Alladi Ramakrishnan Hall
Sub-packetization of Minimum Storage Regenerating Codes: A lower bound and a work-around
Venkat Guruswami
Carnegie Mellon University
Modern cloud storage systems need to store vast amounts of data in a fault tolerant manner, while also preserving data reliability and accessibility in the wake of frequent server failures. Traditional MDS (Maximum Distance Separable) codes provide the optimal trade-off between redundancy and number of worst-case erasures tolerated. Minimum storage regenerating (MSR) codes are a special sub-class of MDS codes that provide mechanisms for exact regeneration of a single code-block by downloading the minimum amount of information from the remaining code-blocks. As a result, MSR codes are attractive for use in distributed storage systems to ensure node repairs with optimal repair-bandwidth. However, all known constructions of MSR codes require large sub-packetization levels (which is a measure of the granularity to which a single vector codeword symbol needs to be divided into for efficient repair). This restricts the applicability of MSR codes in practice.
This talk will present a lower bound that exponentially large sub-packetization is inherent for MSR codes. We will also propose a natural relaxation of MSR codes that allows one to circumvent this lower bound, and present a general approach to construct MDS codes that significantly reduces the required sub-packetization level by incurring slightly higher repair-bandwidth as compared to MSR codes.
The lower bound is joint work with Omar Alrabiah, and the constructions are joint work with Ankit Rawat, Itzhak Tamo, and Klim Efremenko.
Done