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We present in two parts, a mathematical theory of
conservation laws using the language of physics.   In  Part I
we explain the concept of a special type of nonlinearity
which appears in an important class of evolutionary
processes governed by hyperbolic partial differential
equations.  For simplicity,  we develop the theory using a
simple model equation.  We show that it is possible to
extend the concept of solutions with discontinuities with
the help of a conservation form of the equation.

Introduction

Almost all natural phenomena, and social and economic changes,
are governed by  nonlinear equations and  attempts  to understand
them using linearised equations turn  out to be futile.  Analysis
and solution of  nonlinear equations is more difficult than linear
equations, as most of the  scientists, students and mathematicians
are  aware.   However,   they may  not be aware of  the fact that
there is a special type of nonlinearity, called   genuine nonlinearity
which distinguishes itself from other nonlinearities  due to very
special properties.  This is because genuine nonlinearity is a
subtle concept that appears in a type of partial differential
equations —  quasilinear hyperbolic systems.   Only a specialist can
understand this concept and appreciate its properties. In this
article, an attempt has been made for the first time to explain
this concept and its important properties to readers having
almost no knowledge of partial differential equations.

Genuine Nonlinearity

Almost all physical phenomena, biological evolutions, population
growth and social and economic changes are nonlinear.  Therefore,
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is it not unfair that the word ‘nonlinearity’ is defined as a
negation  of linearity ?  However, this term has come from
mathematics, where it is much simpler to define a linear mapping
or operator.  As an example of a linear process without a source
term i.e. linear homogeneous  system, consider the statement

or

where  we take the rate of change to be with respect to time  t.
This gives a law of growth or decay of the quantity  u.  According
to this law  u = u0 e αt  ,  u0 = constant; which implies that if   u is
initially zero, it always remains zero and if   u  is nonzero at any
time it remains finite and nonzero for all time.  An important
consequence of the linear evolution is that the quantity   u can
neither become zero nor can tend to infinity at a finite  time.  It
always takes infinite time to attain zero or infinity.  In
mathematics, equation (1) is called   linear because if u1  and  u2

satisfy (1) then their linear combination  a u1 + b u2 , where  a, b
are constants, also satisfies (1).

In contrast to the above law, let us consider a process in which

or

where we have taken the constant of proportionality to be 1. This
process does not satisfy a linearity criterion,  so if  u1  and  u2

evolve according to the above rule then  a u1 + b u2 does not evolve
according to the same rule. The rule (2) gives  u=u0 /{1– u0 t}
which implies that starting with a finite positive  value  u0  at
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t = 0, the quantity  u  tends to infinity in just finite time  T=1/u0.
Had we taken another nonlinear law of evolution

then taking the constant of proportionality to be one, we find a
solution as  per this rule to be  u =  (1/27) ( t3).  Now  u  can attain
a non-zero value  at a finite time starting even from zero at  t=0.

These are all examples of a nonlinear ordinary differential
equation of the form

We can easily write the simplest example of a partial differential
equation having nonlinearity of the type present in  (4):

A physical interpretation of this equation is (see next paragraph
for explanation)

Any nonlinear effect  we observe at time  t  in  (4) will also
manifest in (5)  at the same time but a distance  ct from its source.

The topic of discussion is a different type of nonlinearity. It is
observed only in hyperbolic systems of quasilinear partial
differential equations. Almost all results in the theory of
hyperbolic systems of partial differential equations can be
interpreted in the language of wave propagation and it  is quite
instructive to use this language to explain the concept of  genuine
nonlinearity. Let us consider a  point  X(t) moving along the  x-
axis and assume that its velocity of propagation  (dX/dt) is equal
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to c.  Then the rate  of change of a quantity     u(x, t)  as  we move
with velocity  c is  (d/dt) u (X(t), t) = ut + (dX/dt) ux  = ut +cux  .

Before we discuss the special type of nonlinearity, we consider
the partial differential equation (5) with  f (u) = 0 i.e.

ut  + cux  = 0,    c = constant

for which the rule (5b) can be restated in the form

 (6b)

We can easily verify that if  u(x, t) has the form  u(x–ct) then it
satisfies the equation (6).  We also notice that if  u1  and u2  are two
solutions of (6), then
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i.e. the superposition  u1 + u2  is also a solution of the same
equation. This is an example of linear wave propagation and a

solution is graphically represented in  Figure 1.

In a system governed by the equation (6), the velocity of

propagation of a point on the pulse is independent of the
amplitude u there.  However we almost always find in nature
that the amplitude of the wave does influence the position of a
wavefront.  When we translate this statement into the language
of mathematics, we find that the equations governing the wave
are no longer linear which implies that superposition of  two
solutions is no longer a solution of the system.  We can verify this
for the equation (7) below.  For  this reason, the  physical system
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Figure 1a: Linear wave propagation

Figure 1b: Stationary pulse in a
moving frame

Figure 1  Linear wave
propagation in a homo-
geneous medium in one
space dimension assum-
ing that the wave motion is
free from dispersion and
diffusion. In the frame of
reference moving with ve-
locity c, a pulse becomes
stationary.
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is called a nonlinear system and the wave is called a  nonlinear
wave.  The dependence  of  the velocity of  propagation on the
amplitude brings in what we define to be  genuine nonlinearity (see
Box ).  Genuine nonlinearity is a very subtle concept. It may
appear in certain modes  but not  in others in the same system.  In
a small amplitude  genuinely nonlinear wave in a homogeneous
medium, the propagation  velocity of a point on the pulse exceeds
the constant velocity  c  by a quantity proportional to the
amplitude of the wave.  Denoting the distance in the frame of
reference moving with velocity  c  also by the same symbol  x  and
rescaling the amplitude we get the following rule of propagation

The partial differential equation giving such a wave is

ut  + u ux  = 0.

S D Poisson (1808) was the first to show that the solution of a problem containing this type of  nonlinearity

can be obtained from an implicit relation.  J Challis  (1848) observed that the implicit relation may not

always be solved uniquely.  E E Stokes suggested (in 1848) introduction of discontinuities  in solutions of

such equations. S Earnshaw (1858) developed the theory of simple waves and B Riemann (1860)

introduced the Riemann invariants and laid the foundation of a general theory.  S Chandrashekhar

worked  out in 1942 solution of problems containing weak nonlinearities and it was soon followed by

K O Friedrichs.  O A Oleinik in Russia and P D Lax in USA developed the modern theory in the early fifties.

P D Lax first defined the term  genuine nonlinearity precisely in 1957.  The subject has also become quite

abstract as can be seen from the publication of the book Shock Waves and Reaction Diffusion Equation

in 1983 by J A Smoller.  Shock wave , an important type of discontinuity in a solution is now a purely

abstract mathematical term but has not lost it relevance to application.  In the last one and half centuries

some of the greatest mathematicians have contributed to this subject.  Inspite of all these, there is no

end to the open questions and unsolved problems in the subject.  There is only one snag, the open

questions are difficult to answer and problems are very difficult to solve.  Moreover, the solution requires

not only a very specialized training in abstract theory but also a feeling for the correct answers from long

association with phenomena having genuine nonlinearity.

(7b)

(7a)

the velocity  of propagation
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=
amplitude   of the  wave
at the point of the pulse
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A solution of (7b) has been graphically represented in  Figure 2,
where we note that

� since different points of the pulse move with different velocity
      the pulse now deforms,
� at a critical time  tc  the pulse has a vertical tangent at  some
      point,
� after  t > tc  , the pulse represents the graph of a multivalued

function (for example, at  x = a  it has three values  u1 =0, u2,
u3) and the physical interpretation fails due to the fact that a
physical variable cannot have three values at a point at the
same time.  In nature, it has been observed that a disconti-
nuity appears in the quantity  u immediately after the time
tc, this moving discontinuity at  x = X(t)  cuts off two lobes
of the pulse on either side in such a  way that the pulse
gives a single valued function (see  Figure 3).

Our aim in this article is to discuss solutions containing special
type of discontinuities, called  shocks.  The solution will belong to
a class of  functions: a function  u  from this class is assumed to be

Figure 2  As t  increases,
the pulse shape of a non-
linear wave changes.

.

Figure 3  A pulse at a time t
with a discontinuity at
x=X(t).

x = X (t )
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smooth everywhere except at these discontinuities with an
additional property that the limiting values of   u  as we approach
a discontinuity at  x = X(t) from smaller and larger values of  x
are finite.  We denote these limiting values by  u– and u+

respectively i.e.

While representing such a piecewise smooth function  u, we need
not prescribe  the value of the function at the point of a
discontinuity.  In the graph of such  a function, the limiting
values  u–  and  u+   are shown by dots.  The two dots   are joined
by a dotted vertical line showing that the value of the function  u
jumps from one dot to the next.  The dotted vertical line,
representing  infinitely many  values of  u  at  x = X(t)  does not
form a part of the graph of the function  u.

Conservation Law

Consider now a solution containing a discontinuity at a point
X(t) in  u as shown  in  Figure 3.  The law of propagation (7)
governing the motion  of the different points of the pulse becomes
meaningless at the point of discontinuity  x = X (t) since  u tends
to two different values  u–  and  u+  as we approach this point from
the  left and right sides respectively.  Hence, there is a need for a
new formulation or more precisely a more general formulation
which would give the law of propagation  of a discontinuity also.
It is more than just a mere coincidence that the basic laws of
nature are not expressed locally as that in (7) but for a total
quantity contained in an interval (or a domain in three
dimensions).  Such laws are fundamental conservation laws
from which local statements are obtained by limiting processes.
To give an example of such a conservation law, let  u denote the
line density of a quantity which  evolves due to flux  F(u)  at point
x  in the positive  x–direction (Figure 4). Then the conservation
law is

u u x t u u x t
x X t x X t− → − + → +

= =lim ( , ), lim ( , ).
( ) ( )0 0
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If the flux  F  vanishes at two fixed points  x1  and  x2  for all time
 t  i.e.  F(u(x1, t)) =  0 = F(u(x2, t)), then the total quantity  u
contained in the interval from  x1  to  x2  is conserved.

To derive the velocity  of propagation  S  of the discontinuity
from the conservation law, let

  u– =  a constant value of  u behind the discontinuity i.e. for
  x < X(t)

  u+ =   another constant value of  u  ahead of the discontinuity i.e.
for  x > X(t).

We consider two fixed points  x1  and  x2   (x1 < x2 ) on the two sides
of the discontinuity as shown in  Figure 5.

Then

Figure 4   x1   and x2  are
fixed points where the flux
(in positive  x–direction)
of  u are F( u ( x1 , t ))  and
F ( u ( x2 , t ))  respectively.

Figure 5  A discontinuity at
X=St   separates two uni-
form states u– and u+ . An
increase in u in the interval
( x1 , x2 ) in time t2 – t1  is due
to change in u from u+ to u–

in the spatial interval from
St1 to St2  .
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 which must be equal to

increase of  u due to the flux  F={F(u– ) – F(u+ )} . (t2 – t1 ).

Therefore

Different conservation laws i.e. different choices of the line
density and the flux lead to different laws of propagation of a
discontinuity.  For a special choice of  F(u) =  (1/2) u2, the
conservation law becomes

and (9) becomes

We can use (9) to deduce the local law of propagation  c  of a point
of  continuity on a pulse.  This is obtained by taking the strength
u– – u+  of the discontinuity to tend to zero i.e. by taking  u–  →  u
and  u+ → u

For a special choice of  F = (1/2) u2

which is the law of propagation stated in (7). Therefore, we have
proved a theorem.
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Theorem 1.  A continuous solution of the conservation  law
(10 a) is a solution as per the rule (7).

The rule (7a) and the equation (7b) are not exactly the same.  In
order that a pulse satisfies (7a), it is enough if it is continuous
but in order that a function, whose graph represents a pulse,
satisfies (7b) it is necessary that the two partial derivations  ut

and ux  exist and are continuous.  We shall not go into such
mathematical rigour.  Instead, we concentrate on a smooth part
of the graph and take fixed points  x1  and  x2.  Then the time rate
of change of the total quantity  u contained in spatial interval
from  x1  to  x2

which shows that the conservation law (10a) is valid.  Thus we
have shown that the converse of the theorem 1 is also true.

Theorem 2 Every smooth solution of the equation (7b) satisfies
the  conservation law (10a).

It requires only a little more mathematical argument to show
that this  theorem remains true if  smooth solution is replaced by
smooth solution except for a finite number of discontinuities of
ut  and  ux  in  the interval  x1  to  x2  provided  u  is continuous at
these points of discontinuities.

In general, there is more than one conservation law (i.e. there is
more than one choice of the line density and the corresponding
flux F ) which give the same law of propagation of a point on a
continuous  wave profile.  For example we choose the line density
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to be ρ (u) = u2  and the flux to be  F(u) =(2/3) u3.  Then

which leads to c  =  u  as  u+ ,  u–  → u.

As we have pointed out earlier, conservation laws are more
fundamental, that is logically primitive and corresponding local
statements like (7) and (12) can be derived from these.  Choice of
an appropriate conservation law for any system comes from
physical considerations.

In the next part we will consider an example of a continuous
solution with discontinuous initial data. We will also discuss
stability considerations and some interesting examples.
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