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Introduction - Receding shock wave

Figure:
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Introduction - Sonic boom experimental picture

Figure:

single conservation law lecture P. Prasad Department of Mathematics 3 / 61



Genuine Nonlinearity

The theory of conservation laws is intimately
related to wave propagation with genuine
nonlinearity.

In fact, the theory was developed because genuine
nonlinearity led to a mathematical difficulty which
could not be overcome without this theory.

We shall explain genuine nonlinearity later.
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Reference
Many books as text books, but at your level I mention only:

Phoolan Prasad and Renuka Ravindran, Partial Differential Equations,
New Age International Publishers, section 3.5.

Phoolan Prasad, Nonlinear Hyperbolic Waves in Multi-dimensions,
Chapman & Hall/CRC, 2001, Chapter 1.

Prasad, P. (1997) Nonlinearity, Conservation Law and Shocks,
RESONANCE- Journal of Science Education by Indian Academy of
Sciences, Bangalore,
Part I: Genuine Nonlinearity and Discontinuous Solutions, Vol-2, No.2,
8-18;
Part II: Stability Consideration and Examples, Vol-2, No.7, 8-19.

Soft copy of last three will be to be given to you.

J. D. Logan, An Introduction to Nonlinear PDE, Wiley, 2008 a book
with many engineering applications.
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Simplest wave equation

ut + c ux = 0 , c = real constant (1)

Method of characteristics for first order PDE gives

u = φ(x− ct), φ : R→ R (2)

When φ ∈ C1(R)⇒ Genuine solution.

(2) represents a wave every point of which moves with the same
constant velocity c.

t = 0 t > 0

ct

Figure: This figure does not reprent a genuine solution. Why?
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Simplest wave equation contd..

When φ /∈ C1(R)⇒ Generalized or weak

solution

Figure: A generalized solution can even be discontinuous or a distribution like
δ− function.
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Genuine Nonlinearity

Airy or Euler equation1 (Burgers equation is not an
appropriate name)

ut + uux = 0 (3)

This quasi-linear equation contains genuine nonlinearity, a name
given by Peter Lax. He precisely defined genuinely nonlinear
characteristic field.

Physical interpretation: The velocity of a wave, in a particular
mode of propagation containing genuine nonlinearity, depends on
the amplitude of the wave.

Note1 Jerry Bona told me about Airy’s and Vladimir Arnold about Euler’s point of

view.
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Genuine Nonlinearity

General solution of the wave equation utt − c2uxx = 0

u = f(x− ct) + g(x+ ct)

shows that it has two modes of propagation.

Q.1 What are these modes?
Q.2 Are they genuinely nonlinear?
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Genuine Nonlinearity

General solution of (3) is

u = f(x− ut)

where the velocity of propagation is equal to the amplitude u of the
wave.

Genuine nonlinearity is different from nonlinearity present in a
semilinear equation i.e., ut + cux = u2. Already discussed in previous
lecture.

Explicit solution of an initial value problem for (3) is very involved as
pointed out my lecture on first order PDE.
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Nonlinear Deformation due to Genuine
Nonlinearity
Graphs of the solution at t > 0

The pulse now deforms as t increases and at t = 3, and the solution
becomes multi-valued after a critical time tc (in this case tc ≈ 1.166)
the graph does not represent any solution.
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Nonlinear deformation contd..
u

x

(x,u l)
(x0+,u+)

(x,ur)
(x0-,u-)

(t)

(t)

x1 (t) x2 (t)

A+

A-

When the graph folds at a large time, we need to interpret the solution
as a weak solution with a discontinuity which is a shock.
We shall present a very simple theory (original one before general
theory was developed in 1951 by a Fields medalist Lawrence Schwartz).
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Nonlinear deformation contd..
Example 1:

O

ul

ur

Figure: Initial data with a discontinuity at x = 0.

ul

ur

1
2
(ul + ur)t

Figure: A solution containing shock. Solution, which is unique, stable and
remains discontinuous. The discontinuity moves with velocity S = 1

2 (ul + ur).
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Diffusion: Burgers equation

Simplest example containing diffusion is the one dimensional
heat conduction equation (do you know that heat diffuses
irreversibly?) equation

ut = νuxx, ν = real and > 0. (4)

As time increases, concentration of u diffuses.

However, I shall mention here Burgers equation (1948)

ut + u ux = νuxx (5)

In this both genuine nonlinearity and diffusion are present.
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Diffusion: Burgers equation contd..
The discontinuous solution on slide 13 becomes

u(x, t) =
1

2
(u−∞ + u+∞)

− 1

2
(u−∞ − u+∞) tanh

[
u−∞ − u+∞

4ν

{
x− 1

2
(u+∞ + u−∞)t

}]

Figure: The genuine nonlinearity and diffusion balance each other and the
discontinuous shock profile becomes a steady C∞(R) solution.
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Critical time tc for the break down of a genuine solution in
an equation having genuine nonlinearity

We have seen that a genuine solution of the initial value problem

ut + uux = 0, u(x, 0) = φ(x)

may break down at a finite critical time.

The critical time tc can be calculated easily in terms of largest
negative value of the derivative of the initial data φ(x).
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New mathematical formulation

Physical phenomena governed by equations having genuine
nonlinearity are many.

It is observed that beyond tc some state variables represented
by u become discontinuous with finite values on the two sides
of the discontinuity and hence are not differentiable.

We have shown such a solution graphically on slide 11.
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Conservation law in one space dimension

Consider density H(u) and flux F (u) of the state u(x, t) of a
physical system. We shall take the conservation law in form

d

dt

∫ x2

x1

H(u(ξ, t))dξ = F (u(x1, t))− F (u(x2, t)) (6)

for arbitrary points x1 and x2.

This means that the time rate of change of total quantity
H(u) contained in the interval x1 and x2 is equal to the
difference of flux F (u(x2, t) going out of the interval at the
point x2 and flux F (u(x1, t) entering at point x1.

Interpret this formulation for the heat density H(u) and heat
flux F (ux) in one-dimensional rod. We shall take up a simpler
case when we have F (u).
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Conservation law in one space dimension contd...

Problem: If the functions H and F are differentiable and state u
is also so, show that the conservation law implies

∂H(u)

∂t
+
∂F (u)

∂x
= 0. (7)

Further if

H ′(u) ≡ dH

du
6= 0 and

F ′(u)

H ′(u)
= u, (8)

we get the equation with genuine nonlinearity.

ut + uux = 0 (9)

Definition: Equation (7) is called a conservation law, by which
we mean the equation (6).
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Generalized or weak solution of Conservation
Law

Important Result stated in simple words: A function f(x)
with countable number of finite discontinuities in a closed interval
[x1, x2] is integrable and∫ x2

x1

H(u(ξ, t))dξ exists.

Definition A generalized or weak solution of the conservation law
(7) is a bounded integrable function u(x, t), which satisfies the
integral equation (6) for all choices of x1, x2.

Theorem

Every differentiable weak solution of (7) with {F ′(u)/H ′(u)} = u,
is a genuine solution of the PDE ut + uux = 0.
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Nature of a discontinuous weak solution

Let u(x, t), ux(x, t) and ut(x, t) be bounded and discontinuous
across a single smooth curve

Ω : x = X(t)

and are C1 in the rest of the (x, t) -plane.
We assume that limiting values of u, ux and uy as we
approach Ω from either side exist.
u is a genuine solution of ut + uux = 0 in R2 \ Ω
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Derivation of Jump relation
Let x1 < X(t) < x2 for t ∈ an open interval.∫ x2

x1

H(u(ξ, t))dξ =

∫ X(t)

x1

H(u(ξ, t))dξ +

∫ x2

X(t)

H(u(ξ, t))dξ (10)

From (25)∫ X(t)

x1

H ′ut(ξ, t)dξ +

∫ x2

X(t)

H ′ut(ξ, t))dξ + Ẋ(t))
{
H(u(X(t)−, t))

−H(u(X(t)+, t))
}

= {F (u(x1, t))− F (u(x2, t))}
(11)

First two terms on the left hand side tend to zero as x1 → X(t)−
and x2 → X(t)+ and (11) ⇒ Jump relation:

Ẋ(t)(H(ul)−H(ur)) = F (ul)− F (ur) (12)
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Jump relation or Rankine-Hugoniot condition

Ẋ(t) = [F ]/[H] (13)

where
[f ] = f(ur)− f(ul). (14)

The Airy (inviscid Burgers) equation

ut + uux = 0 (15)

leads to the conservation law

ut + (
1

2
u2)x = 0, (16)

which is a particular case of

(un)t + (
n

n+ 1
un+1)x = 0, n = +ve integer. (17)
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Jump relation or Rankine-Hugoniot condition
contd...

Jump relations from these conservation laws give

Ẋ(t) =
1

2

u2r − u2l
ur − ul

=
1

2
(ur + ul) (18)

Ẋ(t) =
n

n+ 1

(
n∑
i=0

un−ir uil

)
�

(
n−1∑
i=0

un−1−ir uil

)
. (19)

For n = 2

Ẋ(t) =
2

3

u2r + urul + u2l
ur + ul

(20)

Same differential equation, but different conservation laws
equivalent to it, give different jump relations.
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Example 1

Consider conservation law (16), i.e.

ut + (
1

2
u2)x = 0

with a discontinuous initial data

u(x, 0) =

{
0, x ≤ 0

1, 0 < x.
(21)
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Example 1: One Solution
One solution is discontinuous one on the line x = 1

2 t

u(x, t) =

{
0 , x ≤ 0

1 , 1
2 t < x

(22)

Figure: Two constant states are separated by a line of discontinuity on x = 1
2 t

satisfying the jump condition (18)
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Example 1: One Continuous Solution
But you can have a continuous (not genuine) solution also - the initial
discontinuity at x = 0 is immediately resolved

u(x, t) =


0 , x ≤ 0

x/t , 0 < x ≤ t
1 , t < x

(23)

Figure: Two constant states are separated by a centred simple wave.

single conservation law lecture P. Prasad Department of Mathematics
27 /
61



Example 1: Non-unique Solution Contd...
Are you surprised at two solutions? See now an infinity of
discontinuous solutions

u(x, t) =


0 , x ≤ 0

x/t , 0 < x ≤ αt
α , αt < x ≤ 1

2 (1 + α)t

1 , 1
2 (1 + α)t < x

(24)

where α is a constant 0 ≤ α ≤ 1.

Figure: Three constant states are separated by a centred simple wave and a
line of discontinuity on x = 1

2 (1 + α)t satisfying the jump condition (18).
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Example 1 contd...

There is only one line of discontinuity in u for 0 ≤ α < 1, with
slope x

t
= 1

2
(1 + α).

For α = 1, it is a continuous weak solution (26) of the
conservation but not a genuine solution of the PDE
ut + uux = 0.

Why?

There is a centered fan u = x
t

in 0 < x < αt.
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Example 2

Solve

ut + (
1

2
u2)x = 0, (x, t) ∈ R× R+ (25)

with

u(x, 0) =

{
1, x ≤ 0

0, x > 0
(26)

We get only one solution of this problem as

u(x, t) =

{
1, x− 1

2t ≤ 0

0, x− 1
2t > 0

(27)
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Example 3 · · · conti.
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Mathematical criterion for uniqueness of a weak
solution

In Example 1, case α = 0 a particular case of α < 1, the
characteristics diverge away from the points on the
discontinuity line x = 1

2
t. These characteristic do not carry

any information from the initial data at t = 0.

In Example 1, case α = 1, we have a discontinuous solution.
In the centered fan, the information comes from the initial
data, though just from one point.

In Example 2, too much information comes from the initial
data. The discontinuity curves x = 1

2
t appears and avoids

multi-valuedness of the solution.
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Mathematical criterion for uniqueness of a weak
solution contd...
Mathematical criterion is not to accept any discontinuity in u
in a weak solution from where characteristic diverge as t increases.

Thus all weak solutions in example 1 except for α = 1 are
inadmissible. We get a unique continuous (but not genuine)
solution of the problem and it is for α = 1

In example 2, the only discontinuous solution is admissible.

Definition. A discontinuity in an admissible weak solution is
called a shock.

For a shock we have
ur < ul. (28)

This is a a necessary and sufficient condition for existence and
uniqueness of a weak solution.
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Entropy condition for existence and uniqueness
of a weak solution

Entropy condition
In gas dynamics, an expansion shock was mathematically derived
about 160 years back. But only in 2010 it was shown (Rayleigh)
that an expansion shock violated the second law of
thermodynamics and the only acceptable shock was a compression
shock across which entropy of fluid elements increased.

The condition ur < ul ⇒

ur < S(t) < ul (29)

where velocity of discontinuity Ẋ(t) is denoted by S(t).

Definition: (29) is called entropy condition of Lax1.

1Peter Lax is the greatest living applied mathematician toady.
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Non-equivalence of conservation laws for weak
solutions
Solve the Cauchy problem (initial value problem)

(u2)t +

(
2

3
u3
)
x

= 0, (x, t) ∈ R× R (30)

u(x, 0) =

{
1, x ≤ 0

0, x > 0.
(31)

Shock velocity

S(t) =
2

3

u2l + ulur + u2r
ul + ur

=
2

3
(32)

Solution is

u(x, t) =

{
1, x ≤ 2

3
t

0, 2
3
t < x

(33)
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Non-equivalence of conservation laws for weak
solutions contd...

Though the Cauchy data is same as that in example 2, the
solution is different.
Note that differential forms of

ut +

(
1

2
u2
)
x

= 0 and (u2)t +

(
2

3
u3
)
x

= 0 (34)

are same PDE
ut + uux = 0 (35)

Genuine solutions of these two conservation laws with same
initial data are same but we see that the two conservation
laws are not equivalent for a weak solution.
From now onwards in all examples we shall consider the only
one conservation law

ut +

(
1

2
u2
)
x

= 0 (36)
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Irreversibility of a weak solution

For the initial data

u(x, 0) =

{
2 , x ≤ 1

4

0 , x > 1
4

(37)

The solution is

u(x, t) =


2 , x ≤ t+ 1

4

for t > 0

0 , t+ 1
4
< x

(38)
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Irreversibility of a weak solution contd...
For the initial data

u(x, 0) =


2 , x ≤ 0

1 , 0 < x ≤ 1
2

0 , 1
2
< x

(39)
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Irreversibility of a weak solution contd...

Solution, depicted in the figure is:

u(x, t) =


2 , x ≤ 3

2
t

1 , 3
2
t < x ≤ 1

2
t+ 1

2
, for 0 < t < 1

2

0 , 1
2
t+ 1

2
< x

(40)

u(x, t) =


2 , x ≤ t+ 1

4

for t > 1
2

0 , t+ 1
4
< x.
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Irreversibility of a weak solution contd...

Solutions of the two initial data, though different for
0 < t < 1

2
, are same for t > 1

2

Thus same state for any t > 1
2

correspond to two different

initial data and states between 0 < t < 1
2
. Infact we can

construct infinity of initial data leading to the same solution
after some time in future.

This shows irreversibility - past can not be determined uniquely
by future.
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Example 3.

Initial data

u(x, t) =


1 , x ≤ −1

2
1
2 − x , −

1
2 < x ≤ 1

2

0 , x > 1
2

(41)

Solution remains continuous for 0 ≤ t < 1

u(x, t) =


1 , x ≤ −1

2 + t
(1/2)−x

1−t , −1
2 + t < x ≤ 1

2

0 , x > 1
2

(42)
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Example 3 contd...

Data at t = 1

u(x, 1) =

{
1 , −∞ < x ≤ 1

2

0 , 1
2 < x <∞

(43)

For t ≥ 1, the solution has a single shock at

x = X(t) ≡ 1

2
t (44)
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Example 4.

Initial data

u(x, 0) =

{
1
2A, −1 < x ≤ 1, A > 0

0 , x ≤ −1 and x > 1
(45)
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Example 4. contd...
Solution for 0 < t ≤ 8

A

u(x, t) =


0 , x ≤ −1
x+1
t , −1 < x ≤ −1 + A

2 t
1
2A , −1 + A

2 t < x ≤ 1 + A
4 t

0 , 1 < x

(46)

single conservation law lecture P. Prasad Department of Mathematics
44 /
61



Example 4. contd...

Solution at t = 8/A

The centered wave overtakes the shock at x = 3.
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Example 4. contd...

For t > 8
A , shock path x = X(t) is given by

dX

dt
=

1

2
(ul(X(t)) + ur(X(t)) =

X + 1

2t
, X

(
t =

8

A

)
= 3

which gives
X(t) = −1 +

√
2At (47)

At x = X(t), the shock strength ul − ur = ul is given by

u =
x+ 1

t
|x=X(t) =

√
2A

t
(48)
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Example 4. contd...
For t > 8

A , the pulse has a triangular shape

Base length =
√

2At, Hight =
√

2A
t .

The solution u and shock strength decay to zero asymptotically as
∼ 1√

t
.
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Example 4. contd...

For t > 8
A , area of the pulse in (x, u)-plane

=
1

2

√
2At.

√
2A

t
= A

This important result agrees with the general property of the
conservation law ut + (12u

2)x = 0 i.e.,

d

dt

∫ ∞
∞

u(ξ, t)dξ =
1

2
u2(−∞, t)− 1

2
u2(∞, t) = 0, (49)

which is the initial area of the pulse.

When the solution vanishes outside a closed bounded interval of
x-axis,

∫∞
∞ u(ξ, t)dξ is independent of t.

single conservation law lecture P. Prasad Department of Mathematics
48 /
61



Example 5.

u(x, 0) =



0 , −∞ < x < −1

−x− 1 , −1 < x ≤ −1
2

x , −1
2 < x ≤ 1

−x+ 2 , 1 < x ≤ 2

0 , 2 < x <∞

(50)
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Example 5 contd...

For t < 1

Solutions remains continuous. Explain Why?

The points −1, 0 and 2 on x-axis remain fixed as pulse
evolves

Solution is zero outside the interval (-1,2).

At t = 1, shocks appear at x = −1 and x = 2.

Solution can be easily written.
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Example 5 contd...

For t > 1,

u(x, t) =


0 , −∞ < x ≤ −

√
1
2
(1 + t)

x
1+t

, −
√

1
2
(1 + t) < x <

√
2(1 + t)

0 ,
√

2(1 + t) < x <∞

(51)

with shocks at leading and trailing ends and shock strengths
√

2
1+t

and 1√
2(1+t)

respectively.
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Example 5 contd...

Area of positive pulse = 1
2

√
2(1 + t)

√
2

1+t = 1

Area of negative pulse = 1
2

√
1+t
2

1√
2(1+t)

= 1
4

Areas on two sides of x = 0 are preserved. Why?
The figure represents an N-wave.
The solution u and shock strength decay to zero asymptotically ∼ 1√

t
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Example 6

u(x, 0) =



0 , −∞ < x ≤ −λ
2a(x+ λ)/λ , −λ < x ≤ −1

2λ

−2ax/λ , −1
2λ < x ≤ 1

2λ

2a(x− λ)/λ 1
2λ < x ≤ λ

0 , λ < x <∞

(52)

where λ > 0 and a > 0.

Value of u at x = −1
2λ is a and that at x = 1

2λ is −a.
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Example 6 contd...

u(x, 0) is drawn with λ = 1 and a = 1
2 .

The solution remains continuous for 0 < t < λ
2a . Why?

At t = λ
2a , a shock with strength 2a appears at x = 0.
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Example 6 contd...

Solution in the interval −λ < x ≤ −1
2λ+ at and in −λ < x ≤ 0 for

t > λ
2a is given by

u(x, t) =
x+ λ

t+ λ
2a

(53)

Similar expression of u(x, t) for 0 < x ≤ λ.

For t > λ
2a , ur(t) = −ul(t) = λ

t+ λ
2a

.

Shock strength at x = 0 for t > λ
2a is

ul − ur = 2λ/(t+
λ

2a
) (54)

The solution u and shock strength decay to zero asymptotically as ∼ 1
t .
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Example 6 contd...

The solution remembers the length 2λ of the interval (−λ, λ) of
the x-axis. Why?

The solution decays for large t as

u(x, t) ∼

{
x+λ
t , −λ < x ≤ 0

x−λ
t , 0 < x < λ

(55)

If the initial data in (−λ, λ) is periodically extended in (−∞,−λ)
and (∞, λ), the solution evolves independently in each period
((2n− 1)λ, (2n+ 1)λ).

This gives a hope for finding asymptotic shape of the solution
from a general periodic shape.
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Example 7

u(x, 0) = −a sin
πx

λ
; λ > 0, a > 0 (56)
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Example 8 contd...

We can not solve this problem in terms of known
functions.

From the example 6 we conclude that the solution
remains periodic and the period 2λ is preserved.

The asymptotic form of the solution in period
−λ < x < λ is

u(x, t) =

{
(x+ λ)/t , −λ < x ≤ 0

(x− λ)/t , 0 < x ≤ λ
(57)
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General remarks contd...

We have given a mathematically very simple definition of weak
solution and entropy condition. The mathematical theory of
hyperbolic conservation laws is very sophisticated today.

The subject has many open research problems of great
practical important but they are too difficult mathematically.

The theory of conservation laws in multi-space-dimensions is
fascinating.
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Problems Solve ut +
(
1
2
u2
)
x

= 0 with following initial

conditions

1.

u(x, 0) =


1 , −∞ < x ≤ 0
2 , 0 < x ≤ 1
0 , x > 1

2.

u(x, 0) =


0 , |x| ≥ 1
−1 , −1 < x < 0
1 , 0 < x < 1

3.

u(x, 0) =


0 , −∞ < x ≤ −1
1 , −1 < x ≤ 0
2 , 0 < x ≤ 1
0 , x > 1

4.

u(x, 0) =


2 , x ≤ 0
0 , 0 < x ≤ 1
1 , x > 1
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Thank You!
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