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Hermann Amandus 
Schwarz

Born: 25 January 1843 in Hermsdorf, 
Silesia (now Poland) 

Died: 30 November 1921 in Berlin, 
Germany
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Convolute

f (t) =
1 , | t | <1
0 otherwise

⎧
⎨
⎩

and g(t) =
1 , | t | <1
0 otherwise

⎧
⎨
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        Suppose  f(t) and g(t) are two signals/functions , defined 

respectively in the intervals                  which are Fourier 

transformable.  Then the convolution of f(t) and g(t) are given by , 

h t( ) = f t( )*g t( ) = f (u)g(t − u)
−∞

∞

∫ du
⎛

⎝⎜
⎞

⎠⎟
where     

[t1 ,T1] and [t2 ,T2 ]

h t( ) =

0 t < t1 + t2

f (u)g(t − u)
−∞

∞

∫ du
⎛

⎝⎜
⎞

⎠⎟
t1 + t2 < t < t < T1 +T2

0 t > T1 +T2

⎧

⎨
⎪
⎪

⎩
⎪
⎪
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Geometrical representation of Convolution of functions
        The graphical presentation of the convolution integral 

involves the following steps: 

1: Apply the convolution duration property to identify intervals in 

which the convolution is equal to zero. 

2: Flip about the vertical axis one of the signals (the one that has 

a simpler form (shape) since the commutativity holds), that is, 

represent one of the signals in the time scale . 

3: Vary the parameter from -infinity  to  infinity , that is, slide the 

flipped signal from the left to the right, look for the intervals 

where it overlaps with the other signal and evaluate the integral 

of the product of two signals in the corresponding intervals.
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http://eceweb1.rutgers.edu/~gajic/solmanual/slides/chapter6C.pdf

Proceeding like wise  we get the convolution as 

Refer  the following  article  for the above computation 
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Convolution Theorem
F f t( )*g t( ){ } = F s( ).G s( )

Proof of this theorem was illustrated on the Board
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Parseval’s  theorem 

f t( )
−∞

∞

∫ g t( ) dt = f! s( )
−∞

∞

∫ g! s( ) ds

Taking g(t)= f (t) gives f t( ) 2
−∞

∞

∫ dt = f! s( )
2

−∞

∞

∫ ds
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⎞
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∂x2
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Fc
∂2u
∂x2

⎛
⎝⎜

⎞
⎠⎟
= ∂2u

∂x2
cos sx dx

0

∞

∫ = − ∂u(0,t)
∂x

− s2Fc u( )
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∂2u
∂t 2

= a2 ∂
2u

∂x2
, a = T

ρ
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Wave equation

� 

x

� 

u

  

� 

displacement = u(x,t)

             Assuming  that a 
stretched string is vibrating.  
The wave equation says that, 
at any position on the string, 
acceleration in the direction 
perpendicular to the string is 
proportional to the curvature 
of the string.

∂2u
∂t 2

= a2 ∂
2u

∂x2
, a = T

ρ
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Wave equation
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x
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u

  

� 

displacement = u(x,t)

             Assuming  that a 
stretched string is vibrating.  
The wave equation says that, 
at any position on the string, 
acceleration in the direction 
perpendicular to the string is 
proportional to the curvature 
of the string.

Let
• x = position on the string
• t = time
• u(x, t) = displacement of the string at
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Heat equation
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= c2 ∂
2u

∂x2
■ The heat equation is a partial 

differential equation (PDE):

■ c is the diffusion coefficient.

■ Assume the initial distribution is 

a spike at x=0 and is zero 

elsewhere.
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∫



       Lecture delivered during the Teachers Enrichment Workshop held at IMSC 
between 26th November to 1st December 2018. 

Left as an exercise



       Lecture delivered during the Teachers Enrichment Workshop held at IMSC 
between 26th November to 1st December 2018. 

Solve, using Fourier transformation ∂2u
∂t 2

= c2 ∂
2u

∂x2
x,t>0( )

Left as an exercise


