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In part 1 of this series we explained the concept of

genuine nonlinearity, which is responsible for the

appearance of discontinuities in a solution which was

initially smooth. To include discontinuities in the

solution, it became necessary to consider the governing

equation in the form of a conservation law. In this part

we first discuss an example of a continuous solution

satisfying discontinuous initial data. Then we use the

stability consideration to fix a unique solution of the

conservation law. In the end, we present three examples

which show that genuine nonlinearity significantly

changes the evolution of the shape of a pulse.

Continuous Solution with Discontinuous Initial

Data

In a linear system, discontinuous initial data always leads to a

discontinuous solution. For example, consider an initial data
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As explained in part I, we consider only a class of piecewise

smooth functions with jump discontinuities. For functions of

this class, it is not necessary to specify the value of the function

at a point of discontinuity.

The solution satisfying the rule (6)1 is
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in which the discontinuity also propagates with the same velocity
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However, an equation with genuine nonlinearity may give a

continuous solution at t > 0 even if the initial data is

discontinuous. Consider a function u (x, t) which is represented

graphically in Figure 6a. Let U be a point on the line segment

OP having coordinates (x, u). From the properties of similar

triangles u = x
t . This value of u remains constant when x and

t vary in such a way that x
t = constant and this constant is equal

to u itself. Thus the point U moving with a velocity u has a

constant value u. Therefore, the points on the segment OP

satisfy the rule (7) . We can easily verify that the rule (7) is true

also for the line segments –  to O and P to Q. Hence u

represented by Figure 6a is a solution as per rule (7a). As t 0,

the point P approaches the point (0,1). Thus u is a continuous

solution satisfying the rule (7) with discontinuous initial

condition (13) and hence from the theorem 2 it is also a solution

satisfying the conservation law (10) with initial condition (13).

A solution of the type x
t , in which the source of all points of

the pulse is a single point x=0 at t=0 is called a centered wave.

We can also verify that the function
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which satisfy (7b). We also depict the solution in the plane of

Figure 6a At any time t,

the function u is repre-

sented by straight line

segments – to O, O to P

and P to Q.

(15)
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independent variables, in Figure 6b.

Uniqueness and Entropy Condition

In addition to the continuous solution represented in Figure 6

i.e. the solution (15), the initial value problem (10) and (13) also

has a discontinuous solution
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The discontinuity at x = 1
2 t moves with velocity S = 1

2 and

separates a state u
–

= 0 from a state u
+

= 1 so that (10b) is

satisfied. It is represented graphically in Figure 7. Consider the

points (with u=0) on the left of the discontinuity at x=0 in the

initial data. Since these points move with zero velocity, they will

influence the solution at any time only upto the point O. Points

on the right of x=0 in the initial data, move with the velocity 1

and hence give the solution beyond the point R (t,1) on u=1.

Therefore, a part of the solution (16) between O and R is not

controlled by the initial data. At any time, the point just on the

left of the discontinuity moving with zero velocity is left behind

by the discontinuity and a point just ahead moving with velocity

1 leaves the discontinuity behind. The failure of the initial data

to control the solution between O and R implies that we may

be able to construct not only two solutions (15) and (16) but

probably infinitely many more. This in fact is the case, but here

we just give one more solution.

Figure 6b Solution (15) re-

presented in the three

different domains in the

upper half of the (x, t)-

plane.

(16a)

Figure 7(a) Solution (16a)

at a time t>0 in ( x,u )-

plane. (b) Solution (16a) in

( x,t )-plane.
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It is instructive to draw the graph of this solution at a fixed time

t in the (x, u)-plane. The initial discontinuity now breaks into

two discontinuities (one at x= 1
4 t and another at x= 3

4 t ) each

satisfying the jump relation (10b) derived from the conservation

law (10a). In both (16a) and (16b), the initial data has no control

on the solution between O(0,0) and R(t,1). A situation like this

was first noticed in gas dynamics and Lord Rayleigh in 1910

found that discontinuities like this led to a decrease in the

entropy of the system, which was not acceptable from the second

law of thermodynamics. It was, of course, known that the

entropy of the system remained constant in the continuous

solution like (15).

Consider now another discontinuous initial data
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In this case, the state u=1 on the left of the discontinuity at x=0

starts moving with velocity 1 and immediately begins to overtake

the state u=0 on the right of the discontinuity. Therefore, no

continuous state for t>0 will ever satisfy the rule (7) and the

initial data (17a). Now, we must look for a discontinuous solution

satisfying (10). We can easily see that a solution of the initial

value problem (10) and (17a) is

u x t
x t

x t
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which is shown in Figure 8. The discontinuity in Figure 8a

moving with the velocity 1
2 is overtaken from behind by the

continuous part u=1 of the pulse moving with velocity 1 and it

overtakes the continuous part u=0 ahead of it. This will always

happen for any discontinuity if

u
+

< S < u
–

.

(16b)

(17a)

(17b)

(18)
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In this case the initial data completely determines the solution

for all time. The solution so obtained is unique. Appearance of

a discontinuity in a solution saves us from a difficult situation

when the initial state leads to a multi-valued state under the local

law (7) of propagation. A physical interpretation of the condition

(18) for gas dynamic waves and its relation to an entropy con-

dition is mentioned later in this section.

Let us consider a small perturbation of the solution (15) such

that the perturbation vanishes outside a closed interval on the

x-axis. Such a perturbation is shown in Figure 9.

Since the velocity of a point on the pulse is equal to its amplitude,

a point on the perturbation moves with a velocity which is a

small addition to the velocity of the corresponding point in the

solution (15) with the same x. Hence, a small perturbation of

the solution (15) remains small and moves away from the

corresponding point on the solution only by a small distance in

Figure 9 Perturbation of

thecontinuoussolution(15)

has been shown by dotted

lines.

Figure 8(a) Solution (17b)

at a time t>0 in ( x,u)-plane.

(b) Solution (17b) in ( x,t)-

plane.
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a finite time. This is true even if a discontinuity appears in the

perturbation. Thus, the solution (15) is stable with respect to

small perturbations which are nonzero only over finite intervals

on the x-axis. The discontinuous solution (17b) is also stable

with respect to such perturbations. A positive or negative

perturbation u created to the left of the initial discontinuity at

x=0 moves with a velocity 1+u > 1
2 since  u is small and

hence eventually interacts with the discontinuity at x= 1
2 t.

During this interaction the velocity of the discontinuity also

changes by a small quantity and hence the discontinuity is

displaced from the position 1
2 t by a small distance. A small

perturbation created on the right of x=0 moves with a velocity

u< 1
2 and hence is overtaken by the discontinuity. During the

interaction, velocity of the discontinuity changes by a small

quantity. We note that in all cases, a small perturbation of the

initial data leads to a small change in the solution. The situation

is different for a solution having a discontinuity which does not

satisfy (18). For example, the solution (16a) is not stable with

respect to small perturbations. This is obvious when we note

that the solutions (16a) and (16b) arise from the same initial data

(13) i.e. there is another solution (16b) which is not near (16a)

even if a perturbation in the initial data is not introduced. As it

happens at x=0, t=0, the solution (16a) can break up at any

future time into solutions like (16b) i.e. the solution (16a) is

unstable. In nature, an unstable solution does not represent a

physically realizable state of a system. Hence we must reject such

solutions. Thus we conclude that only discontinuities which

satisfy (18) are acceptable in a solution.

We define a discontinuity satisfying (18) to be a shock.

In gas dynamics, the condition (18) means that the shock

velocity is supersonic relative to the state ahead of the shock (i.e.

S > u
+
) and it is subsonic relative to the state behind (i.e. S < u).

It has been shown in standard books on gas dynamics that the

entropy of an element of a gas increases as it crosses a shock.

The entropy of an

element of a gas

increases as it

crosses a shock.
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Hence in mathematics the abstract condition (18) is called an

entropy condition.

We have discussed in this section two types of admissible solu-

tions starting from a discontinuity at x=0 , t=0: a continuous

solution (15) in 0<x<t, called centered wave and a shock at

x= 1
2 t as in (17b). Anyone of these is complementary to the

other and the two together can solve any problem in which the

initial data consists of two constant states separated by a single

point of discontinuity at x=0. This initial value problem is

called a Riemann problem. When initially u
–

< u
+

, we get a

centered wave and when u
–

> u
+

we get a shock wave. We notice

that the solution of a Riemann problem is very easy in a

genuinely nonlinear system expressed by a single conservation

law. It becomes difficult when the number of equations in a

system of conservation laws is more than one but its solution is of

vital importance for a mathematical development of the subject

and for numerical computation of solutions.

It has been observed in a gas that a shock wave carries a jump in

the pressure, density and fluid velocity. Pressure and density

always rise immediately behind a shock. Hence if a shock wave

hits any object, it gives an impact which can be very large for a

strong shock. Thus a shock wave is destructive, but it is also

useful. For example, in medicine it can be used for breaking and

removing kidney stones.

An extremely elegant theory on the stability of steady states of a

quite general system near sonic type of barriers was proposed by

two Russian scientists Kulikovskii and Slobodkina (1968). This

theory, important from the point of view of applications, invol-

ves study of an equation obtained by replacing the right hand

side of (7b) by a linear function of x and u.

Examples of Three Solutions

We consider here examples in which genuine nonlinearity

significantly changes the evolution of wave profiles.

A shock wave is

destructive, but it

is also useful. For

example in

medicine it can be

used for breaking

and removing

kidney stones.
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Example 1 Consider an initial data
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The solution has different representations in different time

intervals.

(i) When 0  t < 1, the solution is represented by

u x t
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t
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which is shown in Figure 10. The nonconstant part of u is linear

in x and as t increases it becomes steeper. As t  1–0, this part

develops into a discontinuity of amplitude 1 at x = 1
2 .

(ii) For t  1 the solution has a shock moving along the path

x = X(t)  1
2 t. Thus, for t > 1, the solution of this problem is

same as the solution (17).

We observe a property of genuine nonlinearity, which is very

important from the point of view of physical interpretation.

Two initial data (17a) and (19) lead to the same unique solution

for t > 1. Thus a phenomenon represented by a discontinuous

solution of a system having genuine nonlinearity is irreversible

in time, since the past cannot be traced back uniquely. If there is

a shock in the solution at x = X(t) which separates two constant

regions, then the initial state between the points X(t)– tu
–
(t) and

(19)

(20)

Figure 10 The solution (20)

remains continuous upto

t=1 but the middle part

becomes steeper as t

increases.
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X(t) + tu
+

(t) is irreversibly lost due to interaction with the

shock.

Example 2 Consider an initial data

u x
A x

x
( , )

, | |
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where we take A > 0. The data is represented in the Figure 11.

According to the linear law of evolution (6), the rectangular pulse

as a whole propagates with a constant velocity without a change

in shape and amplitude.

If the evolution of the initial data is described according to the

conservation law (10), then the solution has two distinct time

intervals describing two types of states:

(i) 0<t< 8
A : (Figure 12). In this interval a shock starts from the

point x=1 and moves with a uniform velocity 1
4 . At the time

(21)

Figure 11 Initial pulse (21)

is represented in (x,u)-

plane. The pulse occupies

an area A above the x-

axis.

Figure 12 Graph of the

solution with initial value

(21)valid in thetime interval

0< t < 8
A

.
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t= 8
A , the shock reaches the point x=3 . There is a centered wave

u = x
t
1 between –1 < x < –1 + A

2 t all points of which origi-

nate from x=–1 at t=0. In the interval –1 + A
2 t< x< 1 + A

4 t,

there is a constant state u = A
2 . At the time t = 8

A , the centered

wave overtakes the shock at x=3 and the pulse attains a

triangular shape.

(ii) t> 8
A : (Figure 13) During this period, the centered wave

interacts with the shock.

Since the shock velocity is given by S = 1
2 (u

–
+ u

+
) = 1

2 u
–

and

u
–

is given by the centered wave, the shock path x=X(t) is

obtained by solving an ordinary differential equation with an

initial condition:

dX

dt

X

t
X t

A













 

1

2

8
, 3

which gives

X (t) = –1+ 2 At .

At x = X(t), the amplitude of the pulse (just behind the shock)

is given by

u
x

t


1

The pulse now takes a triangular shape, the base of which

spreads over a distance 2 At and whose height is 2 A
t

, the

total area of the pulse being A.

Figure 13 Graph of the

solution with initial condi-

tion (21) valid for t > 8
A .

(22)

(23)

(24)x=X (t)

A
t

 2 .
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We can easily verify that the total area of the pulse remains A

even during the time period 0<t< 8
A . As mentioned in part 1,

this is a general property of the original conservation law (8). If

the initial data is such that lim
x  – 

F(u(x,0)) and lim
x 

F(u(x,0)) are both equal to zero (which is the case when F(0)=0

and u vanishes initially outside a closed bounded interval on the

x -axis), then the total quantity u i.e. the area between the

solution curve and x-axis remains constant. We make another

important remark. The genuine nonlinearity present in

conservation laws produces dissipation of energy through shocks.

Hence, all kinetic energy is ultimately converted into heat and

though the pulse continues to spread over a larger region (as it

should happen when dissipation is present), it ultimately dies

with its amplitude decaying as inversely proportional to the

square root of time (a result true for any pulse which is initially

nonzero only in a bounded interval).

Example 3. An equation, governing the propagation of small

perturbations trapped at a point on the sonic line of a steady gas

flow, is given by (first derived by Prasad, 1973)

The dependent and independent variables have been properly

scaled. The constant K is proportional to the deceleration of the

fluid element at the sonic point in the steady flow. When the

fluid is passing from a supersonic state to a subsonic state, K>0.

Had the genuine nonlinearity not been present, the approximate

equation would have been

u
t
– Kx u

x
= Ku.

We can easily verify that the solution of the initial value problem

u (x,0) = u
0

(x)
for (26) is

u = u
0

( xeKt ) eKt .

(25)

(26)

(27)

(28)

u
t

+ (u – Kx) u
x

= Ku .
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The solution shows that for K>0 the amplitude u would tend

to infinity as t increases to infinity. However, the perturbation

u will get concentrated near the sonic point x=0 as shown in

Figure 14.

However, genuine nonlinearity is always present in an ideal gas.

The conservation form of the equation (25) brings in shocks

which cut off the growing part of the amplitude as shown in

Figure 15.
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Figure 14
Figure 15

Figures 14 and 15. (left) Solution of (26) and (27) with K=1, u
0
(x) = sin x, 0< x <  and zero else-

where . The amplitude of the pulse tends to infinity as t   (right) Shape of the successive

positions of a pulse in a transonic region. The pulse of a positive area attains a triangular form as

t   and gets trapped in the subsonic region (Prasad, 1973). Here K > 0.
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