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Abstract. We investigate the problem of succinctly representing an ar-
bitrary permutation, 7, on n elements so that ¥ (i) can still be com-
puted quickly for any element ¢ and any (positive or negative integer)
power k. A representation taking (1 + €)nlgn bits suffices to compute
arbitrary powers in constant time. A representation taking the opti-
mal [lgn!] + o(n) bits can be used to compute arbitrary powers in
O(lgn/1glgn) time, and indeed a minimal O(lgn) bit probes.

1 Introduction

We consider the problem of representing permutations (abbreviated hereafter as
perms [7]) of [n] = {0,...,n — 1}. Perms are fundamental in computer science
and have been the focus of extensive study. A number of papers have dealt with
issues pertaining to perm generation, membership in perm groups etc. Our aim
here is to develop a “perm data structure” that is, we are given a specific and
arbitrary (static) perm that arises in some application, and have to represent this
perm so that operations on it can be performed rapidly. Initially motivated by
being able to compute 7 or 7! quickly, we consider the more general operation
of computing 7* (i) for any integer k, where 7°(i) = i for all 4; 7% (i) = w(7*~1(i))
when k > 0 and 7% (i) = 7=} (7x*+1(i)) when k < 0.

Certainly, for static perms the above problem is trivial if space is not an
issue. Our interest here is in succinct or very space-efficient representations that
approach the information-theoretic lower bound of P(n) = [Ign!]!. Given a perm
7 in its most natural representation, i.e. the sequence 7 (i), for i =0,...,n — 1,
7* (i) is easily computable in k — 1 steps. Indeed, for this representation, a ©(n)
lower bound follows for computing 7* (i) when k is large and i is on a large cycle.
To facilitate the computation in constant time, one could store m*(i) for all i
and k (|k| < n, along with its cycle length), but that would require ©(n?lgn)
bits. The most natural compromise is to retain ¥ (i) with |k| < n a power of
2. This n(lgn)? bit representation easily yields a logarithmic evaluation scheme.
Unfortunately we are a factor of lgn from the minimal space representation
and still have a ©(lgn) algorithm. Our main result removes this logarithmic
factor from both the time and the space terms, giving 7*(i) in constant time
and essentially minimum space. To be more specific, we demonstrate:

! 1g denotes logarithm to the base 2



1. a representation of a perm 7 that takes (14 ¢)nlgn+ o(n) bits of space, and
supports () in O(1) time and 7*(), for any k, in O(1/e€) time, for any € > 0.
We also show a restricted lower bound matching this time-space trade-off.

2. a second representation of a perm 7 that takes P(n) + o(n) bits of space,
and supports 7% () for any k in O(lgn/lglgn) time.

Along the way, we show that answering 7() and 7—1() queries suffices to
compute queries of arbitrary perm powers.

One sub-routine we develop here is a representation of a sequence of n integers
from [r], for some integer r > 1, that takes nlgr + o(n) bits and allows the i-th
integer to be accessed in O(1) time. Note that this is ©(n) bits better than the
naive representation that takes n [lgr] bits. As an immediate application of this
result, we obtain an improvement of a similar magnitude for storing satellite
information in Pagh’s dictionary [13].

There are a number of motivations for succinct data structures in general,
many to do with text indexing or representing huge graphs [5, 6,11, 14]. Indeed,
there has already been work on space-efficient representation of restricted classes
of perms, such as the perms representing the lexicographic order of the suffixes of
a string [5] or so-called approximately min-wise independent perms, used for doc-
ument similarity estimation [2]. Work on succinct representation of a perm and
its inverse was, for one of the authors, originally motivated by a data warehousing
application. Under the indexing scheme in the system, the perm corresponding
to the rows of a relation sorted under any given key was explicitly stored. It
was realized that to perform certain joins, the inverse of a segment of this perm
was precisely what was required. The perms in question occupied a substantial
portion of the several hundred gigabytes in the indexing structure and doubling
this space requirement (for the perm inverses) for the sole purpose of improving
the time to compute certain joins was inappropriate. Other applications arise
in Bioinformatics [1]. The more general problem of quickly computing 7*() also
has number of applications. An interesting one is determining the 7** root of a
perm [12]. Our techniques not only solve the rt* power problem immediately,
but can also be used to find the r** root, if one exists.

The remainder of the paper is organized as follows. The next section describes
some previous results on indexable dictionaries used in later sections, as well as
the representation of a sequence of n integers from [r], for some integer r > 1.
Section 3 describes the ‘shortcut’ method and a matching lower bound (item
(1) above) and Section 4 describes item (2) above. We assume a standard word
RAM model with word size ©(lgn) bits for all our results.

2 Preliminaries

Indexable Dictionaries. Given a set S C [m], an indezable dictionary repre-
sentation [14] for S supports the following operations in constant time:

rank(z, S): Given z € [m], return —1 if z ¢ S and |{y € S|y < z}| otherwise;
select(i, S): Given i € [n], return the 7 + 1-st smallest element in S.



A fully indezxable dictionary (FID) representation supports the above rank
and select operations in constant time for S (the complement of S), as well. In
particular, it can also support fullrank(z, S) operation which returns |{y € S|y <
z}| for all z € [m]. Using the characteristic vector of S, and an auxiliary o(m)
bit structure to support rank and select operations in a bit vector [6,11], it is
known that:

Theorem 1. Given a set S C [m], there is a FID on S that uses m+ o(m) bits.

Using some bucketing techniques and succinct encodings for prefix sums of
bucket sizes, Raman, Raman and Rao [14] show the following:

Theorem 2 (Theorem 4.1 of [14]). There is an indezable dictionary for a
set S C [m] of size n using at most [1g (T')] + o(n) + O(lglg m) bits.

Theorem 3 (Lemma 4.1 of [14]). There is o FID for a set S C [m] of size n
using at most [1g ()] + O(mlglgm/lgm) bits.

Representing Numbers. We now show how to represent n numbers aq, ..., a,
from [r] in nlgr+o(n) bits, so that we can access the i-th number O(1) time. (A
straightforward representation takes n [lgr] bits, which is ©(n) bits more than
the optimal nlgr in the worst case.)

First assume that r < lgn. For some z > 1, we partition the input numbers
into contiguous subsequences of z input numbers. We view each subsequence as
an integer from [r?] and represent it using at most [z1lgr] < zlgr + 1 bits. We
choose z as large as possible so that zlgr < %lg n; this allows an individual
number in a subsequence to be accessed in O(1) time by looking up a pre-
computed table of size at most z - [lgr] - 287+ = O(,/nlgn) bits. The space
used is (n/2)(zlgr + 1) + O(y/nlgn) = nlgr + O(nlglgn/lgn) bits, since z =
2(lgn/lglgn). Now assume that r > lgn and let I > 1 be the smallest integer
such that k = |r/2!| <lgn—1. We store the sequence {a; mod 2'} using nl bits
in the obvious way. As the values a; div 2! are from [k + 1], where k + 1 < Ign,
we can store the sequence {a; div 2!} using nlg(k + 1) + O(nlglgn/lgn) bits
using the above method. Given i, we can easily reconstruct a; from its “div” and
“mod” values in O(1) time. The space used is n(l +1g(k+ 1)) + O(nlglgn/lgn)
bits. Since (k+ 1)2! > r > k2!, we have lg(k + 1) +1 > lgr > 1gk + I. However,
lg(k+1) =1gk+0(1/k), so n(l+1g(k+1)) < nlgr+0O(n/k). Since k = O(lgn),
the space used in this case is also nlgr + O(nlglgn/lgn) bits.

Theorem 4. A sequence of n numbers from [r] can be represented using nlgr+
o(n) bits so that we can access the i-th element of the sequence in O(1) time.

From the theorem, we get a representation for an arbitrary permutation on
[n] taking nlgn + o(n) bits supporting 7() in constant time. To the best of our
knowledge, this is the first such representation taking less than n[lgn] bits.



3 Near Optimal Representations

First we design a space efficient data structure that can support both 7 and 7!
in constant time. Let ¢ > 2 be a parameter. We first represent the sequence 7 (%),
for 4 = 0 to n — 1 using the representation of Theorem 4 taking nlgn + o(n)
bits. Let A be this representation. In addition, we trace the cycle structure of
the perm, and for every cycle whose length is at least ¢, we store a shortcut
pointer with the elements which are at a distance of a multiple of ¢ steps from
an arbitrary starting point (this idea was used in the representation of an implicit
multikey table to support logarithmic searches under any key [4]). The shortcut
pointer points to the element which is ¢ steps before it in the cycle of the perm.

More precisely, let cg,c1,...,cx—1 be the elements of a cycle of the perm
(i.e. m(¢;) = Cit1modk, for i = 0,1,...,k — 1) where k > ¢. Then the indices
whose 7 values are ¢;; for i =0,1,...,0 = |k/t] are called indices with shortcut
pointers, and the shortcut pointer value at ¢;; stores the index whose pi value is
C(i+1 mod 1)¢> for ¢ = 0,1,...,1 (see Fig. 1). Let s < n/t be the number of shortcut
pointers after doing this for every cycle of the perm. We store the pointer values
in the order of the indices with shortcut pointers (regardless of which cycle each
element belongs to), using slgn + O(slglgs/lgs) bits using Theorem 4. Let S
be this representation of the sequence of pointer values. Since s < n/t, we have
used (1+ 1/t)nlgn + O(nlglgn/lgn) bits along with the representation for 7.
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Fig. 1. Shortcut method. Solid lines denote the perm, and the dotted lines denote the
back pointers. The shaded nodes indicate the positions having shortcut pointers.

We need to identify fast, indices having shortcut pointers and for those in-
dices, their pointer values. The pointer value of an index can be found from the
representation S of the sequence of pointer values, if we know the rank of the
index (having a shortcut pointer) among those having shortcut pointers. The
indexable dictionary of Theorem 2 can be used to represent the dictionary D of
the s shortcut pointers using [lg (7)] + o(n) bits which is O((nlgt)/t) + o(n)
bits as s < n/t.

The following procedure computes 7 ~!(z) for a given z.
1=
while 7 (i) # z do
if ¢ has a shortcut pointer and if its rank is r (both found by querying the

dictionary D)



then find the shortcut pointer value j by finding the r-th element of the repre-
sentation S.

else j := (i) (found by querying the i-th value of the representation A);
1:=7

endwhile

7 1(z) =i.

Since we have a shortcut back pointer for every ¢ elements of a cycle, the
number of © computations made by the algorithm is at most ¢ + 1. So the
algorithm to compute 7! takes at most O(t) steps. Thus we have

Theorem 5. There is a representation of an arbitrary perm m on [n] using at
most (14 1/t)nlgn + o(n) bits that can support the operations w() in constant
time, and 7=1() in O(t) time, for any parameter t > 0.

Choosing t to be approximately 2/e for any positive constant € < 1, we have

Corollary 1. There is a representation to store a perm 7 on [n] using at most
(1+€)nlgn+O(1) bits in which one can support w() in O(1) time and n~1() in
O(1/e) time, for any positive constant € less than 1.

Choosing t to be f(n)lgn for some increasing function f of n we have

Corollary 2. There is a representation to store an arbitrary perm 7 on [n] using
at most nlgn + o(n) bits that can support n() in constant time, and 7=1() in
O(f(n)lgn) time where f(n) is any increasing function of n. The o(n) term,
here, is O(n/f(n) + nlglgn/lgn).

Optimality. Demaine and Lépez-Ortiz [3] showed that any text index support-
ing linear time substring searches requires about as much space as the original
text. Here, given a text 7', we want to construct an index I such that given any
pattern P, one can find an occurrence of P in T in O(|P|) time. They consider
the model in which time is counted only in terms of the number of bits probed
from the text (all other computation and probes to the index and the pattern
are free). They show that any index I supporting a search for a pattern P using
O(|P]) bit probes to the text T should have size |I| = £2(|T'|). They also show
the following trade-off result:

Theorem 6 (Corollary 3.1 of [3]). If there is an algorithm supporting sub-
string searches of length |P| = lgn + o(lgn) using at most S = o(lg® n/lglgn)
bit probes to a text of size |T| =nlgn+ o(nlgn), then |I| = 2(|T|1gn/S).

They show this by considering texts that are obtained by writing a random
perm 7 (with high Kolmogorov complexity) as Ty, = w(0)#n(1)# ... #7x(n—1),
and restrict the patterns to be i# for some i € [n]. Note that searching for i# in
T, is equivalent to finding 7= (i) (i.e., 7~1(4) is the position of i# in T} ). From
their proof, for the RAM model with word size ©(lgn), one can show that



Corollary 3. Let P be a structure that stores a perm 7 and answers w(i) queries
in O(1) time. Then any data structure that answers w1 (i) queries usingt queries
to P, where t is o(lgn/lglgn), requires an additional index structure taking at
least (nlgn)/t bits of space.

Proof Sketch. The t queries to the structure P can be simulated with t(lgn +
o(lgn)) bit probes to the text Tr. O

This, in particular implies that the structure of Theorem 5 is ‘essentially’
optimal up to lower order terms.

3.1 Supporting Arbitrary Powers

There is no easier way, in the structure of Theorem 5, to compute 7* for k& > 1
(or k < 1) than by repeated application of m or 7~1. Here we develop a succinct
structure to support all powers of 7 (including 7 and 7~ 1).

Theorem 7. Suppose there is a representation R taking s(n) bits to store an
arbitrary perm w on [n], that supports () in p steps, and w1 () in q steps. Then
there is a representation for an arbitrary perm on [n] taking s(n) +n + o(n) bits
in which 7 () for any k can be supported in time p + q + O(1).

Proof. Let 7 be the given perm to be represented to support all its powers. Con-
sider its cycle representation, which is a collection of disjoint cycles of the perm
(where the cycles are ordered arbitrarily). Remove the brackets and consider the
resulting sequence as an array A of length n. Let 1(7) be the perm that maps i
to the position j of i in the array; i.e j such that A[j] = i. Equivalently, ¢ 1(j) =
A[j]. Note that () is not uniquely defined as it depends on the ordering of the
cycles. For example, if 7 on 12 elements is given by (1 58 3)(2 4 11)(6 10)(7 0 9),
then the resulting sequence is 1 58 324 11 6 10 70 9. And ¢ () is the perm
given by ¥(0) = 10;4(1) = 0,4(2) = 4 and so on.

Now we will represent the perm 9 using the representation R taking s(n) bits
where we can support (i) and 1 ~1(i) in time p and q respectively. In addition,
we need to store the starting points (or the lengths) of each cycle of 7 efficiently.
Let F' be the indices of the starting points of the cycles of 7. We store F' using
the FID representation of Theorem 1 taking n + o(n) bits. This justifies the
space usage in the theorem, and we are ready to explain how powers of 7 can
be computed. To compute 7% (i), we first find j = 1(i). Next we need to find
the cycle C that contains i, and its length. Querying fullrank(j, F) = p gives
the number of elements of F' less than j which gives the cycle number (in the
left to right order of the cycles) of the cycle C. Then the length [ of the cycle
C; is select(p + 1, F') — select(p, F'). Let r = select(p, F') be the index where the
p-th cycle starts. We find s = 7 + ((j — 7 + k) mod [) and return ¢~1(s) which
gives 7 (i). Note that this works for both & > 0 and k < 0. Since the FID
representation supports select and fullrank operation in constant time, we have
the theorem. O

As an immediate corollary, we get from Corollary 1



Corollary 4. There is a data structure to represent any perm © on [n] using
(1+ €e)nlgn + O(1) bits in which we can support the operation 7* (i) for any k
in constant time, for any positive constant € less than 1.

4 Optimal-space Representation

The Benes network. Our results in this section are based on the Benes net-
work, which is a communication network composed of a number of switches, and
which we now outline (see [10] for details). Each switch has 2 inputs zo and z;
and 2 outputs yo and y; and can be configured either so that xo is connected
to yo (i-e. a packet that is input along zo comes out of yo) and z; is connected
to y1, or the other way around. An r-Benes network has 2" inputs and outputs,
and is defined as follows. For r = 1, the Benes network is a single switch with 2
inputs and 2 outputs. An (r+1)-Benes network is composed of 2"+! switches and
two r-Benes networks, connected as as shown in Fig. 2(a). A particular setting
of the switches of a Benes network realises a perm = if a packet introduced at
input ¢ comes out at output mw(7), for all 7 (Fig. 2(b)). The following properties
are either easy to verify or well-known [10].

— An r-Benes network has 2" — 27! switches, and every path from an input
to an output passes through 2r — 1 switches;
— For every perm 7 on [27] there is a setting of the switches that realises .

r-Benes network

r-Benes network

(a) construction of (r + 1)-Benes network (b) Benes network realising the permutation (4 70 6 1 4 2 3)

Fig. 2. The Benes network (construction) and an example

The restriction that the number of inputs be a power of 2 will prove to be a
severe one in our context. We now define a family of Benes-like networks that ad-
mit greater flexibility in the number of inputs, namely the (g, 7)-Benes networks,
for integers r > 0,q > 0. First, we define a g-permuter to be a communication
network that has ¢ inputs and ¢ outputs, and realises any of the ¢! perms of its
inputs by some settings of its switches (an 7-Benes network is a 2"-permuter).



Taking p = ¢2", a (¢,r)-modified Benes network is a ¢g-permuter for r = 0,
and for r > 0 it is composed of p switches and two (¢,r — 1)-Benes networks,
connected together in exactly the same way as a standard Benes network.

Lemma 1. Let ¢ > 0,7 > 0 be integers and take p = q2". Then:

1. A (q,7)-Benes network consists of qr2" switches and 2" gq-permuters;
2. For every perm m on [p] there is a setting of the switches of the (g, r)-Benes
network that realises m.

Proof. (1) is obvious; (2) can be proved in the same way as for a standard Benes
network. 0

Representing Perms. Clearly, Benes networks may be used to represent
perms. For example, if n = 27, a representation of a perm 7 on [n] may be
obtained by configuring an r-Benes network to realize 7 and then listing the set-
tings of the switches in some canonical order (e.g. level-order). This represents
7 using r2" — 2"~! = nlgn — n/2 bits. Given i, one can trace the path taken by
a packet at input ¢ by inspecting the appropriate bits in this representation, and
thereby calculate 7(i) in O(lgn) time?. In fact, by tracing the path back from
output i we can also compute 7~ 1(i) in O(lgn) time. To summarise:

Proposition 1. When n = 2" for some integer r > 0, there is a representation
of an arbitrary perm m on [n] that uses nlgn — n/2 bits and can support the
operations () and 7=1() in O(Ign) time.

We now consider representations based on (g, r)-Benes networks; these will
replace the central ¢-permuters with alternative representations of perms.

Proposition 2. If ¢ <lgn/(21lglgn), there is a representation of an arbitrary
perm 7 on [q] that supports () and 7=1() in O(1) time. This assumes access to
a pre-computed table of size O(y/nlgn) bits that does not depend upon 7.

Proof. We represent 7 implicitly, e.g. as the index of 7 in a canonical enumeration
of all perms on [g]. The calculation of () (or 7 '()) is done by table lookup;
the size of the required table is easily seen to be O(y/nlgn) bits. |

Using the representation of Proposition 2, we now obtain:

Lemma 2. If p = ¢2" for integers lgn/(4lglgn) < ¢ < lgn/(21lglgn) and
r > 0, then there is a representation of an arbitrary perm m on [p] that uses
P(p) + O((plgp)/q) bits, and supports () and 7= 1() in O(r) time each. This
assumes access to a pre-computed table of size O(y/nlgn) bits that does not
depend upon .

% Indeed, in O(lgn) bit-probes.



Proof. Consider a (q,r)-Benes network that realises 7; we list all the switch
settings of the outer 2r layers of switches as in Proposition 1. For each of the ¢-
permuters we represent the perm realised by it using Proposition 2. Computing
m() or w1 involves the inspection of 2r bits in the outer layers, plus a table
lookup in the centre. We now calculate the space used. Note that:

P(p) =plg(p/e) + O(gp) = q2"(r +1g(q/e)) + O(Igp)
=qr2" +2"(qlg(q/e)) + O(lg p)

By Lemma 1, space used by the above representation (excluding lookup tables)
is qr2" +2"P(q) = qr2" + 2"qlg(q/e) + O(2"1g pg) = P(p) + O((plgp)/9). O

For perms on arbitrary [n], we need the following proposition:

Proposition 3. For all integers p,t > 0, p > t there is an integer p' > p such
that p' = q2" for integers t < ¢ < 2t and r >0, and p' < p(1 + 1/t).

Proof. Take g to be [p/2"], where r is the power of 2 that satisfies t < p/2" < 2t.
Note that p' < (p/2" 4+ 1) -2" =p(1+ 2" /p) < p(1 + 1/%). m|

Theorem 8. An arbitrary perm 7 on [n] may be represented using P(n) + o(n)
bits, such that w() and 7~ 1() can both be computed in O(Ign/lglgn) time.

Proof. Let t = (lgn)?. We first consider representing a perm 1 on [I] for some
integer I, t < | < 2¢. To do this, we find an integer p = I(1 + O(lglgn/lgn))
that satisfies the preconditions of Lemma, 2; such a p exists by Proposition 3. An
elementary calculation shows that P(p) = P(I)(1 + O(lglgn/lgn)) = P() +
O(lgn(lglgn)?). We extend 9 to a perm on [p] by setting (i) = ¢ for all
! < i < p and represent . By Lemma 2, ¢ can be represented using P(p) +
O(gn(lglgn)?) = P(I) + O(lgn(lglgn)?) bits such that () and ¢»~!() opera-
tions are supported in O(lglgn) time, assuming access to a pre-computed table
of size O(y/nlgn) bits.

Now we represent 7 as follows. We choose an n' > n such that n’ = n(1 +
1/(lgn)?) and n' = ¢2" for some integers g,r such that ¢t < ¢ < 2t. Again we
extend 7 to a perm on [n'] and represent this extended perm. As in Lemma 2
we start with a (g,r)-Benes network that realises m and write down the switch
settings of the 2r outer levels in level-order. The perms realised by the central ¢-
permuters are represented as above. Ignoring any pre-computed tables, the space
requirement is gr2" +27(P(q) +©O(Ig n(lglgn)?)) bits, which is again easily shown
to be P(n') + O((n'1gn’)/q + 2" 1gn(lglgn)*)) = P(n') + O(n(lglgn)*/(Ign))
bits. Finally, as above, P(n') = (1+0(1/(1gn)?))P(n), but the space requirement
is still P(n) + @(n(lglgn)?/(Ign)) = P(n) + o(n) bits.

The running time for () and 7=!() is clearly O(lgn). To improve this to
O(lgn/lglgn), we now explain how to step through multiple levels of a Benes
network in O(1) time, taking care not to increase the space consumption sig-
nificantly. Consider a (g, r)-Benes network and let ¢t = |lglgn —lglglgn]| — 1.
Consider the case when ¢ < r (the other case is easier), and consider input num-
ber 0 to the (g,r)-Benes network. Depending upon the settings of the switches,



a packet entering at input 0 may reach any of 2! switches in ¢ steps A little
thought shows that the only packets that could appear at the inputs to these
2! switches are the 21! packets that enter at inputs 0,1,k,k+1,2k,2k+1,.. .,
where k = ¢q2"~t. The settings of the ¢2¢ switches that could be seen by any one of
these packets suffice to determine the next ¢ steps of all of these packets. Hence,
when writing down the settings of the switches of the Benes network in the
representation of 7, we write all the settings of these switches in #2¢ < (Ign)/2
consecutive locations. Using table lookup, we can then step through ¢ of the
outer 2r layers of the (g, r)-Benes network in O(1) time. Since computing the
effect of the central ¢g-permuter takes O(lglgn) time, we see that the overall
running time is O(r/t +1glgn) = O(lgn/lglgn). |

Corollary 5. Let f be a bijection from S C [l] to T C [m], and letr = |S| = |T.
We can represent this bijection so that we can compute f(z) and f~1(y) for all
z €S and y € T, respectively, in O(lgr/lglgr) time. The representation takes

[18 ()] + Mg (7)1 + P(r) + ofr) + Olg g1 +1glgm) bits

Proof. As explained in the introduction, we represent S and T as a pair of
indexable dictionaries, with a “connecting” perm 7 on [r]. The space and time
upper bounds follow from Theorems 2 and 8. O

4.1 Powers of

Using Theorems 7 and Theorem 8, one can get a structure that supports ar-
bitrary powers of w in O(lgn/lglgn) time using P(n) + n + o(n) bits of space.
We show how to reduce the space to optimal P(n) + o(n) bits while retaining
the query time bounds. To acheive this bound, we need to store the cycle start-
ing points using o(n) bits in the representation of Theorem 7. Note that the
algorithm to compute 7%() actually requires fullrank operation and so just an
indexable dictionary doesn’t suffice. Using FID of Theorem 3 to represent F' will
result in the space (in addition to s(n)) of [lg (I?‘“I)-‘ + o(n) bits (since m =n
here). For an arbitary perm, the number of cycles, and hence |F'| could be 2(n)
and so this bound could also be O(n).

We develop below a different structure that takes o(n) bits. We first order
the cycles in non decreasing order of their lengths. Then we distinguish between
long cycles whose length is greater than |—1g7z n] and short cycles whose length is
at most [lg”n], and represent their starting points differently.

We take the representation of the starting points of long cycles first. Let S
be the set of all starting points of long cycles. Let |S| = k < n/lg’n. For this
range of k, Theorem 3 gives an o(n) bit FID structure for S, but we develop a
simpler structure here.

To support select(i,.S) operation we simply store the elements in sorted order
using k [lgn] bits which is o(n). To support rank(j, S) operation on S, we first
divide the universe [n] into blocks of size [lgn]. Then we keep the set E of
indices (from 1 to n/ [lgn]) having non-empty blocks in an FID of Theorem



1 using n/ [lgn] + o(n) bits. L.e. we have a bit vector for each block indicating
whether or not it is non-empty and keep an auxiliary structure for this bit vector
E (of size n/ [lgn]) to support the rank operation on E. Then we represent the
non-empty blocks completely using a bit vector F' of at most k [lgn] (since at
most k of the blocks can be non-empty) and build an auxiliary structure for this
bit vector (of size at most n/lgn) to support rank and select operations on F'.

Now to find fullrank(i, S), we find the number of non-empty blocks up to the
block containing ¢ by querying r = fullrank(i/ [Ign], E). If the block containing
1 is non-empty, this gives the rank of the block among the non-empty blocks and
the position of ¢ in the bit vector F'. So querying rank up to that position in F’
gives the fullrank(7, S). If the block containing ¢ is empty, then s = select(r, E)
gives the position of the previous non-empty block. Then fullrank(s [Ign], F)
gives the answer to fullrank(i, S).

To represent the starting points of the short cycles, we first construct the
multiset M that contains, for every i = 1 to [lg*n], m; = 3 j<iJ *m; where
n; is the number of cycles of length j. This is a multiset since if there is no
cycle of length i+ 1, then n;41 = 0 and hence m; = m; 1. For example, suppose
ﬂgQ n] = 8 and in 7 there are 5 cycles of length 1, 4 cycles of length 4, 5 cycles
of length 5 and 6 cycles of length 8, and 0 cycles of remaining lengths (up to 8).
Then the multiset M we need to store is {5, 5, 5,21, 46,46, 46,94}.

Let D be the set of distinct elements of M, and let R be the sequence of
multiplicities of elements of D in increasing order. Ie., the i-th element of R
is the number of occurrences of the i-th smallest element of D. Let P be the
sequence of partial sums of elements of R. L.e., the i-th element of P is the sum
of the first 7 elements of R. For the example outlined above, D = {5,21,46,94}
and P = {3,4,7,8}. We represent D and P using the set representation outlined
earlier (to represent S), that can support fullrank() and select() operations in
constant time. We will also explicitly store the last element L of M (which gives
the starting point of the first long cycle). Note that |[D| = |P| < [lg”n] and so
the representation for D and P (and hence M) takes O(lg® n) bits. Hence along
with the space for representing S (O(n/lgn) bits) the space used is o(n).

From the proof of Theorem 7, we see that, to compute 7*(¢), we need to find
the following two quantities: [, the length of the cycle containing ¢ and r, the
starting position of the cycle containing 4. If ¢ is in a long cycle (which can be
found by comparing the position j = () of ¢ with L), then the fullrank() and
select() operations on S gives these information as in the proof of Theorem 7.
We should just remember to add L to the starting point of these cycles.

If { falls in a short cycle, we first find d = fullrank(j, D) (note j is the position
of 4 in the list). This gives the number of distinct elements in M less than j.
Then s = select(d, P) gives the total number of elements less than j in M. So
I = s + 1 is the length of the cycle containing 4. If select(d, D) = ¢, then ¢ + 1 is
the starting point of the groups of cycles of length [ in 7. So (j — t) mod [ gives
the position of ¢ in its cycle, and so r = j — ((§ — t) mod 1) + 1 is the starting
point r of its cycle. With these operations supported in constant time, we have:



Theorem 9. Suppose there is a representation R taking s(n) bits to store an
arbitrary perm m on [n], that supports () in p steps, and 7=1() in q steps. Then
there is a representation for an arbitrary perm w on [n] taking s(n) + o(n) bits
in which 7 () for any k can be supported in time p + q + O(1).

As an immediate corollary, we get, from Theorem 8

Corollary 6. There is a representation to store an arbitrary perm 7 on [n] using
at most [Ign!]+o(n) bits that can support 7 () for any k in O(lgn/Iglgn) time.
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