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General Comments

First order PDE is simplest and historically oldest (a general
class of) PDE with almost a complete theory and beautiful
mathematical structure.

Yet students find its theory mysterious and more difficult
than unstructured theory of higher order equations.

Classical theory of first order PDE started in about 1760 with
Euler and D’Alembert and ended in about 1890 with the work
of Lie.

In intervening period Lagrange, Charpit, Monge, Pfaff,
Cauchy, Jacobi and Hamilton made deep and important
contributions to it and mechanics.
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General Comments . . . contd

Wave equation first appeared in print in 1747 ( a little before
the theory of FOPDE) by Lagrange and Laplace equation in
1784 by Laplace.

But they did not give the general theory.
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General Comments

Complete integral of FOPDE played a very important role
mechanics.

But the theory of “complete integrals”, is no longer treated as
essential for study in a basic course in PDE (see Evan’s book).

I shall also skip complete integrals, while dealing with
nonlinear equations.
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Definition

First order PDE for a function u(x, y) of two independent
variables is a relation

F (x, y;u;ux, uy) = 0,

F a known real function from D3 ⊂ R5 → R.
(1)

In this lecture we denote

by D a domain in R2 where a solution u is defined.

We shall define other domains when needed.
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Classification
Linear equation (nonhomogeneous):

a(x, y)ux + b(x, y)uy = c1(x, y)u+ c2(x, y) (2)

Nonlinear equation: All other equations with subclasses:

1). Semilinear equation:

a(x, y)ux + b(x, y)uy = c(x, y, u) (3)

2). Quasilinear equation:

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (4)

3). Nonlinear equation: F (x, y;u;ux, uy) = 0 where F is not linear
in ux, uy.

Properties of solutions of all 4 classes of equations are quite
different.
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Example 1a: Simplest PDE

ux = 0

General solution in D = R2 is u = f(y), where f is an arbitrary C1

function.

Solution u is uniquely determined if it is prescribed on any curve no
where parallel to x-axis.
On a line parallel to x-axis, we can not prescribe u arbitrarily. Why?
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Example 1a: Nonhomogeneous equation

Consider PDE

ux = c(x, y), c(x, y) a known function (5)

with condition

u(0, y) = f(y), f(y) a function prescribed on the y axis. (6)

The unique and stable solution of this problem is

u =

∫ x

0
c(σ, y)dσ + f(y). (7)

Is solution of a first order equation so simple?

Yes, it is for a linear equation provided we understand the role of
characteristic curves. See the article provided to you.
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Example 2: Preliminaries through an example

A transport equation in two independent variables:

uy + cux = 0, c = real constant. (8)

Introduce a variable η = x− cy. For a fixed η, x− cy = η is a
straight line with slope 1

c in (x, y) plane.

Along this straight line

x(y) = cy + η (9)

the derivative of a solution u(x, y) = u(x(y), y) on this line is

d

dy
u(x(y), y) = ux

dx

dy
+ uy

= cux + uy

= 0.

Thus, the solution u is constant along curves x− cy = η. These
lines are characteristic curves of (8). PDE See figure on next slide.
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Example 2: Preliminaries through an example ... conti...

y

x
− cy

=
co

ns
t.

=
η

xO

q

q

y

x
O

u = u0(η)

x = η

(x, y)

(a) (b)

Characteristic curves of uy + cux = 0.
(a ) Characteristics form a one parameter family of straight lines
x− cy = η, where η is the parameter.
(b) u is constant along a characteristic curve.
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Example 2: Preliminaries through an example ... conti...

Consider an initial value problem (which is a Cauchy problem) of
the equation (8) in which

u(x, 0) = u0(x). (10)

To find solution at (x, y), draw the characteristic through (x, y)
and let it meet the x-axis at x = η. Then, u is constant on
x− cy = η, i.e,

u(x, y) = u(η, 0)

= u0(η).

Hence, as η = x− cy,

u(x, y) = u0(x− cy). (11)
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For the simplest PDE (10) and Real u0

Theorem

If c is real and u0 ∈ C1(R), there is a unique solution u ∈ C1(R2)
to the initial value problem (8), (10). The solution is given by the
formula u(x, y) = u0(x−cy).

The solution is C1(R). Here D = R2

Solution is stable for small changes in Cauchy data u0
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parametric representation of a curve

Do you know a parametric representation of a curve?

A parametric representation of circle x2 + y2 = 1 is
x = cos η, y = sin η; 0 ≤ η < π.

Problem: Write a parametric representation of

y2 = x.
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Example 2: Preliminaries through an example ... conti...

Now we prescribe the Cauchy data
for the PDE (8): uy + cux = 0, c = real constant
on curve shown in the Figure 2(a): γ : x = x0(y), x0 ∈ C1(I), written
parametrically as γ : x = x0(η), y = η = y0(η), say.
u is prescribed on γ as u(x0(η), y0(η) ≡ u(x0(η), η) = u0(η).

Problem: Find u in a neighbourhood of γ.

q
q

γ

x = x0(y)

(x0(η), η)

(x, y)

u = u0(y)
O x

y

Figure: 2(a) - The datum curve x = x0(y), i.e. x = x0(η), y = y0(η) = η, is
nowhere tangential to a characteristic curve.

A Model Lession FD PDE Part 1 P. Prasad Department of Mathematics
14 /
68



Example 2: Preliminaries through an example ... conti...

u = u0(y)

O

y

x = cy + 1

Figure: 2(b) - The datum curve is a characteristic curve x = cy + 1.
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Example 2: Preliminaries through an example ... conti ...

Solution for the case 2(a).

q
q

γ

x = x0(y)

(x0(η), η)

(x, y)

u = u0(y)
O x

y

Figure: 2(a) - The datum curve x = x0(y), i.e. x = x0(η), y = y0(η) = η, is
nowhere tangential to a characteristic curve.

If the characteristic through (x, y) meets γ at (x0(η), η), then

x− cy = x0(η)− cη. (12)

But on γ, u = u0(η). How to get u(x, y)?
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Example 2: Preliminaries through an example ... conti ...

Implicit function theorem: It roughly says, you can solve
f(x, y) = 0 for y at (x0, y0), if fy(x0, y0) 6= 0. Try x2 + y2 − 1 = 0 at
(1, 0) and (0, 1).

Suppose γ is nowhere tangential to a characteristic curve, then
x′0(η) 6= c, and using implicit function theorem, we can solve (14)
for η locally in a neighourhood of each point of γ in the form

η = g(x− cy), g ∈ C1(I1), I1 ⊂ I. (13)

The solution of this noncharacteristic Cauchy problem in a domain
containing the curve γ is

u(x, y) = u0(η)

= u0 (g(x− cy)) .
(14)
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Example 2: Preliminaries through an example ... conti ...

In Figure 2(b), the datum curve is a characteristic curve
x = cy + 1.

The data u0(y) prescribed on this line must be a constant, say
u0(y) = a.
Why?. For answer, see slide 10.

Now we can verify that the solution is given by

u(x, y) = a+ (x− cy − 1)h(x− cy), (15)

where h(η) is an arbitrary C1 function of just one argument.

This verifies a general property that the solution of a
characteristic Cauchy problem, when it exists, it is not
unique.

We have done a lot with just one example.
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Directional derivative
ux = 0 means rate of change of u in direction (1, 0) parallel to x−axis
is zero
i.e. (1, 0).(ux, uy) = 0
We say ux = 0 is a directional derivative in the direction (1, 0).
Consider a curve with parametric representation x = x(σ), y = y(σ)
given by ODE

dx

dσ
= a(x, y),

dy

dσ
= b(x, y) (16)

Tangent direction of the curve at (x, y):

(a(x, y), b(x, y)) (17)
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Directional derivative contd..

Rate of change of u(x, y) with σ as we move along this curve is

du

dσ
= ux

dx

dσ
+ uy

dy

dσ
= a(x, y)ux + b(x, y)uy

(18)

which is a directional derivative in the direction (a, b) at (x, y).

If u satisfies PDE aux + buy = c(x, y, u) then

du

dσ
= c(x, y, u) (19)
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Characteristic equation and compatibility
condition
For the PDE

a(x, y)ux + b(x, y)uy = c(x, y) (20)

Characteristic equations

dx

dσ
= a(x, y),

dy

dσ
= b(x, y) (21)

and compatibility condition

du

dσ
= c(x, y). (22)

(21) and (22) with a(x, y) 6= 0 give another form of characteristic
equation and compatibility condition

dy

dx
=
b(x, y)

a(x, y)
(23)

du

dx
=
c(x, y)

a(x, y)
. (24)
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Characteristic PDE

Characteristic curves of linear and semilinear equations form a one
parameter family of curves.

How?

Please note the difference between parametric representation and
one or two or multi-parameter family of curves.
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Example 4

yux − xuy = 0 (25)

Characteristic equations are

dx

dσ
= y,

dy

dσ
= −x (26)

or

dy

dx
= −x

y
⇒ y dy + x dx = 0⇒ x2 + y2 = constant. (27)

The characteristic curves form a one parameter family of curves,
which are circles with centre at (0,0).
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Example 4 contd..

Compatibility conditions along these curves are

du

dσ
= 0⇒ u = constant. (28)

Hence value of u at (x, y) = value of u at (−x,−y).

u is an even function of x and also of y.
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Example 4 contd..

Will this even function be of the form u = f(x2 + y4)?

The information
u = constant on the circles x2 + y2 = constant
⇒ u = f(x2 + y2)

where f ∈ C1(R) is arbitrary.

Every solution is of this form.

u is an even function of x and y but of a special form.

A Model Lession FD PDE Part 1 P. Prasad Department of Mathematics
25 /
68



Nonhomogeneous linear first order PDE

a(x, y)ux + b(x, y)uy = c1(x, y)u+ c2(x, y) (29)

Let w(x, y) be any solution of the nonhomogeneous equation
(29). Set u = v + w(x, y)
⇒ v satisfies the homogeneous equation

a(x, y)vx + b(x, y)vy = c1(x, y)v (30)

Let f(x, y) be a general solution of (30)

⇒ u = f(x, y) + w(x, y) (31)
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Example 5: Equation with constant coefficients

aux + buy = c; a, b, c are constants (32)

For the homogeneous equation, c = 0, characteristic equation
(with a 6= 0)

dy

dx
=
b

a
⇒ ay − bx = constant (33)

Along these
du

dx
= 0⇒ u = constant (34)

Hence u = f(ay − bx) is general solution of the homogeneous
equation.
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Example 5: Equation with constant coefficients
contd..

For the nonhomogeneous equation, the compatibility condition

du

dx
=
c

a
⇒ u = const +

c

a
x (35)

The constant here is constant along the characteristics
ay − bx = const.
Hence general solution

u = f(ay − bx) +
c

a
x. (36)

Alternatively u = c
ax is a particular solution. Hence the result.

Solution of a PDE contains arbitrary elements. For a first order
PDE, it is an arbitrary function.

In applications - additional condition ⇒ Cauchy problem.
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The Cauchy Problem for F (x, y;u;ux, uy) = 0

Cauchy data u0(η) is prescribed on curve
γ : x = x0(η), y = y0(η), η ∈ I ⊂ R.
Find a solution u(x, y) in a neighbourhood of γ such that the
solution takes the prescribed value u0(η) on γ, i.e.

u(x0(η), y0(η)) = u0(η) (37)

Existence and uniqueness of solution of a Cauchy problem requires
restrictions on γ, the function F and the Cauchy data u0(η).
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Method of Solution of Cauchy Problem - shown
geometrically

Characteristics carry the solution.
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Example 6a

Solve yux − xuy = 0 in R2

with u(x, 0) = x, x ∈ R

The solution must be an even function of x and y.

But the Cauchy data is an odd function.

Does the solution exist?

Example 6b
Solve yux − xuy = 0 in a domain D

u(x, 0) = x, x ∈ R+ (38)
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Example 6b conti....

Solution is u(x, y) = (x2 + y2)1/2, verify with partial
derivatives

ux =
x

(x2 + y2)1/2
, uy =

y

(x2 + y2)1/2
(39)

Solution is determined in R2 \ {(0, 0)}.
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Algorithm to Solve A Cauchy Problem
1 Write the Cauchy data as

x = x0(η), y = y0(η) (A); u = u0(η). (B)

2 Solve Characteristic equations and compatibility condition

dx

dσ
= a(x, y),

dy

dσ
= b(x, y);

du

dσ
= c(x, y)

with initial data at σ = 0 as in (A) and (B), i.e.

(x, y, u)|σ=0 = (x0(η), y0(η), u0(η)).

3 We get

x = x(σ, x0(η), y0(η), u0(η)) ≡ X(σ, η)
y = y(σ, x0(η), y0(η), u0(η)) ≡ Y (σ, η)
u = u(σ, x0(η), y0(η), u0(η)) ≡ U(σ, η)

4 Solving the first two for σ = σ(x, y), η = η(x, y) we get the
solution u = U(σ(x, y), η(x, y)) ≡ u(x, y).
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Example 7

Cauchy problem: Solve

2ux + 3uy = 1

with data u|γ = u(αη, βη) = u0(η) on

γ : βx− αy = 0; α, β = constant

A parametric representation of Cauchy data is

x|γ = αη = x0(η), say, y|γ = βη = y0(η), say; u|γ = u0(η)

where u0(η) is a given function.
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Example 7 contd..

Solution of characteristic equations

dx

dσ
= 2,

dy

dσ
= 3

satisfying x(σ = 0) = αη, y(σ = 0) = βη are

x = αη + 2σ, y = βη + 3σ, η = const, σ varies. (40)

These are characteristic curves staring from the points
x(σ = 0) = αη, y(σ = 0) = βη of γ.

Solution of the compatibility condition

du

dσ
= 1

satisfying u(σ = 0) = u0(η) is

u = u0(η) + σ (41)
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Example 7 contd..

To get the solution of the Cauchy problem, we

first solve x = αη + 2σ, y = βη + 3σ for σ and η

σ =
βx− αy
2β − 3α

, η =
2y − 3x

2β − 3α
(42)

and then substitute in expression u0(η) + σ for u

u(x, y) =
βx− αy
2β − 3α

+ u0

(
2y − 3x

2β − 3α

)
(43)
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Example 7 contd.. Existence and Uniqueness

The solution exists as long as 2β − 3α 6= 0 i.e., the datum curve is
not a characteristic curve

Uniqueness:
Compatibility condition carries information on the variation of u
along a characteristic in unique way. This leads to uniqueness.

What happens when 2β − 3α = 0?

A Model Lession FD PDE Part 1 P. Prasad Department of Mathematics
37 /
68



Example 8: Characteristic Cauchy problem
2β − 3α = 0⇒ datum curve is a characteristic curve.

Choose α = 2, β = 3⇒ x = 2η, y = 3η.
Check with (40) with σ = 0.
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Example 8: Characteristic Cauchy problem
contd...

The characteristic Cauchy problem: Solve

2ux + 3uy = 1

with data
u(2η, 3η) = u0(η)

Since

du0(η)

dη
=

d

dη
u(2η, 3η) = 2ux + 3uy = 1, using PDE, (44)

the Cauchy data u0 cannot be prescribed arbitrarily on γ.
u0(η) = η = 1

2x, ignoring constant of integration.
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Example 8 contd..

u = 1
2
x is a particular solution satisfying the Cauchy data and

g(3x− 2y) is solution of the homogeneous equation.

Hence

u =
1

2
x+ g(3x− 2y), g ∈ C1 and g(0) = 0 (45)

is a solution of the Cauchy problem.

Since g is any C1 function with g(0) = 0, solution of the
Characteristic Cauchy problem is not unique.

We verify an important theorem “in general, solution of a
characteristic Cauchy problem does not exist and if
exists, it is not unique”.
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Quasilinear equation
Consider the equation

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (46)

Since a and b depend on u, it is not possible to interpret

a(x, y, u)
∂

∂x
+ b(x, y, u)

∂

∂y
(47)

as a directional derivative in (x, y)-plane.
We substitute a known solution u(x, y) for u in a and b, then at
any point (x, y), it represents directional derivative ∂

∂σ in the
direction given by

dx

dσ
= a(x, y, u(x, y)),

dy

dσ
= b(x, y, u(x, y)) (48)

Along characteristic curves, given by (48), we get compatibility
condition

du

dσ
= c(x, y, u(x, y)) (49)
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Quasilinear equation contd..

(49) is true for every solution u(x, y). The Characteristic
equations

dx

dσ
= a(x, y, u),

dy

dσ
= b(x, y, u) (50)

along with the Compatibility condition

du

dσ
= c(x, y, u)

forms closed system.
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Method of solution of a Cauchy problem

Solve

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (51)

in a domain D containing

γ : x = x0(η), y = y0(η)

with Cauchy data

u(x0(η), y0(η)) = u0(η) (52)
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Method of solution of a Cauchy problem contd..

Solve

dx

dσ
= a(x, y, u),

dy

dσ
= b(x, y, u),

du

dσ
= c(x, y, u) (53)

(x, y, u)|σ=0 = (x0(η), y0(η), u0(η)) (54)

⇒ x = x(σ, x0(η), y0(η), u0(η)) ≡ X(σ, η)
y = y(σ, x0(η), y0(η), u0(η)) ≡ Y (σ, η)
u = u(σ, x0(η), y0(η), u0(η)) ≡ U(σ, η) (55)

Solving the first two for σ = σ(x, y), η = η(x, y) we get the solution

u = U(σ(x, y), η(x, y)) ≡ u(x, y) (56)
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Method of solution of a Cauchy problem contd..
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Quasilinear equations conti...
Do not worry about the complex statement in the theorem below. As
long as the datum curve γ is not tangential to a characteristic curve
and the functions involved are smooth, the solution exist locally and is
unique (see previous slide).
Theorem:

1 x0(η), y0(η), u0(η) ∈ C1(I), say I = (0, 1)

2 a(x, y, u), b(x, y, u), c(x, y, u) ∈
C1(D2), where D2 is a domain in (x, y, u)− space

3 D2 contains curve Γ in (x, y, u)-space
Γ : x = x0(η), y = y0(η), u = u0(η), η ∈ I

4
dy0
dη a(x0(η), y0(η), u0(η))− dx0

dη b(x0(η), y0(η), u0(η)) 6= 0, η ∈ I
There exists a unique solution of the Cauchy problem in a domain D
containing I.

Note 1: Condition 4 rules out that datum curve γ : (x0(η), y0(η))
is a characteristic curve.
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Example 9
Cauchy problem

ux + uy = u
u(x, 0) = 1⇒

x0 = η, y0 = 0, u0 = 1 (57)

Step 1. Characteristic curves

dx

dσ
= 1⇒ x = σ + η

dy

dσ
= 1⇒ y = σ (58)

Step 2. Therefore σ = y, η = x− y
Step 3. Compatibility condition

du

dσ
= u⇒ u = u0(η)eσ = eσ

Step 4. Solution u = ey

exists on D = R2
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Example 10

Cauchy problem (same as problem 9 with a small change on the
RHS of the PDE)

ux + uy = u2

u(x, 0) = 1⇒
x0 = η, y0 = 0, u0 = 1 (59)

Step 1. Characteristic equations give

x = σ + η, y = σ

Step 2. Compatibility condition gives

du

dσ
= u2 ⇒ u =

1

u0(η)− σ

Step 3. Solution u = 1
1−y

exists locally on the domain D = y < 1 and u→ +∞ as y → 1−.
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Example 11
Cauchy problem

uux + uy = 0
u(x, 0) = x, 0 ≤ x ≤ 1 (60)

⇒ x = η, y = 0, u = η, 0 ≤ η ≤ 1 at σ = 0

Step 1. Characteristic equations and compatibility condition

dx

dσ
= u,

dy

dσ
= 1,

du

dσ
= 0 (61)

Step 2. Quasilinear equations, characteristics depend on the
solution

u = η
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Example 11 contd..

Step 3. Substituting u = η in (61) we get

x = η(σ + 1), y = σ

Step 4. From solution of characteristic equations σ = y and
η = x

y+1

Step 5. Solution is u = x
y+1

, but what is domain D of the

solution ?

Step 6. Characteristic curves are straight lines

x

y + 1
= η, 0 ≤ η ≤ |

which meet at the point (−1, 0).

Step 7. u is constant on these characteristics (see next slide).
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Example 11 contd..

Figure: Solution is determined in a wedged shaped region in
(x, y)-plane including the lines y = 0 and y = x+ 1.

We note
u(0,−1) (62)

is not defined.
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Example 12
Cauchy problem

uux + uy = 0
u(x, 0) = 1

2
, 0 ≤ x ≤ 1 (63)

Step 1. Parametrization of Cauchy data

⇒ x0 = η, y0 = 0, u0 =
1

2
, 0 ≤ η ≤ 1.

Step 2. The compatibility condition along characteristic curves
gives

u = constant =
1

2
.

Step 3. The characteristic curves are

y − 2x = −2η, 0 ≤ η ≤ 1. (64)

on which solution has the same value u = 1
2
.
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Example 12 contd..

Step 4. The solution u = 1
2 of the Cauchy problem is determined in an

infinite strip 2x− 2 ≤ y ≤ 2x in (x, y)-plane.

Important: From examples 11 and 12, we notice that the domain,
where solution of a Cauchy problem for a quasilinear equation is
determined, depends on the Cauchy data.
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Example 13
Consider initial data for uux + uy = 0:

u(x, t) =


1 , x ≤ 0

1− x , 0 < x ≤ 1

0 , x > 1.

(65)

Solution remains continuous for 0 ≤ y < 1

u(x, y) =


1 , x ≤ y
1−x
1−y , y < x ≤ 1

0 , x > 1

(66)

Solution is not valid at y = 1 but data at y = 1

u(x, 1) =

{
1 , −∞ < x ≤ 1

2

0 , 1 < x <∞
(67)

Draw the figure in (x, y)-plane.
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Example 14

Cauchy problem
uux + uy = 0

u(x, 0) = 0, x < 0,
u(x, 0) = x, 0 ≤ x ≤ 1,
u(x, 0) = 1, x > 1.

Initial data is continuous but solution (given below) is not a genuine solution -
why?

u(x, y) = 0, x < 0; u(x, y) = 1, x > 1 + y;

u(x, y) =
x

y + 1
, 0 ≤ x

y + 1
≤ 1, y > −1. (68)

Solution as y −→ (−1)+ is

u(x,−1) = 0, x < 0; u(x,−1) = 1, x > 0. (69)

Solution is shown graphically on next slide.
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Example 14 · · · conti.

A Model Lession FD PDE Part 1 P. Prasad Department of Mathematics
56 /
68



Example 15

For the Cauchy problem

uux + uy = 0
u(x, 0) = x, 0 ≤ x ≤ 1/2, u(x, 0) = 1

2
, 1/2 ≤ x ≤ 1. (70)

Find the solution,

find the domain of the solution,

draw characteristic curves and

note that the solution is continuous but not a genuine
solution.

Why is it not a genuine solution?
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General solution

General solution of a first order PDE contains an arbitrary
function.

Theorem : If φ(x, y, u) = C1 and ψ(x, y, u) = C2 be two
independent first integrals of the ODEs

dx

a(x, y, u)
=

dy

b(x, y, u)
=

du

c(x, y, u)
(71)

and φ2
u + ψ2

u 6= 0, the general solution of the PDE aux + buy = c is
given by

h(φ(x, y, u), ψ(x, y, u)) = 0 (72)

where h is an arbitrary function.

For proof see PP-RR PDE.
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Example 16

uux + uy = 0 (73)

dx

u
=
dy

1
=
du

0
(74)

Note 0 appearing in a denominator to be properly interpreted

⇒ u = C1

x− C1y = C2

⇒ x− uy = C2 ⇒ (75)

General solution is given by

φ(u, x− uy) = 0
or u = f(x− uy) (76)

where h and f arbitrary functions.
Note : Solution of this nonlinear equation may be very difficult.
Numerical method is generally used.
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Example 17
Consider the differential equation

(y + 2ux)ux − (x+ 2uy)uy =
1

2
(x2 − y2) (77)

The characteristic equations and the compatibility condition are

dx

y + 2ux
=

dy

−(x+ 2uy)
=

du
1
2
(x2 − y2) (78)

To get one first integral we derive from these

xdx+ ydy

2u(x2 − y2) =
2du

x2 − y2 (79)

which immediately leads to

ϕ(x, y, u) ≡ x2 + y2 − 4u2 = C1 (80)
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Example 17 contd..

For another independent first integral we derive a second
combination

ydx+ xdy

y2 − x2 =
2du

x2 − y2 (81)

which leads to
ψ(x, y, u) ≡ xy + 2u = C2 (82)

The general integral of the equation (55)is given by

h(x2 + y2 − 4u2, xy + 2u) = 0
x2 + y2 − 4u2 = f(xy + 2u) (83)

where h or f are arbitrary functions of their arguments.

We can use a general solution to solve a Cuachy problem. See
next slide.
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Example 17 contd..

Consider a Cauchy problem for equation (77) with Cauchy data
u = 0 on x− y = 0

⇒ x = η, y = η, u = 0

From (58) and (60) we get 2η2 = C1 and η2 = C2 which gives
a relation between constants in (80) and (82): C1 = 2C2.

Therefore, the solution of the Cauchy problem is obtained,
when we take h(ϕ, ψ) = ϕ− 2ψ.

This gives, taking only the suitable one,

u =
1

2

{√
(x− y)2 + 1− 1

}
. (84)

We note that the solution of the Cauchy problem is
determined uniquely at all points in the (x, y)-plane.
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Two Important References

In 1992 I gave a lecture at The Larmor Society, which is the
Natural Sciences Society, St Johns College at Cambridge.

The lecture was meant for undergraduate students and hence
I used the language of physics without any mathematical
equations.

Based on the idea in this lecture, I wrote a popular article
Nonlinearity, Conservation Laws and Shocks in two parts and
it was published in 1997 in Resonance. See reference [4].

But a reader has to pause and think a lot to understand the
mathematical concepts.
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Exercise

1. Show that all the characteristic curves of the partial
differential equation

(2x+ u)ux + (2y + u)uy = u

through the point (1,1) are given by the same straight line
x− y = 0

2. Discuss the solution of the differential equation

uux + uy = 0, y > 0, −∞ < x <∞

with Cauchy data

u(x, 0) =

{
α2 − x2 for |x| ≤ α

0 for |x| > α.
(85)
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Exercise contd..

3. Find the solution of the differential equation(
1− m

r
u
)
ux −mMuy = 0

satisfying

u(0, y) =
My

ρ− y
where m, r, ρ,M are constants, in a neighourhood of the point
x = 0, y = 0.

4. Find the general integral of the equation

(2x− y)y2ux + 8(y − 2x)x2uy = 2(4x2 + y2)u

and deduce the solution of the Cauchy problem when the
u(x, 0) = 1

2x
on a portion of the x-axis.
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Thank You!
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