Krite Abelian gps Theorem (Naive version) Every finite abelian group is a finite direct product of finite cyclic groups. Cyclic groups 24/n2L Direct Aum 24/n, Z D ZL Direct Aum 24/n, Z D n_ZL M ~ Z D ~ D Z finte abeliangp ", Z D ~ D MRZ Cancellation problem: Suppose N, M, and M' are finite abelian groups. Suppose further that $N \oplus M \simeq N \oplus M'$. Then $M \simeq M'$. The or false 3

Upshot: This problem reduces to The case when N is cyclic. Assume Nis a finite direct sum of finite cyclic gps $\frac{2}{2}$, $\frac{1}{2}$, $\frac{\mathbb{Z}}{\mathbb{N}_{1}\mathbb{Z}} \oplus \dots \oplus \frac{\mathbb{Z}}{\mathbb{N}_{2}\mathbb{Z}} \oplus \mathbb{M}^{\prime}$

Chinese Remainder Thm A comming with 1 57,). Op be pairié Conasimaliteat Then $\delta_1, \ldots, \delta_n = \delta_1, \ldots, \delta_n$ $\frac{\partial \omega}{\partial \eta_2 \cdots \partial \eta_n} = \frac{A}{\partial \eta_1 \cdots \partial \eta_n} \xrightarrow{A} \frac{A}{\partial \eta_2} \times \frac{A}{\partial \eta_2} \times \frac{A}{\partial \eta_2} \times \frac{A}{\partial \eta_n}$ Gjøen a finte abelian gp M ∃ d>0 integer st dM=0 Thus Misa module dz

 $_{\sim}$ \mathbb{Z}_{\sim} \times Rit Z $P_{j}^{\gamma_{j}} \geq 0$ d Z P / R $d = p_1^{\mathcal{H}} p_2^{\mathcal{H}}$ (a, b) = 1gcd is 1 Euclid's division algorithm $\mathbb{C}[X,Y] \quad X,Y$ If the god of a & tis 1 then $\exists x, y s \not t x a + y b = 1$

M finite abelian gp: dM = O $\left(\frac{2}{p_{1}^{n}}\right) \times 0 \times \cdots \times 0 = 0,$ $\frac{Z}{P_k^{v_R}Z} = 0$ $0 \times .$ $\frac{\mathbb{Z}'}{\mathbb{Z}_{\mathcal{Z}}} = \mathbb{Z}_{\mathcal{X}} \oplus .$ · Oh $e_{1} \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$ $e_{k} \leftrightarrow (6, 0, .., 0)$ $e_1^2 = e_1$, $e_k^2 = e_k$ $e_i e_j = 0$ \forall $i \neq j$ $i = e_i + e_2 + \dots + e_k$

7 M = e, MO. D e, M. module 32 - module Z/pk Z/ Z/j Z/ Pk Z/ k e, M, ..., e, M are called The Primary Components of Mo CoM is The proprint Component 5JN, Primary Decomposition Theorem Noctherian Module: $(0:P) \in (0:P^2)$ Fix a prime p. $(0:R) = \{m \in M \mid am = 0\}$

B Theorem (Structure of finite milpotent gps) Any finite nipotent go is The direct product of its Sylow p-subgps. For any finite abelian 37 The primary decomposition is precisely the above decomposition.

Let us denote The p-primary by p(M). component of M d is 5/t dM=0 Them p(M) = e, M M finte al gp $(1,0,\ldots,0)$ $d = p_1 p_2 \cdots p_k^{n_k}$ $M = p(M) \Theta$ Z/p,2/

What is The structure of a finte 2/2 - module? p prime $g \ R \ge 1$ M Thm: Given a finte 2 - module 7 non-negative integers t,,, t, s/t $M \sim \underbrace{Z}_{pZ} \underbrace{t}_{D} \underbrace{Z}_{p^{2}Z} \underbrace{t}_{D} \underbrace{Z}_{p^{2}Z} \underbrace{t}_{D} \underbrace{Z}_{p^{2}Z} \underbrace{J}_{p^{2}Z} \underbrace{D}_{p^{2}Z} \underbrace$

Moreover, M is uniquely determined (up to iso moglinom) by two.tr Thm: (Finer than the naive version) Every finte abelian 30 is a finte direct sum of finite cyclic gps of prime power orders,

Noof of CRTo 07,), n, are pairine Loma mal So show: $\partial_1 \cap \dots \cap \partial_n = \partial_1 \partial_2 \dots \partial_n$ Prof: 2 V always $\leq \sqrt{2}$ which on m. M = 2 $\sigma_1, \sigma_2 \leq \sigma_1, \sigma_2 = \sigma_1, \sigma_2$ $1 = a_1 + a_2$ $\chi = (xa_1) + (xa_2)$ $\sigma_1 \sigma_2 \in \sigma_1 \sigma_2$ For the induction step: of

 $\delta_1 \cap \delta_2 \cap \cdots \cap \delta_n = \delta_1 \cap \delta_2 \cdots \cap \delta_n$ 11 by 2.h. $\delta_1 \cap \delta_2 \cdots \delta_n \neq \infty$ (m=2) provided Case) o, 2 0,2° o, are comaximal $a_j \in O_j$ for j > 2f = a + a 2 $1 = (a_{12}^{+} a_2) \cdots (a_{1n}^{+} a_n)$ $1 = a_{13} + a_3$ $1 = a_{1n} + a_{n} +$

 $b \rightarrow e_{b}$ $b, \rightarrow C_{A}^{a}$ (a_1) (a_n) + anco a_{n}^{b} + ... + a_{n}^{b} $n \rightarrow a_{e_{1}}$ + How What is b,? of tour of are comaximal (a) + (b) = 1 $\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2}$ choose by BRED M dM=0 Rinte ab gp d=p,#1. Pk 4/dZ