
Comprehensive Examination

Instructions

July 7, 2017 09:30 - 13:30

———————————————————————————————————

• Please use separate notebooks for Classical Mechanics and Electromagnetism.

• In each notebook, at the beginning, please write your name and roll number clearly.

• You may use loose sheets, available in the exam hall, for rough work.

• All problems carry equal marks. In each section, you have to do any three out of
the five problems.

• Passing criterion: minimum of 10/30 marks in each section and a total of
27/60 in both sections together.

• Duration of examination for both parts together: 09:30 hours to 13:30 hours

==========================================================



Comprehensive Examination: Paper-I

Part A: Classical Mechanics

———————————————————————————————————

All problems carry equal marks. Solve any three problems.

———————————————————————————————————

1. A missile is fired from a point A on the surface of earth. It returns and
lands at a point B. The angle between the two radial vectors, ~rA, ~rB, is θ.
The trajectory of the missile is such that the launch velocity vector and the
landing velocity vector are anti-parallel. The flight is entirely governed by
earth’s gravity.

Assuming earth to be spherical with radius R, determine the height reached
by the missile. Discuss the limiting cases of θ = 0 and π. . . . . . . . [10 marks]

[Hint: Recall the general nature of trajectories in a 1
r
potential.]

2. (a) A small probe (or planet) of mass m ≪ Msun begins a free fall towards a
solar mass black hole, from a distance R0, with initial velocity zero.

Determine how long will it take to reach the 100 times the Schwarzschild
radius, RS := 2GM/c2(∼ 3 km for the sun.) ;

You may assume Newtonian dynamics throughout and R0 ≫ RS.

Give numerical estimates for the earth-sun combination: m = 10−6 ×Msun
and R0 = 108 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [5 marks]

(b) According to general relativity, the probe also looses energy through grav-
itational radiation at a rate given by,

Power =
dEradiated

dt
=

G

5c5

(

d3Q

dt3

)2

, Q(t) :=
2

3
mr2(t) .

This energy loss may be viewed as exerting an additional force on the probe
with a magnitude given by Frad|ṙ| := Power. Obtain the ratio of the Frad

to the Newtonian force |Fgrav|. Estimate the maximum possible value of the
ratio when the probe is at 100 × RS. What is the direction of the radiative
force?

In MKS units: G = 6.7× 10−11 , Msun = 1030 , mprobe = 104. . . . . [5 marks]

3. A free, relativistic particle moving in one dimension has energy T = −m
√
1− ẋ2

(c = 1 units). It is subjected to a harmonic potential 1
2
ω2x2.

(i) Write down its Lagrangian and its Hamiltonian. Is the Hamiltonian con-
served along the dynamical trajectories? ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [5
marks]



(ii) Show that the period of oscillation can be expressed as (E is the conserved
energy),

T =
4

ω

√

2

m

∫ π/2

0

dθ
E − (E −m)sin2θ

√

[(E +m)− (E −m)sin2θ]
.

Show that in the non-relativistic limit, it goes over to the usual expression. [5
marks]

4. A particle of mass m, with initial 4-momentum pµ scatters-off a target with a
final momentum p′µ. If the exchanged 4-momentum, qµ := pµ − p′µ is taken
up by a particle, show that such a particle cannot be a real particle i.e. with
q2 := ηµνq

µqν ≥ 0 except when m = 0. Here ηµν = diag(1,−1,−1,−1). . . [10
marks]

5. Different parts of an extended body such as a planet, experience different
forces towards an attracting body such as a star. It causes tidal distortions
-squeezing along the transverse direction and stretching along the longitudinal
direction- as shown by the dotted ellipse in the figure. Roche limit is the
distance D, at which the tidal forces due to a heavier body of mass M and
radius R, overcome the forces holding together a lighter body of mass m and
radius l.

Assuming that the lighter body is held together only by the Newtonian force of
gravity and that the massive body is almost point-like, eg a black hole of mass
M having R = its Schwarzschild (horizon) radius RS := 2GM/c2, derive the
expression for the Roche limit.

Give numerical estimates for D when

(i) M =Msun = 2× 1033 gm, ℓ = 6000 km and density ρ = 5 gm/cc and

(ii) M = 109 Msun, l = 105 km and ρ = 1.5 gm/cc.

Compare D with the horizon radius. What happens if

(a) a planet size body gets near the horizon of a solar mass black hole and

(b) it gets near the horizon of a billion solar mass black hole?



You may use RS = 3 km for M =Msun. . . . . . . . . . . . . . . . . . . . . . . . . [10 marks]

———————————————————————————————————

==========================================================



Comprehensive Examination: Paper-I

Part B: Electromagnetism

July 7, 2017 09:30 - 13:30

———————————————————————————————————

All problems carry equal marks. Solve any three problems.

———————————————————————————————————

1. A point charge q is a distance d above (in the z direction) an infinite plane
grounded conductor. Using the method of images, find

(a) the electric field at any point ~x and plot it on a y-z plot. [2]

(b) the surface-charge density induced on the plane. [2]

(c) the force between the plane and the charge. [2]

Hint: Use ẑ = cos θ r̂ − sin θ θ̂.

(d) the work necessary to remove the charge q from its position to infinity. [2]

(e) the potential energy between the charge, q, and its image (compare the
answer to part (d) and discuss). [2]

2. (1a) A cylindrical conductor of radius a has a uniform current density J0 flow-
ing through it. Find the magnitude and direction of the magnetic flux density
inside the conductor. [2]

(1b) A hole of radius b, b < a, is now bored parallel to, and
centered a distance d from, the cylinder axis along the x
direction (d + b < a). The current density is still uniform
throughout the remaining metal of the cylinder and is par-
allel to the axis. Use the principle of linear superposition
to find the magnitude and direction of the magnetic-flux
density in the hole.
Hint: It may be simpler to convert to rectilinear coordinates. [2]

(2a) Consider a long, straight wire, parallel to the z axis, centred at (x = y = 0)
and carrying current I in the +z direction. Find the direction and magnitude
of the magnetic field. [2]

(2b) Now, consider the field due to two parallel wires centred at (x = ±d/2, y =
0), distance d apart and carrying currents I in opposite directions and express

the field in terms of a scalar potential ~H = −∇Φ. Solve for the potential in
terms of cylindrical coordinates, (ρ, φ, z). [3]

(2c) In the limit d ≪ ρ, where ρ =
√

x2 + y2, show that the leading term in
the potential is a dipole, [1]

Φ ≈ −I d sinφ

2π ρ
.



3. A uniformly magnetised conducting sphere of radius R rotates about its mag-
netisation axis z with angular velocity ω. In the steady state no current flows
in the conductor. Define the magnetic moment density (magnetisation) of the
sphere in terms of the magnetic moment m:

~m =

∫

~Md3x ,

along the z direction. The magnetic field inside the uniformly magnetised
sphere is

~B =
2µ0

3
Mẑ .

Let the sphere rotate slowly with angular velocity ω so that the electric field
that is generated does not vary with time (to a good approximation).

(a) Solve for the magnetic field H inside the sphere and use Ampere’s law to

show that ∇× ~H = 0. [2]

(b) Use the non-relativistic transformation relating the electric field E ′ in the
rotating frame to those in the lab frame:

~E ′ = ~E + ~v × ~B ,

to show that an electric field ~E is induced and calculate its magnitude and
direction. [4]

(c) Use Gauss’ law to find the volume charge density inside the conductor and
show that it is uniform. [4]

4. (1a) Consider a long straight wire of electrical conductivity σ and cross-
sectional radius a carrying a uniform current with axial density J . Calculate
the magnitude and direction of the Poynting vector at the surface of the wire.
[4]
Hint: Assume the conductor to be ohmic.

(2a) A localized electric charge distribution produces an electrostatic field,
~E = −∇Φ. Into this field is placed a small localized time-independent current
density J(x), which generates a magnetic field, ~H. Show that the momentum
of these electromagnetic fields can be transformed to [4]

Pfield =
1

c2

∫

Φ ~Jd3x ,

provided ΦH falls rapidly enough at large distances.
(2b) Quantify this. [2]

Hint: Pfield = (1/c2)
∫

( ~E× ~H)d3x. Start by computing the z-component over
a cube of side L and then let L→ ∞.

5. (a) Use Gauss’ theorem to find the electric field inside and outside a charged
conducting sphere of radius a. [2]

(b) What is the electric field if the sphere has a uniform charge density within
its volume? [2]

(c) What if the spherically symmetric charge density varies radially as rn,
n > −3? [3]

(d) Sketch the behavior of the fields as a function of radius for the first two
spheres, and for the third with n = 2. [3]



Comprehensive Examination

Instructions

July 10, 2017 09:30 - 13:30

———————————————————————————————————

• Please use separate notebooks for Quantum Mechanics and Statistical Mechanics.

• In each notebook, at the beginning, please write your name and roll number clearly.

• You may use loose sheets, available in the exam hall, for rough work.

• All problems carry equal marks. In each section, you have to do any three out of
the five problems.

• Passing criterion: minimum of 10/30 marks in each section and a total of
27/60 in both sections together.

• Duration of examination for both the parts together: 09:30 hours to 13:30
hours

==========================================================



Comprehensive Examination: Paper-II

Part C: Quantum Mechanics

———————————————————————————————————

All problems carry equal marks. Solve any three problems.

———————————————————————————————————

1. A spin 1/2 particle and its anti-particle are placed a fixed distance a apart.
They have magnetic-moments ~µ1 and ~µ2 with interaction energy given by

V =
1

r3

(

~µ1 · ~µ2 − 3
~µ1 · ~r ~µ2 · ~r

r2

)

,

where ~r is the separation-vector between the pair, and r ≡ |~r|. Find the energy
eigenvalues of eigenstates of the total-spin operator. (10 marks)

2. A 1-dimensional double-well potential of the form

V (x) = V0 −
κ

2
x2 +

λ

4
x4 ,

has in it a quantum particle of mass m. Assume V0 ≫ E0 where E0 is the
ground-state energy in one well, that the potential is approximately harmonic
near the minimum, and that the potential energy at the minimum is zero. If
the particle starts out in the right-well ground-state at time t = 0, find the
probability as a function of time for the particle to be found in the left-well at
a later time, and compute the time-taken for the particle to be found in the
left-well with unit probability. (10 marks)

3. A hydrogen atom is in a region of constant electric field ~Ef , which is a small
perturbation. To leading non-zero order in the perturbation, compute the
splitting of energy levels for (a) the n = 1 level (ground-state); (b) the n = 2
level. The radial integrals can be left in terms of the radial wave-function
Rnl(r) (i.e. no need to perform the radial integrals), but the selection rule
for the angular quantum numbers is to be fixed and the angular integrals
evaluated. Recall that

Pm
l (x) = (1− x2)m/2 d

m

dxm
Pl(x) , and P0(x) = 1 , P1(x) = x .

(10 marks)

4. A hydrogen atom initially in its ground-state is in a spatially uniform time-
dependent electric field ~Ef (t) = ~Efe

−t/τ that is turned on at t = 0, and
is a small perturbation. Find the probability of finding the atom in the
(n, l,m) = (2, 1, 0) excited-state after time t to first-order in the perturba-
tion, for large t≫ τ .
Note: The following radial wavefunctions Rnl(r) may be useful R10(r) =
(

1
πa3

)1/2
e−r/a ; R21(r) =

1√
4π

(

1
2a

)3/2 ( r
a

)

e−r/(2a) , wherea = ~
2/(µe2) is the

Bohr radius. (10 marks)

5. Two relativistic particle species a and b can be transformed into each other by
interactions, with Hintψaψb ≡ Hab. Recall that the free-particle Hamiltonian
leads to the relativistic relation E2

i = p2 +m2
i (in c = 1 units), with i = {1, 2}

denoting the energy eigenstates, the mi being the masses. Assume Hab ≪
(E1 − E2). If at time t = 0, a is produced with momentum p = |~p|, with
p ≫ mi, find the probability that the particle is detected as b after time T in
which it travels a distance L. (10 marks)



———————————————————————————————————

==========================================================



Comprehensive Examination: Paper-II

Part D: Statistical Mechanics

July 10, 2017 09:30 - 13:30

———————————————————————————————————

All problems carry equal marks. Solve any three problems.

———————————————————————————————————

1. Consider a classical, relativistic ideal gas confined in a two-dimensional area
(A = Lx × Ly). Consider also that there is no external field applied to the
system, so the gas has zero potential energy. For such a relativistic ideal
gas system, the kinetic energy is given by E = c|~p|, where ~p is the particle
momentum and c, the velocity of light. Calculate

(a) Partition function Z

(b) Free energy F

(c) Entropy S

(d) two-dimensional pressure of the gas P2 (10 marks)

2. Consider a region (of volume V = L3) within a fluid (with N particles)
described by the van der Waals equation βp = [ρ/(1 − bp)] − βaρ2, where
ρ = 〈N〉/V . Due to the spontaneous fluctutations in the system, the instan-
taneous value of the density can differ from its average by an amount δρ. Use
the following identities:

〈(δρ)2〉1/2
ρ

= 〈(δN)2〉1/2
〈N〉 ,

(δN)2 = ∂〈N〉
∂(βµ)

,

(∂βp
∂ρ

) = ρ(∂βµ
∂ρ

)

(a) Evaluate 〈(δρ)2〉1/2
ρ

as a function of β, a, b, ρ, L3

(b) Show that when the size of the region becomes macroscopic (L3 → ∞),
the relative fluctuations become negligible.

(c) A fluid is said to be at its ”critical point” when

(∂βp/∂ρ)β = (∂2βp/∂ρ2)β = 0

Determine the critical point density (ρc) and temperature (βc) for the
fluid obeying the van der Waal’s equation. (10 marks)

3. Consider an isomerization process

A¡=¿B ,

where A and B refer to the different isomer states of a molecule and NA and
NB denote the populations in each isomer state. Also consider that gA and
gB are the degeneracies of states A and B respectively. The particles in each
state are non-interacting and identical and single-particle partition function in
states A and B are qA and qB respectively and the total partition function is
represented by Q. Starting from the equilbrium condition of chemical potential
µA = µB, show that



〈NA〉/〈NB〉 = (gA/gB)e
−∆ǫ, where ∆ǫ = EA − EB (10 marks)

4. Consider a system of N distinguishable non-interacting spins in a magnetic
field H. Each spin has a magnetic moment of size µ, and each can point either
parallel or antiparallel to the field. The energy of a particular state is

N
∑

i=1

−niµH, ni = ±1

where niµ is the magnetic moment in the direction of the field.

(a) Determine the partition function of the system Z

(b) Determine the internal energy of this system as a function of β, H, and
N .

(c) Determine the entropy of this system from free energy (F = 〈E〉 − TS)
and its relation to partition function Z, as a function of β, H, and N

(d) Determine the behavior of the energy and entropy for this system as
T → 0. (10 marks)

5. The Gibbs entropy formula is given by

S = −kB
∑

ν

PνlnPν

Consider a system contained in two boxes, A and B. Denote the total en-
tropy of the system by SAB and consider that the subsystems are uncoupled
(PAB(νA, νB) = PA(νA)PB(νB)) and that the individual probabilities are nor-
malised for each system.

(a) Using the Gibbs entropy formula, show

SAB = SA + SB

(b) Show that if one assumes a general functional formula for entropy as

S =
∑

ν

Pνf(Pν)

where f(x) is some function of x, then the requirement that S is extensive
implies that f(x) = c ln x, where c is an arbitrary constant. (10 marks)


