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1. He was a French-born mathematician who

pioneered the development of analytic

geometry and the theory of probability.
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http://www-history.mcs.st-and.ac.uk/Mathematicians/Leibniz.html


       Lecture delivered during the Teachers Enrichment Workshop held at IMSC 
between 26th November to 1st December 2018. 

1. He was a French-born mathematician who

pioneered the development of analytic

geometry and the theory of probability.

2. He was appointed to the Commission set up

by the Royal Society to review the rival

claims of Newton and Leibniz to be the

discovers of the calculus.

http://www-history.mcs.st-and.ac.uk/Societies/RS.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Newton.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Leibniz.html


       Lecture delivered during the Teachers Enrichment Workshop held at IMSC 
between 26th November to 1st December 2018. 

1. He was a French-born mathematician who

pioneered the development of analytic

geometry and the theory of probability.

2. He was appointed to the Commission set up

by the Royal Society to review the rival

claims of Newton and Leibniz to be the

discovers of the calculus.

3. He is famed for predicting the day of his own

death. He found that he was sleeping 15

minutes longer each night and summing

the arithmetic progression, calculated that

he would die on the day that he slept for 24

hours. He was right!

http://www-history.mcs.st-and.ac.uk/Societies/RS.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Newton.html
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Abraham de Moivre

Born: 26 May 1667 in Vitry-le-François, 
Champagne, France 

Died: 27 November 1754 in London,
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where,
f (t + ) = x lim⎯ →⎯ t + f (x) (Right limit)
f (t − ) = x lim⎯ →⎯ t − f (x) (Left limit)
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+
∞

∑
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2nπ

=
1
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+
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2π

∞

∑
n = 1

sin (2n − 1) t
2n − 1

Let us now expand the same function in a different period 

interval say  

0 ≤ t ≤ 2π

Note that, f 0( ) = f 0−( )+ f 0+( )
2

= 0 +1
2

= 1
2
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+
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∑
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∞

∑
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=
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π
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1
π ∫
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1
π ∫
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π
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⎨
⎪
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f (t) ~

1
2
+ 1
2π

sin t + sin 3t
3

+ sin5t
5

− ...⎧
⎨
⎩

⎫
⎬
⎭
, t ∈ −π ,π( )

1
2
− 1
2π

sin t + sin 3t
3

+ sin5t
5

+ ...⎧
⎨
⎩

⎫
⎬
⎭
, t ∈ 0,2π( )

⎧

⎨
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⎩
⎪
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Observe that the Fourier representation of the given function  

                                                     differs with an interval. 

f (t) ~

1
2
+ 1
2π

sin t + sin 3t
3

+ sin5t
5

− ...⎧
⎨
⎩

⎫
⎬
⎭
, t ∈ −π ,π( )

1
2
− 1
2π

sin t + sin 3t
3

+ sin5t
5

+ ...⎧
⎨
⎩

⎫
⎬
⎭
, t ∈ 0,2π( )

⎧

⎨
⎪⎪

⎩
⎪
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As an exercise expand the function  f(t) as a Fourier series  in the 

interval  ( π
2

,
5π
2 )

f (t) =
0 if   π

2
≤ t  ≤  3π

2
,

1 if   3π
2

≤ t  ≤ 5π
2

⎧

⎨
⎪⎪

⎩
⎪
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The given function is symmetric w.r.to the y -axis. Hence it is  an even function 
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Let f(t) =
a0

2
+

∞

∑
1

an cos nt+
∞

∑
1

bn sin nt

The given function is symmetric w.r.to the y -axis. Hence it is  an even function 
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1
π ∫

π

−π
f(t) dt =

2
π ∫

π

0
t dt

Let f(t) =
a0
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+

∞

∑
1

an cos nt+
∞

∑
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bn sin nt
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π
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f(t) dt =

2
π ∫

π

0
t dt

Let f(t) =
a0

2
+

∞

∑
1

an cos nt+
∞

∑
1

bn sin nt

= 2
π

t 2

2
⎛
⎝⎜

⎞
⎠⎟
t=0

t=π

= π

The given function is symmetric w.r.to the y -axis. Hence it is  an even function 
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a0 =
1
π ∫

π

−π
f(t) dt =

2
π ∫

π

0
t dt

Let f(t) =
a0

2
+

∞

∑
1

an cos nt+
∞

∑
1

bn sin nt

= 2
π

t 2

2
⎛
⎝⎜

⎞
⎠⎟
t=0

t=π

= π

an =
1
π

f
−π

π

∫ (t).cos nt  dt = 2
π

t
0

π

∫ .cos nt  dt

The given function is symmetric w.r.to the y -axis. Hence it is  an even function 
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⎞
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⎧
⎨
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cosnπ −1( ) = − 2

πn2
if n is odd

0 if n is even
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⎧
⎨
⎪

⎩⎪
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1
π

f
−π

π

∫ (t).sin nt  dt = 0
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π

cosnt
πn2

⎛
⎝⎜

⎞
⎠⎟n−odd

∑
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π

cosnt
πn2

⎛
⎝⎜

⎞
⎠⎟n−odd

∑
That is,   f (t) = π

2
− 2
π

cos(2n −1)t
2n −1( )2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪n=1

∞

∑
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Hence,  f (t) = a0
2
− 2
π

cosnt
πn2

⎛
⎝⎜

⎞
⎠⎟n−odd

∑
That is,   f (t) = π

2
− 2
π

cos(2n −1)t
2n −1( )2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪n=1

∞

∑

That is,   f (t) = π
2
− 2
π
cost − cos3t

32
+ cos5t

52
− ...⎧

⎨
⎩

⎫
⎬
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Expansion 5 Find the Fourier series of the function
f (t) =t.sin t , t ∈ 0, 2π( )
Let, f (t) = a0

2
+ an cosnt

1

∞

∑ + bn sinnt
1

∞

∑
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Expansion 5 Find the Fourier series of the function
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Let, f (t) = a0
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+ an cosnt
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∞

∑ + bn sinnt
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∞

∑
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Expansion 5 Find the Fourier series of the function
f (t) =t.sin t , t ∈ 0, 2π( )
Let, f (t) = a0

2
+ an cosnt

1

∞

∑ + bn sinnt
1

∞

∑
a0
an
a1
bn
b1

a0
1
π

t.sin t dt
0

2π

∫
1
π

t.sin t.cosntdt
0

2π

∫

1
π

t.sin t dt
0

2π

∫

an
1
π

t.sin t.cosntdt
0

2π

∫
1
π

t.sin t.costdt
0

2π

∫

1
π

t.sin t.cosntdt
0

2π

∫

a1 1
π

t.sin t.costdt
0

2π

∫
1
π

t.sin t.sinntdt
0

2π

∫

1
π

t.sin t.costdt
0

2π

∫

bn
1
π

t.sin t.sinntdt
0

2π

∫
1
π

t.sin t.sin tdt
0

2π

∫

1
π

t.sin t.sinntdt
0

2π

∫

b1 1
π

t.sin t.sin tdt
0

2π

∫
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0
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∴t.sin t = −1+π sin t − 1
2
cost + 2 cosnt

n2 −1
⎛
⎝⎜

⎞
⎠⎟n=2

∞

∑
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∴t.sin t = −1+π sin t − 1
2
cost + 2 cosnt

n2 −1
⎛
⎝⎜

⎞
⎠⎟n=2

∞

∑

Allowing the limit  as t   tends to  “ pi “ we get, 

0 = −1+ 1
2
+ 2 −1( )n

n2 −1n=2

∞
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∴t.sin t = −1+π sin t − 1
2
cost + 2 cosnt

n2 −1
⎛
⎝⎜

⎞
⎠⎟n=2

∞

∑

Allowing the limit  as t   tends to  “ pi “ we get, 

0 = −1+ 1
2
+ 2 −1( )n

n2 −1n=2

∞

∑
⇒

−1( )n
n2 −1n=2

∞

∑ = 1
4
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∴t.sin t = −1+π sin t − 1
2
cost + 2 cosnt

n2 −1
⎛
⎝⎜

⎞
⎠⎟n=2

∞

∑

Allowing the limit  as t   tends to  “ pi “ we get, 

0 = −1+ 1
2
+ 2 −1( )n

n2 −1n=2

∞

∑
⇒

−1( )n
n2 −1n=2

∞

∑ = 1
4

That is, 1
1.3

− 1
2.4

+ 1
3.4

− 1
4.5

+ ...= 1
4
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Expansion 6 Prove that the Fourier series of the function

f (t) =
0 −π < t < 0
sin t 0 < t < π
⎧
⎨
⎩
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Expansion 6 Prove that the Fourier series of the function

f (t) =
0 −π < t < 0
sin t 0 < t < π
⎧
⎨
⎩

is, f (t) = 1
π
+ sin t
2

− 2
π

cos2nt
4n2 −1

⎛
⎝⎜

⎞
⎠⎟1

∞

∑
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f (t) =
0 −π < t < 0
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⎧
⎨
⎩

is, f (t) = 1
π
+ sin t
2

− 2
π

cos2nt
4n2 −1

⎛
⎝⎜

⎞
⎠⎟1

∞

∑

and hence showthat,
1
1.3

− 1
3.5

+ 1
5.7

− 1
7.9

+ ...= 1
4

π − 2( )
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Change of interval
Suppose f(x)  is a  periodic function defined on an interval α , α + 2c[ ]

Let w = π x
c

or x = cw
π

Now, f x( ) = f cw
π

⎛
⎝⎜

⎞
⎠⎟ = F w( ) (Say)

If x =α ,then w = πα
c
:= β; x =α + 2c,then w =

π α + 2c( )
c

:= β + 2π

and hence x ∈ α , α + 2c( )⇒w∈ β, β + 2π( )
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Change of interval
Suppose f(x)  is a  periodic function defined on an interval α , α + 2c[ ]

Let w = π x
c

or x = cw
π

Now, f x( ) = f cw
π

⎛
⎝⎜

⎞
⎠⎟ = F w( ) (Say)

If x =α ,then w = πα
c
:= β; x =α + 2c,then w =

π α + 2c( )
c

:= β + 2π

and hence x ∈ α , α + 2c( )⇒w∈ β, β + 2π( )

Therefore, F(w) =
a0

2
+

∞

∑
1

an cos nw+
∞

∑
1

bn sin nw
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a0 =
1
π ∫

β+2π

β
f(w) dw =

1
c ∫

α+2c

α
f(x) dx

Where, 
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β
f(w) dw =

1
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α+2c

α
f(x) dx

an =
1
c ∫

β+2π

β
f(w) . Cos(nw) dw =

1
c ∫

α+2c

α
f(w) . Cos( nπx

c ) dx

Where, 
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ODD and Even functions
• A function is an odd function if it is symmetric w.r.to the 

origin.

• A function is an even function if it is symmetric w.r.to 
the y -axis. 

• Extending ,a given function  in a half interval, to a full 
interval   as an odd function or even function we get a 
Fourier series respectively consists of Sine series and 
cosine series only.  
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Fourier Sine series 

0 , c( )
−c , 0( )

Suppose a f(x) function is defined in an interval  , say ( 0, c) 
We extend this  function to the  interval  (-c,0) as an odd function 

 The  Fourier series of this   extended function  g(x) in the full 
interval ( -c, c) is called the Fourier sine series given by 
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  f x( ) = bn  sin 
nπ x
c

⎛
⎝⎜

⎞
⎠⎟1

∞

∑

with bn =
2
c

f
0

c

∫ (t)sin  nπ x
c

⎛
⎝⎜

⎞
⎠⎟  dt

Fourier Sine series 

0 , c( )
−c , 0( )

Suppose a f(x) function is defined in an interval  , say ( 0, c) 
We extend this  function to the  interval  (-c,0) as an odd function 

 The  Fourier series of this   extended function  g(x) in the full 
interval ( -c, c) is called the Fourier sine series given by 
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Find the Fourier Sineand Cosine series of the function 
f (x)  =  (x -1)2, x ∈ 0,1( )

Find the Fourier Sineseries of the function 
f (x)  =  x(π - x), x ∈ 0,π[ ]

and hence show that, 1
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The energy of the signal  given by the function  f(x) is 

The root mean square value of  f(x) defined in an interval 
(a, b ) is 
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The energy of the signal  given by the function  f(x) is 

The root mean square value of  f(x) defined in an interval 
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Using the mean value we can compute the the Fourier 
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