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ABSTRACT: Usually a course on partial differential equations (PDEs) starts
with the theory of first order PDEs, which turns out to be quite time consuming for
a teacher and difficult for students due to dependence of the proofs on geometry of
Monge curves and strips, and construction of an integral surface with their help. In
this article, we present a simpler theory of first order PDEs using only the character-
istic curves in the space of independent variables. In addition we discuss existence of
special types of singularities along characteristic curves, a very important feature of
first order PDEs.

1 Introduction and classification

1.1 Introduction

The classical theory of first order PDE started in about 1760 with Euler and D’Alembert
and ended in about 1890 with the work of Lie. In the intervening period great math-
ematicians: Lagrange, Charpit, Monge, Pfaff, Cauchy, Jacobi and Hamilton made
deep and important contributions to the subject and mechanics. Complete integral
played a very important role in their work. Quote from Demidov ” Lie developed the
connection between ’groups of infinitely small transformations’ and finite continuous
groups of transformations in three theorems which make the foundation of the theory
of Lie algebras. Lie discovered the connections while studying linear homogeneous
PDEs of first order. Thus these equations came to the field on which the theory of Lie
groups originally rooted itself.” We realize that study of first order PDE lead to one
of the most remarkable mathematical achievements of 19th century. Unfortunately,
these mathematical theories are no longer treated as essential for study in a basic
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course in PDE [3].

Following presentation1 of the theory of first order PDE as in Goursat (1917),
Courant and Hilbert (1937, 1962), Sneddon (1957) and Garabedian (1964), the sub-
ject has been introduced to generations of students by defining an integral surface
in the space of independent and dependent variables. This requires developing con-
cepts of Monge curves2 and Monge strips2 leading to a system of ordinary differential
equations, called Charpit 3 equations and a complicated geometrical proofs for ex-
istence and uniqueness of the solution of a Cauchy problem. We did follow this
mathematically beautiful but not necessarily simple procedure in our book (Prasad
and Ravindran (1985)) but now I feel that, in this approach, attention of students
is unnecessarily diverted to geometrical concepts from main results of PDEs and at
least three lecture hours are lost. Therefore, I have developed a theory of first order
PDE using only the characteristic curves in the space of independent variables. In
this article, we present this approach, which I have taught to a few groups of students.

I have omitted a special class of solutions known as complete integrals. Though
complete integrals play important role in physics, the theory of complete integrals
does not seem to be important in further development of the theory of first order
PDEs and conservation laws. However, I have included here a discussion of existence
and propagation of singularities in the derivatives of the solution along characteristic
curves. These are important features of all hyperbolic PDEs [9, 10] but seldom dis-
cussed for the first order PDEs, which are simplest examples of hyperbolic equations.
It is a bit difficult for undergraduate students to comprehend full implications of the
usual definition of a generalised solution and hence, because of limited aim in this
article, I have used a very simple function space to deal with discontinuities in the
derivatives of the solution.

1Exception is Evans’ book (1998) which is not a book for a first course but a comprehensive
survey of modern techniques in theoretical study of PDE.

2Monge curves and Monge strips (in (x1, x2, ..., xm, u)-space of independent variables
(x1, x2, ..., xm) and dependent variable u) have been called characteristic curves and characteris-
tic strips by all other authors but we reserve the word ”characteristics” to be associated with the
projections of Monge curves on the space of independent variables consistent with the use of this
word for a higher order equation or a systems of equations.

3Historical note: In the method of characteristics of a first order PDE we use Charpit equations
(1784) (see ([11]; for derivation see [10]). Unfortunately Charpit’s name is not mentioned by Courant
and Hilbert [1], and Garabedian [4]; and sadly even by Gaursat [5], who called these equations simply
as characteristic equations. This may have occurred because Charpit died before he could follow up
his manuscript sent to Paris Academy of Sciences. Later Lacroix published his results in 1814 (A.R.
Forsyth, Treatise DE, 1885-1928) and finally Charpit’s manuscript was found in the beginning of
the 20th century. Charpit found these equation while trying to find complete integrals (see Demidov
[2]). Those interested in teaching Charpit’s method may consult M. Delgado, The Lagrange-Charpit
Method, SIAM Review, 39, 1997. (My view: We need not give too much emphasis on
Charpit’s method in a course today.)
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1.2 Meaning of a first order PDE and its solution

In this article we shall consider u to be a real function of two real independent variables
x and y. Let D be a domain in (x, y)-plane and u a real valued function defined on
D:

u : D → R, D ⊂ R2

Definition 1.1. A first order partial differential equation is a relation of the form

F (x, y, u, ux, uy) = 0, (1.1)

where
F : D3 → R, D3 ⊂ R5.

Note 1.2. D3 is a domain4 in R5 where the function F of five independent variables
is defined.

Definition 1.3. A classical (or genuine) solution of the PDE (1.1) is a function
u : D → R, D ⊂ R2 such that u ∈ C1(D), (x, y, u(x, y), ux(x, y), uy(x, y)) ∈ D3 when
(x, y) ∈ D and F (x, y, u(x, y), ux(x, y), uy(x, y)) = 0 for all (x, y) ∈ D.

Note 1.4. The problem of finding a solution u of (1.1) also involves finding conditions
on F for the existence of the solution and finding the domain D where solution is
defined.

Example 1.5. Since we are dealing only with real functions, the PDE

u2x + u2y + 1 = 0 (1.2)

does not have any solution.

1.3 Classification of first order PDEs

When the function F in (1.1) is not linear in u, ux and uy, the equation (1.1) is called
nonlinear. When F is linear in ux, uy, but not in u, the equation is of the form

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u), (1.3)

where a and b depend also on u. This nonlinear equation is called a quasilinear
equation. A first order semilinear equation is an equation of the form

a(x, y)ux + b(x, y)uy = c(x, y, u), (1.4)

where nonlinearity in u appears only in the term on the right hand side. A linear
non-homogeneous first order equation is of the form

a(x, y)ux + b(x, y)uy = c(x, y)u+ d(x, y). (1.5)
4In this article we denote by D a domain in R2 where a solution is defined, by D1 a domain in

R2 where the coefficients of a linear equation are defined and by D2 is a domain in (x, y, u)-space
i.e., R3 .
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1.4 Cauchy problem

A PDE in any area of application is always encountered with some auxiliary condi-
tions. For a first order PDE this condition can be formulated in the form of a Cauchy
problem, which we state in a simple language below.

Consider a curve γ in (x, y)-plane given by

γ : x = x0(η), y = y0(η), η ∈ I ⊂ R, (1.6)

where I is an interval of the real line. Assume that a function u0 : I → R is given as
u0(η). A Cauchy problem is to determine a solution u(x, y) of (1.1) in a neighbourhood
of γ such that it takes the prescribed value u0(η) on γ, i.e,

u(x0(η), y0(η)) = u0(η), ∀ η ∈ I. (1.7)

2 Linear and semilinear Equations

2.1 Preliminaries through an example

Let us start with the simplest PDE, namely the transport equation in two independent
variables. Consider the PDE

uy + cux = 0, c = real constant. (2.1)

Introduce a variable η = x− cy. For a fixed η, x− cy = η is a straight line with slope
1
c

in (x, y) plane. Along this straight line

x(y) = cy + η (2.2)

the derivative of a solution u(x, y) = u(x(y), y) is

d

dy
u(x(y), y) = ux

dx

dy
+ uy

= cux + uy

= 0.

Thus, the solution u is constant along curves x− cy = η, as seen in Figure 1.

Remark 2.1. The curves x− cy = constant are known as characteristic curves (see
the definition (2.3) later) of the PDE (2.1).

The characteristic curves carry constant values of the solution u.
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Figure 1: Characteristic curves of uy + cux = 0. (a ) - Characteristics form a one
parameter family of straight lines x − cy = constant. (b) - u is constant along a
characteristic curve.

Consider an initial value problem, a Cauchy problem, in which

u(x, 0) = u0(x). (2.3)

To find solution at (x, y), draw the characteristic through (x, y) and let it meet the
x-axis at x = η. Then, u is constant on x− cy = η, i.e,

u(x, y) = u(η, 0)

= u0(η).

Hence, as η = x− cy,
u(x, y) = u0(x− cy). (2.4)

Remark 2.2. Instead of prescribing the value of u on the x-axis, we can prescribe
it on any curve in the (x, y)-plane, say on the curve γ : x = x0(y), x0 ∈ C1(I), as
shown in the Figure 2(a). Equation of this curve can be parametrically represented
as γ : x = x0(η), y = η. In order that the above method of construction of a
solution (with arbitrary data on γ) works, we cannot choose the datum curve γ
arbitrarily. A necessary condition is that it should not coincide with a characteristic
line x − cy = constant (see the situation discussed at the end of this example) or it
should not be a curve having a characteristic line as a tangent at any point of it5.

If the characteristic through (x, y) meets γ : x = x0(η), y = η at (x0(η), η) as
shown in Figure 2(a), then

x− cy = x0(η)− cη. (2.5)

5When γ is tangent to a characteristic at a point P , then the Cauchy data on γ on one side of P
interferes with that on the other side of P , see problem 1 in section 2.3 Problem set.
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Figure 2: (a) - The datum curve x = x0(y), i.e. x = x0(η), y = y0(η) = η, is nowhere
tangential to a characteristic curve. (b) - The datum curve is a characteristic curve
x = cy + 1.

Suppose γ is nowhere tangential to a characteristic curve, then x′0(η) 6= c and, using
inverse function theorem, we can solve this equation for η locally in a neighourhood
of each point of γ in the form

η = g(x− cy), g ∈ C1(I1), I1 ⊂ I. (2.6)

Hence, the solution of this noncharacteristic Cauchy problem in a domain containing
the curve γ is

u(x, y) = u0(η)

= u0 (g(x− cy)) .
(2.7)

In Figure 2(b) let the datum curve be a characteristic curve x = cy+ 1. The data
u0(y) prescribed on this line must be a constant, say u0(y) = a. Now we can verify
that the solution is given by

u(x, y) = a+ (x− cy − 1)h(x− cy), (2.8)

where h(η) is an arbitrary C1 function of just one argument. This verifies a general
property that the solution of a characteristic Cauchy problem, when it exists, it is
not unique.

2.2 Theory of linear and semilinear equations

Linear and semilinear equations can be treated together. We take

a(x, y)ux + b(x, y)uy = c(x, y, u). (2.9)

where a, b, c are C1 functions of their arguments. The operator a(x, y) ∂
∂x

+ b(x, y) ∂
∂y

on the left hand side of this equation represents differentiation in a direction (a, b)

6



at the point (x, y) in (x, y)-plane. Let us consider a curve, whose tangent at each
point (x, y) has the direction (a, b) . Coordinates (x(σ), y(σ)) of a point on this curve
satisfy

dx

dσ
= a(x, y),

dy

dσ
= b(x, y) (2.10)

or
dy

dx
=
b(x, y)

a(x, y)
. (2.11)

General solution of (2.10) or (2.11) contains an arbitrary constant and gives a one
parameter family of curves in (x, y)-plane. Along a particular curve of this family,
variation of a solution of (2.9) is given by

du

dσ
=
dx

dσ
ux +

dy

dσ
uy

= aux + buy.

Using (2.9) we get
du

dσ
= c(x, y, u). (2.12)

Definition 2.3. A curve given by (2.10) or (2.11) is called a characteristic curve of
the PDE (2.9). The equation (2.12) is called a compatibility condition.

Remark 2.4. The characteristic curves of linear or semilinear equation(2.9) form
a one parameter family of curves. Every solution of the PDE (2.9) satisfies the
compatibility condition (2.12) along any of these characteristic curves.

2.2.1 Solution of a Cauchy problem

The Cauchy problem has been stated at the end of section 1. We present here an
algorithm6 to solve it for the equation (2.9). We assume that γ cuts each one of the
characteristic curves transversally. We first solve an initial value problem for ordinary
differential equations (ODEs)

dx

dσ
= a(x, y), (2.13)

dy

dσ
= b(x, y), (2.14)

du

dσ
= c(x, y, u) (2.15)

6The proof of the theorem (3.4) shows that this algorithm indeed works. Existence and uniqueness
of a solution of the Cauchy problem would require conditions on the functions a, b and c appearing
in the equation (2.9) and x0, y0 and u0 appearing in the Cauchy data (1.6). The theorem (3.4) gives
sufficient conditions for the existence and uniqueness of the solution for a more general equation,
namely quasilinear equation.
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with the initial data

x = x0(η), y = y0(η), u = u0(η) at σ = 0. (2.16)

Solving (2.13) and (2.14) with initial data x = x0(η), y = y0(η) at σ = 0 we get

x = X(σ, η), y = Y (σ, η). (2.17)

Then solving (2.15) with u = u0(η) at σ = 0 we get

u = U(σ, η). (2.18)

Solving for σ and η from (2.17) as functions of x and y and substituting in (2.18) we
get the solution

u(x, y) = U(σ(x, y), η(x, y)) (2.19)

of the PDE in a neighbourhood of γ.

Remark 2.5. The system of ODEs (2.13) and (2.14) is nonlinear. Hence we expect
only a local existence of characteristic curves. The ODE (2.15) is also nonlinear.
Hence, even if we get global solution of (2.13) and (2.14) and the solution of the
initial value problem for (2.15) exists, we expect to get solution of (2.15) along the
characteristic curve only locally i.e, in a neighbourhood of σ = 0, which corresponds
to a point on γ.

Example 2.6. Consider the equation

yux − xuy = 0. (2.20)

The characteristic equations are

dx

y
=

dy

−x
=⇒ xdx+ ydy = 0

(2.21)

which gives characteristic curves

x2 + y2 = constant = a2, say. (2.22)

These are circles with centre at the origin and radius a.

Let us consider a Cauchy problem for (2.20) in which Cauchy data is prescribed
on the x-axis as

u(x, 0) = u0(x). (2.23)

The compatibility condition on the characteristic curves is

du

dx
= 0 (2.24)
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which means u is constant on the circles (2.22). This implies that for the existence
of the solution, u0 must satisfy a condition u0(x) = u0(−x), i.e, the initial data must
be an even function. Let us choose

u0(x) = x2. (2.25)

Now the solution exists and, since all solutions u are constant on the circles (2.22),
it is uniquely determined as

u(x, y) = x2 + y2. (2.26)

Example 2.7. It is interesting to take another problem which has explicit solution.
Consider the Cauchy problem (to be defined later):

ux = c1(x, y)u+ c2(x, y), u(0, y) = u0(y), (2.27)

where u0(y), c1(x, y) and c2(x, y) are known continuous functions. It is easy to derive
(as if it is a problem in ODE) the unique solution of this problem:

u(x, y) = u0(y)e
∫ x
0 c1(σ,y)dσ + e

∫ x
0 c1(σ,y)dσ

∫ x

0

c2(ζ, y)e
∫ ζ
0 −c1(σ,y)dσdζ (2.28)

We ask a question. Is so easy to solve a Cauchy problem of a first order PDE? The
answer is yes. Every non-characteristic Cauchy problem for a linear non-homogeneous
equation can be reduced to the Cauchy problem (2.7).

To prove the above assertion, consider a non-characteristic Cauchy problem for
the nonhomogeneous linear first order PDE (1.5) with Cauchy data data prescribed
on a smooth curve written in the form

γ : ψ(x, y) = 0, (2.29)

Let the one parameter family of characteristic curves, obtained by solving the equa-
tions (2.10), be represented by

ϕ(x, y) = constant (2.30)

then ϕ satisfies
(aϕx + bϕy) = 0. (2.31)

For a non-characteristic cuve, the functions ϕ(x, y) and ψ(x, y) are independent and
we choose these functions as coordinates in place of x and y. Using (2.31), we find
that the transformed equation for u becomes

(aψx + bψy)uψ = c1(x, y)u+ c2(x, y). (2.32)

Define G(x, y) l aψx + bψy. In terms of functions U(ϕ, ψ) l u(x, y), C1(ϕ, ψ) l
c1(x, y)/G and C2(ϕ, ψ) l c2(x, y)/G, we get a new Cauchy problem

Uψ(ϕ, ψ) = C1(ϕ, ψ)U + C2(ϕ, ψ), U(ϕ, 0) = U0(ϕ). (2.33)

We have shown in example 7 that this problem can be solved uniquely. The
solution for U(ϕ, ψ) will only be local, because the the characteristic equations (2.10)
are nonlinear and also the coordinates ϕ and ψ can be introduced only locally.
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2.3 Problem set

1. Show that a characteristic of the equation ux−uy = 0 touches the branch of the
hyperbola xy = 1 in the first quadrant of the (x, y)-plane at the point P (1, 1).
Verify that P divides the hyperbola into two portions such that the Cauchy
data prescribed on one portion determines the value u on the other portion.

2. Find the characteristics of the equations

(i) 2xyux − (x2 + y2)uy = 0,

(ii) (x2 − y2 + 1)ux + 2xyuy = 0.

3. Show that if u is prescribed on the interval 0 ≤ y ≤ 1 of the y-axis, the solution
of 2(ii) is completely determined in the upper half of the (x, y)-plane.

4. Find the solutions of the following Cauchy problems and the domains in which
they are determined in the (x, y)-plane:

(i) yux + xuy = 2u with u(x, 0) = f(x) for x > 0,

(ii) yux + xuy = 2u with u(0, y) = g(y) for y > 0,

(iii) ux + uy = u2 with u(x, 0) = 1 for −∞ < x <∞.

3 Quasilinear equations

3.1 Derivation of characteristic equations and compatibility
condition

It is simple to discuss the theory of a quasilinear equation

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (3.1)

using the theory of linear equations. We assume that a, b, c are C1(D2).

Consider a known solution u(x, y) of (3.1). Let us substitute the function u(x, y)
for u in the coefficients a,b and c, then the coefficients a(x, y, u(x, y)), b(x, y, u(x, y))
and c(x, y, u(x, y)) become known functions of x and y, and u satisfies a relation in
which a and b are functions of x and y only. Following the steps of the last section,
we find that the following ODEs are satisfied simultaneously

dx

dσ
= a(x, y, u(x, y)),

dy

dσ
= b(x, y, u(x, y)),

du

dσ
= c(x, y, u(x, y)).

(3.2)
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Now, this is true for every solution u(x, y). Hence, it follows that for an arbitrary
solution of (3.1), there are characteristic curves in the (x, y)-plane given by

dx

dσ
= a(x, y, u),

dy

dσ
= b(x, y, u) (3.3)

and along each of these characteristic curves the compatibility condition

du

dσ
= c(x, y, u) (3.4)

must be satisfied.

Remark 3.1. In the case of linear and semilinear equations, the characteristic equa-
tions are independent of u. Hence, the characteristic curves are completely determined
by (2.13) and (2.14) without any reference to the solution u. There is only one char-
acteristic through a point (x0, y0), provided a, b ∈ C1 in a neighbourhood of (x0, y0)
and a2(x0, y0)+b2(x0, y0) 6= 0. Thus the characteristic curves of a semilinear equation
form a one parameter family of curves arising out of one constant of integration of
the ODE (2.11). On the contrary, the characteristic equations and the compatibility
conditions of a quasilinear equation form a coupled system of three equations. Hence,
in this case, through any point (x0, y0) a distinct characteristic curve is determined
for a given solution. Through the same point (x0, y0), there are infinity of tangent
directions dy/dx = b(x, y, u)/a(x, y, u) of characteristic curves depending on the value
u0 of u there. Thus, the characteristic curves of a quasilinear equation form a two
parameter family of curves arising out of two constants of integration of a pair of
ODEs dy

dx
= b(x, y, u)/a(x, y, u), du

dx
= b(x, y, u/a(x, y, u).

3.2 Solution of a Cauchy problem

As an algorithm to solve a Cauchy problem with data given in (1.6)-(1.7), we first
solve the system of three equations (3.3)-(3.4) simultaneously with initial data

x = x0(η), y = y0(η), u = u0(η) at σ = 0. (3.5)

This gives the solution in the form (2.17)-(2.18). As before, we try to solve σ
and η as functions of x and y from (2.17) and substitute them in (2.18) to get the
solution (2.19) of the Cauchy problem. We explain the method with the help of a
simple example.

Example 3.2. Consider the equation

uux + uy = 0 (3.6)

with the Cauchy data
u(x, 0) = x, 0 ≤ x ≤ 1
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which can be put in the form

x = η, y = 0, u = η, 0 ≤ η ≤ 1. (3.7)

Solving the characteristic equations and the compatibility condition

dx

dσ
= u,

dy

dσ
= 1,

du

dσ
= 0

with initial data (3.7) at σ = 0 we get

x = η(σ + 1), y = σ, u = η. (3.8)

The characteristic curve passing through a point x = η on the x-axis is a straight
line x = η(y + 1). These characteristics for all admissible but fixed values of η, i.e,
0 ≤ η ≤ 1 pass through the same point (0,−1) and cover the wedged shaped portion
D of the (x, y)-plane bounded by two extreme characteristics x = 0 and x = y + 1.
Note that u = η in (3.8) shows that u is constant on each of these characteristics,
being equal to the abscissa of a point where a characteristic intersects the x-axis.
The solution is determined in the wedged shaped region D as shown in the Figure 3.
Eliminating σ and η from (3.8), we get the solution of the Cauchy problem as

u =
x

y + 1
. (3.9)

x

y

O (1, 0)

(0,−1)

q

Figure 3: The solution is determined in the wedged shaped region D of the (x, y)-
plane.

Remark 3.3. We note three very important aspects of the quasilinear equations from
this example.
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(i) The domain D in the (x, y)-plane in which the solution is determined depends
on the data prescribed in the Cauchy problem. Had we prescribed a constant
value of u(x, 0), say u(x, 0) = 1

2
for 0 ≤ x ≤ 1, the characteristics would have

been a family of parallel straight lines y − 2x = −2η and the domain D would
have been the infinite strip bounded by the extreme characteristics y − 2x = 0
and y − 2x = −2 as shown in the Figure 4.

x

y

O

D

1
q

Figure 4: The domain D when the Cauchy data is u(x, 0) = 1
2

for 0 ≤ x ≤ 1.

(ii) Even though the coefficients in the equation (3.6) and Cauchy data (3.7) are
regular, the solution develops a singularity at the point (0,−1). Geometrically,
this is evident from the fact that the characteristics which carry different value
of u all intersect at (0,−1). Analytically, this is clear from the explicit form of
the solution (3.9). The appearance of a singularity in the solution of a Cauchy
problem even for a smooth Cauchy data is a property associated with nonlinear
differential equations.

(iii) This example also highlights the fact that the solution of quasilinear equation
is only local i.e., we expect the solution to be valid only in a neighbourhood of
γ. In the case of the solution (3.9), the neighbourhood is quite large, it is the
wedged shaped region D shown in the Figure 3.

We now prove a theorem showing local existance and uniqueness of a solution of
a noncharacteristic Cauchy problem for the equation (3.1).

Theorem 3.4. Consider a Cauchy problem for the PDE (3.1) with Cauchy data u0(η)
prescribed on a curve γ given by (1.6), where I is an open interval, say for 0 < η < 1.
Let
(i) x0(η), y0(η), u0(η) ∈ C1(I),
(ii) a(x, y, u), b(x, y, u) and c(x, y, u) be C1 functions on a domain7 D2 of R3,

7for an explanation of the symbol D2, see the footnote number 3.
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(iii) the curve Γ: x = x0(η), y = y0(η), u = u0(η) for η ∈ (0, 1) belongs to D2 and
(iv) the transversality condition

dy0(η)

dη
a(x0(η), y0(η), u0(η))

− dx0(η)

dη
b(x0(η), y0(η), u0(η)) 6= 0

(3.10)

is satisfied on the curve γ.

Then there exists a unique solution u(x, y) of the Cauchy problem in a neighour-
hood D of γ.

Remark 3.5. The condition (3.10) implies that(
dx0(η)

dη

)2

+

(
dy0(η)

dη

)2

6= 0

so that γ is free from a singularity. It also implies that γ is not a characteristic curve.

Proof. Since a, b, c have continuous partial derivatives with respect to x, y, u, the
system of ODEs (3.3) and (3.4) have unique continuously differentiable solution with
respect to σ [7] of the form

x = x(σ, η), y = y(σ, η), u = u(σ, η) (3.11)

satisfying the initial condition

x(0, η) = x0(η), y(0, η) = y0(η), u(0, η) = u0(η) for an η ∈ I. (3.12)

Consider now a point P0 on γ corresponding to η = η0. As x0(η), y0(η), u0(η) are con-
tinuously differentiable, the functions in the solution (3.11) are continuously differen-
tiable functions of two independent variables σ and η [7] in a domain of (σ, η)-plane
containing (0, η0). In view of our assumption (3.10), the Jacobian

∂(x, y)

∂(σ, η)
≡
∣∣∣∣ xσ xη
yσ yη

∣∣∣∣
= ayη − bxη

(3.13)

does not vanish at σ = 0 for 0 < η < 1 and in particular at the point (0, η0) in
(σ, η)-plane.

Using the inverse function theorem we can uniquely solve for σ and η from the
first two relations in (3.11) in terms of x and y

σ = σ(x, y), η = η(x, y) (3.14)

14



in a neighbourhood DP0 of P0 in (x, y)-plane. Moreover, the functions σ and η in
(3.14) are C1 in DP0 . Substitute (3.14) in the third relation in (3.11) to get a function
u(x, y) of x and y in DP0 :

u(x, y) = u(σ(x, y), η(x, y)). (3.15)

Further, this function is C1 on a domain DP0 in (x, y)-plane. Note that at any point
of the intersection of datum curve γ and the domain DP0

u(x0(η), y0(η)) = u(σ(x0, y0), η(x0, y0))

= u(0, η)

= u0(η)

which shows that the initial condition (3.10) is satisfied. Moreover,

aux + buy = a (uσσx + uηηx) + b (uσσy + uηηy)

= uσ(aσx + bσy) + uη(aηx + bηy)

= uσ(σxxσ + σyyσ) + uη(ηxxσ + ηyyσ), using (3.3),

= uσσσ + uηησ

= uσ

= c.

(3.16)

Hence, u satisfies the PDE (3.1) in DP0 . Let D = {⋃P0∈γ DP0}. We define u in D
with the help of values of u in DP0 . Now, we have solved the Cauchy problem in a
neighbourhood D of γ.

For uniqueness of the solution, we note that each step of the construction of the
function u(x, y) in (3.13), namely solution of the ODEs (3.2), inversion of the functions
leading to σ(x, y) and η(x, y) and substitution in u(σ, η) all lead to unique results.
Hence, the procedure leading to the construction of the solution (3.15) gives a unique
solution of the Cauchy problem in the neighbourhood DP0 of the point (x0(η0), y0(η0))
on γ and hence in the domain D containing γ. Is there any other method which may
lead to another solution? Suppose there is another solution u1. Then u1 will also
satisfy the same ODEs (3.2) with same initial data (3.12) and hence will coincide
with u in each step of the proof of the theorem. Hence u1 = u in D.

At this stage we need to comment on the possible cases of non-exitance and
non-uniqueness of the solution of a Cauchy problem. We start with an ob-
servation that for a quasilinear equation whether a datum curve is a characteristic
or is tangential to a characteristic depends on the Cauchy data u0(η). Now we first
note that if the datum curve γ is tangential to a characteristic curve at some point,
the right hand side of (3.11) vanishes at that point and the proof of existence of the
solution breaks down in the neigbourhood of that point. The second case is when
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the datum curve γ coincides with a characteristic curve. In this case the data u0(η)
can not be arbitrarily prescribed on γ and in order that the solution exists it must
satisfy the compatibility condition (3.5). We shall show in Theorem 3.9, that if the
compatibility condition is satisfied, there exists infinity of solutions.

3.3 Some more results for quasilinear equations

Remark 3.6. We mention below some important results on first order PDEs, refer
to [10] more details.

1. A first integral of the characteristic equations (3.3) and the compatibility con-
dition in (3.4) can be written in the form

ϕ(x, y, u) = c, (3.17)

where c is an arbitrary constant. If we can solve (3.17) for u to get u = u(x, y, c),
we get a one parameter family of solutions of the PDE (3.1).

2. Let ϕ(x, y, u) = c1 and ψ(x, y, u) = c2 be two first integrals of the ODEs (3.3)
and (3.4). Then a solution of (3.1) can be obtained by solving u from a relation

h(ϕ(x, y, u), ψ(x, y, u)) = 0 (3.18)

where h is an arbitrary C1 function of two arguments.

3. For any given function h, a solution u(x, y) of (3.18) satisfies the PDE (3.1). In
this sense (3.18), with arbitrary h, is called a general solution of (3.1). Given
a Cauchy problem, it is easy to find out the function h such that (3.18) would
give u which will be the solution of the Cauchy problem.

Now we prove an important theorem.

Theorem 3.7. If φ(x, y) and ψ(x, y) are two solutions of a quasilinear equation
(3.1) in a domain D and they have a common value u0 at a point (x0, y0) ∈ D, then
characteristics of both solutions through (x0, y0) coincide in D and both solutions have
same values on this common characteristic.

Proof. Since the coefficients a, b, c are C1 functions, there exists a unique solution

x = x(x0, y0, σ), y = y(x0, y0, σ), u = u(x0, y0, σ) (3.19)

of the ODEs (3.3) and (3.4) with initial data (x, y, u) = (x0, y0, u0) at σ = 0.

The first two equations in (3.19) give the common characteristic through the point
(x0, y0) for the two solutions φ and ψ and the third equation in it gives the common
value of the solution on this characteristic.

This completes the proof of the theorem.
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Example 3.8. For the equation (3.5), the result stated in the theorem can be verified
for the solutions u = x

y+1
(see (3.9)) and u = 1

2
(see Remark 3.3.(i)) along the common

characteristic y = 2x − 1. This also clarifies the non-uniqueness of the solution of a
characteristic Cauchy problem, which we state in the form of a theorem.

Theorem 3.9. A characteristic Cauchy problem, when the solution exist, has infinity
of solutions.

Proof. Assume that the compatibility condition (3.4) is satisfied on datum curve γ,
which is a characteristic curve.

Choose a point P on γ. We take another curve γ1 through the point P and we
prescribe a smooth Cauchy data u10 on in such a way that it is not a characteristic
curve and u10(P ) = u0(P ). The solution u1 of (3.1) with this Cauchy data on γ1
exists and the original curve γ is a characteristic curve of the solution u1. We can
choose γ1 in an infinity of ways and set up a characteristic Cauchy problem with it.
Thus we get infinity of solutions with γ having data u0 on it as a characteristic curve
for each one of these solutions.

3.4 Problem set

1. Show that all the characteristic curves of the partial differential equation

(2x+ u)ux + (2y + u)uy = u

through the point (1, 1) are given by the same straight line x− y = 0.

2. Discuss the solution of the differential equation

uux + uy = 0, y > 0, −∞ < x <∞

with Cauchy data

u(x, 0) =

{
α2 − x2 for |x| ≤ α,

0 for |x| > α.

4 First order nonlinear equations in two indepen-

dent variables

4.1 Derivation of Charpit’s equations

The most general form of first order equation is (1.1), i.e.,

F (x, y, u, p, q) = 0; p = ux, q = uy, (4.1)
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where we assume that F ∈ C2(D3) with D3 as a domain in R5.

With a general expression F in the PDE (4.1), there is no indication that we can
find a transport equation for a solution u along a curve in (x, y)- plane. Therefore,
it is really remarkable and interesting ([5], sections 83 and 85) that the discovery of
such a curve was made by Lagrange and Charpit in an attempt to find a complete
integral and by Cauchy in a geometric formulation with the help of Monge Cone [1].
Though this has a very rich history, it is quite time consuming for teaching in a class.
We proceed differently by taking a known C2 solution u(x, y) and differentiate (4.1)
with respect to x. This gives

Fx + uxFu + pxFp + qxFq = 0.

Using qx = uyx = uxy = py and rearranging the terms we get

Fppx + Fqpy = −Fx − pFu (4.2)

in which the quantities Fp, Fq are now known functions of x and y. This is a beautiful
result, the first x-derivative of u, namely p is differentiated in the direction (Fp, Fq)
in (x, y)-plane. Thus, for the known solution u(x, y), consider a one parameter family
of curves in (x, y)-plane given by

dx

dσ
= Fp,

dy

dσ
= Fq. (4.3)

Along these curves, (4.2) gives

dp

dσ
= −Fx − pFu. (4.4)

Similarly, differentiating (4.1) with respect to y, we find that along the same curves
given by (4.3), we have

dq

dσ
= −Fy − qFu. (4.5)

The rate of change of u along these curves is

du

dσ
= ux

dx

dσ
+ uy

dy

dσ
= pFp + qFq.

(4.6)

Note that (4.3)-(4.6) form a complete system of five ODEs for five quantities
x, y, u, p and q irrespective of the solution u(x, y) we take for their derivation. Thus,
we find a beautiful set of equations, called Charpit’s equations consisting of two
characteristic equations (4.3) and three compatibility conditions (4.4)-(4.6). Given
a set of values (u0, p0, q0) at any point (x0, y0), so that (x0, y0, u0, p0, q0) ∈ D3, we
can find a solution of Charpit’s equations. Since the system is autonomous, the set
of solutions of the Charpit’s equations form a four parameter family of curves in
(x, y)-plane.
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Remark 4.1. Every solution (x(σ), y(σ), u(σ), p(σ), q(σ)) of the Charpit’s equations
satisfies the strip condition

du

dσ
= p(σ)

dx

dσ
+ q(σ)

dy

dσ
(4.7)

on the curve (x(σ), y(σ), u(σ)) in (x, y, u)-space. For a geometrical interpretation of
the strip condition, see [1, 10].

There is an interesting result, which says that the function F is constant on any
integral curve of Charpit’s equations in D3. The proof is very simple

dF

dσ
=
dx

dσ
Fx +

dy

dσ
Fy +

du

dσ
Fu +

dp

dσ
Fp +

dq

dσ
Fq

which vanishes when we use the Charpit’s equations. This means that though not
every solution of the Charpit’s equations satisfies F (x(σ), y(σ), u(σ), p(σ), q(σ)) = 0,
if we choose u0, p0 and q0 at (x0, y0) such that F (x0, y0, u0, p0, q0) = 0, then F = 0 for
all values of σ.

Definition 4.2. A set of five ordered functions (x(σ), y(σ), u(σ), p(σ), q(σ)) satisfying
the Charpit equations (4.3) - (4.6) and F (x(σ), y(σ), u(σ), p(σ), q(σ)) = 0 is called a
Monge strip of the PDE (4.1).

The condition F (x(σ), y(σ), u(σ), p(σ), q(σ)) = 0 imposes a relation between the
four parameters of the set of all solutions of the Charpit’s equations. Therefore the
of Monge strips form a three parameter family of strips in (x, y, u)-space.

Definition 4.3. Given a Monge strip (x(σ), y(σ), u(σ), p(σ), q(σ)), the base curve in
(x, y)-plane given by (x(σ), y(σ)) is called a characteristic curve of the PDE (4.1).

Remark 4.4. Characteristic curves of a linear first order PDE form a one parameter
family of curves in (x, y)-plane. Those for a quasilinear equation form a two parameter
family of curves. Finally those of a nonlinear equation (4.1) form a three parameter
family of curves.

4.2 Solution of a Cauchy problem

We shall first state an algorithm to solve a Cauchy problem. Next we shall state a
theorem which guarantees that this algorithm indeed gives a unique solution of the
Cauchy problem.

For the nonlinear PDE (4.1), we need to solve the Charpit’s equations (4.3)-(4.6)
and for this we need initial values p0(η) and q0(η) on γ in addition to the values
x0(η), y0(η) and u0(η) given in the Cauchy data (1.6)-(1.7). Firstly we note that
these initial values must satisfy the PDE, i.e,

F (x0(η), y0(η), u0(η), p0(η), q0(η)) = 0. (4.8)
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Further, differentiating (1.7) with respect to η we get one more relation

p0(η)x′0(η) + q0(η)y′0(η) = u′0(η). (4.9)

We take two functions p0(η) and q0(η) satisfying (4.8)-(4.9) and complete the initial
data for (4.3)-(4.6) at σ = 0 as

x(0, η) = x0(η), y(0, η) = y0(η), u(0, η) = u0(η)

p(0, η) = p0(η), q(0, η) = q0(η).
(4.10)

Now we solve the Charpit’s equations (4.3)-(4.6) with initial data (4.10) and obtain

x = X(σ, η), y = Y (σ, η), u = U(σ, η), p = P (σ, η), q = Q(σ, η). (4.11)

From the first two relations in (4.11), we solve σ and η as functions of x and y and
substitute in the third relation to get the solution u(x, y) of the Cauchy problem.

The following theorem assures that the above algorithm indeed gives a local solu-
tion of the Cauchy problem.

Theorem 4.5. Consider a Cauchy problem for the PDE (4.1) with Cauchy data u0(η)
prescribed on a curve γ given by (1.6), where I is an open interval, say for 0 < η < 1.
Let
(i) the F (x, y, u, p, q) ∈ C2(D3), where D3 is a domain in (x, y, u, p, q)-space,
(ii) the functions x0(η), y0(η), u0(η) ∈ C2(I),
(iii) p0(η) and q0(η) be two functions satisfying the equations (4.8) and (4.9) such
that they are C1(I) and the set {x0(η), y0(η), u0(η), p0(η), q0(η)} ∈ D3 for η ∈ I and
(iv) the transversality condition

dx0
dη

Fq(x0, y0, u0, p0, q0)−
dy0
dη

Fp(x0(η), y0(η), u0(η), p0(η), q0(η)) 6= 0 , η ∈ I (4.12)

is satisfied.
Then we can find a domain D in (x, y)-plane containing the datum curve γ and a
unique solution of the Cauchy problem.

Note that the theorem does not gauantee that u will be C2.

A note on the proof of the above theorem: The algorithm mentioned above
for construction of the solution is quite similar to that for a quasilinear equation
except that we now have to integrate a system of five ordinary differential equations.
The proof of the Theorem 4.5. is also similar to that of the Theorem 3.4. but in
addition we need to prove that p and q obtained by solving the Charpit equations
are indeed the first partial derivatives of the function u(x, y). This makes the proof
of the Theorem 4.5. very long compared to that of the Theorem 3.4., see [3, 10].

20



Characteristic Cauchy problem: Important point for the existence and unique-
ness of the Cauchy problem is that the datum curve γ is no where tangential to a
characteristic curve.

If γ is a characteristic curve, the data u0(η) is to be restricted (i.e., u0, p0 and
q0 satisfy the last three of the Charpit equations with σ replaced by η) and when
this restriction is imposed, the solution of the Cauchy problem is non-unique, in fact
infinity of solutions exist.

Example 4.6. Consider a wavefront moving into a uniform two-dimensional medium
with a constant normal velocity c. Let the successive positions of the wavefront be
denoted by an equation u(x, y) = ct, where t is the time. Since the velocity of
propagation c is given by c = − φt

(φx
2+φy

2)1/2
, where φ := ct− u(x, y) = 0, the function

u(x, y) satisfies an eikonal equation

p2 + q2 = 1; p = ux, q = uy. (4.13)

Let the initial position of the wavefront be given by

αx+ βy = 0, α, β = constants, α2 + β2 = 1. (4.14)

We can formulate the problem of finding successive positions of the wavefront for
t > 0 as a Cauchy problem.

Solve the PDE (4.13) subject to the Cauchy data at σ = 0

x0 = βη, y0 = −αη, u0 = 0. (4.15)

Solution is quite easy. First we find out the values of p0 and q0 from (4.8)-(4.9), i.e,

p20 + q20 = 1, βp0 − αq0 = 0

which give two sets of values at σ = 0.

p0 = ±α, q0 = ±β. (4.16)

The Charpit’s equations of (4.13) are

dx

dσ
= 2p,

dy

dσ
= 2q, (4.17)

du

dσ
= 2

(
p2 + q2

)
, (4.18)

dp

dσ
= 0,

dq

dσ
= 0. (4.19)

Solution of (4.17)-(4.19) with initial data (4.15)-(4.16) at σ = 0 gives

x = ±2ασ + βη, y = ±2βσ − αη, (4.20)

u = 2σ, p = ±α, q = ±β. (4.21)
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Solving σ in terms of x and y from (4.20), we get

σ = ±1

2
(αx+ βy).

From (4.21) we have u = 2σ and hence the solutions of the Cauchy problem (4.13)
and (4.15) are

u = ±(αx+ βy). (4.22)

There are two solutions of this Cauchy problem. Note that this does not violate the
uniqueness theorem for a solution of the Cauchy problem for a first order nonlinear
PDE. The two solutions correspond to the two sets of determinations of p0 and q0 in
(4.15) leading actually to two Cauchy problems.

The two solutions have an important physical interpretation in terms of front
propagation. The wavefronts (one forward propagating and another backward prop-
agating) starting from the position (4.14) occupy the positions u = ct, i.e,

αx+ βy = ±ct (4.23)

which are at a (normal) distance ±ct from (4.14). The equation (4.13) governs both
the forward and backward moving waves.

4.3 Some more results and general remarks

Theorem 4.7. If φ(x, y) and ψ(x, y) are two solutions of the nonlinear equation (4.1)
in a domain D and they have common values of u0, p0 and q0 at a point (x0, y0) ∈ D,
then they have a common characteristic in D passing through (x0, y0) and that the
values of u, p and q on this common characteristic are same for both solutions.

Proof. As in the case of the proof of the Theorem 3.7. we use the uniqueness of the
solution of an initial value problem for the Charpit’s equations (4.3)-(4.6). Rest of
the arguments are the same

Remark 4.8. We have presented the theory of first order PDEs briefly. It is based
on the existence of characteristics curves in the (x, y)-plane. Along each of these
characteristics we derive a number of compatibility conditions, which are transport
equations and which are sufficient to carry all necessary information from the datum
curve in the Cauchy problem into a domain in which the solution is determined. In
this sense every first order PDE is a hyperbolic equation8.

8A classification of equations into hyperbolic and other type of equations is done for a single
higher order equation or for a system of first order equations. The hyperbolicity of equations is
due to the fact that the equation or the system has sufficient number of families of characteristic
curves (or bicharacteristics for equations in more than two independent variables), which carry all
necessary information from the datum curve (or surface for equations in more than two independent
variables) to a point P not on the datum curve (or surface) to construct the solution of a Cauchy
problem at the point P
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Remark 4.9. We have omitted a special class of solutions known as complete integral,
for which any standard text may be consulted. Every solution of the PDE (4.1) can
be obtained from a complete integral. We can also solve a Cauchy problem with its
help. Though complete integral plays an important role in physics, it is not important
for further development of the theory of first order PDEs and conservation laws.

Remark 4.10. So far we have discussed only genuine solutions, which is valid only
locally. There is a fairly complete theory of weak solutions of Hamilton-Jacobi equa-
tions, a particular case of the nonlinear equation (4.1). Generally the domain of
validity of a weak solution with Cauchy data on the x-axis is at least half of the
(x, y)-plane. Theory of a single conservation law, a first order equation, is particu-
larly interesting not only from the point of view of theory but also from the point of
view of applications [9, 10].

Special Remark: Once a student has acquired a good understanding of
PDE, he/she should revisit the Charpit’s equations and should try to understand
the beautiful geometry behind the derivation of these equations and the nature of
solutions of a first order nonlinear PDE. Reference [10] contains a very comprehensive
discussion of this.

4.4 Problem set

1. Consider the partial differential equation

F ≡ u(p2 + q2)− 1 = 0.

(i) Show that the general solution of the Charpit’s equations is a four param-
eter family of strips represented by

x = x0 +
2

3
u0(2σ)

3
2 cos θ, y = y0 +

2

3
u0(2σ)

3
2 sin θ,

u = 2u0σ, p =
cos θ√

2σ
, q =

sin θ√
2σ

where x0, y0, u0 and θ are the parameters.

(ii) Find the three parameter family of all Monge strips.

(iii) Show that the characteristic curves consist of all straight lines in the (x, y)-
plane.

2. Solve the following Cauchy problems:

(i) 1
2
(p2 + q2) = u with Cauchy data prescribed on the circle x2 + y2 = 1 by

u(cos θ, sin θ) = 1, 0 ≤ θ ≤ 2π
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(ii) p2 + q2 +
(
p− 1

2
x
) (
q − 1

2
y
)
− u = 0 with Cauchy data prescribed on the

x-axis by
u(x, 0) = 0

(iii) 2pq − u = 0 with Cauchy data prescribed on the y-axis by

u(0, y) =
1

2
y2

(iv) 2p2x+ qy − u = 0 with Cauchy data on x-axis

u(x, 1) = −1

2
x.
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