REPRESENTATION THEORY OF FINITE GROUPS

PROBLEMS SET

- (1) Let p(n) denote the number of integer partitions of n. Prove that $p(n) \leq p(n-1) + p(n-2)$ for each $n \geq 2$. Conclude that p(n) grows faster than Fibonacci numbers.
- (2) Suppose that $\lambda = (n-l, l)$ and $\mu = (n-m, m)$, with $0 \le l, m \le n/2$. Show that there exists a unique SSYT of shape μ and type λ if and only if $m \le l$. If m > l, then there is no such SSYT.
- (3) For an integer partition λ , let f_{λ} denote the number of standard Young tableaux of shape λ . Let n be any positive integer.
 - (a) For each $0 \le k < n$, show that

$$f_{(n-k,1^k)} = \binom{n-1}{k}.$$

(b) For each $0 \le k \le n/2$, show that

$$f_{(n-k,k)} = \binom{n}{k} - \binom{n}{k-1}.$$

- (4) Find the least value of n for which the reverse dominance order on the set of partitions of n is not a linear order (i.e., there exist partitions λ and μ of n such that neither $\lambda \leq \mu$, nor $\mu \leq \lambda$.
- (5) Let λ be a *hook*, i.e., $\lambda = (m, 1^k)$ for some positive integer m and some nonnegative integer k. Which are the partitions μ of m + k that satisfy $\mu \leq \lambda$.
- (6) Show that, if $\mu \leq \lambda$ in the reverse dominance order, then the number of parts of μ is at most the number of parts of λ .
- (7) Exhibit a SSYT of shape (5,2,2) and (3,3,3). What is the Kostka number $K_{(5,2,2),(3,3,3)}$?
- (8) Determine the number of 3×3 matrices with nonnegative integer entries whose rows and columns all add up to 3 (this is the number $M_{(3,3,3),(3,3,3)}$).

Date: July 2, 2017.