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Quantum information processing (QIP) is hard to possible without quantum 

entanglement [1]. Quantum teleportation (QT) [2] and remote state preparation (RSP) [3-

6] are important applications of quantum entanglement. QT is used to transmit an 

unknown state by a sender to a receiver at distant location. On the other hand, RSP is 

used to prepare remotely a known state by a sender at the receiver’s side. Recently, many 

RSP schemes are proposed for arbitrary two-qubit state [7-15]. Zha et al. [8] and Wang et 

al. [9] presented the RSP scheme and the joint RSP (JRSP) scheme of a two-qubit state 

using a four-qubit cluster state and a six-qubit cluster state, respectively. In both the 

schemes the probabilities of success can be improved from 1/4 to 1/2, or even to 1 with 

several special cases. In the present paper we use the scheme proposed by An et al. [6] for 

the RSP of two-qubit state using four-qubit entangled state and two ancillary qubits with 

unit success probability without any special cases. 

Consider an arbitrary two-qubit state, possessed by Alice, described by 
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where λ0, λ1, λ2, λ3 are non-negative real coefficients and 0 ≤ δ1, δ2, δ3 ≤ 2π are the phase 

angles with the normalization condition 12
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arbitrary two-qubit state is known completely to Alice, but not to Bob. Initially, Alice 

takes two ancillary qubits 1200|  , and she shares four-qubit state with Bob as quantum 

channel given by the expression ,2)1111|1010|0101|0000(|| 34563456 E  where 

particles (3, 4) are in the possession of Alice and particles (5, 6) belongs to Bob. Now, 

Alice perform two controlled-NOT gates (CNOT) on the qubits (1, 3) and (2, 4), with 3 

and 4 are control qubits and 1 and 2 are targets, respectively. As a result, the four-qubit 

entangled state 3456| E  and the states 1200|   become a six-qubit entangled state 
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At this stage, Alice measures the particles (1, 2) and (3, 4) in different bases. For the 

particles (1, 2), the measurement basis is defined as 
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while for the particles (3, 4) measurement basis is 
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After the measurements, Alice transmits some classical information about her 

measurement outcomes to the receiver Bob. Bob then reconstruct the original state on his 

particles 5 and 6 conditioned on the classical information from Alice. 



Under these two sets of bases, i.e., if measurements of the particles (1, 2) in the 

basis }|,|,|,{| 123122121120    and measurements of the particles (3, 4) in the basis 

}|,|,|,{| 343342341340    are carried out independently, the whole quantum system 

consisting of the six-qubit entangled state (2) can be rewritten as 

.11|)|||(|)||||(
4

            

10|)|||(|)||||(
4

            

01|)|||(|)||||(
4

            

00|)|||(|)||||(
4

1
|

563432101230211203

563432101231201302

563432101232231001

563432101233221100123456

3

2

1























i

i

i

e

e

e

E

 (5) 

If the result of Alice's projective measurement of the particles (1, 2) is 120|  , Bob can 

always prepare the original state with the same probability when any one of the four 

possible outcomes of Alice's projective measurement of the particles (3, 4) occurs. When 

Alice's measurement of the particles (1, 2) outcome is 123122121 |or  |,|    and 

measurement of the particles (3, 4) outcome is 343342341340 |or  |,|,|    the remote 

state preparation cannot be successful. Thus, we can find that Bob can get the original 

state with the total probability of successful RSP is 25% only. 

However, with the strategy of adaptive measurements [6], we can get unit success 

probability of RSP. ‘Adaptive measurements’ [6] means sequential measurements that 

should be performed one by one in such a way that the outcome of a given measurement 

decides the basis of the next measurement. The first measurement is to be done on the 

particles (1, 2) in the basis }|,|,|,{| 123122121120   , whose outcome is specified by m 

= 0 (1, 2, 3) if )|,|,(|| 123122121120    is found. Then, depending on the outcome m, 

Alice performs the unitary phase shift operator )(m  on the particles (3, 4), which are 

given by the expressions 
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After this, she measure her particles (3, 4) in the basis }|,|,|,{| 343342341340   . Now, 

Alice broadcasts 4 bits of classical information to Bob for identifying her sixteen possible 

measurement outcomes in the following way: 

‘00’ (‘00’, ‘01’, ‘10’ or ‘11’), ‘01’ (‘00’, ‘01’, ‘10’ or ‘11’), 

‘10’ (‘00’, ‘01’, ‘10’ or ‘11’), ‘11’ (‘00’, ‘01’, ‘10’ or ‘11’), 

if she found 

)|or  |,|,(|| 343342341340

)0(

120   , )|or  |,|,(|| 343342341340

)1(

121   , 

)|or  |,|,(|| 343342341340

)2(

122   , )|or  |,|,(|| 343342341340

)3(

123   , 

respectively. On the basis of Alice’s classical information, Bob performs suitable unitary 

operation on his particles (5, 6) to prepare the required state (1).  

For example, let Alice’s measurement outcome is 122|  , i.e., m = 2, the 

unmeasured particles 3, 4, 5 and 6 collapse into the (unnormalized) state, 
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In this case, Alice does not measure the particles (3, 4) immediately but applies to it a 

unitary phase-shift operator, )2(  given by Eq. (6.c), thus transferring 34562|   to 

3456103234562 )1111|1010|0101|0000|(
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Only after that operation does Alice measure the particles (3, 4) in the basis 

}|,|,|,{| 343342341340   . Expressed in terms of }|,|,|,{| 343342341340   , the 

above state reads  
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Corresponding to Alice’s measurement outcome 34| n , n ∈ (0, 1, 2, 3), recovery 

operators are ,6,5,5, zzx    ,65,5, Izx   65, Ix   and ,6,5, zx    respectively. 

Results are summarized in the following table. 

In conclusion, we prepare an arbitrary two-qubit state remotely via four-qubit 

entangled state with unit success probability. For the improvement of the success 

probability two ancillary qubits and the adaptive measurement techniques are used. Since 

after performing two CNOT gates the combined state of particles 1, 2, 3, 4, 5 and 6 

becomes six-qubit entangled state (2). So, one can say that our present scheme is the RSP 

of an arbitrary two-qubit state via six-qubit entangled state with unit success probability. 

 

Table 1. Remote state preparation of an arbitrary two-qubit state 

SMB(3, 4) 

FMB(1, 2) 0|  & UPSO(3, 4) )0(  FMB(1, 2) 2|  & UPSO(3, 4) )2(  

CI UT(5, 6) CI UT(5, 6) 

0|  0000 II   1000 zzx    

1|  0001 zI   1001 Izx   

2|  0010 zZ    1010 Ix   

3|  0011 IZ   1011 zx    

SMB(3, 4) 

FMB(1, 2) 1|  & UPSO(3, 4) )1(  FMB(1, 2) 3|  & UPSO(3, 4) )3(  

CI UT(5, 6) CI UT(5, 6) 

0|  0100 zxI   1100 xzx    

1|  0101 xI   1101 zxzx    

2|  0110 xz    1110 zxx    

3|  0111 zxz    1111 xx    

FMB: Alice’s first measurement basis; UPSO: unitary phase-shift operator; SMB: Alice’s 

second measurement basis; CI: classical information announces by Alice and UT: unitary 

transformation perform by Bob. 
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