Tuesday, February 27 2018
11:30 - 12:30

Alladi Ramakrishnan Hall

A Representation Theorem of Line Arrangements and its Generalization to Hyperplane Arrangements via Convex Positive Bijections

C P Anil Kumar

Center for Science,Technology and Policy (CSTEP) Bengaluru

In this talk we first show that any line arrangement over a field with 1-ad structure can be isomorphically represented by a set of lines of same cardinality with a given set of distinct slopes. Then we generalize this theorem to higher dimensional hyperplane arrangements over a field with 1-ad structure. We prove, using a certain observation on the theme of central points, that, any two hyperplane arrangements are isomorphic modulo translations of any hyperplane if and only if there is a convex positive bijection between the corresponding associated normal systems. Finally we exhibit two normal systems in three dimensions of cardinality six which are not isomorphic.

Download as iCalendar