i1, . . . , im〉 ∈ Gm (of m
agent names from G). This will establish that (R, r, t) |=
doesj(αj) implies (R, r, t) |= CGψ for all (r, t) ∈ Pts(R),
and thus CGψ is a necessary condition for doesj(αj) for all
j ∈ G, as claimed.

• Base case: Let m = 0. The claim in this case is that if
ψ is a necessary condition for doesi(αi) then ψ is also
a necessary condition for doesj(αj). This is precisely

Observation 1, with ϕ , ψ.

• Inductive step: Let m ≥ 1, and assume that the claim
holds for all j′ ∈ G and all sequences in Gm−1. Fix
j ∈ G and a sequence 〈i1, i2, . . . , im〉 ∈ Gm. Its suffix
〈i2, . . . , im〉 is a sequence inGm−1. Thus, Ki2 · · ·Kimψ
is a necessary condition for doesi1(αi1) by the induc-
tive hypothesis for m− 1 (applied to Gm−1 and agent
j′ = i1 ∈ G). Given that αi1 is a conscious action
by i1, we can apply Theorem 3.1 to the necessary con-
dition Ki2 · · ·Kimψ and obtain that Ki1Ki2 · · ·Kimψ
is a necessary condition for doesi1(αi1). By Observa-
tion 1 we have thatKi1Ki2 · · ·Kimψ is also a necessary
condition for doesj(αj) in R, and we are done.

4.1 Common Knowledge and the
Firing Squad Problem

As an illustration of the applicability of Theorem 4.3 to a
concrete application, consider a simple version of the Firing
Squad problem. In this instance, the set of agents G in
the system must simultaneously perform an action (say each
agent i ∈ G should perform the action firei) in response
to the receipt, by any agent in G, of a particular external
input called a ‘go’ message. The firei action can stand for a
simultaneous change in shared copies of a database, a public
announcement at different sites of the system, or any other
actions that need to take place simultaneously. Moreover,
firei actions are allowed only if they are preceded by such
a go message. For simplicity, we consider a case in which
none of the agents in G may fail, and they all must satisfy
the specification.

Let ψgo be a proposition that is true at (r, t) ∈ Pts(R) if a
go message is received by any of the agents in G at a point
(r, t′) of r at a time t′ ≤ t. According to the specification of
the Firing Squad problem, ψgo is a necessary condition for
the firei actions. An immediate consequence of Theorem 4.3
is:

Corollary 4.4. CGψgo is a necessary condition for all
firei actions in the Firing Squad problem.

Given Corollary 4.4, any solution to the firing squad problem
must first attain common knowledge that a go message has
been received. It is well-known (see [10, 13]) that common
knowledge of a fact is observed simultaneously at all agents
it involves. Suppose that every i ∈ G performs firei when
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CGψgo first holds. Since all agents in G will come to know
that CGψgo immediately, they will fire simultaneously, as
required by the problem specification. Indeed, Theorem 4.3
shows that this is the first time at which they can perform
according to a correct protocol. Implementing simultaneous
tasks such as the Firing Squad therefore inherently involves,
and often reduces to, ensuring and detecting CGψgo. Recall
that depending on the properties of the system, attaining
such common knowledge might be impossible in some cases,
or it might incur a substantial cost in others. Just as in the
case of the KoP, this necessity is not due to our formalism.
It is only exposed by our analysis. In every protocol that
implements such a task correctly, the firing actions cannot
be performed unless CGψgo is attained.

There is an extensive literature on using common knowl-
edge to obtain optimal protocols for simultaneous tasks [8,
9, 16, 20, 21, 23, 24, 25, 26]. Typically, they involve an ex-
plicit proof that common knowledge of a particular fact is
a necessary condition for performing a set A of necessarily
simultaneous actions. Theorem 4.3 or a variant of it suited
for fault-tolerant systems can be used to establish this result
in all of these cases. Moreover, one of the main insights from
the analysis of [13] and of [10] is that when simultaneous ac-
tions are performed, the participating agents have common
knowledge that they are being performed. Theorem 4.3 is a
strict generalization of this fact.

5. TEMPORALLY ORDERING ACTIONS
So far, we have seen two essential connections between

knowledge and coordinated action: performing actions re-
quires knowledge of their necessary conditions, and per-
forming simultaneous actions requires common knowledge
of their necessary conditions. We now further extend the
connection between states of knowledge and coordination,
by showing that temporally ordering actions depends on at-
taining nested knowledge of necessary conditions. Follow-
ing [5], we define temporally ordered actions:

Definition 5.1 (Ben Zvi and Moses). A sequence of
actions 〈α1, . . . , αk〉 (for agents 1, . . . , k, respectively) is
(linearly) ordered in R if didj−1(αj−1) is a necessary con-
dition for doesj(αj) in R.

Observe that this definition does not force an action αj to
occur in a run in which αj−1 occurs. Rather, if an action αj
is performed in a given run, then it must be preceded by
all actions α1, . . . , αj−1. Moreover, if we denote the time at
which an action αi is performed in a run r by ti, then we
require that tj−1 ≤ tj for every action αj performed in r.

Claim 1. Assume that the sequence 〈α1, . . . , αk〉 is or-
dered in R. Then R |=

(
didj(αj) ⇒ didj−1(αj−1)

)
for all

2 ≤ j ≤ k.

Proof. Assume that (R, r, t) |= didj(αj). Then, by def-
inition of didj(αj), (R, r, t̂ ) |= doesj(αj) for some t̂ ≤ t.
Since 〈α1, . . . , αk〉 is ordered in R implies that didj−1(αj−1)
is a necessary condition for doesj(αj) in the system R, and
so (R, r, t̂ ) |= didj−1(αj−1). Since didj−1(αj−1) is a stable
fact and t ≥ t̂, we obtain that (R, r, t) |= didj−1(αj−1). The
claim follows.

We say that a fact ϕ is stable in R if once true, ϕ remains
true. Formally, if (R, r, t) |= ϕ and t′ > t then (R, r, t′) |= ϕ,
for all r ∈ R and t, t′ ≥ 0. Notice that while doesi(α) is, in
general, not a stable fact, didi(α) is always stable.

Definition 5.2. We say that agent i recalls ψ in R if
the fact Kiψ is stable in R.

The notion of perfect recall, capturing the assumption that
agents remember all events that they take part in, is popular
in the analysis of games and multi-agent systems [11, 29].
While perfect recall is a nontrivial assumption often requir-
ing significant storage costs, selective recall of single facts
such as doesj(αj) is a much weaker assumption, that can
be assumed of a system R essentially without loss of gener-
ality. By adding a single bit to Agent j’s local state, whose
value is 0 as long as j has not performed αj and 1 once the
action has been performed, we can obtain a system R′ that
is isomorphic to R, in which Agent j recalls doesj(αj).

Claim 2. Assume that αj is a conscious action for j
in R, and that j recalls didj(αj) in R. Then didj(αj) is
a j-local fact in R.

Proof. Suppose that (R, r, t) |= didj(αj). Then, by def-
inition of didj(αj), we have (R, r, t̂ ) |= doesj(αj) for some
t̂ ≤ t. Choose an arbitrary (r′, t′) ∈ Pts(R) satisfying that
(r′, t′) ≈j (r, t̂ ). Then (R, r′, t′) |= doesj(αj) since αj is a
conscious action for j in R. By definition of didj(αj) it fol-
lows that (R, r′, t′) |= didj(αj). Now, by definition of |= for
Kj we have that (R, r, t̂ ) |= Kjdidj(αj). By assumption,
j recalls didj(αj) in R, and so Kjdidj(αj) is stable in R.
Thus, since t ≥ t̂, we obtain that (R, r, t) |= Kjdidj(αj), as
claimed.

We can now show:

Theorem 5.3 (Ordering and Nested Knowledge).
Assume that

• the actions 〈α1, . . . , αk〉 are ordered in R,

• each agent j = 1, . . . , k recalls didj(αj) in R,

• αj is a conscious action for j in R, for all
j = 1, . . . , k, and

• ψ is a stable necessary condition for the first
action does1(α1) in R

Then KjKj−1 · · ·K1ψ is a necessary condition for
the j th action doesj(αj) in R, for all j ≤ k.

Proof. Assuming the conditions of the theorem, we will
prove by induction on j ≤ k that didj(αj) validly implies
KjKj−1 · · ·K1ψ inR. Since doesj(αj) validly implies didj(αj)
by definition of didj(αj), this will yield thatKjKj−1 · · ·K1ψ
is a necessary condition for doesj(αj) in R, as claimed. We
proceed with the inductive argument.

• Base case j = 1: Assume that (R, r, t) |= did1(α1).
By Claim 2 we have that (R, r, t) |= K1did1(α1). Let
(r′, t′) ∈ Pts(R) be an arbitrary point satisfying that
(r′, t′) ≈1 (r, t). Then (R, r′, t′) |= did1(α1) by the
knowledge property. Thus, (R, r′, t̂ ) |= does1(α1) holds
for some t̂ ≤ t′, and because ψ is a necessary condi-
tion for does1(α1) in R, we obtain that (R, r, t̂ ) |= ψ.
Since ψ is stable and t′ ≥ t̂, we have that (R, r′, t′) |= ψ.
By choice of (r′, t′) we have that (R, r, t) |= K1ψ, as
claimed.
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• Inductive step: Let j > 1 and assume thatKj−1 · · ·K1ψ
is a necessary condition in R for didj−1(αj−1). More-
over, let (R, r, t) |= didj(αj). Since αj is a conscious
action for j, Claim 2 implies that (R, r, t) |= Kjdidj(αj).
Choose an arbitrary (r′, t′) ∈ Pts(R) satisfying that
(r′, t′) ≈j (r, t). By definition of Kj , it follows that
(R, r′, t′) |= didj(αj). By Claim 1, since the sequence
〈α1, . . . , αk〉 is ordered in R and j > 1 we have that
(R, r′, t′) |= didj−1(αj−1). We now apply the induc-
tive hypothesis to obtain that (R, r′, t′) |= Kj−1 · · ·K1ψ.
Finally, we obtain that (R, r, t) |= KjKj−1 · · ·K1ψ by
choice of (r′, t′) and the definition of ‘|=’ for Kj . The
claim now follows.

A slightly more restricted version of Theorem 5.3 was
proved in [5]. Rather than consider an arbitrary neces-
sary condition for α1, they proved a version for the case
in which the first action α1 is triggered by an external input
to agent 1. Technically, the proofs are quite similar.

Theorem 5.3 provides a necessary, but possibly not suffi-
cient, condition for ordering actions in distributed systems.
If agent j acts strictly later than when KjKj−1 · · ·K1ψ
first holds, then it may be inappropriate for agent j + 1
to act when it knows that the fact KjKj−1 · · ·K1ψ holds
(i.e., when Kj+1Kj · · ·K1ψ first holds). Nevertheless, The-
orem 5.3 is often very useful because it can be used as a
guide for efficiently, and sometimes even optimally, perform-
ing a sequence of ordered actions. Intuitively, suppose that
we have a protocol whose goal is to perform 〈α1, . . . , αk〉
in response to an externally generated trigger ψ (such as
the ‘go’ message in Firing Squad). In particular, assume
that ψ is a necessary condition for α1. Keeping the com-
munication aspects of this protocol fixed, an optimally fast
solution would be for each agent j ≤ k to perform αj when
KjKj−1 · · ·K1ψ first holds. Let R be the set of runs of
such a protocol with r ∈ R, and let tj and tj−1 be the
earliest times at which (R, r, tj) |= KjKj−1 · · ·K1ψ and
(R, r, tj−1) |= Kj−1 · · ·K1ψ hold in a run r, respectively.
The knowledge property guarantees that KjKj−1 · · ·K1ψ
validly implies that Kj−1 · · ·K1ψ in R, and so tj ≥ tj−1.
Since, by assumption, αj is performed at time tj and αj−1

at tj−1, we have that agents perform actions in linear tem-
poral order, as required by Definition 5.1. Clearly, none of
the actions can be performed any earlier, as Theorem 5.3
shows. We conclude that in time-efficient protocols, the
nested knowledge formula presented by the theorem can be
both necessary and sufficient. In this sense, Theorem 5.3
suggests a recipe for obtaining time-efficient solutions for
ordering actions.

Just as Theorem 4.3 implies that common knowledge is a
necessary condition for simultaneous actions, we now have
by Theorem 5.3 that nested knowledge is a necessary con-
dition for performing actions in linear temporal order. And
just as there is an established literature on when common
knowledge is and is not attainable and on how it may arise,
there are results concerning the communication structure
that underlies attaining nested knowledge. Indeed, in a
seminal paper [7], Chandy and Misra showed that in asyn-
chronous systems R, if (R, r, t) |= ¬ϕ and at a time t′ > t
(R, r, t′) |= KjKj−1 · · ·K1ϕ, then there must be a message
chain in the run r between times t and t′, passing through
the agents 1,2,. . . ,j in this order (possibly involving addi-
tional agents as well). Given Theorem 5.3, this implies that

the only way to coordinate actions in a linear temporal or-
der in an asynchronous setting is by way of such message
chains.2

More recently, Ben Zvi and Moses extended Chandy and
Misra’s work to systems in which communication is not asyn-
chronous, but rather agents may have access to clocks and
the transmission time for each of the channels is bounded
[5]. They show that a communication structure called a cen-
tipede must be constructed in order to obtain nested knowl-
edge of spontaneous facts such as the arrival of an exter-
nal input. They prove a slightly more restricted instance
of Theorem 5.3 (without using KoP directly), and use it
to show that ordering actions in their setting requires the
construction of the appropriate centipedes. Finally, Parikh
and Krasucki analyze the ability to create levels of knowl-
edge consisting of collections of nested knowledge formulas
in [27]. Theorem 5.3 relates levels of knowledge to coordi-
nation.

6. DISCUSSION
This paper formulated the knowledge of preconditions prin-

ciple and presented three theorems relating knowledge and
coordinated action: the first is the KoP itself—necessary
conditions for an action must be known to hold when the
action is performed. Next, we showed that necessary con-
ditions for simultaneous actions must be commonly known
when the actions are taken. Finally, nested knowledge is
a necessary condition for coordinating linearly ordered ac-
tions. The latter two are fairly direct consequences of the
KoP. We discussed some of the uses of the latter two re-
sults in Sections 4 and 5. Indeed the KoP has many further
implications.

In recent years, several works that make use of KoP have
appeared, citing the unpublished [22]. For example, Cas-
tañeda, Gonczarowski and Moses used the KoP to analyze
the consensus problem [6], in which agents need to agree
on a binary value in a fault-prone system. They designed a
protocol in two steps—applying the KoP once to derive a
rule by which, roughly, agents decide on 0 when they know
of an initial value of 0. Then, they applied the KoP again
assuming this rule for decisions on 0, and obtained a rule in-
volving nested knowledge (roughly, a statement of the form
“knowing that nobody knows 0”) for deciding on a value of 1.
The result of their analysis was a very efficient solution to
consensus that is optimal in a strong sense: It is the first un-
beatable consensus protocol. The work of [6] complements
an earlier work by Halpern, Moses and Waarts [15], in which
a fixed point analysis of optimal consensus was obtained. It,
too, is closely related to the KoP.

Gonczarowski and Moses used the KoP to analyze the
epistemic requirements of more general forms of coordina-
tion [12]. Namely, they considered a setting in which k
agents need to perform actions, and there are time bounds
on the relative times at which the actions of any pair of
agents is performed. The simple instance in which all bounds
are 0 is precisely that of the simultaneous actions considered
in Section 4. They show that such coordination requires vec-
torial fixed points of knowledge conditions, which are natu-

2Theorems 3.1 and 5.3 depend on conscious actions and
therefore do not apply to asynchronous systems. Never-
theless, variants of these theorems can be presented that do
apply to asynchronous systems and nondeterministic proto-
cols. Details will appear in [22].
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rally related to fixed points and equilibria. The papers [3, 4,
5, 12] together can all be viewed as making use of the KoP
to provide insights into the interaction between time and
communication for coordinating actions in a distributed and
multi-agent system. Describing them is beyond the scope of
the current paper.

The most significant aspect of the KoP, in our view, is
the fact that it places a new emphasis on the epistemic as-
pects of problem solving in a multi-agent system. Simple
necessary conditions induce epistemic conditions. Thus, in
order to act correctly, one needs a mechanism ensuring that
the agents obtain the necessary knowledge, and that they
discover that they have this knowledge. Most problems and
solutions are not posed or described in this fashion. We be-
lieve that the KoP encapsulates an important connection
between knowledge, action and coordination that will find
many applications in the future.
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ABSTRACT
Market prices reflect information about an asset’s funda-
mental value. However, it is still not clear the extent to
which traders are able to utilize this information. In par-
ticular, the market design in itself could affect inferences.
The psychology literature provides general evidence that the
strategy used in decision-making is contingent on the task’s
complexity. The way markets differ in their complexity may
influence traders’ decisions. Some markets, for instance, re-
quire traders to condition their strategy on a future price,
some do not. Although this framing variation in market
design should be irrelevant to rational traders, trading op-
timally when the price is unknown is cumbersome: traders
must, in that case, condition their demand strategy on a
future price, whose implicit information needs to be antici-
pated. In an experimental market with diverse information,
we investigate the extent to which traders update on the
price, in situations where orders are submitted before or af-
ter the price has realized.

We compare investors’ behavior in three market settings:
a simultaneous limit order market, a simultaneous price list
treatment and a sequential market. All treatments have
in common that the price reflects private information of an-
other market participant. In the limit order (LO) treatment,
participants observe their private signal and state their max-
imum willingness to pay by placing a limit order. In the
price list (PL) treatment the task is discretized: participants
choose between buying and selling for a given list of possible
price values. Both treatments, LO and PL, are considered as
simultaneous because the market price realizes after partic-
ipants submit their order. In the sequential (S) treatment,
participants observe the market price before deciding to buy
or to sell. Theoretically, decision outcomes should be identi-
cal at least in the treatments PL and S, where the strategy
sets are isomorphic.

We find that subjects react strongly to their private in-
formation, but not to the price, in both simultaneous treat-
ments LO and PL. In that sense, subjects appear to form
naive beliefs. However, switching from a simultaneous sys-
tem (LO, PL) to a sequential mechanism (S) improves in-
ferences considerably. When the price is known at the time
of bid submission, bids react to prices, to an extent that is
roughly consistent with Bayesian updating. Surprisingly, in
that case, subjects sometimes even overweight the informa-
tion contained in the price. Hence, market designs affect
how well agents process information and, therefore, how ef-
ficient prices become.
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Continuous, lexicographic context dependence in a binary
choice setting˚

Patrick O’Callaghan:

ABSTRACT
When changes in environmental factors lead to a change in
preference for one alternative over another, preference is con-
text dependent. Continuous context dependence arises when
appropriate perturbations of context preserve strict prefer-
ence. For the binary choice setting, we characterise contin-
uous context dependence via a function that is a utility at
each context. We provide two examples of lexicographic con-
text dependence that delineate the scope of the model. The
first concerns reference dependence in a medical setting; the
second considers a financial setting with unawareness and
uncertainty.

Keywords
binary choice, context effects, lexicographic order,

preferences, utility

1. INTRODUCTION
Cognitive psychology describes a context effect as the in-

fluence of environmental factors on our perceptions and re-
sponses. In the present paper, we formalise the effect of
context on decision making via a context parameter. A de-
cision maker’s preferences are context dependent if strict
preference for one alternative over another varies with con-
text.

Context dependence of preference is supported by neuro-
science which reveals a strong distinction between the in-
transigent nature of the structural networks of the brain
on the one hand and the dynamic nature of its operational
subnetworks on the other [15]. The presence of the latter is
understood to highlight context dependence as an inherent
property of cognitive brain activity.

Continuous dependence on context, or robustness of strict
preference to perturbations in the context is a basic require-
ment. This property is argued to be crucial to brain activity
by von Neumann in his unfinished work “The Computer and
the Brain” [19]. This assumption is also present in many
models of context dependence. Consider reference depen-
dence in Kőszegy and Rabin [9]; menu dependence in Pat-
tanaik and Xu [16]; status quo dependence in Masatlioglu
and Ok [12] and Sagi [18]; memory dependence in Gilboa and
Schmeidler [5]; belief dependence in Gilboa and Schmeidler
[4].

˚ I thank Jeff Kline and John Quiggin for useful comments
that helped to improve this paper.
: Department of Economics, University of Queensland, p.
ocallaghan@uq.edu.au .

In this paper we characterise continuous context depen-
dence for the two alternative (binary choice) case. We show
that, provided the set of contexts satisfies certain topological
conditions, asymmetry of strict preference at each context
and continuous context dependence are together sufficient
for the existence of a function that is: firstly, a utility rep-
resentation on alternatives at each context; and secondly,
continuous on the set of contexts.

This representation theorem is a simplification of the main
theorem of O’Callaghan [14]. In particular, since there are
only two alternatives, we are able to provide a more basic
and constructive proof that appeals to Urysohn’s lemma in-
stead of Michael’s selection theorem. Similar to that paper,
the topological conditions on the context space that we iden-
tify are just enough to yield the desired result. This allows
us to study lexicographic context dependence.

Lexicographic context dependence arises when the set of
contexts is lexicographically ordered independently of pref-
erences on alternatives. The first example we consider in the
present paper is a medical setting where the decision maker
(henceforth Val) faces a choice between two medical proce-
dures (alternatives) for her child. Similar to Kőszegy and
Rabin [9], the contexts are reference points, though we as-
sume that the reference points belong to a lexicographically
ordered two dimensional set. The dominant dimension is
the probability of survival and the other is a wealth related
dummy variable (with values zero or one). Mathematically,
this space is known as “double-arrow space” or “the split
interval”.

The second example is to a financial setting, where Val is
a trader that must choose whether to buy or sell a certain
financial derivative. Val may be both unaware and uncer-
tain of the states of the world. Following Heifetz, Meier,
and Schipper [7], we assume that unawareness is indexed
by a complete lattice. The derivatives that Val trades are
more profitable when the uncertainty is higher according
to some measure of entropy. In contrast, we suppose that
Val always prefers to be more aware. Indeed, because each
unawareness level is associated with richer information, we
suppose that Val lexicographically prefers higher awareness
to higher uncertainty. When the cardinality of the set that
indexes unawareness is uncountable and well-ordered, these
assumptions yield a context space that is homeomorphic to
the “extended long line”. This connection allows us to iden-
tify preferences that satisfy continuous context dependence
but have no continuous representation.

This latter example highlights the possibility that, when
the set of contexts is too general, even though every repre-
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sentation of preferences is discontinuous on contexts, pref-
erences are continuous. We deem this to be a modelling
problem that is best avoided. For instance, if the set of
awareness levels is assumed countable, this issue does not
arise.

2. MODEL

Preferences at each context..
Let X denote a nonempty set. For each x in X, let ăx de-

note a binary relation on the set A “ ta, bu. The canonical
interpretation of a ăx b is that it formalises the statement
“at context x, alternative b is strictly preferred to alterna-
tive a”. Given the focus on binary choice a natural, alterna-
tive interpretation is that of stochastic choice. In that case,
a ăx b holds provided the empirical probability b is chosen is
significantly different from 1

2
in the forced choice setting of

Fechner [3]. Our model accommodates either interpretation.

Context preferences..
The collection tăxux PX of binary relations on A is the

primitive object we refer to as context preferences or just
preferences. Context preferences exclude any preference state-
ments that Val may in fact be in a position to make regarding
pairs of contexts, or indeed between one alternative-context
pair and another. This information is intentionally ignored
so that no assumption need be made concerning preferences
over such objects.1 Thus although our canonical interpreta-
tion is that of multiple epistemological viewpoints, one for
each context, this is not a formal requirement.

Representing context dependence.
By a representation of context preferences, we mean a

function of the form U : AˆX Ñ R, where for any context
x P X, and any i, j P A, j is strictly preferred to i at x if and
only if Upi, xq ă Upj, xq. That is, at each context x, there
exists a utility function Up¨, xq that represents preferences
in the classical sense. When X is a singleton, preferences
are context-free.

Continuous context dependence.
Context dependence is continuous at x if for each i, j P A,

j is strictly preferred to i at x, then the set of contexts X
contains an open neighbourhood N of x such that for any
other y in N , j is also strictly preferred to i at y. The fact
that N is open means that the “direction of perturbation” is
irrelevant, the important thing is that it is sufficiently small.

Characterising continuous context dependence.
U : A ˆ X Ñ R characterises continuous context depen-

dence provided the function Upi, ¨q is continuous for each
i P A. Recall that this means that, for each i, the set
tx : Upi, xq ă ru is open for every r P R.

The set of contexts..
A set X is said to be a perfectly normal topological space

if it satisfies the following three conditions.

0. For every x, the singleton set txu is closed.

1In the language of measurement theory (see d’Aspremont
and Gevers [2] for a recent survey) context preferences are
low in the information hierarchy.

1. Every pair of nonempty, closed and disjoint sets E and
F , there exists a pair of open disjoint sets G and H
such that E Ď G and F Ď H.

2. Every closed set is can be written as a countable in-
tersection of open sets.

If a set X satisfies 0, it is a T0 topological space. The
condition that ensures X is normal is 1, whilst 2 ensures X
is perfect.

Example 1. A familiar metrizable set is the usual set of
nonnegative real numbers R`. Let the set of contexts X be
the cartesian product of the set N of nonnegative integers
with the half open interval of real numbers r0, 1q. Then R`
is topologically indistinguishable from X “ N ˆ r0, 1q pro-
vided we endow the latter with the topology generated by the
intervals of lexicographic order ă˚: kˆr ă˚ lˆt if and only
if k ă l or [k “ l and r ă t], where k, l P N and r, t P r0, 1q.
Since R` is metrizable, so is X.2

Recall that N is the smallest well-ordered infinite set. Its
supremum is the first infinite ordinal number, and is often
denoted by ω, and so we may write N ” r0, ωq. An extension
of this is the well-ordered set r0, ω1q of all countable ordinal
numbers. ω1 denotes the first uncountable ordinal. With
the above lexicographic order ă˚ and corresponding topology,
the product X 1 “ r0, ω1q ˆ r0, 1q is perfectly normal, but not
metrizable and is known as the “long line”. As such, X 1 is
a valid example of a context space for the purposes of the
main theorem.

Extending yet further, the extended long line “glues” the
point ω1 ˆ 0 to the upper end of the long line to obtain the
set X2. (This is similar to considering the one-point com-
pactification of R` that yields the nonnegative extended real
line). It is not hard to show the X2 is normal, but the fol-
lowing argument demonstrates that it is not perfect.

Let tGn : n P Nu be an arbitrary collection of open neigh-
bourhoods of ω1ˆ0 in X2. Then, by the definition of neigh-
bourhood, each Gn contains an open ă˚-interval of the form
pxn, ω1ˆ0s for each n. For each k ă ω1, there are uncount-
ably many l ă ω1 such that k ă l. Let kn satisfy xn ă
kn ˆ 1 ă ω1 ˆ 0 for each n. Then the set K “ tkn : n P Nu
is countable. By Munkres [13, Theorem 10.3], K has an up-
per bound k̄ ă ω1. Then

Ş tGn : n P Nu ‰ tω1 ˆ 0u because`
k̄ ˆ 1, ω1 ˆ 0

‰ Ă Gn for every n.

Note that in example 1, the order ă˚ is over contexts
X. The same is true of the examples in subsection 4.1 and
4.2. It is important to note, however, that ă˚ serves only
to generate interesting and familiar examples of topologi-
cal spaces. In contrast, the family of context preference
relations tăxux PX is the kernel of our model. Indeed, the
following are the axioms on tăxux PX that we seek to char-
acterise.

Axioms. For a topological space X, we will assume:

Asy. for every x P X and every i, j P A, if i ăx j, then not
j ăx i ; and

CD. for each i, j P A, tx P X : i ăx ju is open in X .

2We adopt the product notation x “ k ˆ r of Munkres [13]
for any element x P X.
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For each x such that neither a ăx b nor b ăx a, we write
a „x b. By construction therefore, „x is symmetric: a „x b
if and only if b „x a. Similarly, the weak preference relation
Àx that equals ăx Y „x is complete on A. (Thus, for each
x, either a Àx b or b Àx a.)

(Asy) is commonly referred to as asymmetry. An imme-
diate consequence of (Asy) is that „x is reflexive: i „x i
for i P A. Since |A| “ 2, „x and ăx are clearly transitive.
(Recall that „x is transitive provided that, for any i, j, k in
A, i „x j „x k implies i „x k.) This ensures that, for each
x, Àx is both complete and transitive.

Continuous (context) dependence (CD), which was moti-
vated in the introduction and discussed further below, char-
acterises the stability of strict preference for one alternative
over another. Crucially, this is stability with respect to a
perturbation of the context. Together with (Asy), (CD)
ensures that the sets tx : a ăx bu and tx : b ăx au are sepa-
rated sets, where tx : a „x bu is the set that separates them.
This means that they are not only disjoint, but neither con-
tains a limit point of the other. The remaining consequences
are summarised in theorem 2 which now follows.

3. MAIN RESULT
Theorem 2. For A “ ta, bu and X perfectly normal, pref-
erences satisfy (Asy) and (CD) if and only if there exists
U : AˆX Ñ R such that for every x P X,

1. Up¨, xq is a utility representation of ăx ; and

2. U characterises continuous context dependence.

of 2. As usual, the sufficiency of the axioms is the main
step in the proof. We begin with this argument.

Sufficiency.
Suppose both the sets tx : a ăx bu and tx : b ăx au

are nonempty, the remaining cases follow by an identical
argument. By (Asy), these sets are disjoint. By (CD), these
sets are open and F “ tx : b Àx au is closed.

Since X is perfect and F is closed, there exists a countable
collection tGnunPN of open sets satisfying

Ş8
1 Gn “ F . Note

that X´Gn Ď tx : a ăx bu, so that F and X´Gn are closed
and disjoint for each n. Since X is normal, the Urysohn
lemma applies. For each n, this guarantees the existence of
a continuous function fn : X Ñ R such that fnpxq “ 0 on F
and fnpxq “ 1 onX´Gn, and 0 ď fnpxq ď 1 otherwise. Now
let f “ ř8

1 2´nfn. Since the uniform limit of continuous
functions is continuous, f is continuous. Moreover, fpxq ą 0
if and only if a ăx b. By the same argument, there exists
another continuous nonnegative function g : X Ñ R such
that g´1p0q “ tx : a Àx bu.

Let Upa, xq “ 0 for each x P X and let

Upb, xq “
$
&
%

fpxq if a ăx b,
´gpxq if b ăx a,
0 otherwise.

The resulting function U : AˆX Ñ R satisfies conditions 1
and 2 of the theorem.

Necessity.
Suppose that U : A ˆ X Ñ R satisfies condition 1 of

the theorem and that i ‰ j P A and, for some x P X,
Upi, xq ă Upj, xq. Clearly, by asymmetry of ă on R, it

cannot be that Upj, xq ă Upi, xq. Since x was arbitrarily
chosen, 1 is sufficient for (Asy).

Suppose that U also satisfies condition 2 of the theorem.
Since the difference of two continuous functions is continu-
ous, Upi, ¨q ´ Upj, ¨q is a continuous function. This ensures
that the set G “ tx : Upi, xq ´ Upj, xq ă 0u is open. By
condition 1, G “ tx : i ăx ju and (CD) holds.

Remark 3. The proof of theorem 2 highlights the difficul-
ties that arise when X fails to be perfectly normal. In the
example of subsection 4.2, we provide a concrete example
of preferences that fail to have a continuous representation
even though they satisfy (CD). This observation is true of
any context space that fails to be perfectly normal [14].

4. APPLICATIONS
We now apply the model to an example of reference-

dependent decision making in a medical setting followed by
an example of unawareness in a financial setting.

4.1 Medical decision making
The main example of this subsection shows that the re-

sults apply to problems that cannot be modelled using either
a context-free utility function or the previous results in the
literature on jointly continuous utility representations. Ex-
tending it provides a concrete example where there is no
continuous representation of preferences that satisfy contin-
uous context dependence at the end of the subsection.

Contexts.
Consider a setting where Val is the mother of a child with

a life threatening, but curable illness. Each context is a
reference point in the sense of Kahneman and Tversky [8],
but like Kőszegy and Rabin [9], the reference point is al-
lowed to vary. Assume the set of reference points Val might
face is X “ p0, 1q ˆ t0, 1u. The first dimension 0 ă p ă 1
denotes the (objective) probability that no medical compli-
cations arise from the procedure. We suppose that p would
be provided by the child’s physician on the basis of historical
statistics and that, in this respect, there is no difference be-
tween the private and public sectors. The second dimension
is a dummy variable that indicates whether Val is a home
owner (k “ 1) or not pk “ 0q.

Preferences.
Val is to choose whether or not she will go private (pos-

sibly taking out a loan to do so). The elements of A are
therefore a ““go public” and b ““go private” respectively.
The private sector provides a private room for her child and
allows for arbitrarily long visiting hours. On the other hand
b incurs a fixed cost of $10, 000.3 There are no further (finan-
cial) costs relating to the complications that arise following
the procedure. Wishing to be at her child’s bedside in the
case of complications, Val will always go private if p ă 3

4
. If

99
100

ă p, Val considers the risk of complications to be suffi-

ciently low to warrant going public. Let
¯
p “ 3

4
and p̄ “ 99

100
.

For the remaining contexts tx P X :
¯
p ď x1 ď p̄u, Val

3The setting we have in mind is the Australian healthcare
system, where going private entails paying a portion of the
doctors’ fees for those with private health insurance. In that
system, those with private health insurance may still choose
to go public.
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is indecisive between the two alternatives.4 Thus, at each
context x P X, ăx satisfies (Asy).

Lexicographic ordering of contexts.
As in example 1, we adopt the product notation x “ pˆk

for elements of X. Since both dimensions of X are variables
over which Val has no control, they are treated as context
variables. Nonetheless, it may be reasonable to assume that
Val has a strict preference ordering ă˚ over X for contexts
x “ p ˆ k with higher values of p regardless of the value of
k. It may also reasonable to assume that, if x “ p ˆ k and
y “ q ˆ l and p “ q, then x ă˚ y is better if k ă l.

Continuous reference dependence.
Consider the following collection of (open) order intervals

in the set of contexts X:
 
x : y ă˚ x( and

 
x : x ă˚ z(

such that y, z P X. The collection of open sets τX formed by
taking unions of finite intersections of such intervals gener-
ates the lexicographic order topology on X. Note that, since
ty :

¯
p ˆ 0 ă˚ y ă˚

¯
p ˆ 1u is empty, ty :

¯
p ˆ 0 ă˚ yu “ ty :

¯
p ˆ 1 ď˚ yu. This ensures that the latter set is both open
and closed in X. By the same argument, the the same is
true of ty : y ď˚ p̄ˆ 0u. Since the intersection of two open
sets is open, ty :

¯
p ˆ 1 ď˚ y ď˚ p̄ ˆ 0u is both open and

closed in X. Moreover, this set can also be rewritten as
´ `

¯
p, p̄

‰ˆ t0u
¯
Y
´ “

¯
p, p̄

˘ˆ t1u
¯
.5 (1)

Lemma 4. The set tx : a „x bu is closed in X.

Proof. Since ty : a „x bu “ ty :
¯
pˆ 1 ď˚ y ď˚ p̄ˆ 0uY t

¯
pˆ

0u Y tp̄ˆ 1u and the union of three closed sets is closed, the
proof is complete.

Representation of preferences.
pX, τXq is a well known example of a perfectly normal

topological space [6]. Thus, theorem 2 and lemma 4 guaran-
tees the existence of a family of utility representations, one
for each ăx such that x P X that is continuous on X.

The space X is not metrizable, and so the results of Levin
[11] and Caterino, Ceppitelli, and Maccarino [1] do not ap-
ply. See O’Callaghan [14] for a discussion of the connections
with those results. As with many lexicographically ordered
sets, pă˚, Xq cannot be represented by any context-free util-
ity function with values in R. This implies that Val’s pref-
erences cannot be extended to a context-free binary relation
on A ˆ X that contains ă˚ and has a real-valued utility
representation.

4.2 Unawareness frames
Consider a setting where Val is a financial derivatives

trader who must choose between two alternatives in the face
of both unawareness and uncertainty regarding the state of
the world.

4Being indecisive is observationally equivalent to being in-
different in this case.
5This property has lead X Y t0, 1u2 to be called “double-
arrow” space.

The context space.
In order to construct the set of contexts X, we consider a

lattice L of standard state spaces as in Heifetz, Meier, and
Schipper [7]. Each state space S P L represents a different
level of awareness. We focus on the special case where the
lattice order ďL on L is well-ordered: that is, every L1 Ď L
has a smallest element. Essentially, this restricts attention
to the single agent unawareness problem, for then every pair
of elements S, S1 P L are comparable.

Heifetz, Meier, and Schipper [7] assume that L is a com-
plete lattice. That is, every L1 Ď L has a greatest lower
bound and a least upper bound according to ďL. As L is
well-ordered, if it has a greatest element [10], then it is a
complete lattice. Let ω1 be the smallest uncountable ordi-
nal number of example 1 and recall that r0, ω1q is the set
of all countable ordinals and r0, ω1s “ r0, ω1q Y tω1u. Then
r0, ω1s is a complete lattice. Let 0 and ω1 index the mini-
mal and maximal elements of L respectively, and let r0, ω1s
and L be order isomorphic. This allows us to identify L and
r0, ω1s, and where necessary drop reference to Sk, Sl P L and
simply refer to k, l P L.

Let L denote the first dimension of the context space.
The second dimension represents different levels of uncer-
tainty given the level of awareness. To keep the example to
a minimum, we assume that each S P L is associated with
a single σ-algebra ΣS on S that represents Val’s informa-
tion. Moreover, we suppose that Val is only concerned a
given entropy ranking ďS of some subset D of the of set all
of probability measures on ΣS . In particular, for p, q P D,
p ďS q means that the entropy of p is weakly lower than the
entropy of q according to ďS . Recall that the entropy of a
measure evaluates the disorder associated with a measure,
for instance, uniform distributions have maximum entropy,
and Dirac measures that assign full mass to any given point
have minimum entropy.

It is standard to associate entropy orders with some in-
terval in R. We assume that pD,ďSq is order isomorphic
to the usual order ă on the half-open interval r0, 1q in R.
This implies that the minimum entropy is attained for some
probability measure in D, whereas the maximum entropy is
not.

Remark 5. Whilst the main reason for this assumption is
to simplify the exposition, examples where the maximum en-
tropy does not exist are provided by [17]. In particular, for
probability measures with unbounded support, if the ratio of
the third (skewness) and fourth (kurtosis) moments of a dis-
tribution is is high the maximum entropy does not exist. Al-
ternatively, in a setting where the distributions have bounded
support, and the uniform distribution has the maximum en-
tropy, this assumption is equivalent to assuming Val always
has some useful information, and this moves her away from
the maximum entropy.

Lexicographic ordering of contexts.
For certain trading strategies, uncertainty is a good thing.

This is where the trader profits from higher volatility. We
assume this is the case for Val. On the otherhand, because
lower unawareness can imply trading with insiders, we as-
sume higher awareness is always better for Val. So as to
highlight the continuity issue that can arise in the simplest
possible terms, we assume that X “ r0, ω1sˆr0, 1q, and that
Val lexicographically orders X as follows: if x “ k ˆ r and
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y “ l ˆ t, then x ď˚ y if and only if k ăL l or [k “ l and
r ďS t]. As in the example of section 4.1, we consider the
order topology on X associated with ă˚.

Preferences given context.
Let a=“sell” and b=“buy”. We assume that Val’s pref-

erences on A “ ta, bu are such that a „x b if and only if
x “ ω1 ˆ 0. For all x ă˚ ω1 ˆ 0, Val strictly prefers to buy
at x. Finally, suppose that b ăx a holds only if ω1ˆ0 ă˚ x.
In other words, it is only when Val is fully aware and there is
some uncertainty that she realises she would strictly prefer
to be a seller. In the language of logic and Heifetz, Meier,
and Schipper [7] in particular, there is some special propo-
sition that belongs only to ω1 that causes Val to prefer to
sell.

Note that Val’s preferences satisfy both (Asy) and (CD).
The latter follows simply because the set tx : a „x bu con-
tains only the point ω1ˆ0 and, by condition 0 of the defini-
tion of a perfectly normal set, the singleton sets are closed in
the order topology generated by ă˚. Nonetheless, theorem
2 does not apply because X is not perfectly normal.

No continuous characterisation.
Recall from example 1, that the extended long line is not

perfectly normal because it contains a closed set that is not
equal to the intersection of some countable collection of open
sets. We have chosen Val’s preferences so that tx : b Àx au “
tω1u ˆ r0, 1q. This leads us to the following proposition.

Proposition 6. There is no representation of Val’s prefer-
ences that characterises continuous context dependence.

of proposition 6. Note that tx : b Àx au “ tω1u ˆ r0, 1q.
Following the construction in the proof of theorem 2, sup-
pose there exists a continuous, nonnegative function g :
X Ñ R such that g´1p0q “ tω1u ˆ r0, 1q. Now let Gn “
tx : gpxq ă n´1u for each n P N. Then by construction,ŞtGn : n P Nu “ tω1u ˆ r0, 1q. This, however, contradicts
the proof in the final paragraph of example 1 that X is not
perfect.

5. SUMMARY
We have studied a simple model of context dependence for

the binary choice setting. For this case, the main theorem
provides a representation of preferences that depend contin-
uously on a perfectly normal context space. This allowed
us to consider two examples of lexicographic context depen-
dence. The first example was developed in the setting of a
medical decision. There the context space satisfied the con-
ditions for the representation theorem. The second example
looked at unawareness and uncertainty in a financial setting.
In this case, the context space was not perfectly normal and
preferences were such that no continuous representation is
available.
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ABSTRACT
Harsanyi (1967–1968) showed how infinite belief hierarchies
can be encoded by means of type structures. Such encod-
ings, however, are far from unique: Two different types –
possibly from two different type structures – may generate
exactly the same belief hierarchy. In this paper we present
a finite recursive procedure, the Type Partitioning Proce-
dure, which verifies whether two types, from two potentially
different finite type structures, induce the same belief hier-
archy or not. Important is that the procedure does not make
explicit reference to belief hierarchies, but operates entirely
within the language of type structures.

Keywords
Types, belief hierarchies

1. INTRODUCTION
Belief hierarchies play a fundamental role in the modern

analysis of games. In games with incomplete information –
where players face uncertainty about the opponents’ utilities
– it is important to model what a player believes about his
opponents’ utility functions, what he believes about the op-
ponents’ beliefs about their opponents’ utility functions, and
so on (Harsanyi (1962, 1967–1968), Böge and Eisele (1979),
Mertens and Zamir (1985), Ely and P ↪eski (2006), Dekel,
Fudenberg and Morris (2007), Weinstein and Yildiz (2007)
and others). But even in games with complete information
– where the players’ actual utility functions are transparent
to everyone – belief hierarchies naturally enter the analy-
sis when we investigate the belief a player has about his
opponents’ choices, the belief he has about the opponents’
beliefs about their opponents’ choices, and so on. Such be-
lief hierarchies are the basis for many concepts in epistemic
game theory, most of which build upon the central notion
of common belief in rationality (Brandenburger and Dekel
(1987), Tan and Werlang (1988)). For an overview of these
concepts, see Brandenburger (2007), Perea (2012) and Dekel
and Siniscalchi (2013).

One important practical problem with belief hierarchies
is that these are infinite objects, with infinitely many layers
of beliefs. It is thus impossible to explicitly write down a
belief hierarchy, layer by layer, as there are infinitely many of

∗This paper is a substantially revised version of an earlier paper
with the same title. I would like to thank Pierpaolo Battigalli,
Eddie Dekel, Amanda Friedenberg, Willemien Kets, Christian
Nauerz, Miklós Pintér and Elias Tsakas for very useful comments
on the earlier version.

these. But then, the question naturally arises: Is there a way
to represent belief hierarchies in a compact and convenient
way?

Harsanyi (1967–1968) gave a positive and elegant answer
to this question. He focused on a setting in which the belief
hierarchies concern only the players’ utilities, but his con-
struction has later been extended to situations where play-
ers also hold beliefs about the opponents’ choices. The con-
struction that Harsanyi proposed was very simple: For every
player we define a set of types, and for every type we define
a utility function, together with a probabilistic belief about
the opponents’ types. From this very simple construction
we can then derive, for every type, a first-order belief about
the opponents’ utility functions, a second-order belief about
the opponents’ first-order beliefs, and so on. That is, for
every type we can derive a full belief hierarchy on the play-
ers’ possible utility functions in the game. This construction
by Harsanyi was a major step forward, as it allowed us to
encode infinite belief hierarchies about utilities in a very
compact and convenient fashion.

Harsanyi’s original idea can easily be adapted to a frame-
work where players also hold beliefs about other features
besides the players’ utilities. Assume that every player faces
a basic space of uncertainty, which can include the parame-
ters determining the players’ utility functions, the set of op-
ponents’ choices, and possibly some other features as well.
Now, consider for every player a set of types, and associate
to every type a probabilistic belief about the basic space
of uncertainty and the opponents’ types. Then, similarly
to Harsanyi’s construction, we can derive for every type a
full belief hierarchy, specifying a first-order belief about the
basic space of uncertainty, a second-order belief about the
opponents’ first-order beliefs about their basic spaces of un-
certainty, and so on. This construction, which we call a type
structure, thus allows us to encode infinite belief hierarchies
about any set of parameters in a very compact way.

Such encodings, however, are far from unique: Two dif-
ferent types – possibly from two different type structures
– may encode one and the same belief hierarchy. In view
of this “multiplicity problem” we ask the following natural
question in this paper: When do two types, from two poten-
tially different finite type structures, induce the same belief
hierarchy?

Checking this directly, by explicitly comparing their in-
duced first-order beliefs, second-order beliefs, and so on, may
be quite cumbersome as one needs to check for infinitely
many levels of belief. Instead, this paper presents a finite
recursive procedure, the Type Partitioning Procedure, which
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tells us precisely when two such types induce the same belief
hierarchy, and when they do not. The procedure works as
follows. If we compare two types from two different type
structures, we start by merging the two type structures into
one large type structure. In every round, the procedure
generates for every player a partition of the set of types in
the large type structure, where the partition in the current
round will always be a refinement of the partition from the
previous round. Since we restrict to type structures with
finitely many types, this procedure will always terminate
within finitely many rounds. The equivalence classes in the
final partitions will then be exactly those groups of types
that generate the same belief hierarchy. That is, two types
generate the same belief hierarchy exactly when they belong
to the same equivalence class in the final partition. We ac-
tually show a bit more in Theorem 2: We prove that for
every n, two types share the same n-th order belief precisely
when they belong to the same equivalence class of the par-
tition produced in round n of the procedure. In that sense,
the Type Partitioning Procedure provides a convenient and
automated way to verify whether two types share the same
belief hierarchy, or the same beliefs up to a fixed order n. Im-
portant, moreover, is that the Type Partitioning Procedure
does not make any explicit reference to belief hierarchies –
it operates entirely within the “language” of type structures.

We use the Type Partitioning Procedure to establish an
interesting property of belief hierarchies which – we believe
– is new. Suppose we compare two types – possibly from
two different type structures – and let N be the total num-
ber of types in these two type structures. Then, we prove
in Corollary 1 that these two types induce the same belief
hierarchy exactly when they induce the same N -th order be-
lief. To prove this result we use the property that the Type
Partitioning Procedure will always terminate within at most
N rounds. In particular, the smaller the number of types
in the type structure, the less belief levels we must check
in order to conclude that two types share the same belief
hierarchy.

The outline of this paper is as follows. In Section 2 we
introduce type structures and belief hierarchies, and show
how we can derive belief hierarchies from types. In Section
3 we describe the Type Partitioning Procedure, illustrate it
by means of an example, and show how it characterizes those
types that share the same belief hierarchy. In Section 4 we
show how the procedure can be used to test whether two
types from different type structures generate the same be-
lief hierarchy or not. In Section 5 we use the Type Parti-
tioning Procedure to test properties of type structures rather
than individual types. For instance, we use the procedure to
check whether a type structure contains redundant types or
not, or whether one type structure is contained in another
type structure, in the sense that for every type in the first
structure there is a type in the second structure that gen-
erates the same belief hierarchy. Section 6, finally, contains
the proofs.

2. BELIEF HIERARCHIES AND TYPES
In this section we show how belief hierarchies can be en-

coded by means of a type structure, and how every type
within a type structure can be “decoded” by deriving a full
belief hierarchy from it.

2.1 Encoding Belief Hierarchies by Type Struc-
tures

Consider a finite set of agents I. Assume that each agent i
faces a basic space of uncertainty Xi = (Xi,Σi), where Xi is
an arbitrary set and Σi a σ-algebra on Xi. That is, (Xi,Σi)
is a measurable space. The combination X = (Xi)i∈I of
basic uncertainty spaces is called a multi-agent uncertainty
space.

If the agents are the players in a game, the basic space
of uncertainty for player i could, for instance, be the set
of opponents’ choice combinations, or the set of parameters
determining the utility functions of the players, or even a
combination of the two. The first scenario is the standard
framework for games with complete information, the second
scenario is Harsanyi’s (1967–1968) original setting for games
with incomplete information, whereas the last scenario is in-
vestigated in Böge and Eisele (1979) and Mertens and Zamir
(1985), among others. The sets Xi could also include exter-
nal events that cannot be influenced by the agents, as is the
case in Böge and Eisele (1979).

A belief hierarchy for player i specifies a probability mea-
sure on Xi – the first-order belief, a probability measure
on Xi and the opponents’ possible first-order beliefs – the
second-order belief, and so on. Following Harsanyi’s (1967–
1968) approach, we will encode such infinite belief hierar-
chies by means of type structures. In this paper we focus
on type structures with finitely many types, which of course
imposes restrictions on the possible belief hierarchies we can
encode. Indeed, there are belief hierarchies which can sim-
ply not be encoded by type structures with finitely many
types.

Definition 1 (Type Structure). Consider a multi-
agent uncertainty space X = (Xi,Σi)i∈I . A finite type
structure for X is a tuple T = (Ti, bi)i∈I where, for ev-
ery player i,

(a) Ti is the finite set of types for player i, and

(b) bi : Ti → ∆(Xi × T−i, Σ̂i) is a mapping that assigns to

every type ti a probabilistic belief bi(ti) ∈ ∆(Xi × T−i, Σ̂i)
on his basic uncertainty space and the opponents’ type com-
binations.

Here, T−i := ×j 6=iTj . For any measurable space (Yi, Σ̂i),

we denote by ∆(Yi, Σ̂i) the set of probability measures on

(Yi, Σ̂i). In part (b) of the definition, we assume Σ̂i to be
the product σ-algebra on Xi×T−i induced by the σ-algebra
Σi on Xi and the discrete σ-algebra on the finite set T−i.

2.2 From Type Structures to Belief Hierarchies
In the previous subsection we have introduced a type

structure as a way to encode belief hierarchies. We will
now show how to “decode” a type within a type structure,
by deriving the full belief hierarchy it induces.

Consider a finite type structure T = (Ti, bi)i∈I for Γ.
Then, every type ti within T induces an infinite belief hier-
archy

hi(ti) = (h1
i (ti), h

2
i (ti), ...),

where h1
i (ti) is the induced first-order belief, h2

i (ti) is the
induced second-order belief, and so on. We will inductively
define, for every n, the n-th order beliefs induced by types
ti in T , building upon the (n− 1)-th order beliefs that have
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been defined in the preceding step. We start by defining the
first-order beliefs.

For every player i, and every type ti ∈ Ti, define the first-
order belief h1

i (ti) ∈ ∆(Xi,Σi) by

h1
i (ti)(Ei) := bi(ti)(Ei × T−i) for all Ei ∈ Σi.

Now, suppose that n ≥ 2, and assume that the (n− 1)-th
order beliefs hn−1

i (ti) have been defined for all players i, and
every type ti ∈ Ti. Let

hn−1
i (Ti) := {hn−1

i (ti) | ti ∈ Ti}
be the finite set of (n−1)-th order beliefs for player i induced
by types in Ti. For every hn−1

i ∈ hn−1
i (Ti), let

Ti[h
n−1
i ] := {ti ∈ Ti | hn−1

i (ti) = hn−1
i }

be the set of types in Ti that have the (n−1)-th order belief
hn−1
i .
Let hn−1

−i (T−i) := ×j 6=ihn−1
j (Tj), and for a given hn−1

−i =

(hn−1
j )j 6=i in hn−1

−i (T−i) let T−i[h
n−1
−i ] := ×j 6=iTj [hn−1

j ].
We define the n-th order beliefs hni (ti) as follows. Let

Σn−1
i be the product σ-algebra on Xi × hn−1

−i (T−i) induced
by the σ-algebra Σi on Xi and the discrete σ-algebra on the
finite set hn−1

−i (T−i). For every type ti ∈ Ti, let the n-th

order belief hni (ti) ∈ ∆(Xi × hn−1
−i (T−i),Σ

n−1
i ) be given by

hni (ti)(Ei × {hn−1
−i }) := bi(ti)(Ei × T−i[hn−1

−i ]) (1)

for every Ei ∈ Σi and every hn−1
−i ∈ hn−1

−i (T−i).
Finally, for every type ti ∈ Ti, we denote by

hi(ti) := (hni (ti))n∈N

the belief hierarchy induced by ti.

3. TYPE PARTITIONING PROCEDURE
Suppose we consider a finite type structure for some multi-

agent uncertainty space X . In this section we will present a
recursive procedure – the Type Partitioning Procedure – that
tells us, within finitely many steps, which types from this
type structure induce the same belief hierarchy and which
do not. Important is that this procedure does not make
explicit reference to belief hierarchies, but operates entirely
within the “language” of type structures.

3.1 Definition of the Procedure
To formally define this procedure, we need the following

terminology. A finite partition of a set A is a finite collection
P = {P1, ..., PK} of nonempty subsets Pk ⊆ A such that
∪Kk=1Pk = A and Pk ∩ Pm = ∅ whenever k 6= m. We refer
to the sets Pk as equivalence classes. For an element a ∈
A, we denote by P(a) the equivalence class Pk to which a
belongs. The trivial partition of A is the partition P = {A}
containing only one set – the full set A. For two partitions
P1 and P2 on A, we say that P1 is a refinement of P2 if
for every set P 1 ∈ P1 there is a set P 2 ∈ P2 such that
P 1 ⊆ P 2. We say that P1 is a strict refinement of P2 if P1

is a refinement of P2 and P1 6= P2.
In the procedure we recursively partition the set of types

of an agent into equivalence classes – starting from the triv-
ial partition, and refining the previous partition with every
step – until these partitions cannot be refined any further.
We show that the equivalence classes produced in round n

Type structure T = (T1, T2, b1, b2)

T1 = {t1, t′1, t′′1}, T2 = {t2, t′2, t′′2}

b1(t1) = 1
2
(c, t2) + 1

2
(d, t′2)

b1(t′1) = 1
6
(c, t2) + 1

3
(c, t′′2 ) + 1

2
(d, t′2)

b1(t′′1 ) = 1
2
(c, t′2) + 1

2
(d, t′′2 )

b2(t2) = 1
4
(e, t1) + 1

2
(e, t′1) + 1

4
(f, t′′1 )

b2(t′2) = 1
8
(e, t1) + 1

8
(e, t′1) + 3

4
(f, t′′1 )

b2(t′′2 ) = 3
8
(e, t1) + 3

8
(e, t′1) + 1

4
(f, t′′1 )

Table 1: The type structure from Example 1

contain exactly the types that induce the same belief hier-
archy up to order n. In particular, the equivalence classes
produced at the end contain precisely those types that in-
duce the same (infinite) belief hierarchy.

Procedure 1 (Type Partitioning Procedure). We
consider a multi-agent uncertainty space X = (Xi,Σi)i∈I ,
and a finite type structure T = (Ti, bi)i∈I for X .
Initial step. For every agent i, let P0

i be the trivial parti-
tion of his set of types Ti.

Inductive step. Suppose that n ≥ 1, and that the parti-
tions Pn−1

i have been defined for every agent i. Then, for
every agent i, and every ti ∈ Ti,
Pni (ti) = {t′i ∈ Ti | bi(t′i)(Ei × Pn−1

−i ) = bi(ti)(Ei × Pn−1
−i )

(2)

for all Ei ∈ Σi, and all Pn−1
−i ∈ Pn−1

−i }.

The procedure terminates at round n whenever Pni =
Pn−1
i for every agent i.

In this procedure, Pn−1
−i is the partition of the set T−i

induced by the partitions Pn−1
j on Tj . More precisely, if

t−i = (tj)j 6=i is in T−i, then

Pn−1
−i (t−i) := ×j 6=iPn−1

j (tj),

which is a subset of T−i.
We will now illustrate the Type Partitioning Procedure by

means of an example.

Example 1. Consider a multi-agent uncertainty space X =
(Xi,Σi)i∈I where I = {1, 2}, X1 = {c, d}, X2 = {e, f}, and
Σ1,Σ2 are the discrete σ-algebras on X1 and X2, respec-
tively. Consider the type structure T = (T1, T2, b1, b2) in
Table 1. Here, b1(t1) = 1

2
(c, t2) + 1

2
(d, t′2) means that type

t1 assigns probability 1
2

to the pair (c, t2) ∈ X1 × T2, and

probability 1
2

to the pair (d, t′2) ∈ X1 × T2. Similarly for the
other types in the table. We will now run the Type Parti-
tioning Procedure.

Initial Step. Let P0
1 be the trivial partition of the set of

types T1, and let P0
2 be the trivial partition of the set of

types T2. That is,

P0
1 = {{t1, t′1, t′′1}} and P0

2 = {{t2, t′2, t′′2}}.
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Round 1. By equation (2),

P1
1 (t1) = {τ1 ∈ T1 |

b1(τ1)({c} × T2) = b1(t1)({c} × T2) = 1
2
,

b1(τ1)({d} × T2) = b1(t1)({d} × T2) = 1
2
}

= {t1, t′1, t′′1},
which implies that

P1
1 = P0

1 = {{t1, t′1, t′′1}}.
At the same time,

P1
2 (t2) = {τ2 ∈ T2 |

b2(τ2)({e} × T1) = b2(t2)({e} × T1) = 3
4
,

b2(τ2)({f} × T1) = b2(t2)({f} × T1) = 1
4
}

= {t2, t′′2}

which implies that P1
2 (t′2) = {t′2}, and hence

P1
2 = {{t2, t′′2}, {t′2}.

Round 2. By equation (2),

P2
1 (t1) = {τ1 ∈ T1 |

b1(τ1)({c} × {t2, t′′2}) = b1(t1)({c} × {t2, t′′2}) = 1
2
,

b1(τ1)({c} × {t′2}) = b1(t1)({c} × {t′2}) = 0,

b1(τ1)({d} × {t2, t′′2}) = b1(t1)({d} × {t2, t′′2}) = 0,

b1(τ1)({d} × {t′2}) = b1(t1)({d} × {t′2}) = 1
2
}

= {t1, t′1},

which implies that P2
1 (t′′1 ) = {t′′1}, and hence

P2
1 = {{t1, t′1}, {t′′1}}.

Since P1
1 = P0

1 , we may immediately conclude that

P2
2 = P1

2 = {{t2, t′′2}, {t′2}}.

Round 3. As P2
2 = P1

2 , we may immediately conclude that

P3
1 = P2

1 = {{t1, t′1}, {t′′1}}.
By equation (2),

P3
2 (t2) = {τ2 ∈ T2 |

b2(τ2)({e} × {t1, t′1}) = b2(t2)({e} × {t1, t′1}) = 3
4
,

b2(τ2)({e} × {t′′1}) = b2(t2)({e} × {t′′1}) = 0,

b2(τ2)({f} × {t1, t′1}) = b2(t2)({f} × {t1, t′1}) = 0,

b2(τ2)({f} × {t′′1}) = b2(t2)({f} × {t′′1}) = 1
4
}

= {t2, t′′2},

which implies that P3
2 (t′2) = {t′2}, and hence

P3
2 = {{t2, t′′2}, {t′2}} = P2

2 .

As P3
1 = P2

1 and P3
2 = P2

2 , the procedure terminates at

round 3. The final partitions of the types are thus given by

P∞1 = {{t1, t′1}, {t′′1}} and P∞2 = {{t2, t′′2}, {t′2}}.

The reader may check that all types within the same equiv-
alence class indeed induce the same belief hierarchy. That
is, t1 induces the same belief hierarchy as t′1, and t2 induces
the same belief hierarchy as t′′2 . Moreover, t1 and t′′1 induce
different belief hierachies, and so do t2 and t′2. �

3.2 Characterization Result
We will now show that the Type Partitioning Procedure

identifies precisely those types that share the same belief
hierarchy. As a preparatory result, we will first highlight two
important properties of the procedure. The first property
states that the procedure is monotonic in the sense that the
partitions generated at a particular round will always be
refinements of the partitions generated in the round before.
The second property states that the number of rounds that
is needed for the procedure to terminate can never be larger
than the total number of types we consider.

Theorem 1 (Properties of Procedure). Consider
a multi-agent uncertainty space X = (Xi,Σi)i∈I , and a finite
type structure T = (Ti, bi)i∈I for X . For every agent i and
every round n ≥ 0, let Pni be the partition of Ti generated
in round n of the Type Partitioning Procedure. Let N be
the total number of types in ∪i∈ITi. Then,

(a) the partition Pni will always be a refinement of Pn−1
i ,

for all agents i and all n ≥ 1;

(b) the procedure will terminate after at most N rounds.

With this result at hand we can now prove the main
theorem in this paper, which states that the Type Partition-
ing Procedure characterizes precisely those groups of types
that induce the same belief hierarchy. We actually prove a
little more: we show that the partitions generated in round n
of the procedure characterize exactly those types that yield
the same n-th order belief.

Theorem 2 (Characterization Result). Consider
a multi-agent uncertainty space X = (Xi,Σi)i∈I , and a finite
type structure T = (Ti, bi)i∈I for X . For every agent i and
every round n ≥ 0, let Pni be the partition of Ti generated
in round n of the Type Partitioning Procedure. Let P∞i be
the final partition generated by the procedure. Then, for
every agent i, every n ≥ 1, and every two types ti, t

′
i ∈ Ti,

we have that

(a) hni (ti) = hni (t′i), if and only if, t′i ∈ Pni (ti);

(b) hi(ti) = hi(t
′
i), if and only if, t′i ∈ P∞i (ti).

By combining Theorems 1 and 2 we can derive some in-
teresting facts about finite type structures and belief hier-
archies, which we state in the following corollary.

Corollary 1 (Properties of Belief Hierarchies).
Consider a multi-agent uncertainty space X = (Xi,Σi)i∈I ,
and a finite type structure T = (Ti, bi)i∈I for X . Let N be
the total number of types in ∪i∈ITi, and let ti, t

′
i ∈ Ti. Then,

(a) for every n ≥ 2, hn−1
i (ti) = hn−1

i (t′i) whenever hni (ti) =
hni (t′i);

(b) hi(ti) = hi(t
′
i), if and only if, hNi (ti) = hNi (t′i).

Property (a) thus states that two types agreeing on the n-
th order belief will also agree on all lower order beliefs. That
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is, the n-th order belief completely determines the first-order
belief, the second-order belief, until the (n − 1)-th order
belief. Property (b) says that in order to check whether two
types share the same infinite belief hierarchy or not we only
have to compare the N -th order beliefs, where N is the total
number of types in the type structure. To the best of our
knowledge, this result is new in the literature.

The proof of this corollary is actually very easy. To show
property (a) consider two types ti, t

′
i with hni (ti) = hni (t′i).

Then, by Theorem 2, t′i ∈ Pni (ti). Since, by Theorem 1, Pni
is a refinement of Pn−1

i , it follows that t′i ∈ Pn−1
i (ti) and

hence, by Theorem 2, hn−1
i (ti) = hn−1

i (t′i).
To show property (b), take two types ti, t

′
i with hNi (ti) =

hNi (t′i). Then, by Theorem 2, t′i ∈ PNi (ti). By Theorem 1
we know that the procedure terminates after at most N
rounds, and hence PNi = P∞i . By Theorem 2 we conclude
that hi(ti) = hi(t

′
i).

Some readers may ask why property (a) requires a proof,
as in most other papers in the literature the n-th order belief
induced by a type explicitly contains the (n−1)-th order be-
lief as a component, and hence property (a) holds trivially.
See, for instance, Heifetz and Samet (1998) and Frieden-
berg and Meier (2011). However, this is not the case in our
setting: Our definition of hni (ti) does not explicitly carry
hn−1
i (ti) as a component, and it is therefore not obvious

that the n-th order belief fully determines the (n − 1)-th
order belief. This is a result, which requires a proof in our
setting.

4. COMPARING TYPES FROM DIFFERENT
TYPE STRUCTURES

We have seen that the Type Partitioning Procedure tells us
exactly which types within a given type structure T induce
the same belief hierarchy, and which do not. But what if
we want to compare types from different type structures?
We will see that the procedure will work for such settings as
well.

Let us consider two different finite type structures, T 1 =
(T 1
i , b

1
i )i∈I and T 2 = (T 2

i , b
2
i )i∈I , for the same multi-agent

uncertainty space X = (Xi,Σi)i∈I . For a given agent i, take
a type t1i ∈ T 1

i and a type t2i ∈ T 2
i . How can we check

whether t1i and t2i induce the same belief hierarchy?
What we can do is to first merge the two type structures

into one large type structure, and to subsequently run the
Type Partitioning Procedure for the large type structure.
More precisely, let T = (Ti, bi)i∈I be the “large” type struc-
ture, where Ti := T 1

i ∪ T 2
i for all agents i, and

bi(ti) :=

{
b1i (ti), if ti ∈ T 1

i

b2i (ti), if ti ∈ T 2
i

for all types ti ∈ Ti. Hence, T is a “block” type structure
in which types in T 1

i only refer to opponents’ types in T 1
−i,

and types in T 2
i only refer to opponents’ types in T 2

−i. But
it is still a well-defined type structure, and hence we can
run the Type Partitioning Procedure for the “block” type
structure T , yielding partitions P∞i of the sets Ti = T 1

i ∪T 2
i

for every agent i. If t1i ∈ T 1
i and t2i ∈ T 2

i turn out to be in
the same equivalence class of P∞i , then t1i and t2i induce the
same belief hierarchy. Otherwise not. In this way, the Type
Partitioning Procedure can also be used to test whether two
types from different type structures induce the same belief
hierarchy or not.

Type structure T 1 = (T 1
1 , T

1
2 , b

1
1, b

1
2)

T 1
1 = {t1, t′1, t′′1 , t′′′1 }, T 1

2 = {t2, t′2, t′′2}

b11(t1) = 1
2
(c, t2) + 1

2
(d, t′2)

b11(t′1) = 1
6
(c, t2) + 1

3
(c, t′′2 ) + 1

2
(d, t′2)

b11(t′′1 ) = 1
2
(c, t′2) + 1

2
(d, t′′2 )

b11(t′′′1 ) = 1
3
(c, t2) + 2

3
(d, t′′2 )

b12(t2) = 1
4
(e, t1) + 1

2
(e, t′1) + 1

4
(f, t′′1 )

b12(t′2) = 1
8
(e, t1) + 1

8
(e, t′1) + 3

4
(f, t′′1 )

b12(t′′2 ) = 3
8
(e, t1) + 3

8
(e, t′1) + 1

4
(f, t′′1 )

Type structure T 2 = (T 2
1 , T

2
2 , b

2
1, b

2
2)

T 2
1 = {r1, r′1, r′′1 }, T 2

2 = {r2, r′2, r′′2 }

b21(r1) = 1
4
(c, r2) + 1

4
(c, r′′2 ) + 1

2
(d, r′2)

b21(r′1) = 1
2
(c, r′2) + 1

8
(d, r2) + 3

8
(d, r′′2 )

b21(r′′1 ) = 1
2
(c, r′2) + 3

8
(d, r2) + 1

8
(d, r′′2 )

b22(r2) = 1
4
(e, r′1) + 3

4
(f, r1)

b22(r′2) = 3
4
(e, r′1) + 1

4
(f, r1)

b22(r′′2 ) = 1
8
(e, r′1) + 1

8
(e, r′′1 ) + 3

4
(f, r1)

Table 2: The type structures from Example 2

n Pn1 Pn2
0 {{t1, t′1, t′′1 , t′′′1 , r1, r′1, r′′1 }} {{t2, t′2, t′′2 , r2, r′2, r′′2 }}
1 {{t1, t′1, t′′1 , r1, r′1, r′′1 }, {t′′′1 }} {{t2, t′′2 , r′2}, {t′2, r2, r′′2 }}
2 {{t1, t′1, r′1, r′′1 }, {t′′1 , r1}, {t′′′1 }} {{t2, t′′2 , r′2}, {t′2, r2, r′′2 }}
3 {{t1, t′1, r′1, r′′1 }, {t′′1 , r1}, {t′′′1 }} {{t2, t′′2 , r′2}, {t′2, r2, r′′2 }}

Table 3: The Type Partitioning Procedure in Example 2

Example 2. To see how this works, let us consider an ex-
ample with two agents, I = {1, 2}, where the basic spaces
of uncertainty are again given by X1 = {c, d} and X2 =
{e, f} – as in Example 1 – together the the discrete σ-
algebras on these sets. Consider the two type structures
T 1 = (T 1

i , b
1
i )i∈I and T 2 = (T 2

i , b
2
i )i∈I on X as given in

Table 2. Note that type structure T 1 is almost identical to
the type structure in Example 1, except for the fact that we
have added an extra type t′′′1 for agent 1.

We want to test whether the types t1 ∈ T 1
1 and r1 ∈

T 2
1 , which belong to different type structures, induce the

same belief hierrachy or not. As a first step we merge the
two type structures T 1 and T 2 into one large block type
structure, as described above. If we subsequently run the
Type Partitioning Procedure for the large type structure,
then the reader may verify that the partitions in every round
are given by Table 3. Here, the procedure terminates at
round 3. As t1 and r1 are not in the same equivalence class,
we conclude that t1 and r1 do not induce the same belief
hierarchy. In fact, the final partitions tell us that for agent 1,
the types t1, t

′
1, r
′
1 and r′′1 all induce the same belief hierarchy,

that types t′′1 and r1 induce the same belief hierarchy, and
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that for type t′′′1 ∈ T 1
1 there is no type in T 2

1 that induces
the same belief hierarchy. For agent 2, the types t2, t

′′
2 and

r′2 all induce the same belief hierarchy, and so do the types
t′2, r2 and r′′2 . �

5. TESTING FOR PROPERTIES OF TYPE
STRUCTURES

The Type Partitioning Procedure can be used to answer
several different questions – local and global. First, as we
already discussed, we can use it to test whether two types
– possibly from different type structures – induce the same
belief hierarchy or not. This is a local test.

But we can also use it to test global properties of type
structures. For instance, we can use the procedure to test
whether a given type structure contains redundant types or
not – where “redundant” means that two different types in-
duce the same belief hierarchy. For this redundancy test we
can run the Type Partitioning Procedure and see whether
the final partitions contain equivalence classes with at least
two types. If this is the case then we conclude that the type
structure contains redundancies. If, on the other hand, all
equivalence classes contain only one type, then there are no
redundancies in the type structure.

In case the type structure contains redundant types, the
Type Partitioning Procedure will also tell us how to“remove”
these redundancies without changing the induced collection
of belief hierarchies. What we can do in this case is to replace
every equivalence class in the final partition by a single type,
and to change the belief of every type accordingly. Then
we will obtain a smaller, non-redundant type structure that
induces exactly the same collection of belief hierarchies.

As an illustration, consider the type structure from Table
1. We have seen in Example 1 that the Type Partitioning
Procedure generates the final partitions

P∞1 = {{t1, t′1}, {t′′1}} and P∞2 = {{t2, t′′2}, {t′2}}.
If we replace the equivalence class {t1, t′1} by the single type
r1, and replace the equivalence class {t2, t′′2} by the single

type r2, then we obtain the smaller type structure T̂ =
(T̂i, b̂i)i∈I where

T̂1 = {r1, t′′1}, T̂2 = {r2, t′2}
and

b̂1(r1) = 1
2
(c, r2) + 1

2
(d, t′2),

b̂2(t′′1 ) = 1
2
(c, t′2) + 1

2
(d, r2),

b̂2(r2) = 3
4
(e, r1) + 1

4
(f, t′′1 ),

b̂2(t′2) = 1
4
(e, r1) + 3

4
(f, t′′1 ).

It can be verified that T̂ is indeed non-redundant, and in-
duces the same collection of belief hierarchies as the original
type structure T from Table 1.

Another global question we can answer is whether two dif-
ferent type structures generate the same collection of belief
hierarchies, or whether the collection of belief hierarchies in-
duced by the first type structure is contained in that of the
second structure. This is the type of question which is ad-
dressed, for instance, in Friedenberg and Meier (2011). To
answer the first question we can first merge the two type
structures into one, and subsequently run the Type Parti-
tioning Procedure. If the final partitions are such that ev-
ery equivalence class always contains at least one type from

both type structures, then the two structures generate the
same collection of belief hiearchies. Otherwise not. Indeed,
assume that every equivalence class in the final partitions
contains at least one type from each type structure. Then,
for every type in the first structure there is a type in the sec-
ond structure that generates the same belief hierarchy, and
vice versa. That is, both type structures produce exactly
the same collection of belief hierarchies. If this is not the
case, that is, if there is an equivalence class that contains
only types from one type structure but not from the other,
then these type do not have any “counterpart” in the other
type structure, and hence the two type structures differ in
the collection of belief hierarchies they generate. To answer
the second question – that is, whether the set of belief hi-
erarchies of the first structure is contained in that of the
second – we look at the final partitions, and see whether
every equivalence class contains at least one type from the
second structure.

We have collected the insights above in the following corol-
lary.

Corollary 2 (Type Structures). Consider
a multi-agent uncertainty space X = (Xi,Σi)i∈I , and two
finite type structures T 1 = (T 1

i , b
1
i )i∈I and T 2 = (T 2

i , b
2
i )

for X . Let (P∞i )i∈I be the final partitions generated by the
Type Partitioning Procedure if we first merge the two type
structures into one. Then:

(a) type structure T 1 is redundant, if and only if, there is
some agent i and some Pi ∈ P∞i such that |Pi ∩ T 1

i | ≥ 2;

(b) the collection of belief hierarchies induced by T 1 is a
subset of the collection of belief hierarchies induced by T 2,
if and only if, Pi ∩ T 2

i 6= ∅ for all agents i and all Pi ∈ P∞i ;

(c) type structures T 1 and T 2 induce the same collection of
belief hierarchies, if and only if, Pi∩T 1

i 6= ∅ and Pi∩T 2
i 6= ∅

for all agents i and all Pi ∈ P∞i .

Here, we say that a type structure is redundant if it con-
tains at least two different types that generate the same
belief hierarchy.

6. PROOFS
Proof of Theorem 1. We first prove (a) by induction on
n.

Induction start. The partition P1
i will always be a refine-

ment of P0
i since P0

i is the trivial partition, by definition.

Inductive step. Let n ≥ 2, and suppose that Pn−1
i is a

refinement of Pn−2
i , for all agents i. Consider an agent i, an

equivalence class Pni ∈ Pni , and two types ti, t
′
i ∈ Pni . Then,

by equation (2),

bi(ti)(Ei × Pn−1
−i ) = bi(t

′
i)(Ei × Pn−1

−i ) for all Ei ∈ Σi,

and all Pn−1
−i ∈ Pn−1

−i .

As, by the induction assumption, Pn−1
j is a refinement of

Pn−2
j for all j 6= i, it follows that Pn−1

−i is a refinement of

Pn−2
−i . But then, we conclude from (3) that

bi(ti)(Ei × Pn−2
−i ) = bi(t

′
i)(Ei × Pn−2

−i ) for all Ei ∈ Σi,

and allPn−2
−i ∈ Pn−2

−i ,
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which means that ti and t′i belong to the same equivalence
class in Pn−1

i . So, we have shown that every two types that
are in the same equivalence class of Pni , are also in the same
equivalence class of Pn−1

i . This, however, implies that Pni is
a refinement of Pn−1

i , as was to show. By induction on n,
property (a) follows.

With property (a) at hand, it is easy to prove property
(b). By property (a) we know that for every round n ≥ 1,
and every agent i, the partition Pni is a refinement of Pn−1

i .
Moreover, for every “active” round n – where the procedure
does not terminate yet – the partition Pni must be a strict
refinement of Pn−1

i for at least one agent i. It may be ver-
ified that for every agent i, the number of successive strict
refinements cannot be larger than the number of types in
Ti. As such, the number of active rounds in the procedure
cannot be larger than the number of types in ∪i∈ITi, which
is N. This completes the proof. �

Proof of Theorem 2. We first prove (a) by induction on
n.

Induction start. Consider two types ti, t
′
i ∈ Ti. Suppose

first that h1
i (ti) = h1

i (t
′
i). We show that t′i ∈ P1

i (ti). For all
Ei ∈ Σi and P 0

−i ∈ P0
−i,

bi(ti)(Ei × P 0
−i) = bi(ti)(Ei × T−i)

= h1
i (ti)(Ei)

= h1
i (t
′
i)(Ei)

= bi(t
′
i)(Ei × T−i)

= bi(t
′
i)(Ei × P 0

−i),

which indeed implies that t′i ∈ P1
i (ti). Here, the first and

fifth equality follow from the fact that P0
−i is the trivial

partition on T−i, the second and fourth equality follow from
the definition of h1

i (ti) and hi(t
′
i), respectively, whereas the

third equality follows from the assumption that h1
i (ti) =

h1
i (t
′
i).

Assume next that t′i ∈ P1
i (ti). We show that h1

i (ti) =
h1
i (t
′
i). For all Ei ∈ Σi,

h1
i (ti)(Ei) = bi(ti)(Ei × T−i) = bi(t

′
i)(Ei × T−i)

= h1
i (t
′
i)(Ei),

which indeed implies that h1
i (ti) = h1

i (t
′
i). Here, the first and

third equality follow from the definition of h1
i (ti) and h1

i (t
′
i),

respectively, whereas the second equality follows from the
assumption that t′i ∈ P1

i (ti) and equation (2).
By the two steps above we may conclude that h1

i (ti) =
h1
i (t
′
i), if and only if, t′i ∈ P1

i (ti), as was to show.

Inductive step. Let n ≥ 2, and assume that (a) holds for
n − 1 and all agents i. Consider an agent i and two types
ti, t
′
i ∈ Ti. Suppose first that hni (ti) = hni (t′i). We show that

t′i ∈ Pni (ti).
Consider some Pn−1

−i ∈ Pn−1
−i . Take some arbitrary t−i ∈

Pn−1
−i and let hn−1

−i = hn−1
−i (t−i). By the induction assump-

tion, Pn−1
−i contains all type combinations in T−i that induce

the same combination of (n− 1)-th order beliefs as t−i. Re-
member from Section 2.2 that T−i[h

n−1
−i ] denotes the set of

type combinations in T−i that induce hn−1
−i . Then, we may

conclude that Pn−1
−i = T−i[h

n−1
−i ]. For every Ei ∈ Σi we then

have that

bi(t
′
i)(Ei × Pn−1

−i ) = bi(t
′
i)(Ei × T−i[hn−1

−i ])

= hni (t′i)(Ei × {hn−1
−i })

= hni (ti)(Ei × {hn−1
−i })

= bi(ti)(Ei × T−i[hn−1
−i ])

= bi(ti)(Ei × Pn−1
−i ),

which by equation (2) indeed implies that t′i ∈ Pni (ti). Here,
the first and fifth equality follows from the insight above that
Pn−1
−i = T−i[h

n−1
−i ], the second and the fourth equality follow

from the definition of hni (t′i) and hni (ti), whereas the third
equality follows from the assumption that hni (ti) = hni (t′i).

Suppose next that t′i ∈ Pni (ti). We show that hni (ti) =
hni (t′i).

Take some arbitrary combination hn−1
−i ∈ hn−1

−i (T−i) of
(n − 1)-th order beliefs that is obtained by at least one
type combination in T−i. By the induction assumption, there
must be some Pn−1

−i ∈ Pn−1
−i such that Pn−1

−i = T−i[h
n−1
−i ].

Then, for every Ei ∈ Σi,

hni (ti)(Ei × {hn−1
−i }) = bi(ti)(Ei × T−i[hn−1

−i ])

= bi(ti)(Ei × Pn−1
−i )

= bi(t
′
i)(Ei × Pn−1

−i )

= bi(t
′
i)(Ei × T−i[hn−1

−i ])

= hni (t′i)(Ei × {hn−1
−i }),

which indeed implies that hni (ti) = hni (t′i). Here, the third
equality follows from the assumption that t′i ∈ Pni (ti) and
equation (2), whereas the other equalities follow exactly as
above.

By the two steps above we may thus conclude that hni (ti) =
hni (t′i), if and only if, t′i ∈ Pni (ti). By induction on n, state-
ment (a) follows.

The proof of (b) follows immediately from (a) and prop-
erty (b) in Theorem 1. This completes the proof. �
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1. INTRODUCTION
In the game theoretic environment, there is a clear tension

between the strength of a solution concept and its robustness
to misspecification. In other words, if the analyst wants his
model to be resilient to small errors in the parameters, then
he must weaken the predictive power of the model. In fact,
this tension can be made formal; under a richness assump-
tion (loosely speaking, for every strategy there is a state such
that it is dominant), structure theorems place clear limits to
the predictive power of robust solution concepts [8, 6].

Intuitively, a similar tension arises when considering a so-
lution concept and its epistemic demands.1 To make sharper
predictions, the modeler must place more stringent require-
ments on the structure of the understanding of agents (at
least insofar as to adhere to the requirements of the solution
concept). Informally, this observation suggests a possible
link between the epistemic demands of a solution concept
and it’s robustness. The first aim of this paper is to for-
malize this connection. We show that particular notions of
robustness can be thought of as epistemic concerns. In par-
ticular, we examine a solution concept’s robustness to the
misspecification of players’ beliefs, the underlying space of
payoff uncertainty, and to the joint misspecification of both.
In each case, we show that reasonable and common notions
of robustness can be described entirely though the epistemic
characterization of the solution concept.

Most commonly, robustness has been defined with respect
to misspecification of player’s beliefs; in particular via the
upper-hemicontinuity (henceforth, UHC) of the solution con-
cept in question. UHC dictates that if a strategy is ruled
out for some type of player, then there is a neighborhood
of nearby types for which the strategy is also ruled out. In
the absence of UHC, approximations will not suffice; even if
a strategy is selected by every successive approximation, it
may not be selected in the limit.

Our first result provides the epistemic characterization of
UHC, and hence, a direct method of verification of robust-

1Informally, epistemic demand refer to the restrictions
placed on players beliefs regarding payoff uncertainty, op-
ponents strategies, and the higher order beliefs over these
objects. A more formal, but my no means complete, expla-
nation is found in Section 2.

ness. The UHC of a a solution concept is related to the
closedness of the event that characterizes it. Intuitively, that
a solution concept is well behaved with respect to approxi-
mation of the players types is implied by the fact that the
limit of any sequence in the characterizing event is also in
the event.

A second aim of this paper is to develop an appropri-
ate notion of robustness to the misspecification of the space
of payoff uncertainty (referred to as the state space). Al-
though the richness assumption allows for structure theo-
rems that place clear limits on the robustness of solution
concepts and provide for generic dominance solvability, it is
often an unreasonable demand on the space of uncertainty.
To assume richness is to drop all common knowledge as-
sumptions regarding strategic unceratainty.2 However, in
many, if not most, economic situations, there are clear re-
strictions on payoffs. Without assuming major structural
ignorance on the part of the players, the economic restric-
tions are best modeled by common knowledge assumptions.
Moreover, simply embedding the game in a larger state space
(and modeling common knowledge as initial common belief)
may distort predictions (for example, see section 2.1). This
is a problem exclusive to dynamic environments, as in static
games, the players’ initial (and only) beliefs entirely govern
actions. In dynamic environments, however, when players
are able to update their beliefs, the state space itself be-
comes relevant to the analysis.

Penta [6] proposes the robustness notion of informational
invariance, or, that the predictions of a solution concept
do not change when the game is embedded in any larger
state space. We ague that this is too strong a requirement,
as it restricts the solution concept from having any depen-
dence on the state space that is not present in the player’s
initial beliefs. Instead, we propose the notion of state-space-
robustness (s-robustness). To this end, we allow the space
of uncertainty that each player considers to become a pa-
rameter of the game. We call each players understanding
about the state space, and his higher order understanding
about his opponents understanding of the state space, his
directory. A player is described not only by his beliefs (a
hierarchy of probability distributions), but also by his direc-
tory (a hierarchy of sets of parameters). Then, in analogy to
UHC, a solution concept is s-robust if whenever a strategy is
ruled out for a directory there is a neighborhood of nearby

2Relaxing common knowledge assumptions can be somehow
regarded as strengthening common awareness ones.
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directories for which the strategy is also ruled out. As in
regards to UHC, we provide the epistemic restrictions that
coincide with s-robustness.

Lastly, we provide a structure theorem that identifies con-
ditions on directories such that any strict refinement of Ex-
tensive Form Rationalizability (EFR) (introduced in [5]) is
not UHC. We find conditions that are strictly weaker than
the richness assumption in [6] and its static counterpart in
[8]. In particular, while we require the existence of some
objective rich state space, this state space need not be com-
monly known. Each player could be described by a directory
that does not contain dominance states. Indeed, it is possi-
ble to obtain the result even in the case where it is common
knowledge that no action is ever dominant.

2. UPPER-HEMICONITINUITY: AN EPIS-
TEMIC APPROACH

We consider dynamic environments and our analysis takes
place within a formal epistemic framework. Players in a
game hold beliefs regarding the state space Θ, the other
players’ beliefs about the payoff uncertainty, and other play-
ers’ strategies S−i. Moreover, players hold higher-order be-
liefs about other players’ beliefs about these objects, beliefs
about these beliefs and so on.

Following closely the construction due to [2], we formally
represent each player i’s higher-order conditional beliefs on
opponents’ choices and the payoff state via conditional belief
hierarchies, i.e., (epistemic) types drawn from a universal
type space we denote by E . Note that players’ uncertainty
in E−i × S−i × Θ is not modeled only at the beginning of
the game, but also at every history along the possible paths
of play. We further assume that beliefs are updated in a
Bayesian manner whenever possible.

The epistemic analysis is then performed in the set of
states of the world, Ω = E × S × Θ. Each epistemic type,
ei ∈ Ei, induces a standard type, τi ∈ Ti via the canoni-
cal quotient map, qi : Ei → Ti.3 For each standard type,
τi, we denote by [qi = τi] the event that player i’s stan-
dard hierarchy is exactly τi. A solution concept can then be
characterized by an event contained in this state space.

Definition 1. An event E ⊆ Ω characterizes the solu-
tion concept Si : Ti ⇒ Si if for all τi it holds that Si(τi) =
ProjSi

(E ∩ [qi = τi]).

Throughout the paper we focus on two different dynamic
solution concepts: extensive-form rationalizability (EFR) [5],
and interim sequential rationalizable (ISR) [6]. Both are
generalizations of the static notion of interim correlated ra-
tionalizability; the difference being that EFR requires that
players place a higher epistemic priority to rationality than
ISR. Our focus on ISR is driven by the structure theorem
of [6], which states that, under the richness assumption, any
strict refinement of ISR is not UHC.

The epistemic characterization of ISR, provided by [6], is
the event composed of Rationality (R) and Initial Common
Belief in Rationality (ICBR). R states that each player will
always choose a strategy that is a best response to his own

3The standard type space consists of all hierarchies of be-
liefs over payoff uncertainty, modeled at the null history. It
is analogous to the canonical space constructed for static
environments by [3]. The map qi is simply the hierarchical
marginalization on this space.
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Figure 1: Examples 1 and 2 in [6].

belief. ICBR for player i states that, at the beginning of
the game, player i believes players j 6= i are rational, be-
lieves that players j 6= i believe players k 6= j are rational,
etc. Since players are Bayesian, this implies that at any his-
tory reached with positive probability according to player
i’s initial belief, player i still holds a common belief in R.

In this paper, we recall the characterization of EFR as
the event composed of R and Common Strong Belief in Ra-
tionality (CSBR). Strong Belief in Rationality for player i
is the event that player i assigns probability 1 to event R
at every history which is not belief-inconsistent with R, or,
in other words, whenever R has not been falsified by ob-
served history. This way, strong belief captures the essence
of forward induction, in the sense that beliefs about future
behavior are, whenever possible, updated according to ob-
served history and the filter rationality imposes. CSBR is
then the hierarchical iteration of strong belief in rationality;
that is, as stated by Battigalli’s best rationalization prin-
ciple, the event that players assign to their opponents the
highest degree of strategic sophistication consistent with ob-
served behavior [1]. It is immediate that ICBR is implied
by CSBR and hence EFR is a refinement of ISR. This last
observation, together with the structure theorem in [6], sug-
gests a clear tension between rationalization and robustness:
under richness, the robustness of predictions appears to be
lost as soon as players are assumed to reason according to
the highest rationalization principle. The following example
illustrates the conflict.

2.1 Alexei and Polina
Example 1 by [6] studies the sequential game depicted in

Figure 1, in which Alexei Ivanovich’s (player A) utility af-
ter history (In, a3) is represented by unspecified parameter
θ. We focus first in the case in which Alexei and Polina
Alexandrovna (player P ) commonly know that θ equals 0:
Θ = {0} and the the corresponding standard type space is
T CK = {τCK}. In this case, strategy (In, a3) is strictly
dominated for Alexei. So, if Polina finds herself at informa-
tion set {(In, a2), (In, a3)} (i.e, she is informed that Alexei
did not choose a1) and believes that Alexei is rational, then
she must believe he played (In, a2). Thus, action b1 is opti-
mal for her. Now, if Alexei expects Polina to rationalize his
choice, he is able to predict choice b1 in case he plays (In, a2),
and hence, (In, a2) becomes optimal for him. However, if
Polina finds herself at information set {(In, a2), (In, a3)} and
does not believe that Alexei is rational, she can rationalize
any action. Hence ISR, which does not require Polina to
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believe Alexei is rational at {(In, a2), (In, a3)} (if, say, she
placed probability 1 on his playing a1), considers strictly
more strategies than EFR, which makes such a require-
ment. Indeed, ISR(τCK) = {a1, (In, a2)} × {b1, b2}, and
EFR(τCK) = ((In, a2), b2), as shown in greater detail in [6].

Next, consider the model in which Θ = {0, 3} and there
is common certainty that θ = 0, that is T CC = {τCC},
such that type τCC assigns probability 1 to payoff state and
opponents’ type combination (0, τCC).4 The analysis in [6]
constructs a set of types {τm}m∈N such that τm → τCC

and ISR(τm) = {(a1, b2)} for all m. Now, if EFR(τCC) =
EFR(τCK) = {((In, a2), b2)} this would indeed be a viola-
tion of UHC, as EFR is a refinement of ISR, hence, for all
types in the sequence {τm}m∈N, EFR(τm) ⊆ ISR(τm) =
{(a1, b2)}.

Notice however, that EFR(τCC) 6= EFR(τCK); the move
from common knowledge to common certainty changes the
set of EFR strategies. Although Polina must retain his belief
that Alexei is rational, even after surprising events, it is not
the case that she must retain his belief that Alexei places
probability 1 on θ = 0. Indeed, consider the following first-
order beliefs: Alexei assigns probability 1 to (b2, 0) when
θ = 0, and probability 1 to (b2, 3) when θ = 3, and Polina
assigns probability 1 to (a1, 0) at the beginning of the game,
and probability 1 to ((In, a3), 3) when she observes In. Now,
assume that Alexei’s second-order belief assigns probability
1 to Polina’s first-order beliefs above. Polina’s second-order
beliefs assign probability 1 to Alexei’s first-order belief cor-
responding to θ = 0 at the beginning of the game, and, when
she observes In, assign probability 1 to Alexei’s first-order
belief corresponding to θ = 3. Keeping this iteration, it is
easy to check that we obtain a profile of conditional belief
hierarchies that represent CSBR and initial common belief
in θ = 0 (when θ = 0, something Alexei is informed about).
Moreover, the unique best-response is indeed profile (a1, b2).
Hence, (a1, b2) ∈ EFR(τCC). The mere fact that updated
beliefs may take θ = 3 into account, and that it is commonly
known that this is possible, mutes the restriction imposed
by the high epistemic priority is given to rationality.

2.2 Characterization
This example illustrates two key issues. The first is that

the aforementioned tension between rationalization and ro-
bustness is not present: EFR does not fail to be UHC in the
example. The tension is mitigated since Polina can revise
her beliefs about Alexei’s actions without losing his belief in
Alexei’s rationality because there exists some state (θ = 3)
that allowed Alexei to be rational (but perhaps with incor-
rect beliefs) and take the particular action. This is a spe-
cial case of a more general phenomena: when all common
knowledge assumptions are dropped (i.e., under richness)
this observation extends to any action: if an action could
be rationalized by assuming an opponent is irrational, then
it can be rationalized by changing only that opponents be-
liefs, but retaining his rationality. These observations can be
made formal, and are best examined thorough the following
result:

Proposition 1. Let E ⊆ Ω be a closed event such that
E ∩ [qi = τi] 6= ∅ for any standard type τi. Then, for player

4Penta actually considers a slightly different model in which
P1 has private information, but the analysis is undistorted.

i, the following correspondence is upper-hemicontinuous:

SEi : Ti ⇒ Si
τi → ProjSi

(Ri ∩ E ∩ [qi = τi]).

Proposition 1 provides a general way of verifying if the a so-
lution concept is UHC. Note, by requiring that E ∩ [qi = τi]
is non empty, we are implicitly requiring that the solution
concept does not place any direct restrictions on the stan-
dard type space. In other words, this method of verification
only works if the solution concept is well defined for all pos-
sible standard types.

Utilizing this result and the characterization of EFR (i.e.,
by setting E = CSBR), it is straightforward to check that
the result holds for EFR. This observation, along with the
structure theorem in [6], easily delivers the following result:

Corollary 1. EFR is UHC. Moreover, under richness,
ISR and EFR coincide.

Since under richness no strict refinement of ISR is UHC,
and since EFR is both UHC and a refinement of ISR, the two
solution concepts must coincide under richness. Intuitively
this is because CSBR only induces a binding restriction on
player i’s conjectures about his opponents strategies under
common knowledge assumptions. This is an important dis-
tinction, since it implies that the tension between robustness
and rationalization would only be assured to exist when ra-
tionalization has no effect at all.

3. PERSONAL BASE SPACES OF UNCER-
TAINTY AND S-ROBUSTNESS

The second issue raised by the example is the importance
of considering the state space, and the inability to maintain
predictions under embeddings. Indeed, the initial intuition
of the example, that EFR is not UHC, is being driven not
by a failure of convergence of standard types (since EFR it
is in fact UHC), but by the failure to foresee the effects of
changing the space of strategic uncertainty. In light of this,
we propose a framework where players each have a subjec-
tive understanding of the space of payoff uncertainty. This
accomplishes two goals simultaneously. First, it allows for
the modeler to examine how changes (or mis-specifications)
of the true state-space effect predictions. Second, it relaxes
the restriction that the state-space is commonly known.

In regards to the second point, it is worth noting that
while the richness assumption can be interpreted as relaxing
all common knowledge restrictions regarding the payoffs as-
sociated with a given strategy, it still imposes, rather restric-
tively, that all players commonly know that all such common
knowledge restrictions are relaxed. In other words, that all
players commonly know that it is not common knowledge
that any action is not dominant. Hence, by allowing the
space of uncertainty to be subjective, we relax the imposi-
tion that the state space is commonly known.

To do this we define each players directory. Beginning
with some fixed, objective state space Θ0, a directory for
player i assigns the subset of Θ0 that he understands to
be the true space of parameters, the subset he understands
each of his opponents to understand to be the true space,
and so on. Notationally, let K(Θ0) be the set of all non-
empty compact subsets of Θ0, let I be the set of players,
and for each n ∈ N let Λn = In; finally set Λ =

⋃
n∈N Λn.
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Definition 2. For each player i ∈ I, we say that Θi :
Λ → K(Θ0) is a directory for player i, if for any n ∈ N
and any λ ∈ Λn:

D1. If λ1 = i, then Θi(λ) = Θi

(
(λk)nk=2

)
.

D2. If λk = λk+1 for some k < n, then

Θi(λ) = Θi ((λ1, . . . , λk−1, λk+1, . . . , λn)) .

Let D(Θ0) be the set of all directories defined over Θ0.

If Θi(j) = Θ1 then player i only takes into account Θ1

when conjecturing about j’s first order beliefs. Likewise, if
Θi(j, k) = Θ2, then player i only takes into account Θ2 when
conjecturing about j’s second order beliefs about k’s first or-
der beliefs. Under our interpretation, D1 states that each
player correctly understands his own understanding. Then,
D1 implies that Θi(i, j) = Θi(i, i, j) = Θ1, etc. Similarly, D2
dictates that in each player’s mind all other players under-
stand the restriction imposed by D1. Hence, player 1’s un-
derstands that player 2 understands his own understanding.
Hence, Θi(i, j, j, j) = Θi(i, j, j) = Θ1, too. Note that each
player i’s directory Θi induces a directory for all of his op-
ponents in his mind, namely Θj|i, where Θj|i(λ) = Θi(j, λ)
for any λ ∈ Λ and any opponent j. As usual, we denote
Θ−i|i =

∏
j 6=i Θj|i.

Each directory, Θi, induces a type space, T Θi
i , in a natural

way. T Θi
i is the set of types (drawn from the universal space

over Θ0) whose beliefs are concentrated on the appropriate
set assigned by the directory. Each player can be described
by a pair (Θi, τi), where τi ∈ T Θi

i .
By directly incorporating each players understanding of

the state space, it becomes easy to define s-robustness.

Definition 3. Let G be a game with incomplete informa-

tion. Then, we say that solution concept Si : Graph(T (·)
i ) ⇒

Si is s-robust, if for any player i, standard hierarchy τi, and
sequence (Θn

i , s
n
i )n∈N ⊆ D(Θ0)× Si such that:5

(i) τi ∈ T Θn
i

i for all n,

(ii) sni ∈ Si(Θn
i , τi) for all n,

(iii) lim
n→∞

Θn
i = Θi, and,

(iv) lim
n→∞

sni = si,

then si ∈ Si(Θi, τi).

Just as UHC states that the solution concept should be
consistent in the limit of successive approximations of player’s
true type, s-robustenss imparts the same requirement on ap-
proximation of the player’s true understanding of the true
state-space. One can model the situation where some state
space, Θ1, is commonly known by setting Θi(λ) = Θ1 for all
i and λ. It is within this specific case that we can model em-
beddings of the game and get a more direct comparison to
informational invariance [6]. S-robustness is a significantly
weaker requirement than informational invariance, as it only
requires the solution concept to be resilient to small mis-
specifications. It should therefore not be too surprising that
EFR is also s-robust.
5In the paper, we formally define the topology on D(Θ0).
Intuitively, it is the product topology generated by sequences
of K(Θ0), itself endowed with the Hausdorff metric.

Proposition 2. EFR is s-robust.

This result, like its analog for UHC, is proven by examin-
ing the epistemic demands of the robustness criterion. How-
ever, this involves a large notational burden, and so, is left
out of this abstract.

3.1 A Structure Theorem
Following the literature on robustness, we provide a struc-

ture theorem. While the motivation is similar, the notion
of directories raises a new question: is the generic unique-
ness of dominance solvability –being driven by relaxation
of common knowledge conditions on strategic uncertainty–
still present under the relaxation of common knowledge con-
ditions on payoff uncertainty. That is, can we still obtain
a structure theorem if we allow players to understand the
state space as not being rich.

We provide a (partial) affirmative answer. We find strictly
weaker conditions under which a structure theorem still ob-
tains.

Assumption 1 (Objective Richness). Θ0 satisfies the
Richness Condition.6

Although we are assuming that the objective space of un-
certainty is sufficiently rich, Assumption 1 contains no com-
mon knowledge restrictions. This is the direct result of the
disentangling of the objective space of uncertainty with play-
ers personal base spaces, as given by the directory.

Definition 4. We say that Θ ∈ K(Θ0) has strongly
generic payoffs if for any strategy si ∈ Si, there is a state
θ ∈ Θ, and a profile of opponents strategies s−i ∈ S−i, such
that si is a strict best response to s−i at θ.

Assumption 2 (Common Knowledge of Genericity).
For all i and λ ∈ Λ, Θi(λ) has strongly generic payoffs.

Assumption 2 is, like richness, a common knowledge re-
striction on the space of uncertainty. However, it is a sig-
nificantly weaker restriction. The relationship is as follows:
richness dictates that it is not commonly known that any
action is not dominant, whereas genericity dictates that it
not commonly known that any action is dominant. Indeed,
Assumptions 1 and 2 allow for the situation where it is com-
monly known that no action is dominant. For example, a
simple“Battle of the Sexes”game with no payoff uncertainty
would satisfy Assumption 2 but clearly fail to satisfy rich-
ness. Moreover, since richness implies genericity, if Θ0 is rich
and commonly known (i.e., as in previous literature) then
Assumptions 1 and 2 are both implied.

Proposition 3. Under assumptions 1 and 2, any strict
refinement of EFR is not UHC. Moreover, the set

{(Θi, τi) : |EFRi(Θi, τi)| = 1}

is open and dense in Graph(T (·)
i ).

Proposition 3 shows that richness need not be commonly
known to arrive at generic dominance solvability. The re-
sult relies on the ability to construct a sequence of direc-
tories that impose richness at increasingly high order un-
derstandings; then using Assumption 2 to cascade the effect

6As defined in [6].
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down without losing convergence. It is worth pointing out
that there has been a recent interest in providing structure
theorems in the absence of richness [4, 7]. However, these
papers focus on the identifying which strategies can be se-
lected when richness is not assumed, rather than weakening
the structural conditions on the space of uncertainty while
retaining that all rationalizable actions can be selected.

4. CONCLUSION
In this paper we show a formal connection between the

epistemic characterization of a solution concept and its ro-
bustness to the misspecification of parameters. This pro-
vides both an important conceptual link and a direct method
for checking robustness when the epistemic characterization
is known. We use this result to show that EFR is UHC.
We also present a new framework that relaxes the com-
mon knowledge restrictions regarding the space of payoff
parameters. Then, we propose a new type of robustness,
s-robustness, to modeling errors of the player understanding
of the space of uncertainty, which is of particular impor-
tance in dynamic environments. We characterize this no-
tion through our epistemic framework and show that EFR
is also s-robust. Finally, we provide a structure theorem for
EFR with personal spaces of uncertainty that shows that no
common knowledge assumptions regarding the existence of
dominance states are required to achieve generic dominance
solvability.
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ABSTRACT
In this paper we introduce a computational-level model of
theory of mind (ToM) based on dynamic epistemic logic
(DEL), and we analyze its computational complexity. The
model is a special case of DEL model checking. We pro-
vide a parameterized complexity analysis, considering sev-
eral aspects of DEL (e.g., number of agents, size of precon-
ditions, etc.) as parameters. We show that model checking
for DEL is PSPACE-hard, also when restricted to single-
pointed models and S5 relations, thereby solving an open
problem in the literature. Our approach is aimed at formal-
izing current intractability claims in the cognitive science
literature regarding computational models of ToM.

Categories and Subject Descriptors
F.1.3 [Theory of Computation]: Complexity Mea-
sures & Classes—Reducibility and Completeness; F.4.1
[Mathematical Logic and Formal Languages]: Math-
ematical Logic—Modal Logic; I.2.4 [Artificial Intelli-
gence]: Knowledge Representation Formalisms and Meth-
ods—Modal Logic

General Terms
Theory

Keywords
Theory of mind; dynamic epistemic logic; computational
complexity; parameterized complexity; computational-level
model

1. INTRODUCTION
Imagine that you are in love. You find yourself at your

desk, but you cannot stop your mind from wandering off.
What is she thinking about right now? And more impor-
tantly, is she thinking about you and does she know that
you are thinking about her? Reasoning about other peo-
ple’s knowledge, belief and desires, we do it all the time.

∗This research has been carried out in the context of the
first author’s master’s thesis [37].
†Supported by Gravitation Grant 024.001.006 of the Lan-
guage in Interaction Consortium from the Netherlands Or-
ganization for Scientific Research.
‡Supported by the Netherlands Organisation for Scientific
Research Veni Grant NWO-639-021-232.

For instance, in trying to conquer the love of one’s life, to
stay one step ahead of one’s enemies, or when we lose our
friend in a crowded place and we find them by imagining
where they would look for us. This capacity is known as
theory of mind (ToM) and it is widely studied in various
fields (see, e.g., [8, 11, 23, 34, 36, 38, 47, 48]).

We seem to use ToM on a daily basis and many cognitive
scientists consider it to be ubiquitous in social interaction [1].
At the same time, however, it is also widely believed that
computational cognitive models of ToM are intractable, i.e.,
that ToM involves solving problems that humans are not ca-
pable of solving (cf. [1, 27, 31, 50]). This seems to imply a
contradiction between theory and practice: on the one hand
we seem to be capable of ToM, while on the other hand, our
theories tell us that this is impossible. Dissolving this para-
dox is a critical step in enhancing theoretical understanding
of ToM.

The question arises what it means for a computational-
level model1 of cognition to be intractable. When looking
more closely at these intractability claims regarding ToM, it
is not clear what these researchers mean exactly, nor whether
they mean the same thing. In theoretical computer science
and logic there are a variety of tools to make precise claims
about the level of complexity of a certain problem. In cog-
nitive science, however, this is a different story. With the
exception of a few researchers, cognitive scientists do not
tend to specify formally what it means for a theory to be
intractable. This makes it often very difficult to assess the
validity of the various claims in the literature about which
theories are tractable and which are not.

In this paper we adopt the Tractable-cognition thesis
(see [42]) that states that people have limited resources
for cognitive processing and human cognitive capacities are
confined to those that can be realized using a realistic
amount of time.2 More specifically we adopt the FPT-

1In cognitive science, often Marr’s [33] tri-level distinc-
tion between computational-level (“what is the nature
of the problem being solved?”), algorithmic-level (“what
is the algorithm used for solving the problem?”), and
implementational-level (“how is the algorithm physically re-
alized?”) is used to distinguish different levels of computa-
tional cognitive explanations. In this paper, we will focus on
computational-level models of ToM and their computational
complexity.
2There is general consensus in the cognitive science com-
munity that computational intractability is a undesirable
feature of cognitive computational models, putting the cog-
nitive plausibility of such models into question [13, 24, 26,
42, 46]. There are diverging opinions about how cognitive
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cognition thesis [42] that states that computationally plau-
sible computational-level cognitive theories are limited to
the class of input-output mappings that are fixed-parameter
tractable for one or more input-parameters that can be as-
sumed to be small in practice. To be able to make more
precise claims about the (in)tractability of ToM we intro-
duce a computational-level model of ToM based on dynamic
epistemic logic (DEL), and we analyze its computational
complexity. The model we present is a special case of DEL
model checking. Here we include an informal description of
the model.3 The kind of situation that we want to be able
to model, is that of an observer that observes one or more
agents in an initial situation. The observer then witnesses
actions that change the situation and the observer updates
their knowledge about the mental states of the agents in the
new situation. Such a set up is often found in experimental
tasks, where subjects are asked to reason about the mental
states of agents in a situation that they are presented.

DBU (informal) – Dynamic Belief Update
Instance: A representation of an initial situation, a
sequence of actions – observed by an observer – and
a (belief) statement ϕ of interest.
Question: Is the (belief) statement ϕ true in the
situation resulting from the initial situation and the
observed actions?

We prove that DBU is PSPACE-complete. PSPACE-
completeness was already shown by Aucher and Schwarzen-
truber [3] for DEL model checking in general. They con-
sidered unrestricted relations and multi-pointed event mod-
els. Since their proof does not hold for the special case of
DEL model checking that we consider, we propose an al-
ternative proof. Our proof solves positively the open ques-
tion in [3] whether model checking for DEL restricted to S5
relations and single-pointed models is PSPACE-complete.
Bolander, Jensen and Schwarzentruber [10] independently
considered an almost identical special case of DEL model
checking (there called the plan verification problem). They
also prove PSPACE-completeness for the case restricted
to single-pointed models, but their proof does not settle
whether hardness holds even when the problem is restricted
to S5 models.

Furthermore, we investigate how the different aspects (or
parameters, see Table 1) of our model influence its com-
plexity. We prove that for most combinations of parame-
ters DBU is fp-intractable and for one case we prove fp-
tractability. See Figure 2 for an overview of the results.

Besides the parameterized complexity results for DEL
model checking that we present, the main conceptual contri-
bution of this paper is that it bridges cognitive science and
logic, by using DEL to model ToM (cf. [28, 47]). By do-
ing so, the paper provides the means to make more precise
statements about the (in)tractability of ToM.

science should deal with this issue (see, e.g., [12, 26, 41,
43]). It is beyond the scope of this paper to discuss this in
detail. In this paper we adopt the parameterized complexity
approach as described in [42].
3 We pose the model in the form of a decision problem, as
this is convenient for purposes of our complexity analysis.
Even though ToM may be more intuitively modeled by a
search problem, the complexity of the decision problem gives
us lower bounds on the complexity of such a search problem,
and therefore suffices for the purposes of our paper.

The paper is structured as follows. In Section 2 we in-
troduce basic definitions from dynamic epistemic logic and
parameterized complexity theory. Then, in Section 3 we
introduce a formal description of our computational-level
model and we discuss the particular choices that we make.
Next, in Section 4 we present our (parameterized) complex-
ity results. Finally, in Section 5 we discuss the implications
of our results for the understanding of ToM.

2. PRELIMINARIES

2.1 Dynamic Epistemic Logic
Dynamic epistemic logic is a particular kind of modal logic

(see [16, 6]), where the modal operators are interpreted in
terms of belief or knowledge. First, we define epistemic mod-
els, which are Kripke models with an accessibility relation
for every agent a ∈ A, instead of just one accessibility rela-
tion.

Definition 2.1 (Epistemic model). Given a finite set A of
agents and a finite set P of propositions, an epistemic model
is a tuple (W,R, V ) where

- W is a non-empty set of worlds;

- R is a function that assigns to every agent a ∈ A a
binary relation Ra on W ; and

- V is a valuation function from W × P into {0, 1}.
The accessibility relations Ra can be read as follows: for

worlds w, v ∈W , wRav means“in world w, agent a considers
world v possible.”

Definition 2.2 ((Multi and single-)pointed epistemic
model). A pair (M,Wd) consisting of an epistemic
model M = (W,R, V ) and a non-empty set of designated
worlds Wd ⊆W is called a pointed epistemic model. A pair
(M,Wd) is called a single-pointed model when Wd is a sin-
gleton, and a multi-pointed epistemic model when |Wd| >
1. By a slight abuse of notation, for (M, {w}), we also
write (M,w).

We consider the usual restrictions on relations in epistemic
models and event models, such as KD45 and S5 (see [16]).
In KD45 models, all relations are transitive, Euclidean and
serial, and in S5 models all relations are transitive, reflexive
and symmetric.

We define the following language for epistemic models. We
use the modal belief operator B, where for each agent a ∈
A, Baϕ is interpreted as “agent a believes (that) ϕ”.

Definition 2.3 (Epistemic language). The language LB
over A and P is given by the following definition, where a
ranges over A and p over P :

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ.
We will use the following standard abbreviations, > := p ∨
¬p,⊥ := ¬>, ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ,

B̂a := ¬Ba¬ϕ.

The semantics for this language is defined as follows.

Definition 2.4 (Truth in a (single-pointed) epistemic
model). Let M = (W,R, V ) be an epistemic model, w ∈
W , a ∈ A, and ϕ,ψ ∈ LB. We define M,w |= ϕ inductively
as follows:
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M,w |= p iff V (w, p) = 1
M,w |= ¬ϕ iff not M,w |= ϕ
M,w |= (ϕ ∧ ψ) iff M,w |= ϕ and M,w |= ψ
M,w |= Baϕ iff for all v with wRav: M, v |= ϕ

When M,w |= ϕ, we say that ϕ is true in w or ϕ is satisfied
in w.

Definition 2.5 (Truth in a multi-pointed epistemic model).
Let (M,Wd) be a multi-pointed epistemic model, a ∈ A, and
ϕ ∈ LB. M,Wd |= ϕ is defined as follows:

M,Wd |= ϕ iff M,w |= ϕ for all w ∈Wd

Next we define event models.

Definition 2.6 (Event model). An event model is a tuple
E = (E,Q, pre, post), where E is a non-empty finite set of
events; Q is a function that assigns to every agent a ∈ A a
binary relation Ra on W ; pre is a function from E into LB
that assigns to each event a precondition, which can be any
formula in LB; and post is a function from E into LB that
assigns to each event a postcondition. Postconditions are
conjunctions of propositions and their negations (including
> and ⊥).

Definition 2.7 ((Multi and single-)pointed event model /
action). A pair (E , Ed) consisting of an event model E =
(E,Q, pre, post) and a non-empty set of designated events
Ed ⊆ E is called a pointed event model. A pair (E , Ed) is
called a single-pointed event model when Ed is a singleton,
and a multi-pointed event model when |Ed| > 1. We will
also refer to (E , Ed) as an action.

We define the notion of a product update, that is used to
update epistemic models with actions [4].

Definition 2.8 (Product update). The product update of
the state (M,Wd) with the action (E , Ed) is defined as the
state (M,Wd)⊗ (E , Ed) = ((W ′, R′, V ′),W ′d) where

- W ′ = {(w, e) ∈W × E ; M,w |= pre(e)};
- R′a = {((w, e), (v, f)) ∈W ′ ×W ′ ; wRav and eQaf};
- V ′(p) = 1 iff either (M,w |= p and post(e) 6|= ¬p) or
post(e) |= p; and

- W ′d = {(w, e) ∈W ′ ; w ∈Wd and e ∈ Ed}.
Finally, we define when actions are applicable in a state.

Definition 2.9 (Applicability). An action (E , Ed) is appli-
cable in state (M,Wd) if there is some e ∈ Ed and some
w ∈ Wd such that M,w |= pre(e). We define applica-
bility for a sequence of actions inductively. The empty
sequence, consisting of no actions, is always applicable.
A sequence a1, . . . , ak of actions is applicable in a state
(M,Wd) if (1) the sequence a1, . . . , ak−1 is applicable in
(M,Wd) and (2) the action ak is applicable in the state
(M,Wd)⊗ a1 ⊗ · · · ⊗ ak−1.

2.2 Parameterized Complexity Theory
We introduce some basic concepts of parameterized com-

plexity theory. For a more detailed introduction we refer to
textbooks on the topic [17, 18, 22, 35].

Definition 2.10 (Parameterized problem). Let Σ be a finite
alphabet. A parameterized problem L (over Σ) is a subset
of Σ∗ × N. For an instance (x, k), we call x the main part
and k the parameter.

The complexity class FPT, which stands for fixed-
parameter tractable, is the direct analogue of the class P in
classical complexity. Problems in this class are considered
efficiently solvable, because the non-polynomial-time com-
plexity inherent in the problem is confined to the parameter
and in effect the problem is efficiently solvable even for large
input sizes, provided that the value of the parameter is rel-
atively small.

Definition 2.11 (Fixed-parameter tractable / the class
FPT). Let Σ be a finite alphabet.

1. An algorithm A with input (x, k) ∈ Σ×N runs in fpt-
time if there exists a computable function f and a poly-
nomial p such that for all (x, k) ∈ Σ× N, the running
time of A on (x, k) is at most

f(k) · p(|x|).

Algorithms that run in fpt-time are called fpt-
algorithms.

2. A parameterized problem L is fixed-parameter
tractable if there is an fpt-algorithm that decides L.
FPT denotes the class of all fixed-parameter tractable
problems.

Similarly to classical complexity, parameterized complex-
ity also offers a hardness framework to give evidence that
(parameterized) problems are not fixed-parameter tractable.
The following notion of reductions plays an important role
in this framework.

Definition 2.12 (Fpt-reduction). Let L ⊆ Σ×N and L′ ⊆
Σ′×N be two parameterized problems. An fpt-reduction from
L to L′ is a mapping R : Σ×N→ Σ′×N from instances of L
to instances of L′ such that there is a computable function g :
N→ N such that for all (x, k) ∈ Σ× N:

1. (x′, k′) = R(x, k) is a yes-instance of L′ if and only
if (x, k) is a yes-instance of L;

2. R is computable in fpt-time; and

3. k′ ≤ g(k).

Another important part of the hardness framework is the
parameterized intractability class W[1]. To characterize this
class, we consider the following parameterized problem.

{k}-WSat[2CNF]
Instance: A 2CNF propositional formula ϕ and an
integer k.
Parameter: k.
Question: Is there an assignment α : var(ϕ) →
{0, 1}, that sets k variables in var(ϕ) to true, that
satisfies ϕ?

The class W[1] consists of all parameterized problems that
can be fpt-reduced to {k}-WSat[2CNF]. A parameterized
problem is hard for W[1] if all problems in W[1] can be
fpt-reduced to it. It is widely believed that W[1]-hard prob-
lems are not fixed-parameter tractable [18]. Another pa-
rameterized intractability class, that can be used in a sim-
ilar way, is the class para-NP. The class para-NP consists

241



of all parameterized problems that can be solved by a non-
deterministic fpt-algorithm. To show para-NP-hardness, it
suffices to show that DBU is NP-hard for a constant value
of the parameters [21]. Problems that are para-NP-hard are
not fixed-parameter tractable, unless P = NP [22, Theo-
rem 2.14].

3. COMPUTATIONAL-LEVEL MODEL OF
THEORY OF MIND

Next we present a formal description of our
computational-level model. Our aim is to capture, in
a qualitative way, the kind of reasoning that is necessary to
be able to engage in ToM. Arguably, the essence of ToM is
the attribution of mental states to another person, based on
observed behavior, and to predict and explain this behavior
in terms of those mental states. The aspect of ToM that we
aim to formalize with our model is the attribution of mental
states. There is a wide range of different kinds of mental
states such as epistemic, emotional and motivational states.
In our model we focus on epistemic states, in particular on
belief.

To be cognitively plausible, our model needs to be able
to capture a wide range of (dynamic) situations, where all
kinds of actions can occur, not just actions that change be-
liefs (epistemic actions), but also actions that change the
state of the world (ontic actions). This is why, following
Bolander and Andersen [9], we use postconditions in the
product update of DEL (in addition to preconditions).

Furthermore, we want to model the (internal) perspective
of the observer (on the situation). Therefore, the god per-
spective, also called the perfect external approach by Aucher
[2] – that is inherent to single-pointed epistemic models – will
not suffice for all cases that we want to be able to model.
This perfect external approach supposes that the modeler is
an omniscient observer that is perfectly aware of the actual
state of the world and the epistemic situation (what is going
on in the minds of the agents). The cognitively plausible
observers that we are interested in here will not have infal-
lible knowledge in many situations. They are often not able
to distinguish the actual world from other possible worlds,
because they are uncertain about the facts in the world and
the mental states of the agent(s) that they observe. That
is why, again following Bolander and Andersen [9], we allow
for multi-pointed epistemic models (in addition to single-
pointed models), which can model the uncertainty of an ob-
server, by representing their perspective as a set of worlds.
How to represent the internal or fallible perspective of an
agent in epistemic models is a conceptual problem that has
not been settled yet in the DEL-literature. There have been
several proposals to deal with this (see, e.g., [2, 15, 25]).

Also, since we do not assume that agents are perfectly
knowledgeable, we allow the possibility of modeling false
beliefs of the observers and agents, by using KD45 mod-
els (rather than S5 models). Even though KD45 models
present an idealized form of belief (with perfect introspec-
tion and logical omniscience), we argue that at least to some
extent they are cognitively plausible, and that therefore, for
the purpose of this paper, it suffices to focus on KD45 mod-
els. Our complexity results (which we present in the next
section) do not depend on this choice; they hold for DBU
restricted to KD45 models and restricted to S5 models, and
also for the unrestricted case.

We define our computational-level model of ToM as fol-
lows.

DBU (formal) – Dynamic Belief Update
Instance: A set of propositions P, and set of
Agents A. An initial state so, where so =
((W,V,R),Wd) is a pointed epistemic model. An
applicable sequence of actions a1, ..., ak, where aj =
((E,Q, pre, post), Ed) is a pointed event model. A
formula ϕ ∈ LB .
Question: Does so ⊗ a1 ⊗ ...⊗ ak |= ϕ?

The model can be naturally used to formalize ToM tasks
that are employed in psychological experiments. The classi-
cal ToM task that is used by (developmental) psychologists
is the false belief task [5, 49]. The DEL-based formalization
of the false belief task by Bolander [8] can be seen as an in-
stance of DBU. For more details on how DBU can be used
to model ToM tasks, we refer to [37].

4. COMPLEXITY RESULTS

4.1 PSPACE-completeness
We show that DBU is PSPACE-complete. For this, we

consider the decision problem TQBF. This problem is
PSPACE-complete [45].

TQBF
Instance: A quantified Boolean formula ϕ =
Q1x1Q2x2 . . . Qmxm.ψ.
Question: Is ϕ true?

Theorem 1. DBU is PSPACE-hard.

Proof. To show PSPACE-hardness we specify a
polynomial-time reduction R from TQBF to DBU.
Let ψ be a Boolean formula. First, we sketch the general
idea behind the reduction. We use the reduction to list all
possible assignments to var(ψ). To do this we use groups
of worlds (which are Ra-equivalence classes) to represent
particular truth assignments. Each group consists of a
string of worlds that are fully connected by equivalence
relation Ra. Except for the first world in the string, all
worlds represent a true variable xi (under a particular
assignment).

We give an example of such a group of worlds that rep-
resents assignment α = {x1 7→ T, x2 7→ F, x3 7→ T, x4 7→
T, x5 7→ F, x6 7→ T}. Each world has a reflexive loop for
every agent, which we leave out for the sake of presenta-
tion. More generally, in all our drawings we replace each
relation Ra with a minimal R′a whose transitive reflexive
closure is equal to Ra. marks the designated world. Since
all relations are reflexive, we draw relations as lines (leaving
out arrows at the end).

w1

y

w2

y

w3

y

w4

y

a a

1

a

3 4

a

6

We refer to worlds w1, . . . , w4 as the bottom worlds of this
group. If a bottom world has an Ri relation to a world that
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makes proposition y true, we say that it represents vari-
able xi.

The reduction makes sure that in the final updated model
(the model that results from updating the initial state with
the actions – which are specified by the reduction) each pos-
sible truth assignment to the variables in ψ will be repre-
sented by a group of worlds. Between the different groups,
there are no Ra-relations (only Ri-relations for 1 ≤ i ≤ m).
By ‘jumping’ from one group (representing a particular truth
assignment) to another group with relation Ri, the truth
value of variable xi can be set to true or false. We can now
translate a quantified Boolean formula into a correspond-
ing formula of LB by mapping every universal quantifier Qi
to Bi and every existential quantifier Qj to B̂j .

To illustrate how this reduction works, we give an exam-
ple. Figure 1 shows the final updated model for a quantified
Boolean formula with variables x1 and x2. In this model
there are four groups of worlds: {w1, w2, w3}, {w4, w5},
{w6, w7} and {w8}. Worlds w1, . . . , w8 are what we refer
to as the bottom worlds. The gray worlds and edges can
be considered a byproduct of the reduction; they have no
particular function.

We represent variable x1 by B̂1y and variable x2
by B̂2y. Then, in the model above, checking whether
∃x1∀x2.x1 ∨ x2 is true can be done by checking whether
formula B̂1B2(B̂aB̂1y ∨ B̂aB̂2y) is true, which is indeed the
case. Also, checking whether ∀x1∀x2.x1 ∨ x2 is true can be
done by checking whether B1B2(B̂aB̂1y ∨ B̂aB̂2y) is true,
which is not the case.

Now, we continue with the formal details. Let ϕ =
Q1x1 . . . Qmxm.ψ be a quantified Boolean formula with
quantifiers Q1, . . . , Qm and var(ψ) = {x1, . . . , xm}. We
define the following polynomial-time computable mappings.
For 1 ≤ i ≤ m, let [xi] = B̂iy, and

[Qi] =

{
Bi if Qi = ∀
B̂i if Qi = ∃.

Formula [ψ] is the adaptation of formula ψ where every

occurrence of xi in ψ is replaced by B̂a[xi]. Then [ϕ] =
[Q1] . . . [Qm][ψ]. We formally specify the reduction R. We
let R(ϕ) = (P,A, s0, a1, . . . , am, [ϕ]), where:

- P = {y}, A = {a, 1, . . . ,m}

- s0 =

y y

· · ·

y

a a

1

a

2

a

m

All relations in s0, a1, . . . , am are equivalence relations.
Note that all worlds in s0, a1, . . . , am have reflexive loops
for all agents. We omit all reflexive loops for the sake of
readability.

- a1 =
e1 : 〈>,>〉 e2 : 〈¬B̂1y ∨ y,>〉

1

...

- am =
e1 : 〈>,>〉 e2 : 〈¬B̂my ∨ y,>〉

m

We show that ϕ ∈ TQBF if and only if R(ϕ) ∈ DBU.
We prove that for all 1 ≤ i ≤ m + 1 the following claim

holds. For any assignment α to the variables x1, . . . , xi−1

and any bottom world w of a group that agrees with α,
the formula Qixi . . . Qmxm.ψ is true under α if and only if
[Qi] . . . [Qm][ψ] is true in world w. In the case for i = m+1,
this refers to the formula [ψ].

We start with the case for i = m + 1. We show that
the claim holds. Let α be any assignment to the vari-
ables x1, . . . , xm, and let w be any bottom world of a group γ
that represents α. Then, by construction of [ψ], we know
that ψ is true under α if and only if [ψ] is true in w.

Assume that the claim holds for i = j + 1. We show
that then the claim also holds for i = j. Let α be any
assignment to the variables x1, . . . , xj−1 and let w be a
bottom world of a group that agrees with α. We show
that the formula Qj . . . Qm.ψ is true under α if and only
if [Qj ] . . . [Qm][ψ] is true in w.

First, assume that Qj . . . Qm.ψ is true under α. Consider
the case where Qj = ∀. Then for both assignments α′ ⊇ α
to the variables x1, . . . , xj , formula Qj+1 . . . Qm.ψ is true
under α′. Now, by assumption, we know that for any bottom
world w′ of a group that agrees with α – so in particular for
all bottom worlds w′ that are Rj-reachable from w – formula
[Qj+1] . . . [Qm][ψ] is true in w′. Since [Qj ] = Bj , this means
that [Qj ] . . . [Qm][ψ] is true in w. The case where Qj = ∃ is
analogous.

Next, assume that Qj . . . Qm.ψ is not true under α.
Consider the case where Qj = ∀. Then there is some
assignment α′ ⊇ α to the variables x1, . . . , xj , such
that Qj+1 . . . Qm.ψ is not true under α′. Now, by as-
sumption, we know that for any bottom world w′ of a
group that agrees with α – so in particular for some
bottom world w′ that is Rj-reachable from w – for-
mula [Qj+1] . . . [Qm][ψ] is not true in w′. Since [Qj ] = Bj ,
this means that [Qj ] . . . [Qm][ψ] is not true in w. The case
where Qj = ∃ is analogous.

Hence, the claim holds for the case that i = j. Now, by
induction, the claim holds for the case that i = 1, and hence
it follows that ϕ ∈ TQBF if and only if R(ϕ) ∈ DBU. Since
this reduction runs in polynomial time, we can conclude that
DBU is PSPACE-hard.

Theorem 2. DBU is PSPACE-complete.

Proof. In order to show PSPACE-membership for the
problem DBU, we can modify the polynomial-space algo-
rithm given by Aucher and Schwarzentruber [3]. Their
algorithm works for the problem of checking whether a
given (single-pointed) epistemic model makes a given DEL-
formula true, where the formula contains event models that
can be multi-pointed, but that have no postconditions. In
order to make the algorithm work for multi-pointed epis-
temic models, we can simply call the algorithm several times,
once for each of the designated worlds. Also, a modification
is needed to deal with postconditions. The algorithm checks
the truth of a formula by inductively calling itself for subfor-
mulas. In order to deal with postconditions, only the case
where the formula is a propositional variable needs to be
modified. This modification is rather straightforward. For
more details, we refer to [37].

4.2 Parameterized Complexity Results
Next, we provide a parameterized complexity analysis of

DBU.

243



w1 w2

y

w3

y

w4

y

w5

y

w6 w7

y y

w8

y y

1 1

1
1

2

2

2

2

a a

a

a

1

1

1

2

2

2

1

1

2

2

{x1 7→ T, x2 7→ T} :

{x1 7→ F, x2 7→ T} :

{x1 7→ T, x2 7→ F} :

{x1 7→ F, x2 7→ F} :

Figure 1: Example for the reduction in the proof of Theorem 1; a final updated model for a quantified Boolean
formula with variables x1 and x2.

4.2.1 Parameters for DBU

We consider the following parameters for DBU. For each
subset κ ⊆ {a, c, e, f, o, p, u} we consider the parameterized
variant κ-DBU of DBU, where the parameter is the sum
of the values for the elements of κ as specified in Table 1.
For instance, the problem {a}-DBU is parameterized by the
number of agents. Even though technically speaking there
is only one parameter, we will refer to each of the elements
of κ as parameters.

For the modal depth of a formula we count the maximum
number of nested occurrences of operators Ba. Formally,
we define the modal depth d(ϕ) of a formula ϕ (in LB)
recursively as follows.

d(ϕ) =





0 if ϕ = p ∈ P is a proposition;

max{d(ϕ1), d(ϕ2)} if ϕ = ϕ1 ∧ ϕ2;

d(ϕ1) if ϕ = ¬ϕ1;

1 + d(ϕ1) if ϕ = Baϕ1.

For the size of a formula we count the number of occur-
rences of propositions and logical connectives. Formally, we
define the size s(ϕ) of a formula ϕ (in LB) recursively as
follows.

s(ϕ) =





1 if ϕ = p ∈ P is a proposition;

1 + s(ϕ1) + s(ϕ2) if ϕ = ϕ1 ∧ ϕ2;

1 + s(ϕ1) if ϕ = ¬ϕ1;

1 + s(ϕ1) if ϕ = Baϕ1.

4.2.2 Intractability Results
In the following, we show fixed-parameter intractability

for several parameterized versions of DBU. We will mainly
use the parameterized complexity classes W[1] and para-NP
to show intractability, i.e., we will show hardness for these
classes. Note that we could additionally use the class para-
PSPACE [21] to give stronger intractability results. For in-
stance, the proof of Theorem 1 already shows that {p}-DBU
is para-PSPACE hard, since the reduction in this proof uses
a constant number of propositions. However, since in this
paper we are mainly interested in the border between fixed-
parameter tractability and intractability, we will not focus

Param. Description

a number of agents

c maximum size of the preconditions

e maximum number of events in the event models

f size of the formula

o modal depth of the formula,
i.e., the order parameter

p number of propositions in P

u number of actions, i.e., the number of updates

Table 1: Overview of the different parameters for
DBU.

on the subtle differences in the degree of intractability, and
restrict ourselves to showing W[1]-hardness and para-NP-
hardness. This is also the reason why we will not show
membership for any of the (parameterized) intractability
classes; showing hardness suffices to indicate intractability.
For the following proofs we use the well-known satisfiability
problem Sat for propositional formulas. The problem Sat
is NP-complete [14, 30]. Moreover, hardness for Sat holds
even when restricted to propositional formulas that are in
3CNF.

Proposition 3. {a, c, e, f, o}-DBU is para-NP-hard.

Proof. To show para-NP-hardness, we specify a
polynomial-time reduction R from Sat to DBU, where
parameters a, c, e, f , and o have constant values. Let ϕ
be a propositional formula with var(ϕ) = {x1, . . . , xm}.
Without loss of generality we assume that ϕ is a 3CNF
formula with clauses c1 to cl.

The general idea behind this reduction is that we use the
worlds in the final updated model (that results from up-
dating the initial state with the actions – which are spec-
ified by the reduction) to list all possible assignments to
var(ϕ), by setting the propositions (corresponding to the
variables in var(ϕ)) to true and false accordingly. Then
checking whether formula ϕ is satisfiable can be done by
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checking whether ϕ is true in any of the worlds. Actions a1
to am are used to create a corresponding world for each
possible assignment to var(ϕ). Furthermore, to keep the
formula that we check in the final updated model of con-
stant size, we sequentially check the truth of each clause ci
and encode whether the clauses are true with an additional
variable xm+1. This is done by actions am+1 to am+l. In
the final updated model, variable xm+1 will only be true in
a world, if it makes clauses c1 to cl true, i.e., if it makes
formula ϕ true.

For more details, we refer to [37].

Proposition 4. {c, e, f, o, p}-DBU is para-NP-hard.

Proof. To show para-NP-hardness, we specify a
polynomial-time reduction R from Sat to DBU, where
parameters c, e, f , o, and p have constant values. Let ϕ
be a propositional formula with var(ϕ) = {x1, . . . , xm}.
The general idea behind this reduction is similar to the
reduction in the proof of Theorem 1. Again we use groups of
worlds to represent particular assignments to the variables
in ϕ. Here, there is only relation Rb between the different
groups. Furthermore, to keep the formula that we check in
the final updated model of constant size, we sequentially
check the truth of each clause ci and encode whether the
clauses are true with an additional variable z. This is done
by actions am+1 to am+l. Action am+j (corresponding to
clause j) marks each group of worlds (which represents a
particular assignment to the variables in ϕ) that ‘satisfies’
clauses 1 to j. (This marking happens by means of
an Rc-accessible world where z is true.) Then, in the final
updated model, there will only be such a marked group if
all clauses, and hence the whole formula, is satisfiable.

For more details, we refer to [37].

Proposition 5. {a, e, f, o, p}-DBU is para-NP-hard.

Proof. To show para-NP-hardness, we specify a
polynomial-time reduction R from Sat to DBU, where
parameters a, e, f , o and p have constant values. Let ϕ be
a propositional formula with var(ϕ) = {x1, . . . , xm}. The
reduction is based on the same principle as the one used in
the proof of Proposition 4. To keep the number of agents
constant, we use a different construction to represent the
variables in var(ϕ). We encode the variables by a string
of worlds that are connected by alternating relations Ra
and Rb.

Furthermore, we keep the size of the formula (and conse-
quently the modal depth of the formula) constant by encod-
ing the satisfiability of the formula with a single proposition.
We do this by adding an extra action am+1. Action am+1

makes sure that each group of worlds that represents a sat-
isfying assignment for the given formula, will have an Rc
relation from a world that is Rb-reachable from the desig-
nated world to a world where proposition z∗ is true.

For more details, we refer to [37].

We consider the following parameterized problem, that
we will use in our proof of Proposition 6. This problem is
W[1]-complete [19].

{k}-Multicolored Clique
Instance: A graph G, and a vertex-coloring c :
V (G)→ {1, 2, . . . , k} for G.
Parameter: k.
Question: Does G have a clique of size k including
vertices of all k colors? That is, are there v1, . . . , vk ∈
V (G) such that for all 1 ≤ i < j ≤ k : {vi, vj} ∈
E(G) and c(vi) 6= c(vj)?

Proposition 6. {a, c, f, o, u}-DBU is W[1]-hard.

Proof. We specify an fpt-reduction R from
{k}-Multicolored Clique to {a, c, f, o, u}-DBU. Let
(G, c) be an instance of {k}-Multicolored Clique,
where G = (N,E). The general idea behind this reduction
is that we use the worlds in the model to list all k-sized
subsets of the vertices in the graph with k different colors,
where each individual world represents a particular k-subset
of vertices in the graph (with k different colors). Then
we encode (in the model) the existing edges between
these nodes (with particular color endings), and in the
final updated model we check whether there is a world
corresponding to a k-subset of vertices that is pairwise fully
connected with edges. This is only the case when G has
a k-clique with k different colors.

For more details, we refer to [37].

Proposition 7. {c, o, p, u}-DBU is W[1]-hard.

Proof. We specify the following fpt-reduction R from
{k}-WSat[2CNF] to {c, o, p, u}-DBU. We sketch the gen-
eral idea behind the reduction. Let ϕ be a propositional
formula with var(ϕ) = {x1, . . . , xm}. Then let ϕ′ be the
formula obtained from ϕ, by replacing each occurrence of xi
with ¬xi. We note that ϕ is satisfiable by some assignment α
that sets k variables to true if and only if ϕ′ is satisfiable by
some assignment α′ that sets m − k variables to true, i.e.,
that sets k variables to false. We use the reduction to list
all possible assignments to var(ϕ′) = var(ϕ) that set m− k
variables to true. We represent each possible assignment
to var(ϕ) that sets m − k variables to true as a group of
worlds, like in the proof of Theorem 1. (In fact, due to the
details of the reduction, in the final updated model, there
will be several identical groups of worlds for each of these
assignments).

For more details, we refer to [37].

Proposition 8. {a, f, o, p, u}-DBU is W[1]-hard.

Proof. We specify the following fpt-reduction R from
{k}-WSat[2CNF] to {a, f, o, p, u}-DBU. We modify the re-
duction in the proof of Proposition 7 to keep the values of
parameters a and f constant. After these modifications, the
value of parameter c will no longer be constant. To keep
the number of agents constant, we use the same strategy as
in the reduction in the proof of Proposition 5, where vari-
ables xi, . . . , xm are represented by strings of worlds with
alternating relations Rb and Ra. Just like in the proof of
Proposition 5, the size of the formula (and consequently the
modal depth of the formula) is kept constant by encoding the
satisfiability of the formula with a single proposition. Then
each group of worlds that represents a satisfying assignment
for the given formula, will have an Rc relation from a world
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that is Rb-reachable from the designated world to a world
where proposition z∗ is true.

For more details, we refer to [37].

4.2.3 Tractability Results
Next, we turn to a case that is fixed-parameter tractable.

Theorem 9. {e, u}-DBU is fixed-parameter tractable.

Proof. We present the following fpt-algorithm that runs in
time eu · p(|x|), for some polynomial p, where e is the max-
imum number of events in the actions and u is the number
of updates, i.e., the number of actions.

As a subroutine, the algorithm checks whether a given ba-
sic epistemic formula ϕ holds in a given epistemic model M ,
i.e., whether M |= ϕ. It is well-known that model checking
for basic epistemic logic can be done in time polynomial in
the of M plus the size of ϕ (see e.g. [7]).

Let x = (P,A, i, s0, a1, . . . , af , ϕ) be an instance of DBU.
First the algorithm computes the final updated model sf =
s0 ⊗ a1 ⊗ · · · ⊗ af by sequentially performing the updates.
For each i, si is defined as si−1 ⊗ ai. The size of each si is
upper bounded by O(|s0| · eu), so for each update checking
the preconditions can be done in time polynomial in eu · |x|.
This means that computing sf can be done in fpt-time.

Then, the algorithm decides whether ϕ is true in sf . This
can be done in time polynomial in the size of sf plus the
size of ϕ. We know that |sf | + |ϕ| is upper bounded by
O(|s0| ·eu)+ |ϕ|, thus upper bounded by eu ·p(|x|), for some
polynomial p. Therefore, deciding whether ϕ is true in sf
is fixed-parameter tractable. Hence, the algorithm decides
whether x ∈ DBU and runs in fpt-time.

4.2.4 Overview of the Results
We showed that DBU is PSPACE-complete, we pre-

sented several parameterized intractability results (W[1]-
hardness and para-NP-hardness) and we presented one
fixed-parameter tractable result, namely for {e, u}-DBU.
In Figure 2, we present a graphical overview of our results
and the consequent border between fpt-tractability and fpt-
intractability for the problem DBU. We leave {a, c, p}-DBU
and {c, f, p, u}-DBU as open problems for future research.

5. DISCUSSION & CONCLUSIONS
We presented the Dynamic Belief Update model as a

computational-level model of ToM and analyzed its com-
plexity. The aim of our model was to provide a formal
approach that can be used to interprete and evaluate the
meaning and veridicality of various complexity claims in the
cognitive science and philosophy literature concerning ToM.
In this way, we hope to contribute to disentangling debates
in cognitive science and philosophy regarding the complexity
of ToM.

In Section 4.1, we proved that DBU is PSPACE-complete.
This means that (without additional constraints), there is
no algorithm that computes DBU in a reasonable amount
of time. In other words, without restrictions on its input
domain, the model is computationally too hard to serve as
a plausible explanation for human cognition. This may not
be surprising, but it is a first formal proof backing up this
claim, whereas so far claims of intractability in the literature
remained informal.

Informal claims about what constitutes sources of in-
tractability abound in cognitive science. For instance, it

seems to be folklore that the ‘order’ of ToM reasoning (i.e.,
that I think that you think that I think . . . ) is a potential
source of intractability. The fact that people have difficulty
understanding higher-order theory of mind [20, 29, 32, 44]
is not explained by the complexity results for parameter o
– the modal depth of the formula that is being considered,
in other words, the order parameter. Already for a formula
with modal depth one, DBU is NP-hard; so {o}-DBU is not
fixed-parameter tractable. On the basis of our results we can
only conclude that DBU is fixed-parameter tractable for the
order parameter in combination with parameters e and u.
But since DBU is fp-tractable for the smaller parameter
set {e, u}, this does not indicate that the order parameter is
a source of complexity. This does not mean it may not be a
source of difficulty for human ToM performance. After all,
tractable problems can be too resource-demanding for hu-
mans for other reasons than computational complexity (e.g.,
due to stringent working-memory limitations).

Surprisingly, we only found one (parameterized) tractabil-
ity result for DBU. We proved that for parameter set {e, u}
– the maximum number of events in an event model and the
number of updates, i.e., the number of event models – DBU
is fixed-parameter tractable. Given a certain instance x of
DBU, the values of parameters e and u (together with the
size of initial state s0) determine the size of the final up-
dated model (that results from applying the event models
to the initial state). Small values of e and u thus make sure
that the final updated model does not blow up too much
in relation to the size of the initial model. The result that
{e, u}-DBU is fp-tractable indicates that the size of the fi-
nal updated model can be a source of intractability (cf. [39,
40]).

The question arises how we can interpret parameters e and
u in terms of their cognitive counterparts. To what aspect of
ToM do they correspond, and moreover, can we assume that
they have small values in (many) real-life situations? If this
is indeed the case, then restricting the input domain of the
model to those inputs that have sufficiently small values for
parameters e and u will render our model tractable, and we
can then argue that (at least in terms of its computational
complexity) it is a cognitively plausible model.

In his formalizations of the false belief task Bolander [8] in-
deed used a limited amount of actions with a limited amount
of events in each action (he used a maximum of 4). This
could, however, be a consequence of the over-simplification
(of real-life situations) used in experimental tasks. Whether
these parameters in fact have sufficiently small values in real
life, is an empirical hypothesis that can (in principle) be
tested experimentally. However, it is not straightforward
how to interpret these formal aspects of the model in terms
of their cognitive counterparts. The associations that the
words event and action trigger with how we often use these
words in daily life, might adequately apply to some degree,
but could also be misleading. A structural way of inter-
preting these parameters is called for. We think this is an
interesting topic for future research.

Besides the role that our results play in the investigation
of (the complexity) of ToM our results are also of interest
in and of themselves. The results in Theorems 1 and 2 re-
solve an open question in the literature about the computa-
tional complexity of DEL. Aucher and Schwarzentruber [3]
already showed that the model checking problem for DEL,
in general, is PSPACE-complete. However, their proof for
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{a, e, f, o, p} {c, e, f, o, p} {a, f, o, p, u}{c, o, p, u}

{a, c, p} {c, f, p, u}

{a, c, e, f, o, p, u}

fp-tractable
fp-intractable

Figure 2: Overview of the parameterized complexity results for the different parameterizations of DBU,
and the line between fp-tractability and fp-intractability (under the assumption that the cases for {a, c, p}
and {c, f, p, u} are fp-tractable).

PSPACE-hardness does not work when the input domain is
restricted to S5 (or KD45) models and their hardness proof
also relies on the use of multi-pointed models (which in their
notation is captured by means of a union operator). With
our proof of Theorem 1, we show that DEL model check-
ing is PSPACE-hard even when restricted to single-pointed
S5 models. Furthermore, the novelty of our aproach lies in
the fact that we apply parameterized complexity analysis to
dynamic epistemic logic, which is still a rather unexplored
area.
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Children’s application of theory of mind in reasoning
and language. Journal of Logic, Language and
Information, 17(4):417–442, 2008.

[21] J. Flum and M. Grohe. Describing parameterized
complexity classes. Information and Computation,
187(2):291–319, 2003.

[22] J. Flum and M. Grohe. Parameterized Complexity
Theory, volume XIV of Texts in Theoretical Computer
Science. An EATCS Series. Springer, Berlin, 2006.

[23] U. Frith. Mind blindness and the brain in autism.
Neuron, 32(6):969–979, 2001.

[24] M. Frixione. Tractable competence. Minds and
Machines, 11(3):379–397, 2001.

[25] N. Gierasimczuk and J. Szymanik. A note on a
generalization of the muddy children puzzle. In
Proceedings of the 13th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK), 2011.

[26] G. Gigerenzer. Why heuristics work. Perspectives on
psychological science, 3(1):20–29, 2008.

[27] W. F. G. Haselager. Cognitive Science and Folk
Psychology: The Right Frame of Mind. Sage
Publications, 1997.

[28] A. M. Isaac, J. Szymanik, and R. Verbrugge. Logic
and complexity in cognitive science. In A. Baltag and
S. Smets, editors, Johan van Benthem on Logic and
Information Dynamics, volume 5 of Outstanding
Contributions to Logic, pages 787–824. Springer
International Publishing, 2014.

[29] P. Kinderman, R. Dunbar, and R. P. Bentall.
Theory-of-mind deficits and causal attributions.
British Journal of Psychology, 89(2):191–204, 1998.

[30] L. A. Levin. Universal sequential search problems.
Problems of Information Transmission, 9(3):265–266,
1973.

[31] S. C. Levinson. On the human ‘interaction engine’. In
N. J. Enfield and S. C. Levinson, editors, Roots of
human sociality: Culture, cognition and interaction,
pages 39–69. Oxford: Berg, 2006.

[32] M. Lyons, T. Caldwell, and S. Shultz. Mind-reading
and manipulation – is machiavellianism related to
theory of mind? Journal of Evolutionary Psychology,
8(3):261–274, 2010.

[33] D. Marr. Vision: A computational investigation into
the human representation and processing of visual

information. San Francisco: WH Freeman, 1982.

[34] S. Nichols and S. P. Stich. Mindreading: An integrated
account of pretence, self-awareness, and understanding
other minds. Clarendon Press/Oxford University
Press, 2003.

[35] R. Niedermeier. Invitation to Fixed-Parameter
Algorithms. Oxford Lecture Series in Mathematics and
its Applications. Oxford University Press, 2006.

[36] A. Perea. Epistemic Game Theory: reasoning and
choice. Cambridge University Press, 2012.

[37] I. van de Pol. How Difficult is it to Think that you
Think that I Think that ...? A DEL-based
Computational-level Model of Theory of Mind and its
Complexity. Master’s thesis, University of Amsterdam,
the Netherlands, 2015.

[38] D. Premack and G. Woodruff. Does the chimpanzee
have a theory of mind? Behavioral and brain sciences,
1(04):515–526, 1978.

[39] I. van Rooij, P. Evans, M. Müller, J. Gedge, and
T. Wareham. Identifying sources of intractability in
cognitive models: An illustration using analogical
structure mapping. In Proceedings of the 30th Annual
Conference of the Cognitive Science Society, pages
915–920, 2008.

[40] I. van Rooij and T. Wareham. Parameterized
complexity in cognitive modeling: Foundations,
applications and opportunities. The Computer
Journal, 51(3):385–404, 2008.

[41] I. van Rooij, C. D. Wright, J. Kwisthout, and
T. Wareham. Rational analysis, intractability, and the
prospects of ‘as if’-explanations. Synthese, pages 1–20,
2014.

[42] I. van Rooij. The tractable cognition thesis. Cognitive
Science, 32(6):939–984, 2008.

[43] I. van Rooij, C. D. Wright, and T. Wareham.
Intractability and the use of heuristics in psychological
explanations. Synthese, 187(2):471–487, 2012.

[44] J. Stiller and R. I. Dunbar. Perspective-taking and
memory capacity predict social network size. Social
Networks, 29(1):93–104, 2007.

[45] L. J. Stockmeyer and A. R. Meyer. Word problems
requiring exponential time (preliminary report). In
Proceedings of the 5th Annual ACM Symposium on the
Theory of Computing (STOC), pages 1–9. ACM, 1973.

[46] J. K. Tsotsos. Analyzing vision at the complexity
level. Behavioral and Brain Sciences, 13(03):423–445,
1990.

[47] R. Verbrugge. Logic and social cognition: the facts
matter, and so do computational models. Journal of
Philosophical Logic, 38(6):649–680, 2009.

[48] H. M. Wellman, D. Cross, and J. Watson.
Meta-analysis of theory-of-mind development: The
truth about false belief. Child Development,
72(3):655–684, 2001.

[49] H. Wimmer and J. Perner. Beliefs about beliefs:
Representation and constraining function of wrong
beliefs in young children’s understanding of deception.
Cognition, 13(1):103–128, 1983.

[50] T. W. Zawidzki. Mindshaping: A New framework for
understanding human social cognition. MIT Press,
2013.

248



A Dynamic Epistemic Framework for Conformant Planning

Quan Yu1,2, Yanjun Li3,4 and Yanjing Wang∗3

1Department of Computer Science, Sun Yat-sen University, China

2Qiannan Normal College for Nationalities, China

3Department of Philosophy, Peking University, China

4Faculty of Philosophy, University of Groningen, The Netherlands

ABSTRACT
In this paper, we introduce a lightweight dynamic epistemic
logical framework for automated planning under initial un-
certainty. We reduce plan verification and conformant plan-
ning to model checking problems of our logic. We show that
the model checking problem of the iteration-free fragment is
PSPACE-complete. By using two non-standard (but equiv-
alent) semantics, we give novel model checking algorithms
to the full language and the iteration-free language.

1. INTRODUCTION
Conformant planning is the problem of finding a linear

plan (a sequence of action) to achieve a goal in presence of
uncertainty about the initial state (cf. [28]). For example,
suppose that you are a rookie spy trapped in a foreign hotel
with the following map at hand:1

s6 s7:Safe s8:Safe

s1 r // s2 r //

u

OO

s3 r //

u

OO

s4:Safe r //

u

OO

s5

Now somebody spots you and sets up the alarm. In this
case you need to move fast to one of the safe hiding places
marked in the map (i.e., s7, s8 and s4). However, since
you were in panic, you lost your way and you are not sure
whether you are at s2 or s3 (denoted by the circle in the
above graph). Now what should you do in order to reach
a safe place quickly? Clearly, merely moving r or moving
u may not guarantee your safety given the uncertainty. A
simple plan is to move r first and then u, since this plan will
take you to a safe place, no matter where you actually are
initially. This plan is conformant since it does not require
any feedback during the execution and it should work in
presence of uncertainty about the initial state. More gener-
ally, a conformant plan should also work given actions with
non-deterministic effects. Such a conformant plan is crucial
when there are no feedbacks/observations available during
the execution of the plan.2 Note that since no information

∗Corresponding author
1It is a variant of the running example in [33].
2In many other cases, feedbacks may be just too ‘expensive’
to obtain during a plan aiming for quick actions [8].

is provided during the execution, the conformant plan is
simply a finite sequence of actions without any conditional
moves.

As discussed in [9, 24], conformant planning can be re-
duced to classical planning, the planning problem without
any initial uncertainty, over the space of belief states. In-
tuitively, a belief state is a subset of the state space, which
records the uncertainty during the execution of a plan, e.g.,
{s2, s3} is an initial belief state in the above example. In
order to make sure a goal is achieved eventually, it is crucial
to track the transitions of belief states during the execution
of the plan, and this may traverse exponentially many belief
states in the size of the original state space. As one may ex-
pect, conformant planning is computationally harder than
classical planning. The complexity of checking the existence
of a conformant plan is EXPspace-complete in the size of
the variables generating the state space [18]. In the litera-
ture, people proposed compact and implicit representations
of the belief spaces, such as OBDD [13, 15, 14] and CNF
[30], and different heuristics are used to guide the search for
a plan, e.g., [11, 12].

Besides the traditional AI approaches, we can also take an
epistemic-logical perspective on planning in presence of ini-
tial uncertainties, based on dynamic epistemic logic (DEL)
(cf. e.g., [31]). The central philosophy of DEL takes the
meaning of an action as the change it brings to the knowl-
edge of the agents. Intuitively, this is what we need to track
the belief states during the execution of a plan3. Indeed,
in recent years, there has been a growing interest in us-
ing DEL to handle multi-agent planning with knowledge
goals (cf. e.g., [7, 23, 1, 3, 34, 25]), while the traditional
AI planning focuses on the single-agent case. In particular,
the event models of DEL (cf. [6]) are used to handle non-
public actions that may cause different knowledge updates to
different agents. In these DEL-based planning frameworks,
states are epistemic models, actions are event models and
the state transitions are implicitly encoded by the update
product which computes a new epistemic model based on
an epistemic model and an event model.

One advantage of this approach is its expressiveness in
handling scenarios which require reasoning about agents’
higher-order knowledge about each other in presence of par-
tially observable actions. However, this expressiveness comes
at a price, as shown in [7, 4], that multi-agent epistemic plan-

3Here the belief states are actually about knowledge in epis-
temic logic.
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ning is undecidable in general. Many interesting decidable
fragments are found in the literature [7, 23, 34, 2], which
suggests that the single-agent cases and restrictions on the
form of event models are the key to decidability. However,
if we focus on the single-agent planning, a natural question
arises: how do we compare such DEL approaches with the
traditional AI planning? It seems that the DEL-based ap-
proaches are more suitable for planning with actions that
change (higher-order) knowledge rather than planning with
fact-changing actions, although the latter type of actions can
also be handled in DEL. Moreover, the standard models of
DEL are purely epistemic thus do not encode the temporal
information of available actions directly. This may limit the
applicability of such approaches to planning problems based
on transition systems.

In this paper, we tackle the standard single-agent con-
formant planning problem over transition systems, by using
the core idea of DEL, but not its standard formalism. Our
formal framework is based on the logic proposed by Wang
and Li in [33], where the model is simply a transition system
with initial uncertainty as in the motivating example, and
an action is interpreted in the semantics as an update on the
uncertainty of the agent. Our contributions are summarized
as follows:

• A lightweight dynamic epistemic framework with a sim-
ple language and a complete axiomatization.
• Non-trivial reduction of conformant planning to a model

checking problem using our language with programs.
• Two novel model checking algorithms based on two al-

ternative semantics for the proposed logic, which make the
context-dependency in the original semantics explicit.
• The complexity of model checking the iteration-free frag-

ment of our language is Pspace-complete. The model check-
ing problem of the full language is in EXPtime. The model
checking problem of the conformant planning is in Pspace.

The last result may sound contradictory to the aforemen-
tioned result that the complexity of conformant planning is
EXPspace-complete. Actually, the apparent contradiction
is due to the fact that the EXPspace complexity result is
based on the number of state variables which require an ex-
ponential blow up to generate an explicit transition system
that we use here. We will come back to this issue at the end
of Section 4.3.

Our approach has the following advantages compared to
the existing planning approaches:

• The planning goals can be specified as arbitrary formulas
in an epistemic language. Extra plan constraints (e.g., what
actions to use) can be expressed explicitly by programs in
the language. Therefore it may cover a richer class of (con-
formant) planning problems compared to the traditional AI
approach where a goal is Boolean.4

• The plans can be specified as regular expressions with
tests in terms of arbitrary EPDL formulas, which general-
izes the knowledge-based programs in [17, 21].

4The goal in the standard conformant planning is simply a
set of different valuations of basic propositional variables.
Our approach can even handle epistemic goals in negative
forms, e.g., we want to make sure the agent knows something
but does not know too much in the end.

• By reducing conformant planning to a model checking
problem in an explicit logical language, we also see the sub-
tleties hidden in the planning problem. In principle, there
are various model checking techniques to be applied to con-
formant planning based on this reduction.
• Our logical language and models are very simple com-

pared to the standard action-model based DEL approach,
yet we can encode the externally given executability of the
actions in the model, inspired by epistemic temporal logic
(ETL) [16, 26].
• Our approach is flexible enough to provide, in the future,

a unified platform to compare different planning problems
under uncertainty. By studying different fragments of the
logical language and model classes, we may categorize plan-
ning problems according to their complexity.

The rest of the paper is organized as follows: We introduce
our basic logical framework and its axiomatization in Section
2, and extend it in Section 3 with programs to handle the
conformant planning. The complexity analysis of the model
checking problems is in Section 4 and we conclude in Section
5 with future directions.

2. BASIC FRAMEWORK

2.1 Epistemic action language
To talk about the knowledge of the agent during an exe-

cution of a plan, we use the following language proposed in
[33].

Definition 2.1 (Epistemic Action Language (EAL)).
Given a countable set A of action symbols and a countable set
P of atomic proposition letters , the language EALAP is defined
as follows:5

φ ::= > | p | ¬φ | (φ ∧ φ) | [a]φ | Kφ,
where p ∈ P, a ∈ A. The following standard abbreviations
are used: ⊥ := ¬>, φ ∨ ψ := ¬(¬φ ∧ ¬ψ), φ → ψ := ¬φ ∨
ψ, 〈a〉φ := ¬[a]¬φ, K̂φ := ¬K¬φ.

Kφ says that the agent knows that φ, and [a]φ expresses
that if the agent can move forward by action a, then after
doing a, φ holds. Throughout the paper, we fix some P and
A, and refer to EALAP by EAL.

The size of EAL-formulas (notation |ϕ|) is defined induc-
tively: |>| = |p| = 1; |¬φ| = 1 + |φ|; |φ ∧ ψ| = 1 + |φ|+ |ψ|;
|Kφ| = |[a]φ| = 1 + |φ|. The set of subformulas of φ ∈ EAL,
denoted as sub(φ), is defined as usual.

Definition 2.2 (Uncertainty map). Given P and A,
a (multimodal) Kripke model N is a tuple 〈S, {Ra | a ∈
A},V〉, where S is a non-empty set of states, Ra ⊆ S × S
is a binary relation labelled by a, V : S → 2P is a valua-
tion function. An uncertainty map M is a Kripke model
〈S, {Ra | a ∈ A},V〉 with a non-empty set U ⊆ S. Given
an uncertainty map M, we refer to its components by SM,
RaM, VM, and UM. A pointed uncertainty map M, s is an
uncertainty map M with a designated state s ∈ UM. We
write s

a→ t for (s, t) ∈ Ra.

5We do need unboundedly many action symbols to encode
the desired problem in the later discussion of model checking
complexity.
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Intuitively, a Kripke model encodes a map (transition sys-
tem) and the uncertainty set U encodes the uncertainty that
the agent has about where he is in the map. The graph
mentioned at the beginning of the introduction is a typical
example of an uncertainty map. Note that there may be
non-deterministic transitions in the model, i.e., there may
be t1 6= t2 such that s

a→ t1 and s
a→ t2 for some s, t1, t2.

Remark 1. It is crucial to notice that the designated state
in a pointed uncertainty map must be one of the states in the
uncertainty set.

Definition 2.3 (Semantics). Given any uncertainty
map M = 〈S, {Ra | a ∈ A},V,U〉 and any state s ∈ U ,
the semantics is defined as follows:

M, s � > always
M, s � p ⇐⇒ s ∈ V(p)
M, s � ¬φ ⇐⇒ M, s 2 φ
M, s � φ ∧ ψ ⇐⇒ M, s � φ and M, s � ψ
M, s � [a]φ ⇐⇒ ∀t ∈ S : s

a→ t implies M|a, t � φ
M, s � Kφ ⇐⇒ ∀u ∈ U :M, u � φ

where M|a = 〈S, {Ra | a ∈ A},V,U|a〉 and U|a = {r′ | ∃r ∈
U such that r

a→ r′}. We say φ is valid (notation: � φ) if it
is true on all the pointed uncertainty maps. For a action se-
quence σ = a1 . . . an, we write U|σ for (. . . ((U|a1)|a2) . . . )|an .
and write M|σ for (. . . ((M|a1)|a2) . . . )|an .

Intuitively, the agent ‘carries’ the uncertainty set with him
when moving forward and obtains a new uncertainty set
U|a. Note that here we differ from [33] where the updated
uncertainty set is further refined according to what the agent
can observe at the new state. For conformant planning, we
do not consider the observational power of the agent during
the execution of a plan.

Let us call the model mentioned in the introduction M,
it is not hard to see that M|r and (M|r)|u are as follows:

s6 s7:Safe s8:Safe

s1 r // s2 r //

u

OO

s3 r //

u

OO

s4:Safe r //

u

OO

s5

s6 s7:Safe s8:Safe

s1 r // s2 r //

u

OO

s3 r //

u

OO

s4:Safe r //

u

OO

s5

Thus we have:

• M, s3 � [r](Safe ∧ ¬KSafe)

• M, s3 � K[r][u](Safe ∧KSafe)

The usual global model checking algorithm for modal log-
ics labels the states with the subformulas that are true on
the states. However, this cannot work here since the truth
value of epistemic formulas on the states outside U is simply
undefined. Moreover, the exact truth value of an epistemic
formula on a state depends on ‘how you get there’, as the
following example shows (the underlined states mark the
actual states):

s1 b //

a

��

s3 : p

a

��
s2

a

<<

s4

b→

s1 b //

a

��

s3 : p

a

��
s2

a

<<

s4

s1 b //

a

��

s3 : p

a

��
s2

a

<<

s4

a→ a→

s1 b //

a

��

s3 : p

a

��
s2

a

<<

s4

Let the left-hand-side model be M then it is clear that
M|b, s3 � Kp while M|aa, s3 2 Kp thus M, s1 � 〈b〉Kp ∧
〈a〉〈a〉¬Kp. This shows that the truth value of an epistemic
subformula w.r.t. a state in the model is somehow ‘context-
dependent’, which requires new techniques in model check-
ing. We will make this explicit in Section 4.3 when we dis-
cuss the model checking algorithm.

2.2 Axiomatization
Following the axioms proposed in [33], we give the follow-

ing axiomatization for EAL w.r.t. our semantics:

System SELA
Axioms Rules

TAUT all axioms of propositional logic MP
φ, φ→ ψ

ψ

DISTK K(p→ q) → (Kp→ Kq) NECK
φ

Kφ

DIST(a) [a](p→ q) → ([a]p→ [a]q) NEC(a)
φ

[a]φ

T Kp→ p SUB
φ(p)

φ(ψ)

4 Kp→ KKp

5 ¬Kp→ K¬Kp

PR(a) K[a]p→ [a]Kp

NM(a) 〈a〉Kp→ K[a]p

where a ranges over A, p, q range over P. PR(·) and NM(·) de-
note the axioms of perfect recall and no miracles respectively
(cf. [32]).

Note that since we do not assume that the agent can ob-
serve the available actions, the axiom OBS(a) : K〈a〉> ∨
K¬〈a〉> in [33] is abandoned. Due to the same reason, the
axiom of no miracles is also simplified.

We show the completeness of SELA using a more direct
proof strategy compared to the one used in [33].

Theorem 2.1. SELA is sound and strongly complete w.r.t.
EAL on uncertainty maps.

Proof. To prove that SELA is sound on uncertainty maps,
we need to show that all the axioms are valid and all the in-
ference rules preserve validity. Since the uncertainty set in
an UM denotes an equivalent class, axioms T, 4 and 5 are
valid; due to the semantics, the validity of axioms PR(·) and
NM(·) can be proved step by step; others can be proved as
usual.

To prove that SELA is strongly complete on uncertainty
maps, we only need to show that every SELA-consistent set
of formulas is satisfiable on some uncertainty map. The
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proof idea is that we construct an uncertainty map consisting
of maximal SELA-consistent sets (MCSs), and then with the
Lindenbaum-like lemma that every SELA-consistent set of
formulas can be extended in to a MCS (we omit the proof
here), we only need to prove that every formula holds on the
MCS to which it belongs.

Firstly, we construct a canonical Kripke model N c =
〈Sc, {Rca | a ∈ A},Vc〉 as follows:

• Sc is the set of all MCSs;

• sRcat ⇐⇒ 〈a〉φ ∈ s for any φ ∈ t (equivalently φ ∈ t
for any [a]φ ∈ s);

• Vc(p) = {s | p ∈ s}.

Given s ∈ Sc, we define Ucs = {u ∈ Sc | Kφ ∈ s iff Kφ ∈ u},
and it is obvious that s ∈ Ucs . Thus we have that for each
s ∈ Sc,Mc

s = 〈N c,Ucs 〉 is an uncertainty map, andMc
s, s is

a pointed uncertainty map.
Secondly, we prove the following claim.

Claim 2.1. If s
a→ t, then we have Ucs |a = Uct .

⊆: Assuming v ∈ Ucs |a, we need to show v ∈ Uct , namely we
need to show that Kφ ∈ v ⇐⇒ Kφ ∈ t. Since v ∈ Ucs |a,
we have that there is u ∈ Ucs such that uRcav. If Kφ ∈ t, it
follows by axiom 4 that KKφ ∈ t. Thus we have 〈a〉KKφ ∈
s. By axiom NM(a), it follows that K[a]Kφ ∈ s. By u ∈ Ucs
and axiom T, we have [a]Kφ ∈ u. It follows by uRcav that
Kφ ∈ v. If Kφ 6∈ t, we have ¬Kφ ∈ t. By axiom 5, we have
K¬Kφ ∈ t. Similarly, we have ¬Kφ ∈ v. Thus we have
Kφ 6∈ v.
⊇: Assuming v ∈ Uct , we need to show v ∈ Ucs |a, namely

there is u ∈ Ucs such that uRcav. Let u− be {Kφ | Kφ ∈
s}∪{〈a〉ψ | ψ ∈ v}. Then u− is consistent. For suppose not,
we have ` Kφ1∧· · ·∧Kφn → [a]¬ψ1∨· · ·∨ [a]¬ψk for some
n and k. Since ` [a]¬ψ1∨· · ·∨[a]¬ψk → [a](¬ψ1∨· · ·∨¬ψk),
we have ` Kφ1 ∧ · · · ∧Kφn → [a](¬ψ1 ∨ · · · ∨¬ψk). By rule
NECK and axiom DISTK, we have ` KKφ1 ∧ · · · ∧KKφn →
K[a](¬ψ1 ∨ · · · ∨ ¬ψk). Since KKφi ∈ s for each 1 ≤ i ≤ n,
we have K[a](¬ψ1 ∨ · · · ∨ ¬ψk) ∈ s. By axiom PR(a), it
follows that [a]K(¬ψ1 ∨ · · · ∨ ¬ψk) ∈ s. It follows by sRcat
that K(¬ψ1 ∨ · · · ∨ ¬ψk) ∈ t. Since v ∈ Uct , by axiom T, we
have ¬ψ1 ∨ · · · ∨ ¬ψk ∈ v. This is contrary with ψi ∈ v for
each 1 ≤ i ≤ k. Thus u− is consistent. By Lindenbaum-like
Lemma, there exists a MCS u extending u−. It follows by
u− ⊆ u that u ∈ Ucs and uRcav. We conclude that v ∈ Ucs |a.

Finally, we will show thatMc
s, s � φ iff φ ∈ s. we prove it

by induction on φ. Please note that the ‘existence lemmas’
(that ¬[a]φ ∈ s implies ¬φ ∈ t for some t such that s

a→ t
and that ¬Kφ ∈ s implies ¬φ ∈ s′ for some s′ ∈ Ucs ) also
hold in the model N c. We only focus on the case of [a]φ.

With Claim 2.1, it follows that Mc
t =Mc

s|a if s
a→ t. Then

by the induction hypothesis and the existence lemmas, it is
easy to show that Mc

s, s � [a]φ iff [a]φ ∈ s.

3. AN EXTENSION OF EAL FOR CONFOR-
MANT PLANNING

3.1 Epistemic PDL over uncertainty maps
In this section we extend the language of EAL with pro-

grams in propositional dynamic logic and use this extended
language to express the existence of a conformant plan.

Definition 3.1 (Epistemic PDL). The Epistemic PDL
Language (EPDL) is defined as follows:

φ ::= > | p | ¬φ | (φ ∧ φ) | [π]φ | Kφ
π ::= a | ?φ | (π;π) | (π + π) | π∗

where p ∈ P, a ∈ A. We use LπMφ to denote [π]φ∧〈π〉φ, which
is logically equivalent to [π]φ∧〈π〉>. Given a finite B ⊆ A, we
write B∗ for (Σa∈Ba)∗, i.e., the iteration over the ‘sum’ of all
the action symbols in B. The size of EPDL formulas/programs
is given by: |[π]φ| = |π|+|φ|, |a| = 1, |π1;π2| = 1+|π1|+|π2|,
|?φ| = |π∗| = 1 + |φ|, and |π1 + π2| = 1 + |π1|+ |π2|.

Given any uncertainty map M = 〈S, {Ra | a ∈ A},V,U〉,
any state s ∈ U , the semantics is given by a mutual induction
on φ and π (we only show the case about [π]φ, other cases
are as in EAL):

M, s � [π]φ⇔ for all M′, s′ : (M, s)JπK(M′, s′)
implies M′, s′ � φ

(M, s)JaK(M′, s′)⇔M′ =M|a and s
a→ s′

(M, s)J?ψK(M′, s′)⇔ (M′, s′) = (M, s) and M, s � ψ
(M, s)Jπ1;π2K(M′, s′)⇔ (M, s)Jπ1K ◦ Jπ2K(M′, s′)

(M, s)Jπ1 + π2K(M′, s′)⇔ (M, s)Jπ1K ∪ Jπ2K(M′, s′)
(M, s)Jπ∗K(M′, s′)⇔ (M, s)JπK?(M′, s′)

where ◦,∪, ? at the right-hand side denote the usual compo-
sition, union and reflexive transitive closure of binary rela-
tions respectively. Clearly this semantics coincides with the
semantics of EAL on EAL formulas.

Note that each program π can be viewed as a set of com-
putation sequences, which are sequences of actions in A and
tests with φ ∈ EPDL:

L(a) = {a}
L(?φ) = {?φ}
L(π;π′) = {ση | σ ∈ L(π) and η ∈ L(π′)}
L(π + π′) = L(π) ∪ L(π′)
L(π∗) = {ε} ∪⋃

n>0(L(π · · ·π︸ ︷︷ ︸
n

)) where ε is the empty sequence

Here are some valid formulas which are useful in our latter
discussion:

〈π;π′〉φ ↔ 〈π〉〈π′〉φ
[π + π′]φ ↔ [π]φ ∧ [π′]φ

[?ψ]φ ↔ (ψ → φ)

We leave the complete axiomatization of EPDL on uncer-
tainty maps to future work.

3.2 Conformant planning via model checking
EPDL

Definition 3.2 (Conformant planning). Given an
uncertainty map M, a goal formula φ ∈ EPDL, and a set
B ⊆ A, the conformant planning problem is to find a finite
(possibly empty) sequence σ = a1a2 · · · an ∈ L(B∗) such that
for each u ∈ UM we have M, u � La1MLa2M · · · LanMφ. The
existence problem of conformant planning is to test whether
such a sequence exists.

Recall that LπMφ is the shorthand of [π]φ ∧ 〈π〉φ. Intu-
itively, we want a plan which is both executable and safe
w.r.t. non-deterministic actions and initial uncertainty of
the agent. It is crucial to observe the difference between
La1MLa2M · · · LanMφ and La1; a2; · · · ; anMφ by the following ex-
ample:
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Example 1. Given uncertainty map M depicted as fol-
lows, we have M, s1 � La; bMp but M, s1 2 LaMLbMp.

s2 b // s4 : p

s1

a
55

a ))
s3

Given M and φ, to verify whether σ ∈ L(π) is a confor-
mant plan can be formulated as the model checking prob-
lem: M, u � KLa1MLa2M · · · LanMφ. On the other hand, the
existence problem of a conformant plan is more complicated
to formulate: it asks whether there exists a σ ∈ L(B∗) such
that it can be verified as a conformant plan. The simple-
minded attempt would be to check whether M, u � K〈B∗〉φ
holds. Despite the 〈·〉-vs.-L·M distinction, K〈B∗〉φ may hold
on a model where the sequences to guarantee φ on different
states in UM are different, as the following example shows:

Example 2. Given uncertainty map M depicted as fol-
lows, let the goal formula be p and B = {a, b}. We have
M, s1 � K〈B∗〉p, but there is no solution to this conformant
planning problem.

s1 a // s3 b // s5 : p

s2 b // s4 a // s6 : p

The right formula to check for the existence of a confor-
mant plan w.r.t. B ⊆ A and φ ∈ EPDL is:

θB,φ = 〈(Σa∈B(?K〈a〉>; a))∗〉Kφ.
For example, if B = {a1, a2} then θB,φ = 〈((?K〈a1〉>; a1) +
(?K〈a2〉>; a2))∗〉Kφ. Intuitively, the confrmant plan con-
sists of actions that are always executable given the uncer-
tainty of the agent (guaranteed by the guard K〈a〉>). In the
end the plan should also make sure that φ must hold given
the uncertainty of the agent (guaranteed by Kφ). In the
following, we will prove that this formula is indeed correct.

First, we observe that the rule of substitution of equiv-
alents is valid (φ(ψ/χ) is obtained by replacing any occur-
rence of χ by ψ, similar for Jπ(ψ/χ)K):

Proposition 3.1. If � ψ ↔ χ, then:

(1) � φ↔ φ(ψ/χ);

(2) JπK = Jπ(ψ/χ)K.

Proposition 3.2. � KLaMφ↔ 〈?K〈a〉>; a〉Kφ
Proof. Since � KLaMφ↔ (K[a]φ∧K〈a〉φ) and � (K〈a〉>∧

〈a〉Kφ) ↔ 〈?K〈a〉>; a〉Kφ, we only need to show that �
(K[a]φ ∧K〈a〉φ)↔ (K〈a〉> ∧ 〈a〉Kφ).

Left to right:
(L1) � K[a]φ→ [a]Kφ, by validity of Axiom PR(a)
(L2) � K〈a〉φ→ 〈a〉> ∧K〈a〉>, by semantics
(L3) � 〈a〉> ∧ [a]Kφ→ 〈a〉Kφ, by semantics
(L4) � K[a]φ ∧K〈a〉φ→ K〈a〉> ∧ 〈a〉Kφ, by (L1)-(L3)
Right to left:
(R1) � 〈a〉Kφ→ K[a]φ, by validity of Axiom NM(a)
(R2) � K[a]φ ∧K〈a〉> → K〈a〉φ, by semantics
(R3) � K〈a〉>∧〈a〉Kφ→ K[a]φ∧K〈a〉φ, by R(1)-R(2)

Lemma 3.1. For any a1a2 · · · an ∈ L(A∗):

� KLa1MLa2M · · · LanMφ↔ 〈?K〈a1〉>; a1; . . . ; ?K〈an〉>; an〉Kφ

Proof. It is trivial when n = 0 (i.e., the sequence is ε),
since the claim then boils down to Kφ ↔ Kφ. We prove
the non-trivial cases by induction on n ≥ 1. When n =
1, it follows from Proposition 3.2. Now, as the induction
hypothesis, we assume that:

� KLa1MLa2M · · · LakMφ↔ 〈?K〈a1〉>; a1; . . . ; ?K〈ak〉>; ak〉Kφ.

We need to show:

�KLa1MLa2M · · · Lak+1Mφ↔
〈?K〈a1〉>; a1; . . . ; ?K〈ak+1〉>; ak+1〉Kφ.

By IH,

�KLa1MLa2M · · · Lak+1Mφ↔
〈?K〈a1〉>; a1; . . . ; ?K〈ak〉>; ak〉KLak+1Mφ. (1)

Due to Propositions 3.1 and 3.2, we have

�〈?K〈a1〉>; a1; . . . ; ?K〈ak〉>; ak〉KLak+1Mφ↔
〈?K〈a1〉>; a1; . . . ; ?K〈an〉>; ak〉〈?K〈ak+1〉>; ak+1〉Kφ. (2)

The conclusion is immediate by combining (1) and (2).

The following theorem follows from the above lemma.

Theorem 3.1. Given a pointed uncertainty map M, s,
an EPDL formula φ and a set B ⊆ A, the following two are
equivalent:

(1) There is a σ = a1 . . . an ∈ L(B∗) such that M, s �
KLa1MLa2M · · · LanMφ;

(2) M, s � 〈(Σa∈B(?K〈a〉>; a))∗〉Kφ.

We would like to emphasise that the K operator right be-
fore φ in the definition of θB,φ cannot be omitted, as demon-
strated by the following example:

Example 3. Given uncertainty map M depicted as fol-
lows, let the goal formula be p. As we can see, there is
no solution to this conformant planning problem. Indeed
M, s1 2 〈(Σa∈B(?K〈a〉>; a))∗〉Kp with B = {a, b}, but we
could have M, s1 � 〈(Σa∈B(?K〈a〉>; a))∗〉p.

s1 a // s2 b //

b

""

s5 : p

s4

We close this section with an example about planning with
both positive and negative epistemic goals (the agent should
know something, but not too much).

Example 4. Given uncertainty map M depicted as fol-
lows, let the goal be Kp then both a and b are conformant
plans. If the goal is Kp ∧ ¬Kq, only a is a good plan.

s1 a //

b
''

s3 : p

s2
a //

b
''

s4 : p, q

s5 : p, q
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4. MODEL CHECKING EPDL: COMPLEX-
ITY AND ALGORITHMS

In this section, we first focus on the model checking prob-
lem of the following star-free fragment of EPDL (call it EPDL−):

φ ::= > | p | ¬φ | (φ ∧ φ) | [π]φ | Kφ
π ::= a | ?φ | (π;π) | (π + π)

We will show that model checking EPDL− is Pspace-complete.
In particular, the upper bound is shown by making use of an
alternative context-dependent semantics. Then we give an
EXPtime algorithm for the model checking problem of the
full EPDL inspired by another alternative semantics based
on 2-dimensional models. Finally we give a Pspace algo-
rithm for the conformant planning problem in EPDL. Note
that throughout this section, we focus on uncertainty maps
with finitely many states and assume Ra = ∅ for co-finitely
many a ∈ A.

4.1 Complexity of model checking EPDL−

4.1.1 Lower Bound
To show the Pspace lower bound, we provide a polyno-

mial reduction of QBF (quantified Boolean formula) truth
testing to the model checking problem of EPDL−. Note that
to determine whether a given QBF (even in prenex normal
form based on a conjunctive normal form) is true or not is
known to be Pspace-complete [29]. Our method is inspired
by [27] which discusses the complexity of model checking
temporal logics with past operators. Surprisingly, we can
use the uncertainty sets to encode the ‘past’ and use the
dual of the knowledge operator to ‘go back’ to the past.
This intuitive idea will become more clear in the proof.

QBF formulas areQ1x1Q2x2 . . . Qnxnφ(x1, . . . , xn) where:

• For 1 ≤ n ≤ n,Qi is ∃ if i is odd, and Qi is ∀ if i is
even.

• φ is a propositional formula in CNF based on variables
x1, . . . , xn,

For each such QBF α with n variables, we need to find a
pointed modelMn, x0 and a formula θα such that α is true
iff Mn, x0 � θα. The model Mn is defined below.

Definition 4.1. Let A = {ai, āi | i ≥ 1} and P = {pk, qk |
k ≥ 1}, the uncertainty map Mn = 〈S, {Ra | a ∈ A},V,U〉
is defined as:

• S = {x0} ∪ {xi | 1 ≤ i ≤ n} ∪ {x̄i | 1 ≤ i ≤ n}

• V(x0) = ∅, and V(xi) = {pi},V(x̄i) = {qi} for 1 ≤ i ≤
n.

• ai→= {(s, s) | s ∈ S} ∪ {(xi−1, xi), (x̄i−1, xi)}

• āi→= {(s, s) | s ∈ S} ∪ {(xi−1, x̄i), (x̄i−1, x̄i)}

• U = {x0}

|Mn| is linear in n and can be depicted as the following:

x1 : p1

A

�� a2 //

ā2

��

x2 : p2

A

�� a3 //

ā3

��

· · · xn−1 : pn−1

A

�� an //

ān

  

xn : pn

A

��

x0

A

��
a1

::

ā1 $$
x̄1 : q1

A

XX ā2

//

a2

AA

x̄2 : q2

A

XX ā3

//

a3

CC

· · · x̄n−1 : pn−1

A

XX ān
//

an

>>

x̄n : qn

A

XX

Given α = Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn), the formula
θα is defined as

QT1 · · ·QTnψ(K̂p1, · · · , K̂pn, K̂q1, · · · , K̂qn)

where QTi is 〈(ai + āi); ?(pi ∨ qi)〉 if i is odd and QTi is
[(ai + āi); ?(pi ∨ qi)] if i is even, and ψ is obtained from

φ(x1, . . . , xn) by replacing each xi with K̂pi and ¬xi with

K̂qi.
To ease the latter proof, we first define the valuation tree

below.

Definition 4.2 (V-tree). A V-tree τ is a rooted tree
such that 1) each node is 0 or 1 (except the root ε); 2) each
internal node in an even level has only one successor; 3)
each internal node in an odd level has two successors: one
is 0 and the other one is 1; 4) each edge to node 0 of level
i is labelled āi; 5) each edge to node 1 of level i is labelled
ai. Given a V-tree with depth n, a path σ is a sequence of
A1 . . . An where Ai = ai or Ai = āi. A path σ can also
be seen as a valuation assignment for x1, . . . , xn with the
convention that σ(xi) = 1 if ai occurs in σ and σ(xi) = 0 if
āi occurs in σ. Let path(τ) be the set of all paths of τ .

As an example, a V-tree τ can be depicted as below:

ε a1 // 1
ā2 **

a2
44

0 a3 //

1 ā3 //

1

0

It is not hard to see the following:

Proposition 4.1. For each 1 ≤ i ≤ n, we have α =
Q1x1 . . . QixiQi+1xi+1 . . . Qnxnφ is true iff there exists a V-
tree τ with depth i such that σ(Qi+1xi+1 . . . Qnxnφ) = 1 for
each σ ∈ path(τ) (σ is viewed as a valuation).

Now let us see the update result of running a path σ ∈
path(τ) on Mn. Due to the lack of space, we omit the
proofs of the following two propositions.

Proposition 4.2. Given Mn, let σ = A1 . . . Ai (1 ≤ i ≤
n) be a sequence of actions such that Ak = ak or Ak = āk
for each 1 ≤ k ≤ i, then we have U|σ = {x0, X1, . . . , Xi}
where Xk = xk if Ak = ak else Xk = x̄k for each 1 ≤ k ≤ i.

Given σ = A1 . . . An where Ai is ai or āi for each 1 ≤ i ≤
n, let g(σ) = xn if An = an and g(σ) = x̄n if An = ān. By
Proposition 4.2, we always have g(σ) ∈ UMk |σ with k > n.
Thus given Mk and σ = A1 . . . An and k > n, Mk|σ, g(σ)
is a pointed uncertainty map.

Proposition 4.3. For each 1 ≤ i ≤ n, we haveMk, x0 �
QT1 . . . QTiQTi+1 . . . QTnψ iff there exists a V-tree τ with
depth i such thatMk|σ, g(σ) � QTi+1 . . . QTnψ for each σ ∈
path(τ), where k > n and g(σ) is the state corresponds to
the last edge of σ, e.g., g(a1ā2) = x̄2.
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Theorem 4.1. The following two are equivalent:

• α = Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn) is true

• Mn, x0 � QT1 · · ·QTnψ(K̂p1 · · · K̂pn, K̂q1 · · · K̂qn) in
which ψ is obtained from φ by replacing each xi with
K̂pi and ¬xi with K̂qi.

Proof. By Propositions 4.1 and 4.3, we only need to
show that given V-tree τ with depth n, σ(φ) = 1 if and only
ifMn|σ, g(σ) � ψ for each σ ∈ path(τ). Since φ is in CNF, ψ
is also in CNF-like form obtained by replacing each xi with
K̂pi and each ¬xi with K̂qi for 1 ≤ i ≤ n. Thus we only need
to show that σ(xi) = 1 iffMn|σ, g(σ) � K̂pi and σ(¬xi) = 1

iff Mn|σ, g(σ) � K̂qi. Since σ(xi) = 1 iff σ(¬xi) = 0, we

only need to show that σ(xi) = 1 iff Mn|σ, g(σ) � K̂pi and

Mn|σ, g(σ) � K̂pi iff Mn|σ, g(σ) � ¬K̂qi. By the definition
of τ , we know that σ = A1 . . . An where Ai is ai or āi for
each 1 ≤ i ≤ n.

Firstly, we will show that Mn|σ, g(σ) � K̂pi if and only

if Mn|σ, g(σ) � ¬K̂qi. To verify the right-to-left direc-

tion, if Mn|σ, g(σ) � K̂pi, it follows by the definition of
Mn that xi ∈ U|σ. Then it must be the case that ai
occurs in σ. Suppose not, āi occurs in σ. It follows by
Proposition 4.2, U|σ = {x0, X1, . . . , Xi−1, x̄i, Xi+1, . . . , Xn}.
This is contrary with xi ∈ U|σ. Thus it must be that
ai occurs in σ. It follows by Proposition 4.2 that U|σ =
{x0, X1, . . . , Xi−1, xi, Xi+1, . . . , Xn}. Thus x̄i 6∈ U|σ. By
the definition ofMn and the semantics, we haveMn|σ, g(σ) �
¬K̂qi. To verify the left-to-right direction, Mn|σ, g(σ) �
¬K̂qi implies that x̄i 6∈ U|σ. For the similar reason as above,
it must be the case that āi does not occur in σ. Thus we
have that ai occurs in σ. It follows by Proposition 4.2 that
xi ∈ U|σ. Thus we have Mn|σ, g(σ) � K̂pi.

Next we will show that σ(xi) = 1 iffMn|σ, g(σ) � K̂pi. To
verify the right-to-left direction, σ(xi) = 1 implies that Ai =
ai. It follows by Proposition 4.2 that xi ∈ U|σ. Thus we have

Mn|σ, g(σ) � K̂pi. To verify the left-to-right direction, we

will show that σ(xi) = 0 implies Mn|σ, g(σ) � K̂qi. It
follows by the definition of σ(xi) = 0 that Ai = āi. It
follows by Proposition 4.2 that x̄i ∈ U|σ. Thus we have

Mn|σ, g(σ) � K̂qi.

This gives us the desired lower bound:

Theorem 4.2. The model checking problem for EPDL− is
Pspace-hard.

4.1.2 Upper Bound
In this section we give a non-trivial model checking algo-

rithm for EPDL− inspired by an equivalent semantics.
As we mentioned earlier, the semantics of EPDL is ‘context-

dependent’: reaching the same state through different paths
may affect the truth value of an epistemic subformula. This
means that the usual global model checking algorithm for
modal logics may not work here. In order to establish the
upper bound, we first give the following equivalent semantics
to EPDL− which makes the context dependency explicit in
order to facilitate a local model checking algorithm. The
idea is to keep the model intact but record the scope of action
modalities in order to compute the right uncertainty set for
epistemic subformulas. Similar idea appeared in [32] to give
an alternative semantics of public announcement logic.

Definition 4.3. Given an uncertainty mapM = 〈S, {Ra |
a ∈ A},V,U〉 and any state s ∈ S, the satisfaction relation
 is defined using the auxiliary satisfaction relation σ and

auxiliary relation
ωσ→, where σ is a finite (possibly empty)

sequence of actions in A:

M, s  φ ⇔M, s ε φ
M, s σ > ⇔ always
M, s σ p ⇔ p ∈ V(s)
M, s σ ¬φ ⇔M, s 1σ φ
M, s σ φ ∧ ψ⇔M, s σ φ and M, s σ ψ
M, s σ Kφ ⇔ for all v ∈ U|σ :M, v σ φ
M, s σ 〈π〉φ ⇔ there exists ω ∈ L(π) and t ∈ S

such that s
ωσ→ t and M, t σr(ω) φ

s
εσ→ t ⇔ s = t

s
(aω′)σ→ t ⇔ there exists s′ such that s

a→ s′ and s′
ω′(σa)→ t

s
(?φω′)σ→ t ⇔M, s σ φ and s

ω′σ→ t

where r(ω) is the sequence of actions obtained by eliminating
all the tests in ω.

Note that ω in the above definition is a computation se-
quence, i.e., a finite sequence of actions and EPDL−-tests,
while σ is a test-free sequence of actions.

The following can be proved by induction on η:

Proposition 4.4. Given an uncertainty map M and se-
quences of actions and tests η, ω, ω′ such that η = ωω′, we

have (s, t) ∈ησ→ iff (s, t) ∈ωσ→ ◦
ω′σr(ω)→ for any sequence of

actions σ.

Proof. We prove it by induction on |η|. If |η| ≤ 2, it is
obvious by the definition. If |η| > 2, there are two cases,
that is, η = aη′ or η =?φη′.

Case η = aη′ : We have ω = aω′′ for some initial segment

ω′′ of η′, and (s, t) ∈(aη′)σ→ iff there exists s′ such that s
a→ s′

and (s′, t) ∈η
′
σa→ . By IH, we have

η′σa→=
ω′′σa→ ◦

ω′
σar(ω′′)→ . Thus

we have (s′, t) ∈η
′
σa→ iff there exists t′ such that (s′, t′) ∈ω

′′
σa→

and (t′, t) ∈
ω′
σar(ω′′)→ . By definition, we have that s

a→ s′

and (s′, t′) ∈ω
′′
σa→ iff (s, t′) ∈aω

′′
σ→ . Thus we have (s, t) ∈aω

′′
σ→

◦
ω′
σar(ω′′)→ , namely (s, t) ∈ωσ→ ◦

ω′σr(ω)→ .
Case η =?φη′ : We have ω =?φω′′ for some initial segment

ω′′ of η′, and (s, t) ∈(?φη′)σ→ iffM, s σ φ and s
η′σ→ t. By IH,

we have s
η′σ→ t iff (s, t) ∈ω

′′
σ→ ◦

ω′
σr(ω′′)→ . Thus we have there

exists s′ such that (s, s′) ∈ω
′′
σ→ and (s′, t) ∈

ω′
σr(ω′′)→ . This

follows that (s, s′) ∈(?φω′′)σ→ , and (s, t) ∈(?φω′′)σ→ ◦
ω′
σr(?φω′′)→ ,

namely (s, t) ∈ωσ→ ◦
ω′σr(ω)→ .

In the following we show that  coincides with �.

Theorem 4.3. Given an uncertainty map M and an ac-
tion sequence σ, if U|σ 6= ∅, we have that for each s ∈ U|σ,

(i) M|σ, sJπKM′, s′ iff there exists ω ∈ L(π) such that

M′ =M|σr(ω) and s
ωσ→ s′,
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(ii) M|σ, s � φ iff M, s σ φ.

Proof. The proof is by simultaneous induction on π and
φ (due to the test actions). For (i), we will only focus on
the case of π1;π2; the other cases are straightforward.

Case π1;π2: We only show the direction from left to
right; the other direction is similar. It follows by assump-
tion that there is pointed uncertainty map N , t such that
M|σ, sJπ1KN , t and N , tJπ2KM′, s′. By IH, we have that

there exists ω ∈ L(π1) such that N = M|σr(ω) and s
ωσ→ t.

Since N , t is a pointed uncertainty map and N =M|σr(ω),

we have t ∈ U|σr(ω). By IH and M|σr(ω), tJπ2KM′, s′, we

have that there exists ω′ ∈ L(π2) such that M|σr(ω)r(ω′) =

M|σr(ωω′) = M′ and t
ω′σr(ω)→ s′. By Proposition 4.4, it

follows that ωω′ ∈ L(π1;π2) and s
(ωω′)σ→ s′.

For (ii), we will focus on the case of 〈π〉φ; the other cases
are straightforward.

Case 〈π〉φ: We have M|σ, s � 〈π〉φ if and only if there is
pointed uncertainty map M′, s′ such that M|σ, sJπKM′, s′
and M′, s′ � φ. By (i), it follows that M|σ, sJπKM′, s′ iff

there exists ω ∈ L(π) such that M′ =M|σr(ω) and s
ωσ→ s′.

By IH, it follows that M|σr(ω), s′ � φ iff M, s′ σr(ω) φ.
Thus we have M, s  〈π〉φ.

Let σ be ε, we have the equivalence of  and �.

Corollary 4.1. Given pointed uncertainty mapM, s, we
have M, s � φ iff M, s  φ for each φ ∈ EPDL−.

This alternative semantics induces a natural algorithm to
compute the truth value of an EPDL− formula w.r.t. to a
pointed uncertainty map. The idea is to recursively call a
function MC(M, s, σ, φ) which returns the truth value of a
subformula φ on state s given the context of σ while keep-
ingM intact. Note that, we do not need to compute all the
MC(M, s, σ, φ) for each σ and each subformula φ. The only
tricky part comes when evaluating 〈π〉φ formulas since it is
too space consuming to compute the whole set of L(π) in
the search of the right ω. Instead, we can generate one by
one in some lexicographical order all the possible sequences
up to a bound based on the atomic actions and tests oc-
curring in the formula, and then test whether it belongs to
the program π. Note that in this way, we can use the space
repeatedly, and the membership testing of L(π) is not ex-
pensive (NLOGspace-complete according to [19]).

In the appendix we present three algorithms based on ma-
trix representation of the model: Algorithm 1 computes the

uncertainty set U|σ; Algorithm 2 computes
wσ→ and Algo-

rithm 3 is the main model checking algorithm. Note that
Algorithms 2 and 3 involve mutual recursion of each other
due to the tests in programs. However, the depth of the
recursion is bounded by the length of the formula, and for
each call polynomial space suffices. The detailed algorithms
and complexity analysis can be found in the appendix. It is
not hard to show the following (based on Theorem 4.2)

Theorem 4.4 (Upper bound). The model checking prob-
lem of EPDL− is in Pspace. Thus it is Pspace-complete.

4.2 Upper Bounds for model checking EPDL
In this section, we give an EXPtime model checking method

for the full EPDL via model checking EPDL over two-dimensional
models with both epistemic and action relations. Let us first
define such models.

Definition 4.4 (Epistemic Temporal Structure).
An Epistemic Temporal Structure (ETS) is a Kripke model
with both epistemic and action relations. Formally, an ETS
model M is a tuple 〈S, {Ra | a ∈ A},∼,V〉, where Ra is a
binary relation on S, ∼ is an equivalence relation on S and
V : S → 2P is a valuation function.

Now we define an alternative semantics of EPDL over ETSs.6

Definition 4.5 (ETS Semantics). Given any ETS
model M = 〈S, {Ra | a ∈ A},∼,V〉 and any state s ∈ S, the
satisfaction relation for EPDL formulas is defined as follows
(the Boolean cases are as in the standard modal logic):

M, s  Kφ ⇔∀u ∈ S : s ∼ u implies M, u  φ

M, s  [π]φ⇔∀t ∈ S : s
π→ t implies M, t  φ

a→ = Ra
?φ→ = {(s, s) |M, s  φ}
π1;π2→ =

π1→ ◦ π2→
π1+π2→ =

π1→ ∪ π2→
π∗→ = (

π→)?

where ◦,∪, ? at right-hand side denote the usual composi-
tion, union and reflexive transitive closure of binary rela-
tions respectively.

We can turn a Kripke model without the epistemic rela-
tion into an ETS model by essentially considering all the
possible uncertainty sets.

Definition 4.6. Given any Kripke modelM = 〈S, {Ra |
a ∈ A},V〉, we define the ETS model M• as follows:

S• = {sΓ | s ∈ S,Γ ∈ 2S , s ∈ Γ}
R•a = {(sΓ, t∆) | s a→ t,∆ = Γ|a}
∼• = {(sΓ, t∆) | Γ = ∆}
V•(sΓ) = V(s)

where Γ|a = {t ∈ S | ∃s ∈ Γ such that s
a→ t}. For any

Kripke model M and any Γ ∈ 2S\{∅}, let MΓ be the uncer-
tainty map 〈M,Γ〉.

Note that each sΓ can be viewed as an uncertainty set
(Γ) with a designated state (s), and the definition of Ra
captures the update in the � semantics of EPDL, and M•
unravels all the updates in a whole picture. Note that the
size of M• is |S| · 2|S|−1 where S is the set of states of M.

Now we can show that � and  coincide w.r.t. uncertainty
map MΓ and ETS model M• (the proofs are omitted due
to the lack of space).

Proposition 4.5. Given any map M, we have

(i) MΓ, sJπKM∆, t iff sΓ
π→ t∆ in M•;7

(ii) MΓ, s � φ iff M•, sΓ  φ.

Corollary 4.2. Given an uncertainty mapM = 〈N ,U〉
and s ∈ U , we have M, s � φ iff N •, sU  φ.

Based on the above corollary we can have a model checking
method via model checking EPDL over ETS models.

6Here we abuse the notation  to denote the new semantics.
Note that it is different from the alternative semantics in the
previous section.
7Cf. the definition of

π→ in Def. 4.5.
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Proposition 4.6. The model checking problem of EPDL

on uncertainty maps is in EXPtime.

Proof. Given an uncertainty mapM = 〈N ,U〉, the con-
struction of ETS N • can be done in exponential time in the
size of N due to the fact that there are at most |N | a-
successors t∆ of each sΓ since ∆ = Γ|a. By modifying the
algorithm for PDL in [22], we can get an algorithm to check
EPDL formula φ on N • w.r.t. , and its time complexity is
O(|φ|2 ·|N •|3). Thus, the time complexity of model checking

φ on M is bounded by O(|φ|2 · |SN |3 · 23|SN |−3).

We conjecture that the model checking problem of full
EPDL is EXPtime-complete, and leave the lower bound to
the extended version of this paper.

4.3 Complexity of conformant planning
In the rest of this section, let us look at the complexity

of conformant planning in terms of EPDL model checking.
Although the model checking problem of full EPDL is likely
to be EXPtime-complete, the complexity of model checking
the EPDL formula which encodes the conformant planning
problem (cf. Theorem 3.1) is in Pspace if the goal formula
is program-free. More precisely, we can show the following:

Theorem 4.5. The problem of model checking EPDL for-
mulas in the shape of 〈(Σa∈B(?K〈a〉>; a))∗〉Kφ, where φ is
an epistemic formula (i.e. program-free) and B ⊆ A, is in
Pspace.

Proof. (Sketch) Note that (
∑
a∈B(?K〈a〉>; a))∗ is a spe-

cial program which has only simple epistemic tests depend-
ing on the structure of the underlying Kripke model. Now
given a Kripke model N and a set B ⊆ A we can define an
ETS model N ◦ similar to N • but with a different definition
for the action relations:

R◦a = {(sΓ, t∆) | s a→ t,∆ = Γ|a,∀u ∈ Γ∃v st. u a→ v.}
Note that the extra condition guarantees that the action

a is always executable w.r.t. the whole Γ, thus fulfilling
the test ?K〈a〉>. Now we can have an analog of Corol-
lary 4.2, and reduce the problem of checking 〈N ,U〉, s �
(
∑
a∈B(?K〈a〉>; a))∗Kφ to the reachability problem in N ◦:

whether there is a path from sU in N ◦ such that it can
reach a state tU′ where Kφ holds. Since φ is [π]-free, we
can check it easily given U ′ using polynomial space, thus
the main task is to find the reachable tU′ . Note that, in the
size of N , there are exponentially many such tU′ and the
maximal length of the plan is also exponential. However,
we do not need to build the whole N ◦ and the bisection-like
algorithm behind the proof of Savitch’s Theorem will do the
job.8 More precisely, we first pick up a tU′ , and then run the
recursive bisection method to see whether tU′ is reachable
from sU within 2|N| steps. The depth of the recursion is
bounded by log2(2|N|) = |N | and at each recursion we need
to record the choice of the state which can be encoded by
a (0, 1)-vector using log2(2|N|) = |N | space (plus one bit to
record the result). Moreover, at the bottom of the recursion
we only need to verify one step reachability, i.e., whether
two states in N ◦ are linked by R◦a, without building the
whole N ◦. Thus the whole procedure of model checking can
be done using polynomial space.

8A similar algorithm was used to pinpoint complexity of the
conformant planning in AI, cf.[20].

As we mentioned in the introduction, the conformant plan-
ning problems in the AI literature are usually given by using
state variables and actions with preconditions and (condi-
tional) effects, rather than explicit transition systems. The
corresponding explicit transition system can be generated
by taking all the possible valuations of the state variables
as the state space (an exponential blow up), and computing
the transitions among the valuations according to the pre-
conditions and the postconditions of the actions. In terms
of the size of explicit transition systems, our above result is
consistent with the EXPspace complexity result in the AI
literature for conformant planning with Boolean and modal
goals [20, 8]. Actually, the complexity result of Theorem 4.5
can be strengthened to Pspace-complete based on the cor-
responding complexity result in the AI literature.

However, not all the transition systems can be generated
in this way since the preconditions and postconditions are
(usually) purely propositional and thus two states that share
the same valuation must have the same executable actions.
In an arbitrary transition system, multiple states with the
same valuation may have different available actions due to
some underlying protocol or other (external) factors not
modelled by basic propositions.

5. CONCLUSIONS AND FUTURE WORK
In this work we first introduce the logical language EAL

over uncertainty maps and axiomatize it completely. EAL is
then extended to EPDL with programs to specify conformant
and conditional plans. We show that the conformant plan-
ning problems can be reduced to model checking problems
of EPDL. Finally we showed that model checking star-free
EPDL over uncertainty maps is Pspace-complete and model
checking the full fragment is in EXPtime. On the other
hand, model checking the conformant planning problem is
in Pspace.

Note that our EPDL is a powerful language which can al-
ready express conditional plans, e.g. (?p; a+?¬p; b); c. This
suggests that we can use the very EPDL language (EPDL−

is enough) to verify plans in contingent planning w.r.t. a
variant of the semantics which can handle feedbacks dur-
ing the execution. In fact, observational power about the
availability of the actions has been already incorporated in
[33], which can be extended to general feedbacks discussed
in the literature of contingent planning (cf. e.g., [10]). On
the other hand, to check the existence of a conditional plan,
we are not sure whether EPDL is expressive enough, as sub-
tleties may arise as in the case of conformant planning. We
leave the contingent planning to future work.

Another natural extension is to go probabilistic, and re-
duce the probabilistic planning over MDP to some model
checking problem of the probabilistic version of our EPDL.
Our ultimate goal is to cast all the standard AI planning
problems into one unified logical framework in order to fa-
cilitate careful comparison and categorization. We will then
see clearly how the form of the goal formula, the constructor
of the plan, and the observational ability matter in the the-
oretical and practical complexity of planning, in line with
the research pioneered in [5].
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APPENDIX
A. ALGORITHMS FOR EPDL−

Definition A.1 (Matrix representation). Let Bn×m
denote a (0,1)-matrix of size n ×m. A matrix Bn×1, or Bn
for short, is called a vector. Given finite uncertainty map
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M, its domain S can be linearly ordered as {s1, · · · , sn}.
Thus M can be represented by a set {Ban×n | a ∈ A} of ad-
jacency matrices for accessibility relation, a vector BUn for U
and a set {Bpn | p ∈ P} of vectors for atomic propositions.

Definition A.2. Given (0,1)-matrices B′n×k, Bk×m, their
product B′′n×m is defined as: B′′n×m[i, j] = 1 iff there exists
r ≤ n such that B′n×k[i, r] = Bk×m[r, j] = 1 for all 1 ≤ i ≤
n, 1 ≤ j ≤ m.

The following algorithms are to check whether φ holds on a
pointed uncertainty map M, s by Definition 4.3. The main
algorithm (Algorithm 3) recursively calls itself for each non-
trivial subformula of φ. The complex cases are for the sub-
formulas in the form of 〈π〉φ and Kφ. By Definition 4.3, to
checkM, s σ 〈π〉φ, we need to make sure that there exists

a sequence ω ∈ L(π) and a state t ∈ S such that s
ωσ→ t

and M, t σr(ω) φ. Since π is star-free, |ω| ≤ |π| for each
ω ∈ L(π). It is clear that we cannot compute and store the
whole set of L(π) within polynomial space. Instead, one by
one we generate all the possible sequences that are shorter
than |π| and are formed from the alphabet of π (cf. line 14),
and check whether they are in L(π). We can order the pos-
sible sequences lexicographically according to an ordering of
the basic actions and tests in Sig, and compute the next
sequence merely from the current one using function next.
memb chec(ω, π) checks whether it is the case ω ∈ L(π). If
ω ∈ L(π), we need to check whether there exists sj ∈ SM
such that s

ωσ→ sj (Algorithm 2) and M, sj σr(ω) φ, where
r(ω) is the test-free subsequence of ω which is easy to com-
pute. For the case of Kφ, we need to calculate the state set
U|σ (Algorithm 1).

B. COMPLEXITY ANALYSIS
We suppose |SM| = n and |φ| = k. Algorithm 1 uses one

variable A to record the uncertainty set which requires O(n)
space. Note that there is a mutual recursion in Algorithm 2
and 3, but the depth of the overall recursion is bounded by k.
In Algorithm 2, the variable consuming the most of the space
is the matrix Bn×n recording the (intermediate) relation.
Since σ and ω are also variables in the main algorithm and
|ω| + |σ| ≤ k due to the construction in Algorithm 3, the
space usage of Algorithm 2 before the recursive calls of PW
and MC is bounded by O(k+n2). For Algorithm 3, the most
space-demanding part is the 〈π〉φ case, where we need to
store π, Sig, and keep track one ω and one state s in the loop,
which are bounded by either k or s. Moreover, according to
[19], the complexity of memb chec is NLOGspace-complete
in the size of Sig, i.e., the alphabet of π which is bounded
again by k. Thus before calling MC and PW again in the
〈π〉φ case, the space requirement is at most linear in both k
and n, which is less demanding than PW for each recursion.
Recall that the overall recursion depth of MC (and PW ) is
bounded by k thus the space usage of the whole algorithm
is bounded by O(k(k + n2)) = O(k2 + kn2).

Algorithm 1: Function CNU(U , σ): Calculate the the
new uncertainty set U|σ
input : U , σ

output: B
U|σ
n

1 A← BUn ;
2 for i← 1 to |σ| do
3 A← A× B

σ[i]
n×n;

4 return A;

Algorithm 2: Function PW (ω, σ): Calculate the binary

relation
ωσ→

input : computation sequence ω, action sequence σ
output: Bn×n

1 switch ωσ do
2 case εσ return Matrix({(s, s) | s ∈ S})

/* Matrix(R) is the (0, 1)-matrix
representation of the binary relation R */;

3 case (?φω′)σ
4 return Matrix({(s, s) | MC(M, s, σ, φ) = true

})× PW(ω′, σ);

5 case (aω′)σ return Ban×n× PW(ω′, σa) ;

Algorithm 3: Function MC(M, s, σ, φ): Model checking
algorithm for EPDL− (Boolean cases omitted)

input : The pointed uncertainty map (M, s), sequence
of actions σ, φ ∈ EPDL−.

output: true if M, s σ φ.

1 switch φ do
2 case 〈π〉ϕ
3 Let Sig be the array consisting of atomic

programs and formulas in π ordered according
to their first appearances;

4 ω ← Sig[1] /* ω is the candidate sequence

we want to test */;
5 while |ω| ≤ |π| do
6 if memb chec(ω, π) then
7 for i = 1 to SM do
8 if (s, si) ∈ PW (ω, σ) then
9 if MC(M, sj , σr(ω), ϕ) then

10 return true;

11 ω ← next(ω, Sig) /* calculate the next

sequence lexicographically according

to the order Sig */;

12 return false;

13 case Kϕ

14 B
U|σ
n = CNU(U , σ) /* calculate the vector

representation of U|σ */

15 for m = 1 to |SM| do
16 if (B

U| σ
n )m = 1 and MC(M, sm, σ, ϕ) =

false then
17 return false;

18 return true;
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ABSTRACT
Recent developments in structural equation modeling have
produced several methods that can usually distinguish cause
from effect in the two-variable case. For that purpose, how-
ever, one has to impose substantial structural constraints
or smoothness assumptions on the functional causal mod-
els. In this paper, we consider the problem of determining
the causal direction from a related but different point of
view, and propose a new framework for causal direction de-
termination. We show that it is possible to perform causal
inference based on the condition that the cause is “exoge-
nous” for the parameters involved in the generating pro-
cess from the cause to the effect. In this way, we avoid
the structural constraints required by the SEM-based ap-
proaches. In particular, we exploit nonparametric methods
to estimate marginal and conditional distributions, and pro-
pose a bootstrap-based approach to test for the exogeneity
condition; the testing results indicate the causal direction
between two variables. The proposed method is validated
on both synthetic and real data.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Miscellaneous

General Terms
Algorithms, Theory

Keywords
Causal discovery, causal direction, exogeneity, statistical in-
dependence, bootstrap

1. INTRODUCTION
Understanding causal relations allows us to predict the

effect of changes in a system and control the behavior of
the system. Since randomized experiments are usually ex-
pensive and often impracticable, causal discovery from non-
experimental data has attracted much interest [18, 23]. To
do this, it is crucial to find (statistical) properties in the non-
experimental data that give clues about causal relations. For
instance, under the causal Markov condition and faithfulness
assumption, the causal structure can be partially estimated
by constraint-based methods, which make use of conditional
independence relationships.

Here we are concerned with the two-variable case, in which
constraint-based methods, such as the PC algorithm [23],
do not apply. We assume that the given observations are
i.i.d., i.e., there is no temporal information. Recently, causal
discovery based on structural equation models (SEMs) has
proved useful in distinguishing cause from effect [21, 8, 27,
26, 15, 29]; however, the performance of such approaches de-
pends on assumptions on the functional model class and/or
on the data-generating functions. On the other hand, there
have been attempts in different fields to characterize proper-
ties related to causal systems. One such concept (or family
of concepts) is known as exogeneity, which is salient in econo-
metrics [3, 4]. Roughly speaking, the notion expresses the
property that the process that determines one variable X is
in some sense separate from or independent of the process
that determines another variable, say Y , given the value of
X.

The sense of“separateness”or“independence”in the rough
idea has been specified in several ways for different purposes,
which result in different concepts of exogeneity. The concept
that is most relevant in this paper is the one in the context of
model reduction, which was originally proposed as a condi-
tion that justifies inferences about the parameters of interest
based on the conditional likelihood function rather than the
joint likelihood function [7]. Here is the basic idea. Suppose
the joint distribution of (X,Y ) can be factorized as

p(X,Y |θ, ψ) = p(Y |X,ψ)p(X|θ). (1)

where the conditional distribution p(Y |X) is parameterized
by ψ alone, and the marginal distribution p(X) by θ alone.
According to [3, 19], X is said to be exogenous for ψ (or any
parameter of interest that is a function of ψ), if ψ and θ are
variation free1, or in other words, are not subject to ‘cross-
restrictions”. From the frequentist point of view, this implies
that ψ and θ are independently estimable: the MLE of ψ
and that of θ are statistically independent according to the
sampling distribution. From the Bayesian point of view [4],
this implies that ψ and θ are a posteriori independent given
independent priors on them.

In this paper we will exploit the above idea to develop
a test of whether there exists a parameterization (θ, ψ) for
p(X,Y ) such that X is exogenous for ψ, the parameters for

1This is actually the definition of “weak exogeneity” in [3],
where three types of exogeneity were defined. Here we con-
sider the i.i.d. case where there is no temporal information,
and consequently strong exogeneity in [3] and weak exogene-
ity conincide.
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p(Y |X). The test is based on bootstrap and is applicable
in nonparametric settings. We will also argue that if X is a
cause of Y and there is no confounding, then there should
exist a parameterization such that X is exogenous for the
parameters for p(Y |X). Thus the nonparametric test can
be used to indicate the causal direction between two vari-
ables, when the test passes for one direction but fails for the
other. Compared to the SEM-based approach, an impor-
tant novelty of this work is to use exogeneity as a new cri-
terion for causal discovery in general settings, which allows
distinguishing cause from effect and detecting confounders
without structural constraints on the causal mechanism.2

2. EXOGENEITY AND CAUSALITY
In this section we define what “exogeneity” means in this

paper, and explain its link to causal asymmetry. The con-
cept of exogeneity we will use is adapted from the concept
known in econometrics as weak exogeneity, which is in itself
a statistical rather than a causal concept.3 We will show
that this statistical notion can nonetheless be exploited to
formulate a method that can often determine the causal di-
rection between two variables.

2.1 Exogeneity
The concept of weak exogeneity, as formulated by Engle,

Hendry, and Richard (EHR) [3], is concerned with when ef-
ficient estimation of a set of parameters of interest can be
made in a conditional submodel. For the purpose of this
paper, suppose we are given two continuous random vari-
ables X and Y , on which we have i.i.d. observations that
are drawn according to a joint density p(X,Y |φ). By a repa-
rameterization we mean a one-to-one transformation of the
parameter set φ. Our definition below is adapted from the
EHR definition, adjusted for our present purpose and setup:

Definition 1 (Exogeneity of X for p(Y |X)). Suppose
p(X,Y ) is parameterized by φ. X is said to be exogenous for
the conditional P (Y |X) (or simply, exogenous relative to Y )
if and only if there exists a reparameterization φ → (θ, ψ),
such that
(i.) p(X,Y |θ, ψ) = p(Y |X,ψ)p(X|θ), and
(ii.) θ and ψ are variation free, i.e., (θ, ψ) ∈ Θ×Ψ, where
Θ and Ψ denote the set of admissible values of θ and ψ,
respectively.

Here “variation free” means that the possible values that
one parameter set can take do not depend on the values
of the other set. Clauses (i.) and (ii.) in Definition 1
are the defining conditions for the concept of a (classical)
cut: [(Y |X;ψ), (X; θ)] is said to operate a (classical) cut on
p(X,Y |θ, ψ) if (i.) and (ii.) are satisfied. The cut implies
that the maximum likelihood estimates of θ and ψ can be
computed from p(X|θ) and p(Y |X,ψ), respectively, and so

2A related criterion is that of algorithmic independence
between the input distribution p(X) and the conditional
p(Y |X) postulated for a causal system X → Y [11]; see
also [10]. The algorithmic independence condition is defined
in terms of Kolmogorov complexity, which is uncomputable,
and the method proposed in this paper provides an alter-
native way to assess the “independence” between p(X) and
p(Y |X).
3The stronger, causal concept of exogeneity is known as su-
per exogeneity.

the MLEs θ̂ and ψ̂ are independent according to the sam-
pling distribution. The concept of exogeneity formalizes the
idea that the mechanism generating the exogenous variable
X does not contain any relevant information about the pa-
rameter set ψ for the conditional model p(Y |X).

The concept of cut also has a Bayesian version: [4, 16].

Definition 2 (Bayesian cut). [(Y |X;ψ), (X; θ)] oper-
ates a Bayesian cut on p(X,Y |θ, ψ) if
(i.) ψ and θ are independent a priori, i.e., ψ ⊥⊥ θ,
(ii.) θ is sufficient for the marginal process of generating X,
i.e., ψ ⊥⊥ X|θ, and
(iii.) ψ is sufficient for the conditional process of generating
Y given X, i.e., θ ⊥⊥ Y |(ψ,X).

A Bayesian cut allows a complete separation of inference
(on θ) in the marginal model and of inference (on ψ) in the
conditional model. The prior independence between θ and
ψ in the Bayesian cut is a counterpart to the variation-free
condition in the classical cut, and the last two conditions in
Definition 2 implies condition (i.) in Definition 1. Thus, the
Bayesian cut is equivalent to the classical cut in sampling
theory, and for the purpose of this paper can be regarded as
interchangeable. Therefore, the exogeneity of X relative to
Y can also be defined as that there exists a reparameteriza-
tion (θ, ψ) of p(X,Y ) such that [(Y |X;ψ), (X; θ)] operates
a Bayesian cut on p(X,Y |θ, ψ).

2.2 Possible Situations Where the Parameter-
ization Fails to Operate a Bayesian Cut

Fig. 1(a) shows a data-generating process of X and Y
from where [(Y |X;ψ), (X; θ)] operates a Bayesian cut. Note
that in Definition 2, the two requirements of sufficiency of
ψ and θ for the marginal and the conditional (conditions
(ii.) and (iii.)), respectively, are only restrictive under the
assumption of prior independence of θ and ψ (condition (i.));
otherwise, conditions (ii.) and (iii.) can be trivially met by,
for example, taking θ and ψ to be the same. In fact, any
two conditions in Definition 2 could be trivial, given that the
other does not hold. Fig. 1(b–d) shows the situations where
conditions (i.), (ii.), and (iii.) are violated, respectively. In
all those situations, θ and ψ are not independent a posteriori.

2.3 Relation to Causality
As Pearl [18] rightly stressed, the EHR concept of weak

exogeneity is a statistical rather than a causal notion. Unlike
the concept of super exogeneity, it is not defined in terms of
interventions or multiple regimes. That is why, as we will
show, the hypothesis that X is exogenous relative to Y in
the sense we defined is generally testable by observational
data. However, it is also linked to causality in that it is
arguably a necessary condition for an unconfounded causal
relation: if X is a cause of Y and there is no common cause
of X and Y , then X is exogenous relative to Y in the sense
we defined.4 This follows from the principle we indicated
at the beginning: if X is an unconfounded cause of Y , then
the process or mechanism that determines X is separate or
independent from the process or mechanism that determines
Y givenX. The separation of processes ensures the existence
of separate parameterizations of the processes, which will
then satisfy our definition of exogeneity.

4In this paper we use ”unconfounded” to mean the absence
of any common cause.
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Figure 1: Graphical representation of the data-
generating process. (a) [(Y |X;ψ), (X; θ)] operates a
Bayesian cut (implying that X and ψ are mutually
exogenous). (b), (c), and (d) correspond to three
situations where [(Y |X;ψ), (X; θ)] does not operate a
Bayesian cut: (b) ψ and θ are dependent a priori, as
both of them depend on γ, which is a function of θ
or ψ; (c) θ is not sufficient in modeling the marginal
distribution of X, where γ is a function of ψ; (d) ψ
is not sufficient in modeling the conditional distri-
bution of Y given X, where γ is a function of θ.

We have argued that if X and Y are causally related and
unconfounded, the exogeneity property holds for the correct
causal direction. Furthermore, if it turns out that there is
one and only one direction that admits exogeneity, then the
direction for which the exogeneity property holds must be
the correct causal direction. This suggests the following ap-
proach to inferring the causal direction between X and Y
based on some tests of exogeneity, assuming that X and Y
are causally related and that there is no common cause of
X and Y (or in other words, X and Y form a causally suffi-
cient system): test whether (1) X is exogenous for p(Y |X)
and whether (2) Y is exogenous for p(X|Y ), and if one of
them holds and the other does not, we can infer the causal
direction accordingly. Of course it may also turn out that
neither (1) nor (2) holds, which will indicate that the as-
sumption of causal sufficiency is not appropriate, or that
both (1) and (2) hold, which will indicate that the causal
direction in question is not identifiable by our criterion.5

A familiar example of a non-identifiable situation is when
X and Y follow a bivariate normal distribution. In that
case, as shown by EHR [3], there is a cut [(Y |X;ψ), (X; θ)]

in one direction, as well as a cut [(X|Y ; ψ̃), (Y ; θ̃)] in the
other. Below we give an example where the causal direction
is identifiable based on exogeneity.

An example of identifiable situation: Linear non-
Gaussian case.

Let X follow a Gaussian mixture model with two Gaus-
sians, X ∼∑2

i=1 πiN (ui, σ
2
i ), where πi > 0 and π1+π2 = 1,

and let Y = c + βX + E where E ∼ N (0, σ2). Therefore

5Note that we are not concerned with the case in which
X and Y are not causally connected and hence statistically
independent; in that case, exogeneity trivially holds in both
directions.
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Figure 2: An illutration on the identifiability of a
linear non-Gaussian model based on “exogeneity”.
X is generated by a mixture of two Gaussians, and
Y is generated by Y = X + E, where E ∼ N (0, 1).
Here X is exogenous for parameters in pY |X , while
Y is not exogenous for parameters in pX|Y .

θ = {πi, µi, σi}2i=1 and ψ = {c, β, σ2}. We then have

p(X,Y |θ, β) =
∑

i

πiN (x;µi, σ
2
i )N (y; c+ βx, σ2)

=
∑

i

πiN (y; µ̃i, σ̃
2
i )N (x; c̃i + β̃iy, γ

2
i ),

where µ̃i = c + βµi, σ̃
2
i = β2σ2

i + σ2, c̃i =
µiσ

2−cβσ2
i

βσ2
i +σ

2 , β̃i =

βσ2
i

βσ2
i +σ

2 , and γ2
i =

σ2σ2
i

βσ2
i +σ

2 . That is,

Y ∼
2∑

i=1

πiN (y; ũi, σ̃
2
i ), and

p(X|Y, θ, ψ) =
∑

i

πiN (y; µ̃i, σ̃
2
i )

p(Y |θ, ψ)
· N (x; c̃i + β̃iy, γ

2
i ).

Clearly, if π1π2 6= 0, no matter how one parametrizes
the density of Y , the conditional distribution of X given
Y would involves those parameters that model the marginal
density of Y . The sufficient parameter set of the distribution
of Y , θ̃, and that of the conditional distribution of X given
Y , ψ̃, cannot be variation-free or independent a priori; see
Fig. 1(b). Alternatively, one can keep those parameters that

are independent a priori from θ̃ in ψ̃, i.e., ψ̃ and θ̃ become
independent a priori, but ψ̃ is then not sufficient in modeling
p(X|Y ); see Fig. 1(d). In both situations Y is not exogenous

for ψ̃. Hence in this linear non-Gaussian case the exogeneity
condition only holds for the direction X → Y , and the causal
direction is identifiable. Fig. 2 gives an intuitive illustration
on how the shape of P (Y ) and that of E(X|Y ), which is
determined by P (X|Y ), are related.

3. CAUSAL DIRECTION DETERMINATION
BY TESTING FOR EXOGENEITY WITH
BOOTSTRAP
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We now describe our approach to testing exogeneity. We
will first illustrate how bootstrap can be used to test whether
a given parametric model constitutes a (Bayesian) cut, and
then develop a nonparametric test for exogeneity based on
bootstrap.

3.1 Bootstrap-Based Test for Bayesian Cut in
the Parametric Case

In this section, we assume that a parametric form p(X,Y |θ, ψ) =
p(X|θ)p(Y |X,ψ) is given. We would like to see whether the
estimates of θ and of ψ in (1) are independent, according
to the sampling distribution; in other words, with a nonin-
formative prior, we want to test if the posterior distribution
p(θ, ψ|D) has no coupling between θ and ψ. In this case we
are examining if [(Y |X;ψ), (X; θ)] operates a Bayesian cut.

Bootstrap has been used in the literature to assess the
dependence, as well as uncertainty, in the parameter esti-
mates according to the sampling distribution; see e.g. [2,
Sec. 5.7]. For clarity, Table 1 gives the notation used in the
proposed bootstrap-based method. Suppose we draw boot-
strap resamples (x∗(b),y∗(b)), b = 1, ..., B, from the original
sample (x,y) = (xi, yi)

N
i=1 with paired bootstrap, i.e., each

resample (x∗(b),y∗(b)) is obtained by independently drawing
N pairs from the original sample with replacement. On each
of them, we can calculate the parameter estimates θ̂∗(b) and
ψ̂∗(b). The independence between θ and ψ according to the
sampling distribution is then transformed to statistical inde-
pendence between the bootstrap estimates θ̂∗(b) and ψ̂∗(b),
b = 1, ..., B. To assess the latter, any independence test
method, such as the correlation test, would apply.

3.2 Bootstrap-Based Test for Exogeneity in the
Nonparametric Case

Let x̃ be a fixed set of values of X, and x̃i be a point in
x̃. x̃ can be drawn from the given data set, or randomly
sampled on the support of X, given that it contains enough
points such that the values of P (X) and p(Y |X) evaluated
at x̃ well approximate the continuous densities. In our ex-
periments we used 80 evenly-spaced sample points between
the minimum and maximum values of X as x̃ (so its length
is N = 80).

On the bootstrap resamples, log p̂∗(b)(X = x̃) is fully de-

termined by θ̂∗(b); similarly, log p̂∗(b)(Y |X = x̃) is a function

of ψ̂∗(b), and so is the quantityH
∗(b)
Y |X(x̃) , EY |X log p̂∗(b)(Y |X =

x̃). Note that p̂∗(b)(Y |X = x̃i) is the estimated distribution

of Y at X = x̃i, and hence H
∗(b)
Y |X(x̃) can be considered as

negative entropies of Y on the bth bootstrap resample eval-
uated at X = x̃.

Suppose all involved parameters are identifiable, i.e., the
mappings θ 7→ p(X|θ) and ψ 7→ p(Y |X,ψ) are both one-to-

one [14]. Then the mapping between θ̂∗(b) and log p̂∗(b)(X =

x̃) and that between ψ̂∗(b) and log p̂∗(b)(Y |X = x̃) are both

one-to-one. Hence, the independence between θ̂∗(b) and ψ̂∗(b),
b = 1, ..., B, implies that between log p̂∗(b)(X = x̃) and

H
∗(b)
Y |X(x̃).

As a consequence, in nonparametric settings, we can imag-
ine that there exist effective parameters θ and ψ, and can
still assess where they follow a Bayesian cut by testing for in-
dependence between the bootstrapped estimates log p̂∗(b)(X =

x̃) and H
∗(b)
Y |X(x̃). Note that in the nonparametric case,

Algorithm 1 Finding causal direction between X and Y
based on exogeneity

Input: data (x,y)
Output: three possibilities: causal direction between X
and Y , or non-identifiable causal direction by exogeneity,
or existence of hidden confunders
If Exogeneity(X → Y )
If Exogeneity(Y → X)
if exogeneity holds for only one direction then

return the direction in which exogeneity holds
else if exogeneity holds for both directions then

print non-identifiable causal direction by exogeneity
else . exogeneity does not hold in either direction

print confounder case
end if

procedure If Exogeneity(X → Y )
for b = 1 to B do

draw bootstrap resample (x∗(b),y∗(b)) by random
sampling with replacement from (xi, yi);

estimate p̂
∗(b)
X (X = x̃) and H

∗(b)
Y |X(x̃) with methods

given in Sec. 3.2.1
end for
test for independence between p̂

∗(b)
X (X = x̃) and

H
∗(b)
Y |X(x̃), b = 1, ..., B, with the method given in Sec. 3.2.2

return independence test result
end procedure

the “parameters” θ and ψ are not observable. The previ-
ous argument shows that if there exists (θ, ψ) admitting a

Bayesian cut, log p̂∗(b)(X = x̃) and H
∗(b)
Y |X(x̃) are indepen-

dent; otherwise they are always dependent. In words, test-
ing for independence between the bootstrapped estimates

log p̂∗(b)(X = x̃) and H
∗(b)
Y |X(x̃) is actually a ways to assess

the exogeneity condition. Algorithm 1 sunmmarizes the pro-
posed procedure to determine the causal direction between
X and Y , given the sample (x,y) as input. In particular, it
involves the following two modules.

3.2.1 Module 1: Nonparametric Estimators of p(X)
and p(Y |X)

When testing for exogeneity, one assumes the (paramet-
ric) model is correctly specified. Otherwise, if the model is
over-simplified, the estimated conditional distribution will
depend on the marginal, which inspires the importance-
reweighting scheme to handle learning problems under co-
variate shift (see e.g., Footnote 1 in [24]). For example, let
us consider the situation where Y depends on X in a non-
linear manner while a linear model is exploited to estimate
pY |X ; clearly the estimate of the parameters in the condi-
tional model would depend on that in pX . To avoid this,
we use flexible nonparametric models to estimate the condi-
tional.

Suppose we aim to verify if X exogenous for effective “pa-
rameters” in P (Y |X). We need to estimate the marginal
distribution p(X) and the conditional distribution p(Y |X)
on the original sample as well as each bootstrap resample.
We estimate p(X) with Gaussian kernel density estimation,
and the kernel width was selected by Silverman’s rule of
thumb [22, page 48].

To estimate the conditional density p(Y |X), we adapted
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Table 1: Notation involved in the proposed method based on exogeneity and bootstrap

(x,y) given sample of (X,Y )

(x∗(b),y∗(b)) bth bootstrap resample

θ̂∗(b), ψ̂∗(b) estimate of parameters θ and ψ on (x∗(b),y∗(b))
p̂∗(b)(X = x̃) marginal densities estimated on (x∗(b),y∗(b)) evaluated at X = x̃

p̂∗(b)(Y |X = x̃) conditional densities estimated on (x∗(b),y∗(b)) evaluated at X = x̃

H
∗(b)
Y |X(x̃) quantity associated with p̂∗(b)(Y |X = x̃), defined as EY |X log p̂∗(b)(Y |X = x̃) on (x∗(b),y∗(b))

the method orignally proposed for causal inference based on
the structural equation Y = f(X,E) [15]. This method
aims to find the functional causal model Y = f(X,E),
where E ⊥⊥ X, given (x,y). Without loss of generality,
one can assume that E ∼ N (0, 1). (Otherwise, one can

always write E = g(Ẽ) where g is some appropriate func-

tion and Ẽ ∼ N (0, 1), and use the functional causal model

Y = f
(
X, g(Ẽ)

)
instead.) Here f is completely nonpara-

metric: it takes a Gaussian process prior with zero mean
function and covariance function k

(
(x, e), (x′, e′)

)
, where k

is a Gaussian kernel, and (x, e) and (x′, e′) are two points
of (X,E). Like in [13], this method optimizes the values
of E, denoted by êi, as well as involved hyperparameters,
and produces the maximum a posterior (MAP) solution of
f , by maximizing the approximate marginal likelihood. The
functional causal model implies the conditional density:

P (Y |X) =
p(X,Y )

p(X)
=
p(X,E)

/
| ∂f
∂E
|

p(X)
= p(E)

/
| ∂f
∂E
|.

Finally, once we have the êi and the estimate of f , the con-
ditional density at each point can be estimated as p(Y =

yi|X = xi) = p(E = êi)/
∣∣∣ ∂f∂E (xi, êi)

∣∣∣.

3.2.2 Module 2: Testing for Independence Between
High-Dimensional Vectors

The task is then to test for independence between the esti-
mated quantities on the bootstrap resamples, log p̂∗(b)(X =

x̃) and H
∗(b)
Y |X(x̃), b = 1, ..., B. Their dimentions are the

number of data points in x̃, which is 80 in our experiments.
Let R be the matrix consisting of the centered version of

log p̂∗(b)(X = x̃i), obtained on all bootstrap resamples, i.e.,
the (i, b)th entry of R is

Rib , log p̂(X∗(b)(X = x̃i)− 1

B

B∑

k=1

log p̂∗(k)(X = x̃i).

Similarly, S contains the centered version of H
∗(b)
Y |X(x̃i), i.e.,

Sib , H
∗(b)
Y |X(x̃i)− 1

B

B∑

k=1

H
∗(k)
Y |X(x̃i).

Both R and S are of the size N × B. We define the
statistic as CX→Y , Tr

(
(RST )(RST )T

)
= Tr(RTR ·STS),

which is actually the sum of squares of the covariances be-
tween all rows of R and those of S. The distribution of this
statistic under the null hypothesis that log p̂∗(b)(X = x̃) and

H
∗(b)
Y |X(x̃) are independent can then be constructed by per-

mutation test.
Note that this statistic is actually the Hilbert-Schmidt in-

dependence criterion (HSIC) [6] with a linear kernel. That

is, we care about linear dependence between log p̂∗(b)(X =

x̃) and H
∗(b)
Y |X(x̃); this is reasonable because they are in the

vicinity of the maximum likelihood estimates and their de-
pendence can be captured by linear approximation. On the
other hand, if we use HSIC with Gaussian kernels, the re-
sult will be sensitive to the kernel width because the data
dimension (the number of rows of R and S) is high.

4. EXPERIMENTS
In this section we first evaluate the behavior of the pro-

posed bootstrap-based method for causal inference with syn-
thetic data, on which the ground-truth is known, and then
apply it on real data. We use two variables, and with syn-
thetic data, we examine both the case where the two vari-
ables have a direct causal relation and the confounder case
(i.e., there are confounders influencing both of them). We
compare the proposed bootstrap-based approach with the
additive noise model (ANM) proposed in [8]), GPI [15], and
information-geometric causal inference (IGCI) approach [10]:
ANM assumes that the effect is a nonlinear function of the
cause plus additive noise, GPI applies the Gausian Process
prior on the generating function, and IGCI assumes the
transformation from the cause to the effect is determinis-
tic, nonlinear, and independent from the distribution of the
cause in a certain way. For computational reasons, we used
1000 bootstrap replications.

Simulation: Without Confounders. Inspired by the
settings in [8, 15], we generated the simulated data with the
model Y = (X + bX3)eαE + (1−α)E, where X and E were
obtained by passing i.i.d. Gaussian samples through power
nonlinearities with exponent q, while keeping the original
signs. The parameter α controls the type of the observation
noise, ranging from purely additive noise (α = 0) to purely
multiplicative noise (α = 1). b determines how nonlinear
the effect of X is, and when b = 0 the model is linear. The
parameter q controls the non-Gaussninity of X and E: q = 1
corresponds to a Gaussian distribution, and q > 1 and q <
1 produce super-Gaussian and sub-Gaussian distributions,
respectively.

We considered three situations, in each of which two of
q, b, and α were fixed and we see how the other changes
the performance of different methods. For each combina-
tion of q, b, and α, we independently simulated 10 data sets
with 500 data points.6 Fig. 3 shows the accuracy of the
considered methods. One can see that the accuracy of the
bootstrap-based approach is among or close to the best re-
sults, indicating that it is able to perform causal inference
in various situations. We note that in practice, the per-
formance of the bootstrap-based approach depends on the
number of bootstrap replications and the method used for
conditional distribution estimation. Although due to com-
putatioanl reasons, we did not try a larger number of boot-

6Since the bootstap-based approach is rather time-
consuming, we only simulated 10 data sets for each setting.
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(c) Changing b: Various nonlinear functions with Gaussian
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Figure 3: Accuracy of correctly estimating the
causal direction for different generating models: (a)
q = 1, b = 1, and α changed from 0 to 1, (b) for a
linear function (b = 0) with additive noise (α = 0)
which changed from sub-Gaussian (q < 1) to sub-
Gaussian (q > 1), and (c) various nonlinear functions
(b changed from -1 to 1) with additive Gaussian noise
(q = 1, α = 0).

strap replications, generally speaking, the accuracy of the
bootstrap-based method improves as the number of replica-
tions increases.

Simulation: With Confounders. We then include
the confounder variable Z in the system, so that the causal
structure is Z → X and (Z,X)→ Y . For simplicity, we as-
sume that bothX and Y are influenced by Z in a linear form:
X = (2−β)EX+βZ, and Y = 0.3(2−β)

[
(X+bX3)eαE+(1−

α)E
]

+ βZ, where EX , Z, and E were obtained by passing
i.i.d. Gaussian samples through power nonlinearities with
exponent q = 1.5, and β controls how strong the effect of Z
is on both X and Y . We considered two situations: in one of
them, we set α = 0 and b = 0, i.e., the whole model is linear;
in the other situation, α = 0.2, and b = 0.3, so the model
contains both additive noise and multiplicative noise. We
changed β from 0 to 1, and Fig. 4 shows the performances
of the four methods in the two situations; note that for each
value of β, the four bars (from left to right) correspond to
the bootstrap-based method, GPI, IGCI, and ANM. In par-
ticular, one can see that the bootstrap-based method tends
to detect the presence of the confounder when its effect is
significant.
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(a) Situation 1: Linear confounder case.
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(b) Situation 2: Nonlinear confounder case.

Figure 4: Number of replications in which the meth-
ods find correct directions, report existence of con-
founders, and give wrong directions, respectively.
For each value of β, the four bars correspond to bootstrap-
based method, GPI, IGCI, and ANM (from left to right).

On Real Data. We applied the bootstrap-based method
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on the cause-effect pairs available at
http://webdav.tuebingen.mpg.de/cause-effect/.
To reduce computational load, we used at most 500 points
for each cause-effect pair. On 20 pairs (pairs 21, 43, 45, 48-
51, 56-58, 61-64, 72, 75, 77-79, and 81), the p-values of the
independence test for both directions are smaller than 0.01,
indicating that there might be significant confounders. This
seems reasonable, as the data scatter plots for these pairs
indicate that the two variables have complex dependence
relationships. On the remaining 57 data sets, the bootstrap-
based method output correct causal directions on 41 of them
(with an accuracy 72%). We also applied the recently pro-
posed causal inference approaches, including IGCI [10], the
approach based on the Gaussian process prior [15], and that
based on the post-nonlinear causal model [27] on those 57
data sets for comparison. Their performance was similar:
the three approaches gave correct causal directions on 41,
40, and 43 pairs, respectively.

5. CONCLUSION AND DISCUSSIONS
We proposed to do causal inference based on the crite-

rion of exogeneity of the cause for the parameters in the
conditional distribution of the effect given the cause. We
discussed how to assess such exogeneity in nonparametric
settings. To this end, one needs to draw a number of samples
according to the unknown data-generating process. Fortu-
nately, the bootstrap provides a way to mimic the data gen-
erating process from which we can draw a number of samples
and analyze their statistical properties.

Our approach shows that it is possible to determine causal
direction without structural constraints or a specific type of
smoothness assumptions on the functional models. The pro-
posed computational approach successfully demonstrated the
validity of this idea, though it is computationally demand-
ing because of the bootstrap procedure and its performance
is not necessarily the best among existing methods. At the
same time, it enjoys some advantages. First, it does not
make a strong assumption on the data-generating process.
Second, it could often tell us if significant confounders exist.
The performance of the proposed bootstrap-based approach
depends on the number of bootstrap replications and the
method for conditional distribution estimation. In future
work we aim to develop more reliable methods along this
line, including methods that can handle more than two vari-
ables.

In this paper we made an attempt to discover causal in-
formation from observational data based on a condition of
exogeneity, which provides another perspective to concep-
tualize the ”independence” between the process generating
the cause and that generating the effect from cause. On
the other hand, it is worth mentioning that this type of in-
dependence is able to facilitate understanding and solving
some machine learning or data analysis problems. For in-
stance, it helps understand when unlabeled data points will
help in the semi-supervised learning scenario [20], and in-
spired new settings and formulations for domain adaptation
by characterizing what information to transfer and how to
do so [28, 25].
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Supplement to
“Distinguishing Cause from Effect Based on Exogeneity”

This supplementary material provides the proofs
and discussions which are omitted in the sub-
mitted paper. The equation numbers in this
material are consistent with those in the paper.

S1. Mutual Exogeneity and Its Relationship to
Definition 1
There are two types of analysis of exogeneity [4]; one consid-
ers the inference based on the complete sample results, and
the other considers dynamic models where the data were ob-
tained by “sequential sampling”. In this paper we focus on
the former scenario.

From the Bayesian point of view, exogeneity of X for
ψ allows an admissible reduction of the complete model
p(X,Y |θ, ψ) to the conditional model p(Y |X,ψ), in that
both models lead to he same posterior distribution on the
parameter set ψ [4, 16]. Below we give the definition of
mutual exogneneity according to [4].

Definition 3 (Mutual exogeneity). X and ψ are mu-
tually exogenous if and only if

(i) ψ and X are independent, i.e., ψ ⊥⊥ X, and

(ii) ψ is sufficient in the conditional distribution of Y given
X, i.e., θ ⊥⊥ Y |(ψ,X).

Here condition (i) is to do with the independence between ψ
and X; those two quantities play different roles in the model
p(X,Y, ψ, θ), and consequently this independence condition
is usually not convenient to verify. Moreover, for the same
reason, there is no fully equivalent concept in sampling the-
ory (it is weaker than exogeneity defined in Definition 1,
because the property of θ is not specified). A natural way
of obtaining the mutual exogeneity of X and ψ is to ex-
ploit a stronger but more operational condition, namely the
condition of the Bayesian cut.

A Bayesian cut allows a complete separation of inference
(on parameters θ) in the marginal distribution and of infer-
ence (on ψ) in the conditional one. The prior independence
between θ and ψ in the Bayesian cut is a counterpart to the
variation-free condition in the classical cut (condition (ii)
in Definition 1), and the last two conditions in Definition 2
implies condition (i) in Definition 1. Thus, the Bayesian
cut is equivalent to the classical cut in sampling theory, and
consequently characterizes the exogeneity property defined
in Definition 1. Therefore, hereafter the exogeneity of X for
ψ is used interchangeably with the statement that [ψ, (X, θ)]
operates a Bayesian cut in p(X,Y, θ, ψ).

The following theorem, extracted from [5], relates the
Bayesian cut to the independence of the parameters accord-
ing to the posterior distribution, as well as mutual exogene-
ity.

Theorem 4. Suppose [ψ, (X, θ)] operates a Bayesian cut
in p(X,Y, {ψ, θ}); then

(i) X and ψ are mutually exogenous, and

(ii) ψ and θ are independent a posteriori.

On the other hand, if X and ψ are mutually exogenous and
if θ ⊥⊥ ψ|X, [ψ, (X, θ)] operates a Bayesian cut.

When one (or more) condition in Definition 2 is violated,
[ψ, (X, θ)] does not operate a Baysian cut, i.e., X is not
exogenous for ψ. Fig. 1(b–d) shows the situations where
conditions (i), (ii), and (iii) are violated, respectively, so
that [ψ, (X, θ)] does not operate a Baysian cut. Note that
by reparameterization, the three situations can reduce to
each other. Take situations (b) and (c) as an example. If we
divide θ in (b) into (θγ , θ⊥⊥), where θγ depends on γ while
θ⊥⊥ does not, and consider θ⊥⊥ as the new θ, (b) becomes (c).
Similarly, if we merge γ and θ in (c) as the new θ, we then
have (b). In all those situations, θ and ψ are not independent

a posterior, or the maximum likelihood estimates θ̂ and ψ̂
are not independent according to the sampling distribution.

S2. Relation to SEM-Based Causal Inference
S2.1. Relation to Causal Inference Based on
Marginal Likelihood
Recently, SEM-based approaches have demonstrated their
power for causal inference of real-world problems. Struc-
tural equations represent the effect as a function of the
causes and independent noise, which, from another point of
view, provide a way to represent the conditional distribution
P (effect|cause), or the causal mechanism. The generation
of the cause-effect pair consists of two stages, one generating
the cause according to P (cause) and the other further gen-
erating the effect from the value of the cause according to
the structural equation. The “simplicity” constraints (e.g.,
linearity in [21], additive noise in [8], the post-nonlinear pro-
cess in [27], and the smoothness assumption in [15]) on the
functions are crucial. On the one hand, they make the mod-
els asymmetric in cause and effect; otherwise, for any two
variables, we can always represent one of the variables as a
function of the other and an independent noise term [9]. On
the other hand, if the functions are constrained to be sim-
ple, the independence between the cause and the error terms
would imply the exogeneity of the cause for the parameters
in P (cause), as suggested by the error-based definition of
exogeneity [17] (see also [18]).7

7An error-based definition of exogeneity was given by [17]
(see also [18]): X is said to be exogenous for parameters in
p(Y |X) is X is independent of all errors that influence Y ,
except those mediated by X. We know that without appro-
priate constraints on the functions, given any two random
variable, we can always represent one of them as a function
of the other variable and an independent noise term [9], i.e.,
the functional causal models are not identifiable. Therefore,
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The concept “exogeneity” provides theoretical support for
the SEM-based causal inference methods that find the causal
direction by comparing the marginal likelihood of the models
in two directions; for an example of such methods, see [15].8

One candidate model is given in Fig. 1(a), where X is ex-
ogenous for ψ (or [ψ, (X,ψ)]) operates a Bayesian cut in
p(X,Y, θ, ψ), denoted byM1. The other corresponds to the
factorization:

p(X,Y |θ̃, ψ̃) = p(Y |θ̃)p(X|Y, ψ̃), (2)

where [ψ̃, (Y, θ̃)] operates a Bayesian cut in p(Y,X, θ̃, ψ̃),
denoted by M2. Note that under the above models, the
marginal likelihood of (X,Y ) is the product of that of the
conditioning variable and that of the conditional distribu-
tion. Ideally, if all the involved distributions are correctly
specified, one would prefer the causal direction X → Y
(resp. Y → X) if M1 (resp. M2) gives a higher marginal
likelihood.

Theorem 5. Suppose that the two random variables X
and Y are generated according toM1, and that the exogeneity-
based causal model is identifiable. Let the prior distributions
of the parameters be p∗(ψ|M1) and p∗(θ|M1). For the given
sample (X,Y), let p(X,Y|M1) be the marginal likelihood,
i.e.,

p(X,Y|M1)

=
N∏

i=1

∫∫
p(Xi, Yi|{ψ, θ})p∗(θ|M1)p

∗(ψ|M1)dθdψ

=
N∏

i=1

∫
p(Xi|θ)p∗(θ|M1)dθ ·

N∏

i=1

∫
p(Yi|Xi, ψ)p∗(ψ|M1)dψ

=

N∏

i=1

p(Xi|M1) ·
N∏

i=1

p(Yi|Xi,M1).

Assume that by a one-to-one reparametrization we can rep-
resent p(X,Y |{ψ, θ}) as p(Y |θ̃)p(X|Y, ψ̃), where Y is not

exogenous for ψ̃. Let p(X,Y|M2) be the marginal likelihood
of M2, i.e.,

p(X,Y|M2)

=
N∏

i=1

∫∫
p(Xi, Yi|{ψ̃, θ̃})p0(θ̃|M2)p

0(ψ̃|M2)dθ̃dψ̃

=

N∏

i=1

p(Yi|M2) ·
N∏

i=1

p(Xi|Yi,M2),

where θ̃ and ψ̃ have independent priors. As the sample
size N goes to infinity, for any choice of p0(θ̃|M2) and

p0(ψ̃|M2), p(X,Y|M1) is always greater than p(X,Y|M2).

Proof. As the data were generated according to model
M1, we have

E log p(X,Y |M1) =

∫
p(X,Y |M1) log p(X,Y |M1)dxdy.

generally speaking, the above error-based definition is con-
sistent with Definition 1 only when the functional class is
well constrained. Otherwise, if the function and the distri-
bution of the assumed cause are related in some way, the
above definition is not rigorous.
8Note that due to computational difficulties, this method
doe snot evaluate the marginal likelihood, but approximate
it wiht the maximum regularized likelihood.

Furthermore,

E log p(X,Y |M1)− E log p(X,Y |M2)

=

∫
p(X,Y |M1) log

p(X,Y |M1)

p(X,Y |M2)
dxdy

=D
(
p(X,Y |M1) || p(X,Y |M2)

)
,

whereD(·||·) denotes the Kullback-Leibler divergence. Clearly
the above quantity is non-negative, and it is zero if and only
if p(X,Y |M1) = p(X,Y |M2) for all possible x and y. How-
ever, this condition cannot hold, because the model M1 is
assumed to be identifiable based on exogeneity.

Consequently, we have E log p(X,Y |M1) > E log p(X,Y |M2).
Moreover, according to the weak law of large numbers, as
N →∞, 1

N
log p(X,Y|M1) and 1

N
log p(X,Y|M2) will con-

vergence in probability to the quantities E log p(X,Y |M1)
and E log p(X,Y |M2), respectively. That is, if N is large
enough, p(X,Y|M1) > p(X,Y|M2).

However, the marginal likelihood depends heavily on the
models or assumptions for the marginal and conditional dis-
tributions. Besides the exogeneity property, such approaches
also make additional assumptions about the functions, such
as structural constraints [21, 8, 27] and the smoothness as-
sumption [15]. The proposed approach avoids such assump-
tions, by directly assessing the exogeneity property.

S2.1.1. A Simple Illustration on Parametric Models
with Laplace Approximation
Here we use a somehow oversimplified parametric example
to illustrate why the marginal likelihood implies the causal
direction. Assume that M1 holds, that is, in factorization
(1), X is exogenous to ψ. We will demonstrate that the
likelihood for model (2) would be asymptotically smaller if

we wrongly assume that Y is exogenous for ψ̃. We assume
that there is a one-to-one correspondence between (θ, ψ) and

(θ̃, ψ̃). As seen from the proof of Theorem 5, the marginal
distribution of (1) under M1 would be the same as that of

(2) with the dependence between θ̃ and ψ̃ taken into ac-
count. Suppose that the corresponding log marginal like-
lihood log p(X,Y|M1), can be evaluated with the Laplace

approximation in terms of (θ̃, ψ̃) [12]:

log p(X,Y|M1) ≈ log p(X,Y| ˆ̃θ, ˆ̃
ψ) + log p0(

ˆ̃
θ,

ˆ̃
ψ)

− 1

2
log |Σθ̃,ψ̃|+

d

2
log(2π),

where
ˆ̃
θ and

ˆ̃
ψ are the maximum a posterior (MAP) esti-

mate, p0(
ˆ̃
θ,

ˆ̃
ψ) is the prior, Σθ̃,ψ̃ is the negative Hessian of

log[p(X,Y|θ̃, ψ̃)p0(θ̃)p0(ψ̃)] evaluated at (
ˆ̃
θ,

˜̂
ψ), and d is the

number of parameters.
On the other hand, under M2, the negative Hessian ma-

trix becomes Σ̃θ̃,ψ̃ which is block-diagonal and shares the
same main diagonal block matrices Σθ̃ and Σψ̃ with Σθ̃,ψ̃.

We then have log p(X,Y|M1)−log p(X,Y|M2) ≈ 1
2

(
log |Σ̃θ̃,ψ̃|−

log |Σθ̃,ψ̃|
)

= 1
2

(
log |Σθ̃| + log |Σψ̃| − log |Σθ̃,ψ̃|

)
. One can

show that |Σθ̃,ψ̃| < |Σθ̃| · |Σψ̃| if Σθ̃,ψ̃ is not block-diagonal;
for a proof, see [1, page 239]. Hence, we have log p(X,Y|M1) >
log p(X,Y|M2) asymptotically.

S2.2. Relation to Invariance of SEMs
The proposed bootstrap-based method provides a way to
examine if an equation is structural or not. Suppose Y =
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f(X,E), where E ⊥⊥ X, is a structural causal model in that
f is invariant to changes in the distribution of X [18]. One
can then see that since E and X are independent processes,
the bootstrapped P̂ ∗(b)(X) is independent from the under-

lying p̂∗(b)(E), and hence independent from p̂∗(b)(Y |X) =

p̂∗(b)(E)/
∣∣ ∂f
∂E

∣∣.
Now consider the other direction. According to [9], we

can always find an equation X = f̃(Y ; Ẽ) such that Ẽ ⊥⊥ Y ;

suppose this equation is not structural, in that f̃ , or in

particular,
∣∣ ∂f̃
∂Ẽ

∣∣ is dependent on p(Y ). Again, we have

p̂∗(b)(X|Y ) = p̂∗(b)(Ẽ)/
∣∣ ∂f̃
∂Ẽ

∣∣. The bootstrapped p̂∗(b)(Y )

and p̂∗(b)(X|Y ) are then dependent due to the dependence

between
∣∣ ∂f̃
∂Ẽ

∣∣ and p̂∗(b)(Y ).

In particular, the SEM-based causal inference approaches [21,
8, 27, 15] constrain the functions f to be simple in respec-
tive senses; consequently they are not so flexible as to change
with the input distribution p(X), and then the independence
between the input X and the noise E serves as a surrogate
to achieve the exogeneity condition of X for the parameters
in p(Y |X).

Compared to SEM-based approaches, the proposed exogeneity-
based approach avoids the constraints on the functional causal
model f . On the other hand, some SEM-based approaches
have clear identifiability conditions under which the reverse
direction Y → X that induces the same joint distribution on
(X,Y ) does not exist in general, given the causal direction
X → Y ; for instance, see [8, 27]. However, to find theoreti-
cal identifiability results for the proposed approach, one has
to establish the identifiability conditions in terms of data
distributions, which turns out to be extremely difficult.
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