
1

Verification of Camera-Based Autonomous Systems
Habeeb P, Nabarun Deka, Deepak D’Souza, Kamal Lodaya, Pavithra Prabhakar

Abstract—We consider the problem of verifying the safety of
the trajectories of a camera-based autonomous vehicle in a given
3D-scene. We give a procedure to verify that all trajectories
starting from a given initial region reach a specified target region
safely without colliding with obstacles on the way. We also give
a prioritization-based falsification procedure that collects unsafe
trajectories. Both our procedures are based on the key notion
of image-invariant regions, which are regions within which the
captured images are identical. We evaluate our methods on a
model of an autonomous road-following drone in a variety of 3D-
scenes; our experimental results demonstrate the feasibility and
benefits of our approach for both safety analysis and falsification.

Index Terms—Autonomous vehicles, cameras, mobile robots,
software verification and validation.

I. INTRODUCTION

SELF-DRIVING or highly autonomous technologies are
being embraced by vehicle manufacturers worldwide due

to their promise of safer rides (most road accidents are
attributed to driver errors), accessibility to challenged users,
and ability to maneuver in environments dangerous to hu-
mans, to name a few. Such technologies typically rely on
inputs from camera, lidar, infrared, and other sensors, which
are often processed by neural network based controllers to
control the vehicle’s trajectory. To realize the promise of
these technologies, it is imperative that the closed-loop control
system of an autonomous vehicle along with the perception
modules are reliable, in order to avoid potential mishaps.
Testing the vehicle in real terrains or test tracks helps in
debugging and gaining confidence in the reliability of the
system, but is expensive and affords very limited coverage.
A promising alternative is to reason about a model of the
vehicle in simulated (or synthetic) environments. Both safe and
unsafe trajectories from a simulated environment are known to
transfer well to real environments. Fremont et al [1] report that
62.5% of unsafe simulated behaviours could be reproduced
as unsafe behaviours in a real track, while 93.3% of safe
simulated behaviours continued to be safe in a real track. Thus,
analysis in a simulated environment can give us an effective
way to debug and gain confidence in our system.

One could perform a variety of analyses in a synthetic
environment, including executing the vehicle model from
some initial positions (testing/simulation), looking for unsafe

Habeeb P, Nabarun Deka, and Deepak D’Souza are with the Depart-
ment of Computer Science And Automation, Indian Institute of Science,
Bangalore 560012, Karnataka, India (email: habeebp@iisc.ac.in; nabarun-
deka@iisc.ac.in; deepakd@iisc.ac.in).

Kamal Lodaya was formerly with the The Institute of Mathematical
Sciences, Chennai 600113, Tamil Nadu, India (email: kamal@imsc.res.in).

Pavithra Prabhakar is with the Department of Computer Science,
Kansas State University, Manhattan, Kansas 66506, USA (e-mail: pprab-
hakar@ksu.edu).

trajectories (directed testing or falsification), and verifying
whether all trajectories from a given, potentially infinite,
initial region are safe (verification). While simulation and
falsification approaches have been widely used in this domain
(see [2]–[6] to name a few), verification has received much
less attention. O’Kelly et al [7] and Sun et al [8] consider
the verification problem in the setting of gap and lidar sensors
respectively. However, none of these works model camera-
based sensors, which are one of the key sensor inputs used
by autonomous vehicles, and pose novel challenges when
compared to “continuous” sensors like lidars addressed in
[8].

In this paper, we address this gap by considering the
problem of verifying the safe trajectory of a camera-based
autonomous vehicle in a given synthetic 3D-scene, with a
specified initial and target region within the scene. We present
an algorithm that can verify that all trajectories of the vehicle
from the initial region are safe in that they don’t collide with
an obstacle along the way. We also design an abstraction-
refinement based algorithm, which gives us better efficiency
in practice. The key idea in our work is the notion of an
image-invariant region, which is a set of vehicle positions
from which the camera captures identical images. Throughout
an invariant region the neural network based controller must
invariably provide the same control input. This allows us to
reason about trajectories at the level of regions, and thereby
discretize the continuous state-space of the vehicle. Thus, in
contrast with the work on lidars, we exploit the fact that image
capture is a discrete function of the position of the vehicle.

We also present a directed testing procedure whose ob-
jective is to find a large number of spatially distinct unsafe
trajectories, that could be used to re-train/re-design the neural
network/controller when the verification fails. Both our tech-
niques take advantage of the notion of invariant regions.

We have implemented our techniques in a tool called
AIRVERIF (inspired by the drone simulation tool AirSim [2]),
and evaluated its performance on a model of an autonomous
drone [9], in a variety of scenes with hundreds of vertices.
The experiments show that our basic algorithm is effective in
proving safety as well as finding collisions, in environments
with around 100 triangles. Our abstraction-based algorithm
shows that abstraction techniques can help us scale better for
more complex scenes.

II. CAMERA MODEL

A digital camera works on a principle similar to a pinhole
camera, as shown in Fig. 1. Light rays from an object in
the field of view of the camera enter through a small hole
called the aperture of the camera and strike photosensitive
material like film in the case of a classical camera, or a two-
dimensional array of “photosites” or pixels in the case of a

2

film

notional canvas
aperture

object ch

cw

l

Fig. 1. Pinhole camera

digital camera. The distance from the aperture to the film is
called the focal length of the camera. The physical dimensions
of the film are denoted cw (width) and ch (height) respectively.
The image thus captured is inverted and needs to be re-oriented
before storing or viewing. In Computer Graphics (CG), this is
tackled by considering a notional canvas that lies in front of
the aperture at a distance equal to the focal length and parallel
to the film plane, onto which the object is projected. We refer
the reader to the excellent reference [10], which much of the
material in this section draws on, for more details on how
images are rendered in CG.

Formally we use a simple model of a digital camera, which
we call a camera model. For uniformity we use meters as the
unit of length thoughout this paper.

Definition 1. A camera model C is specified by the following
components:

C = (l , cw , ch, cwp, chp)

where

• l is the focal length of the camera (that is the distance
from the aperture to the film plane).

• cw and ch are the canvas width and height, respectively.
• cwp and chp are the canvas width in pixels and canvas

height in pixels, respectively, in terms of the number
of pixels. For convenience, we assume these are even
numbers.

We assume that each of entities l , cw , ch , cwp, and chp are
positive values.

We will be interested in the images captured by our camera
model in a synthetic 3D environment (created using a 3D-
design tool like Blender [11]), in which our autonomous
vehicle will travel. Following the convention in CG, we
represent such an environment as a collection of triangles that
represent the triangulated faces of objects in the environment
(obstacles which our vehicle must avoid when travelling). Each
vertex of a triangle is assumed to have a colour attribute,
comprising a triple of numbers (r, g, b) each between 0 and
255 (corresponding to an 8-bit unsigned number), which
represent the components of Red, Green and Blue respectively
in the colour of the vertex. We call the colour attribute an RGB
value and denote the set of such triples by RGB .

More formally, let us first fix a 3D coordinate system,
popularly called World Coordinates, in which our objects and
vehicle (along with its camera) will lie. This is a “right-
handed” coordinate system which can be visualized by holding
the fingers of your right hand (this can be a bit of a twist!) with
the middle finger pointing to the right, thumb upwards, and

camera
axis

ch

cw

canvas

focal length l

(xp, yp, zp)

(a)

v1

v01 v02

v0

v2

(b)

Fig. 2. (a) Camera viewing-frustum (b) Clipping triangle (v0, v1, v2).

the index finger pointing towards you, denoting the positive
directions of the x, y, and z axes respectively.

An environment (or 3D-scene) can now be represented as
a tuple E = (V, vcol , T), where V is a non-empty set of
vertices in the world coordinate space, vcol : V → RGB is a
map which assigns an RGB value to each vertex, and T ⊆ V 3

is a non-empty set of triangles built from vertices in V .
An image in a cwp × chp grid of pixels, more precisely

a (cwp, chp)-image I , is simply a map I : [(− cwp
2), cwp

2] ×
[(− chp

2), chp
2] → RGB . Thus, we assign a coordinate (0, 0)

to the pixel whose bottom left corner lies at the center of the
canvas. Note that we include an “extra” row of pixels to the
top and a column of pixels to the right of the canvas, to include
the points on the top and right boundaries of the the canvas.

The main purpose of the rest of this section is to describe
how our camera model captures an image when placed at a
particular position and orientation in a given 3D-scene. At a
high level the idea is simple: starting from the triangles in the
scene that are farthest away from the camera, (a) project each
triangle onto the camera canvas, and (b) colour the pixels lying
within this projected triangle, by interpolating the colours from
the vertices of the triangle. In what follows we describe these
steps in more detail.

Let us fix a 3D-scene E = (V, vcol , T), and a camera
position p = (xp, yp, zp). Throughout this paper we make the
simplifying assumption that the camera has a fixed orientation
along the negative z-axis of world space.

Step 1 Transform vertices in scene E to a left-handed camera
coordinate system, with origin at position of camera p,

3

and z-axis pointing along the camera axis (thus pointing
away from you, in the negative z-direction of the world
space). This makes subsequent operations like clipping
and projection easier to do.
A vertex v = (x0, y0, z0) in world space becomes
WtoC p(v) = (x0−xp, y0−yp, zp−z0), and is extended
to triangles in the expected way. The last component
illustrates that the camera z-axis points in the negative
direction of world space. Denote by E1 = (V �, vcol �, T �)
the scene E represented in camera space, where V � =
{WtoC p(v) | v ∈ V }, T � = {WtoC p(t) | t ∈ T}, and
vcol(v�) = vcol(v) where v� = WtoC (v).

Step 2 Next eliminate triangles from E1 that are outside (i.e.
have no intersection with) the field of view of the cam-
era. The field of view of the camera, called its viewing
frustum, and denoted F p

C , is the unbounded rectangular
pyramid with axis same as the z-axis of camera space,
and determined by the rectangular (cw × ch)-canvas at
z = l . See Fig. 2a. In camera space, the viewing frustum
F p
C can be characterized by the set of points (x, y, z)

satisfying:

−cw

2l
z ≤ x ≤ cw

2l
z, −ch

2l
z ≤ y ≤ ch

2l
z, 0 ≤ z. (1)

We can check whether a triangle t = (v0, v1, v2) in E1,
with each vi = (xi, yi, zi), has non-empty intersection
with the viewing frustum, by checking if some point v
that is a convex combination of v0, v1, and v2 (equiva-
lently, lying in the triangle t) satisfies the constraints
in (1). That is, we check if there exist non-negative
reals α0,α1,α2 with α0 + α1 + α2 = 1, such that
v = α0v0 + α1v1 + α2v2 satisfies the constraints in
(1). We define E2 to be the scene obtained from E1 by
dropping triangles that do not intersect F p

C .
Step 3 Next we address the problem of a triangle being partially

contained in the viewing frustum. The region of intersec-
tion of such triangles and viewing frustum may have to
be retriangulated. Consider a triangle t = (v0, v1, v2) in
E2 which is partially contained in F p

C . A representative
case is where vertex v0 is outside the upper plane of
the frustum, while v1 and v2 are within the frustum, as
shown in Fig. 2b. Find the points of intersection v01
and v02 of the lines (v0, v1) and (v0, v2) with the upper
plane of F p

C , and add the triangles t01 = (v01, v1, v02),
t02 = (v1, v02, v2) to E2 in place of t. The equation of
the plane containing the upper plane of F p

C is:

ly =
ch

2
z. (2)

The equation of the line (v0, v1) is
x− x0

x1 − x0
=

y − y0
y1 − y0

=
z − z0
z1 − z0

. (3)

Eqs. (2) and (3) can be solved to obtain the coordinates
of v01. We can similarly compute v02.
We now remove triangle t from E2 and add triangles
t01 and t02 to it. Let E3 be the resulting set of triangles
obtained by performing this replacement for all triangles
in E2 that are partially contained in F p

C .

y0
y�
0

z0
l

Fig. 3. Perspective division to obtain the projection onto the canvas

0

1

1 2

2

3

3

4

5

5

6

7

9

8

6

4 9870

v2

v0

v1

(a)

0

1

1 2

2

3

3

4

5

5

6

7

9

8

6

4 9870

v2

v0

v1

(b)
Fig. 4. Colouring pixels in a triangle.

Step 4 Perform “perspective division” to obtain projections of
the vertices in triangles in E3 onto the canvas.
The projection of v0 = (x0, y0, z0) within the viewing
frustum of the camera to the canvas can be seen to
be the two-dimensional point v�0 = (lx0

z0
, ly0

z0
). Fig. 3

illustrates how this value is derived for the y coordinate.
By similarity of the two right-angled triangles, we have
y0

z0
=

y�
0

l . For convenience, v�0 is often viewed as a 3-
dimensional point with the z value being retained as z0,
which gives us the depth of the vertex in the z-direction.
Let us call the resulting scene obtained by projection of
each vertex of E3 in this way, E4.

Step 5 To colour the pixels on the canvas, first note that a vertex
v0 = (x0, y0, z0) in E4 falls within the pixel (a, b) given
by:

a = � x0

pw
�, b = � y0

ph
�, (4)

where pw = cw
cwp and ph = ch

chp .
Consider a triangle t in E4. We illustrate how t is
coloured with the help of Fig. 4. First find the pixels the
vertices of t lie in. In part (4a) of the figure, the triangle
t is shown in black, and the pixels each of the vertices
lie in (namely (−3, 2), (−2,−4), (3,−1)) are shaded
pink. Now construct a notional triangle (shown lightly
in cyan edges) with vertices as the top-left corners of the
pink pixels. Colour each pixel whose center lies within
the cyan triangle, with a colour obtained by interpolating
the colours of the vertices of the cyan triangle (which
are inherited from the black triangle’s vertices). This
is shown in Fig. 4b. Finally, for each pixel coloured
we also keep track of the depth of the pixel, which is
obtained by interpolating the depths of the vertices of
the original black triangle.
To handle overlapping triangles, we do the following. A
pixel may get colour and depth from several triangles in
E4. The colour assigned to the pixel is the one with the
least associated depth.

4

(a) (b) (c)

Fig. 5. Camera images of an example scene at positions (a) (1, 5, 110) (b)
(6.5, 5, 110) and (c) (8, 5, 110)

This completes the description of the image capture pro-
cess. To illustrate the end-product of this process, consider
an environment with four vertices v0 = (0, 8, 100), v1 =
(−2, 3, 100), v2 = (0, 4, 100), and v3 = (2, 2, 100); and two
triangles t0 = (v0, v1, v2) and t1 = (v0, v2, v3). All vertices
have the same colour (0, 255, 0). Fig. 5 shows the images
generated using the above procedure, by a camera model
C0 = (0.035m, 0.02507488m, 0.018669m, 1920, 1080), at
positions (1, 5, 110), (6.5, 5, 110) and (8, 5, 110) respectively.

A camera model C thus induces a function imgC which takes
a 3D-scene E and a position p, and returns the (cwp, chp)-
image seen from point p.

III. AUTONOMOUS VEHICLE MODEL

We model a camera-based autonomous vehicle in a given
3D-scene, as a simple closed-loop continuous-time sampled
control system. The components of the model are shown in
Fig. 6. At the beginning of a sample period (represented
by τ), the vehicle and the camera mounted on it are in a
certain position (with fixed orientation along z-axis), which
determines the image of the environment captured by the
camera. The image is then fed to the controller consisting of
a neural network and a transform matrix wherein the neural
network processes the image to determine the action and the
transform matrix transforms the action into an input to the
vehicle dynamics. The vehicle then updates its state for a
sample period based on the input received.

The state of the vehicle at time t is modelled by a real-
valued 3-dimensional vector ζ(t) corresponding to the 3-
D position of the vehicle, and the state trajectory changes
continuously with time in accordance with a simple vehicle
dynamics of the form

ζ̇ = u,

in which the components of the state vector grow at a rate
specified by a 3-dimensional control input vector u. Given a
start state ζ0 ∈ R3 at time t0 ∈ R≥0, and a control input
u ∈ R3, the trajectory of the vehicle in the interval [t0,∞) is
given by a function ζ : [t0,∞) → R3, defined as

ζ(t0 + t) = ζ0 + t · u.

Note that for clarity we use “·” for scalar multiplication above.
In the sequel, we will use it for matrix multiplication as well as
the dot product of two vectors. The specific operation should
be clear from the type of arguments.

Consider a time point t which is a multiple of the sam-
pling period τ with the current state of the system being
ζ(t). The camera component first captures an image Im =

pos

imageCamera Neural
Network

3D Scene

Controller
dir

control

Vehicle

Init pos

Autonomous Vehicle V

C N

E

M

input u
Dynamics
ζ̇ = u

Fig. 6. Camera-Based autonomous vehicle model

imgC(E, ζ(t)) of the scene E as seen at the current position
ζ(t) of the vehicle. This image is fed to a neural network
N , which for our purpose is simply a map fN , taking as
input a vector of dimension k representing the image Im,
and returning another vector of dimension l representing the
suggested action. The l-dimensional action vector is then
transformed (multiplied) by the (3× l)-dimensional controller
(transform) matrix M resulting in the control input u that is
fed to the vehicle dynamics for a period τ , thereby determining
the trajectory of the vehicle in the interval [t, t+τ]. The whole
process then repeats for another sample period.

More formally,

Definition 2. A (camera-based) autonomous vehicle V of
dimension (k, l) is a tuple of the form

V = (C,N ,M, τ),

where

• C = (fl , cw , ch, cwp, chp) is a camera model, with k =
cwp · chp · 3,

• N is a neural network with input and output layers of
dimension k and l respectively,

• M ∈ R3×l is the controller transformation matrix of
dimension 3× l

• τ ∈ R>0 is the sampling period of the controller.

A trajectory of the vehicle V above, from a given initial
state ζ0 ∈ R3, in a given 3D-scene E, is defined as a function
ζ : [0,∞) → Rn, where ζ(0) = ζ0, and for each i ∈ N,
ζ in the interval (iτ, (i + 1)τ] is defined as follows. For any
t ∈ (0, τ]

ζ(iτ + t) = ζ(iτ) + t · u, where
u = M · fN (imgC(E, ζ(iτ))).

We are interested in trajectories of the vehicle V in a scene
E that start from an initial region of states I ⊆ R3 and
eventually reach a target region T ⊆ R3. A trajectory ζ of
V in a scene E is safe w.r.t. a target region T ⊆ R3 if there
exists i ∈ N such that:

• ζ(iτ) ∈ T , and
• for t ∈ [0, iτ], ζ(t) does not intersect any triangle in E.

Definition 3. The reach-avoid verification problem is the
following: Given an autonomous vehicle V = (C,N ,M, τ), a
3D-scene E, an initial region I , and a target region T ; are
all trajectories of V in E starting from I safe?

5

We note that the problem cannot be solved by enumerating
the positions in I and simulating trajectories from each of
them, as there are an (uncountably) infinite number of points
in I .

We will make some simplifying assumptions going forward.
Firstly, we will assume that the target region T is specified as
the region beyond an unbounded plane parallel to the xy-plane.
In other words, T is given by a constraint of the form z ≤ t
(recall that the camera is assumed to be oriented in the negative
z-direction of world space). Secondly, we assume the vehicle
dynamics is progressive in that there exists a positive constant
c such that the control vector u computed at each step satisfies
u(z) < −c. Thus in each sample period the vehicle makes a
minimum progress of c · τ in the negative z-direction. Finally,
for convenience we have ignored the volume of the vehicle,
assuming it to be a point. Our techniques can be extended
easily to handle a specified polyhedral volume for the vehicle.

IV. INVARIANT REGIONS

In this section we introduce the notion of an invariant region
of a position in a scene (w.r.t. a given camera model). This
notion will play an important role in our verification and
falsification algorithms for the reach-avoid problem.

Definition 4. Let E be a 3D-scene, C a camera model, and
p a point in world space. Then a set of points X in world
space is an invariant region around p if p ∈ X and for each
p� ∈ X we have imgC(E, p�) = imgC(E, p) (images seen at
all points in X coincide with that seen at p).

Given a camera model C = (l , cw , ch, cwp, chp), an envi-
ronment E, and a point p, how does one come up with an
invariant region for p? The notion of a “pixel torch” will help
in understanding invariant regions and in coming up with an
invariant region around p, which we call invC(E, p).

Consider a fixed pixel (a, b) in the canvas, and a viewing
point p. Then the (a, b)-pixel torch at p is the viewing frustum
defined by the point p and the pixel (a, b); equivalently one
can also think of it as the set of points in the camera’s viewing
frustum whose “projected pixel” is (a, b). More precisely, for a
point v0 = (x0, y0, z0) and a camera position p = (xp, yp, zp)
(both in world space), such that v0 is within the viewing
frustum of p, we define its pixel projection w.r.t. p to be the
pixel in the canvas of p, in which the projection of v0 lies.
Following the development in Sec. II the projected pixel is
given by the expression:

proj -pixelC(v0, p) = (� l(x0 − xp)

pw(zp − z0)
�, � l(y0 − yp)

ph(zp − z0)
�). (5)

In camera space, this simplifies to

proj -pixel -csC(v0) = (� lx0

pwz0
�, � ly0

phz0
�). (6)

Fig. 7a shows the torches for three different pixels.
To illustrate why pixel torches help us identify invariant

regions, consider a simple scene E comprising a single triangle
t = (v0, v1, v2), which is fully within the viewing frustum at
a position p, as shown in Fig. 7a. Let the pixel projection of
v0, v1, v2 be the pixels (a0, b0), (a1, b1), (a2, b2) respectively.

pp

v0

v1

v2

(a) (b)
Fig. 7. (a) Pixel torches, and (b) Frustum shape of invariant region.

(a) (b)

Fig. 8. (a) Image at p = �0.1, 4.5, 194.5�, (b) invariant region around p.

The vertices v0, v1, v2 are each covered by the torch beams
of the pixels (a0, b0), (a1, b1), (a2, b2) respectively. Now if
we move the camera position (and the pixel torches with it)
slightly from p to p�, the projected pixels of the vertices of t
would continue to be the same as at p. The way we described
images being captured in Sec. II, the image captured only
depends on the projected pixels of the triangle, and hence the
image captured at points p and p� will be identical. Thus, the
region in which we can move the camera position around p
such that the pixel torches cover the corresponding vertices
of the triangle, is an invariant region around p w.r.t. E. This
region can be seen to be frustum shaped as shown in Fig. 7b.
We further illustrate this in Fig. 8 which shows the image of
a triangle on vertices (−1, 6, 180), (2, 6, 180), and (2, 1, 180),
by camera model C0, at position p = (0.1, 4.5, 194.4), along
with the invariant region of this image around p, as visualized
in Blender [11].

We continue our illustration of the invariant region for a
single triangle environment, and derive the invariant region in
the plane parallel to the XY -plane, obtained by fixing the z-
coordinate to be that of p. Returning to our scene E comprising
a single triangle t = (v0, v1, v2), which is fully within the
viewing frustum at a position p = (xp, yp, zp), let the pixel
projection of v0, v1, v2 be the pixels (a0, b0), (a1, b1), (a2, b2)
respectively. Then from Eq. (5):

a0 = � l(x0 − xp)

pw(zp − z0)
�, b0 = � l(y0 − yp)

ph(zp − z0)
�

a1 = � l(x1 − xp)

pw(zp − z1)
�, b1 = � l(y1 − yp)

ph(zp − z1)
�

a2 = � l(x2 − xp)

pw(zp − z2)
�, b2 = � l(y2 − yp)

ph(zp − z2)
�.

Let us call the plane parallel to the XY -plane corresponding

6

y

x

y0 − (b0)ph(zp−z0)

l
)

y0 − (b0+1)ph(zp−z0)

l)

y�
p

(x0 − (a0+1)pw(zp−z0)

l
,

(xp, yp)

x�
p

(x0 − (a0)pw(zp−z0)

l ,

(a)

(x1 − (a1)pw(zp−z1)

l ,y

x

(x1 − (a1+1)pw(zp−z1)

l
,

y1 − (b1)ph(zp−z1)

l
)

y1 − (b1+1)ph(zp−z1)

l)

x�
p

y�
p (xp, yp)

(b)

(x2 − (a2)pw(zp−z2)

l ,y

x

(x2 − (a2+1)pw(zp−z2)

l
,

y2 − (b2)ph(zp−z2)

l
)

y2 − (b2+1)ph(zp−z2)

l)

x�
p

y�
p

(xp, yp)

(c)

y

x

x�
p

y�
p (xp, yp)

(d)

Fig. 9. Regions in the zp-plane corresponding to (a) v0 mapping to (a0, b0), (b) v1 mapping to (a1, b1), (c) v2 mapping to (a2, b2); and the invariant
region (d), for triangle t = (v0, v1, v2) and camera position (xp, yp, zp).

to z = zp, the zp-plane. Now the required invariant region in
the zp-plane, with respect to the camera position (xp, yp, zp),
is the set of positions (x�

p, y
�
p, zp) satisfying:

a0 ≤ l(x0 − x�
p)

pw(zp − z0)
< a0 + 1, b0 ≤ l(y0 − y�p)

ph(zp − z0)
< b0 + 1,

a1 ≤ l(x1 − x�
p)

pw(zp − z1)
< a1 + 1, b1 ≤ l(y1 − y�p)

ph(zp − z1)
< b1 + 1,

a2 ≤ l(x2 − x�
p)

pw(zp − z2)
< a2 + 1, b2 ≤ l(y2 − y�p)

ph(zp − z2)
< b2 + 1.

Fig. 9(a) shows the region corresponding to v0 mapping to
(a0, b0), in that if we move the pixel torch corresponding to
the pixel (a0, b0) in this region, the beam will still contain
the vertex v0. Similarly, Fig. 9(b) and (c) show the regions
corresponding to v1 mapping to (a1, b1) and v2 mapping to
(a2, b2) respectively. Finally, the shaded region in Fig. 9(d)
shows the intersection of these regions, which is the required
invariant region in the zp-plane. One can now imagine moving
the z-plane closer to the triangle and obtaining a similar,
smaller sized, rectangular invariant region, thus giving us a
frustum-shaped 3D invariant region.

Let us now consider the general case where we have
multiple triangles in E, not all of which are within the viewing
frustum at p. We need to correctly handle the case of triangles
being partially within the viewing frustum, as in Fig. 2b. The
image formed now depends on the projected pixel of the added
vertex v01, which in turn is the point of intersection of the line
(v0, v1) and one of the frustum boundary planes.

Definition 5. Let C be a camera model, E a 3D-scene, and p
a camera position. We define the region invC(E, p) to be the
set of points p� satisfying the following conditions:

1) For each vertex v0 in E,

a) v0 is in F p
C iff v0 is in F p�

C .
b) If v0 ∈ F p

C , the projected pixel of v0 w.r.t. camera
positions p and p� coincide.

2) For each triangle side vov1 in E:

a) v0v1 ∩ Ftopp
C �= ∅ iff v0v1 ∩ Ftopp�

C �= ∅.

b) If v0v1 ∩ Ftopp
C �= ∅ then the pixel projection of

v w.r.t. p, and v� w.r.t. p�, where v and v� are
the points of intersection of v0v1 with Ftopp

C and
Ftopp�

C respectively, coincide;
and similarly for FbotC , FleftC , and FrightC .

We now claim that:

Theorem 1. Let C be a camera model, E a 3D-scene, and p
a point. Then the set of points invC(E, p) forms an invariant
region around p w.r.t. E.

Proof. Let p� be a point in invC(E, p). By design, projections
of the vertices of E and intersection points of the lines in E
with boundary planes of the viewing frustum at p and p�, fall
into the same pixel in the respective canvases at p and p�. From
the image capture procedure described in Sec. II it follows that
the images captured at p and p� will be identical.

We now show how we can describe the region invC(E, p)
as a conjunction of constraints over variables (x�

p, y
�
p, z

�
p)

representing the coordinates of p�, in terms of p = (xp, yp, zp),
the vertices in E, and camera parameters. We do this by taking
the conjunction of constraints corresponding to each of the
conditions in Def. 5. This formulation allows us to represent
invariant regions logically as polyhedra, and to query and
manipulate them using polyhedral libraries and solvers.

Let the coordinates of the points v0 and v1 be (x0, y0, z0)
and (x1, y1, z1) respectively. For the condition (1a) corre-
sponding to vertex v0 in the scene E, we have the constraint
in-vf C(v0, p) ≡ in-vf C(v0, p

�) where in-vf C(v0, p) says that
point v0 is in the viewing frustum of p:

xp −
cw

2l
(zp − z0) ≤ x0 ≤ cw

2l
(zp − z0) + xp

yp −
ch

2l
(zp − z0) ≤ y0 ≤ ch

2l
(zp − z0) + yp (7)

z0 ≤ zp

Here we have transformed v0 to camera space w.r.t. p, and
then used Eq (1). Condition (1b) can be captured by:

in-vf C(v0, p) =⇒ proj -pixel(v0, p) = proj -pixel(v0, p�).

7

Condition (2a) can be phrased as follows. We note that the
top boundary (unbounded triangle) of the viewing frustum can
be characterized as a convex combination of the points ql =
(−wz

2l ,
hz
2l , z) and qr = (wz

2l ,
hz
2l , z) (for different values of

z ≥ 0). Using this we can phrase the constraint for (2a) as:

∃α∃β∃z((0 ≤ α ≤ 1 ∧ 0 ≤ β ≤ 1)
∧ (α(x0 − xp) + (1− α)(x1 − xp) =
β(−wz/2l) + (1− β)wz/2l)
∧ (α(y0 − yp) + (1− α)(y1 − yp) =
βhz/2l + (1− β)hz/2l)
∧ (α(zp − z0) + (1− α)(zp − z1) = z) iff

∃α�∃β�∃z((0 ≤ α� ≤ 1 ∧ 0 ≤ β� ≤ 1)
∧ (α�(x0 − x�

p) + (1− α�)(x1 − x�
p) =

β�(−wz/2l) + (1− β�)wz/2l)
∧ (α�(y0 − y�p) + (1− α�)(y1 − y�p) =
β�hz/2l + (1− β�)hz/2l)
∧ (α�(z�p − z0) + (1− α�)(z�p − z1) = z).

(8)

Finally condition (2b) can be phrased as:

(∃α∃β∃z((0 ≤ α ≤ 1 ∧ 0 ≤ β ≤ 1)
∧ (α(x0 − xp) + (1− α)(x1 − xp) =
β(−wz/2l) + (1− β)wz/2l)
∧ (α(y0 − yp) + (1− α)(y1 − yp) =
βhz/2l + (1− β)hz/2l)
∧ (α(zp − z0) + (1− α)(zp − z1) = z))
=⇒ proj -pixel -csC(v) = proj -pixel -csC(v

�),

where v and v� are given by:

v = (α1(x0 − xp) + (1− α1)(x1 − xp),
α1(y0 − yp) + (1− α1)(y1 − yp),
α1(zp − z0) + (1− α1)(zp − z1)),

v� = (α�
1(x0 − x�

p) + (1− α�
1)(x1 − x�

p),
α�
1(y0 − y�p) + (1− α�

1)(y1 − y�p),
α�
1(z

�
p − z0) + (1− α�

1)(z
�
p − z1)),

α1,β1 and α�
1,β

�
1 being the values of α,β,α�,β� satisfying

Eq. (8).

V. SAFETY CHECKING ALGORITHM

In this section we describe a decision procedure based
on invariant regions, that solves the reach-avoid problem for
an autonomous vehicle in a given scene. We then propose
an abstraction-based version of this procedure that tries to
avoid keeping track of an exponential number of regions, by
grouping together regions that generate similar control inputs.

A. Safety Checking Procedure

Our basic algorithm for the reach-avoid problem consists
of a symbolic state-space exploration through the closed-
loop control system representing the autonomous vehicle. The
key idea is to represent reachable sets of states as invariant
regions. The initial region I is decomposed into a finite set of
invariant regions. In general each invariant region R has a set
of successor regions that we obtain by propagating R based
on the common control input u that applies to all states in R.
We can compute u by taking any image Im corresponding to

a state in R, computing the output of the neural network on
Im, and multiplying it by the transform matrix M . We then
propagate R through the vehicle dynamics with input u, to
obtain a region R�. We finally decompose R� into invariant
regions, to obtain the successor regions of R. The algorithm
basically does a depth-first-search of this implicit graph. The
regions computed are considered for further exploration only
if they do not collide with obstacles in the environment, and
only those portions of the regions are retained that have not
reached the target. The algorithm terminates when there are
no more regions to explore or a collision is detected.

The procedure is summarized in Algorithm 1. Let us fix
a vehicle V = (C,N ,M, τ), scene E, initial region I and
target region T , for rest of this section. Given a region R, a
decomposition of R into image-invariant pairs is the set of
pairs (Im, R1) where R1 is a non-empty set of points p in
R such that imgC(E, p) = Im. This is done as follows. The
solver is used to generate a position p in the given region
R, and a polyhedral library is used to generate constraints
corresponding to the invariant region R1 at that position. The
negation of the invariant region R1 is added to the solver
constraint set, and the solver is asked for a new camera
position p from the region R. This process continues until
all images in the given region R are generated.

For a region R and a control input u, we compute the post
and pre with respect to the dynamics as follows:

PostV (R, u) = {ζ + τ · u | ζ ∈ R},
PreV (R, u) = {ζ − τ · u | ζ ∈ R}.

Algorithm 1 CheckSafety
Require: Autonomous Vehicle V , Environment E, Initial Region I ,

Target Region T
Ensure: SAFE if all trajectories of V starting from I in E are safe;

UNSAFE otherwise.
1: return CHECKSAFETYDFS(I)
2:
3: function CHECKSAFETYDFS(R)
4: Compute the invariant decomposition D of R
5: for each (Im, R1) in D do
6: [u,R2, H] := ComputeTrajectory(Im, R1, V)
7: if (H intersects with E) then
8: return UNSAFE
9: else if (R2 \ T is non-empty) then

10: CHECKSAFETYDFS(R2 \ T)
11: end if
12: end for
13: return SAFE
14: end function
15:
16: function COMPUTETRAJECTORY(Im, R, V)
17: u := M · fN (Im)
18: R� := PostV (R, u)
19: H := convex hull of R and R�

20: return [u,R�, H]
21: end function

Theorem 2. Algorithm CheckSafety returns SAFE iff all
trajectories of V starting from I in E are safe, and returns
UNSAFE otherwise.

8

Proof. We first argue that the procedure terminates. We can
view the procedure as starting with an initial worklist compris-
ing the invariant regions constituting I , and then repeatedly
removing a region R from this worklist, and adding its
successor regions to the worklist. Let us associate a positive
real number d(R) with each region R in the worklist, as the
maximum distance of a point in R from T . Then each time
we remove a region R and add its successor R� to the list,
by the progressiveness assumption on the vehicle dynamics,
it follows that d(R�) < d(R). Now by an argument similar
to the one for termination of Smullyan’s ball game in [12],
it follows that the worklist must become empty (or we return
with a collision).

For the correctness part, suppose there is an unsafe tra-
jectory ρ of V in E starting from I . Then it is easy to
see (by induction) that there is a sequence of successive
invariant regions, with each one containing the respective
point from ρ. It follows that when the algorithm explores
this sequence of regions it will find a collision and return
UNSAFE. Conversely, suppose the procedure finds a sequence
of regions that lead to a collision and returns UNSAFE. Since
each region visited by the procedure can be seen to contain
only points that are reachable by some trajectory from a
point in I , it follows that the vehicle must have a colliding
trajectory.

In Section VI we present another version of this algorithm
which is directed towards finding collisions.

B. Abstraction-Based Safety Verification

The CheckSafety algorithm does a brute-force exploration
of the closed-loop system’s statespace and the number of
invariant regions visited grows exponentially with the number
of steps taken. A possible approach to alleviate this is to group
together invariant regions that result in the same controller out-
puts (even though the images seen in them may be different),
and to propagate them together, by first taking their convex
hull. This technique would thus overapproximate the set of
reachable states. In particular if we find a collision, we need
to check if the collision is actually possible or is it spurious
because of our overapproximation.

Algorithm 2 shows our abstraction-based algorithm called
AbstractCheckSafety. The algorithm implicitly explores a suc-
cessor graph in a similar way to the CheckSafety algorithm,
except that the nodes of the graph here comprise groups
of invariant regions, and the one-step successor of a group
G is obtained as follows: We first take the convex hull H
of the regions in G, propagate it according to the common
control output u to obtain a region H �. We now decompose
H � into invariant regions and group them together into groups
G�

1, G
�
2, . . ., and add each of these as successor groups for G.

As before, while propagating the hull R1 of a group G
we check if its sweep intersects with a triangle from the
given scene. If it does, we need to check whether it is a real
collision or a spurious one. This is done in Lines 11–19 of
the algorithm as follows. For each invaraint region (Im�, R�)
in G, we check if its forward propagation intersects with a
triangle in the given scene. If it does, we compute the portion

R�� of R� whose post image intersects the scene. We now call
the CHECKREACH function to check if R�� is reachable from
a point in the initial region I , via the sequence of groups that
led us to G. If CHECKREACH returns TRUE we have found
a true collision and return UNSAFE; if not, we proceed with
the search from G.

Algorithm 2 AbstractCheckSafety
Require: Autonomous Vehicle V , Environment E, Initial Region I ,

Target Region T
Ensure: SAFE if all trajectories of V starting from I in E are safe;

UNSAFE otherwise.
1: Stack S := {}
2: Compute the invariant decomposition D of I
3: G := GroupRegions(D)
4: Push each G ∈ G to S
5: while S is not empty do
6: Pop a group G from S
7: R1 := ConvexHull (G)
8: Let (Im, R) ∈ G for some R.
9: [u,R2, H] := COMPUTETRAJECTORY(Im, R1, V)

10: if (H intersects with E) then
11: for each (Im�, R�) ∈ G do
12: [u,R3, H

�] := COMPUTETRAJECTORY(Im, R�, V)
13: if H � intersects with E then
14: R�� = {w|w ∈ R� ∧ PostV (w, u) intersects E}
15: if CHECKREACH(G,R��, I, V) then
16: return UNSAFE
17: end if
18: end if
19: end for
20: end if
21: if R2\T not empty then
22: Compute the invariant decomposition D of R2\T
23: Compute G := GroupRegions(D)
24: Push each G ∈ G to S
25: end if
26: end while
27: return SAFE
28:
29: function CHECKREACH(G,R, I, V)
30: Compute Gp := PreviousGroup(G)
31: Compute up := ControlInput(Gp)
32: Compute R2 := PreV (R, up)
33: for each (Im, R1) ∈ Gp do
34: if R1 intersects with R2 then
35: if R1 ⊆ I then
36: return TRUE
37: else
38: if CHECKREACH(Gp, R1 ∩R2, I , V) then
39: return TRUE
40: end if
41: end if
42: end if
43: end for
44: return FALSE
45: end function

The algorithm uses the following helper functions. The
GroupRegions(D) function partitions D into groups such
that (Im1, R1) ∈ D and (Im2, R2) ∈ D are in same group
if and only if fN (Im1) = fN (Im2). The ConvexHull (G)
function computes the convex hull of regions in the group
G. We keep track of all the regions in a path and the
PreviousGroup(G) function returns the group whose post
region contains G. The ControlInput(Gp) function returns

9

R1
H1

R2I

t

R3

R4

H3

Fig. 10. Illustrating the AbstractCheckSafety algorithm

M · fN (Im) st (Im, R1) ∈ Gp and R is in PostV (R1, up).
Fig. 10 illustrates the idea of the AbstractCheckSafety algo-

rithm. Let us say the initial region I is decomposed into four
regions including R1 and R2 which form one group G1, while
the other two regions form another group G2. We first form the
convex hulls H1 and H2 around G1 and G2 respectively. Let us
say we choose to propagate H1 to get the dashed region shown
to the right of the figure, and suppose its region decomposition
yielded R3 and R4 as one group G3. We now take the hull
H3 of G3 and propagate it to get the dashed region shown on
the top of the figure.

Suppose that this propagation resulted in a collision with
the triangle t in the scene. We now need to check whether
this is a real collision or a spurious one. To do this we check
if the propagation of either R3 or R4 (the two regions in
the group G3) results in a collision with t. Let us say R4

resulted in a collision. We then compute the portion of R4

which collides with t, say R, and ask if R is reachable from
some point in I (this is done by the call CHECKREACH(R).
This procedure backtracks to the previous group of G3, namely
G1, and checks if any of the regions R1 or R2 in G1 can
reach R. In this case it finds that none of them can reach
R, and since this is an initial group, it returns saying that R
was not reachable by this sequence of groups. On the other
hand, if R3 was the region in G3 which collided with t, then
CHECKREACH would find that R1 can reach this part of R3

and return saying that it is reachable from a point in the initial
region I . The algorithm would then return UNSAFE.

Theorem 3. The AbstractCheckSafety algorithm returns SAFE
iff all trajectories of V in E, starting from a position in I , are
safe; and returns UNSAFE otherwise.

Proof. The proof of termination is similar to that of Algo-
rithm CheckSafety, where we associate a measure d(G) with
a group of invariant regions G as the maximum distance
of points in a region of G from the target region T . For
correctness, we first argue correctness of the CHECKREACH
procedure which checks whether a region R is reachable
from a point in the initial region I , along a given path of
groups explored by the algorithm. This is not difficult to do

by induction on the number of steps in the path. Now let
us consider the case when there is an unsafe trajectory ρ of
V . Once again we can argue that there must be a sequence
of region groups traversed by our algorithm, that cover the
corresponding points along ρ. It then follows that we will find
a collision in Line 10, and go on to verify it as a true collision
using the call to CHECKREACH. Conversely, if our algorithm
reports UNSAFE, it must have found a true collision, once
again by the correctness of CHECKREACH.

VI. FALSIFICATION ALGORITHM

In this section we present a “prioritized” version of Algo-
rithm 1, which tries to find as many collisions as possible in a
given environment. It is a modification of Algorithm 1, where
we try to prioritize the search along paths which are more
likely to collide with obstacles in the environment.

For this, we first compute the invariant decomposition D of
the initial region I . For each pair (Im, R1) in D we compute
a priority which is a measure of the likelihood of a point in
region R1 to collide with obstacles in the environment. We
now have a choice of which region from D to propagate first.
For this, we choose the region which has the highest priority as
computed above and proceed similarly as in the CheckSafety
algorithm (Algorithm 1) using a depth-first search (DFS)..
Unlike Algorithm 1, whenever we encounter a collision, we
record it and continue our search on the remaining state space.

The priority for a pair (Im, R1) is computed based on the
environment and the DNN output for the image Im. More
precisely, we first assign a potential (or “heat map”) to the
environment in such a manner that the obstacles of interest are
regions of high potential. We do this by first identifying the
“obstacles” in the environment which are essentially triangles
in the scene that are between the initial and target regions. To
compute the potential at a point p, we first identify obstacles
that are “close” to p. We compute the distances from p to these
obstacles, say d1, d2, . . . , dn. The potential at p is taken to be
the sum of 1/d1 to 1/dn. The gradient of the potential map is
obtained by taking the partial derivative of the expression for
the potential, along the x, y, and z-directions. This results in a
vector field Pot such that for any point p in our environment,
Pot(p) points towards the obstacles in the environment. Given
a pair (Im, R1), we first choose a point p in R1. The priority
of (Im, R1) is a measure of how close the DNN output of Im,
say u, is to the vector Pot(p), using the angle between the
DNN output and Pot(p). More precisely we set the priority
of (Im, R1) to be cos θ, where θ is the angle between the
vectors u and Pot(p). This is computed using the formula
cos θ = (u ·Pot(p))/(|u||Pot(p)|). Our falsification algorithm
FindCollisions is given in Algorithm 3.

VII. IMPLEMENTATION

We have implemented the three algorithms described in
the previous section in a tool called AIRVERIF. Fig. 11
shows a schematic of the workflow within AIRVERIF for the
AbstractCheckSafety algorithm.

Environments are designed using Blender v2.83 [11], an
open-source 3D CG software toolset. Blender’s triangulation

10

Z3PPL

C
o

n
stra

in
ts

Image Positions

Im
a

g
e

P
o

sitio
n

region
Initial

Directions

Images

Im
a

g
es

Images

PPL

Im
a

g
e

In
va

ri
a

n
t

R
eg

io
n

Yes

Report Collision

No

Post Region

Im
a

g
e

P
o

si
ti

o
n

G
ro

u
p

R
eg

io
n

s

R
eg

io
n

s
G

ro
u

p

Compute

Target Region

Environment
Design

(Blender)

3D Scene

Generate

Invariant

Regions

Render
Image

Neural
Network

Group
Images

Collision

Check

(Z3)

Subtract
Target

Post Region

Dynamics

Vehicle
Trajectory

(PPL)
Traject Hull

(Z3,PPL)

Po
st

R
eg

io
n’

Fig. 11. Schematic of workflow in AIRVERIF for the AbstractCheckSafety algorithm.

Algorithm 3 FindCollisions
Require: Autonomous Vehicle V , Environment E, Initial Region I ,

Target Region T
1: Stack S := {}
2: n := 0 // Initialize number of collisions to 0
3: FINDCOLLISIONS(I)
4:
5: function FINDCOLLISIONS(R)
6: Compute the invariant decomposition D of R
7: Compute priority of regions in D
8: Push regions of D to S in ascending order of priority
9: while S is not empty do

10: Pop a pair (Im, R1) from S
11: [u,R2, H] := COMPUTETRAJECTORY(Im, R1, V)
12: if H intersects with E then
13: n := n+ 1
14: end if
15: if ((R2 \ T) �= ∅) then
16: FINDCOLLISIONS(R2 \ T)
17: end if
18: end while
19: return Number of collisions found: n
20: end function

modifier is used to convert the environments in Blender format
to the corresponding set of triangles, and the vertex coordinates
are retrieved using Blender’s Python API.

We used the Z3 solver [13] to check satisfiability and to find
solutions to constraints. AIRVERIF also uses the Parma Poly-
hedral Library (PPL) [14] to generate and process constraints
representing invariant regions. PPL contains a set of numerical
abstractions for analyzing and verifying hardware and software
systems. These abstractions include convex polyhedra, defined
as the intersection of a finite number of (open or closed)
halfspaces, each described by a linear inequality (strict or non-
strict) with rational coefficients.

The vertex coordinates and the constraints representing the
initial region are input to the tool. The Generate Invariant
Regions module partitions the initial region into invariant
regions using the Z3 solver to generate a position in the
given region, and the PPL module to generate constraints

corresponding to the invariant region at that position.
The Render Image module takes a position and renders the

image seen from that position. The Neural Network module
takes these images and outputs the control directions. The
images are grouped together based on their neural network
output and PPL is used to generate a convex hull of the
invariant regions in a group. The Vehicle Dynamics module
takes a group of regions as input and generates the post region
according to the region’s neural network output and the vehicle
dynamics.

The Collision Check module’s input is the convex hull of
the image group region and corresponding post region. This
module checks intersection between the convex hull region
and obstacle regions. The program terminates if there is a
valid collision. If the collision check passes, the post region
is passed to the Target Subtract module, which computes the
difference between the target region and the post region and
passes the result to the invariant region generation module.
This loop continues until all the paths from the initial region
reach the target region or a collision occurs.

VIII. EXPERIMENTAL EVALUATION

In this section, we describe our experimental set up, in-
cluding the autonomous drone case study, and the results of
evaluating our verification and falsification algorithms in the
context of this case study.

A. Autonomous Drone Case Study

The verification and falsification algorithms implemented
in AIRVERIF will be evaluated on an autonomous quadcoptor
(drone) navigating along a road with obstacles [9]. The case
study consists of a Parrot Bebop 2 quadcopter with an Odroid
XU4 board implemented with a “road-following” algorithm
that uses a camera as a perception sensor at a sampling period
of approximately 33 ms, and a neural network that classifies
images and outputs one of the control directives Turn-Left, Go-
Straight, or Turn-Right. The commands are then transformed
into an input to the quadcopter motors. The neural network

11

49x49x3
m

ax
p
o
o
l/

2

m
ax

p
o
o
l/

2

m
ax

p
o
o
l/

2

co
n
v
1

co
n
v
2

co
n
v
3

C
o

n
n

ec
te

d
1

C
o

n
n

ec
te

d
2

F
u

ll
y

so
ft

m
ax

F
u

ll
y

49× 3× 3 32× 4× 4 32× 3× 3 200 3

Fig. 12. CNN used in the autonomous quadcopter.

controller was trained on several images of roads, and the
vehicle was successfully flown on several roads.

We now provide some more details of each of the vehicle’s
modules. The camera mounted on the quadcopter has a focal
length l of 35 mm, canvas width and height cw = 0.9872 in
and ch = 0.735 in, and width and height in pixels cwp = 49
and chp = 49. The neural network takes RGB images of
size 49×49 from the camera module and outputs control
commands consisting of Turn-Left, Go-Straight, and Turn-
Right. The neural network has five layers beginning with three
convolutional layers, followed by two fully connected layers
and ending with a softmax layer as shown in Fig. 12.

We use a simplified version of the quadcoptor’s dynam-
ics, by assuming the commands Turn-Left, Go-Straight and
Turn-Right are transformed to the control input u using the
following controller transformation matrix.

M =

− sin θ 0 sin θ

0 0 0
cos θ 1 cos θ

where θ = 30°.

B. Experiments and Results

We analysed this autonomous vehicle model using our
safety checking and falsification algorithms, on a variety of
3D-scenes depicting a road and tree-like obstacles. Fig. 13 and
Fig. 14 show the different environments, which contain scenes
ranging from 24 vertices, 36 edges, and 16 triangles (env1) to
786 vertices, 786 edges, and 286 triangles (env8). Each of
these scenes contain obstacles ranging from the periphery of
the road to the center of the road.

The following two subsections explain our evaluation results
for the verification and falsification algorithms separately. The
results are summarized in Table II and Table III. Column
“#Edges” in the tables indicates the number of edges in the
environment. Column “I” indicates the initial regions used.
These are typically 1cm-cubes, with the coordinates of the
bottom left corner of the front face of the cube given in Table I.
The target region is all points whose z-coordinate value is less
than 9.5 m from the initial region (the vehicle moves in the
negative z-direction). All experiments were conducted on a
machine with an Intel(R) Core(TM) i7-8700 3.20 GHz CPU
and 64GB RAM.

1) Verification: The CheckSafety algorithm runs with a
timeout of 30 min, and the AbstractCheckSafety algorithm runs
without any timeout. The CheckSafety algorithm proved safety
for environments with a small number of edges, and even
though it timed out for environments with large number of
triangles, it could still prove several paths from the initial

(a) env1 (b) env2 (c) env3

(d) env4 (e) env5 (f) env6

(g) env7 (h) env8 (i) env9

(j) env10 (k) env11 (l) env12

(m) env18 (n) env19
Fig. 13. Environments used. Images captured with the camera C0 at position
(1, 4.5, 200).

(a) env13 (b) env14 (c) env15

(d) env16 (e) env17
Fig. 14. Environments used. Images captured with the camera C1 =
(0.035m, 0.02507488m, 0.018669m, 128, 96) at position (1, 4.5, 200).

12

TABLE I
INITIAL REGIONS

Initial Region Bottom Left Corner Volume
I1 0.1, 4.45, 194.5 1.00 cm3

I2 -0.95, 4.45, 194.5 1.00 cm3

I3 2.5, 4.45, 194.5 1.00 cm3

I4 0.1, 4.45, 194.5 0.25 cm3

region to the target region to be safe. The number of paths it
found before concluding safety or finding a violation is given
in the fourth column of Table II along with the time it takes to
make a decision. Environments on which it times out, that is, it
is not able to conclude safety or find violation, have a “-” entry.
For some environments, the CheckSafety algorithm in fact
finds collisions faster than the AbstractCheckSafety algorithm,
the reason being that the former generates a single image
from the initial region and propagates it toward the target
region, whereas the abstraction based algorithm generates all
the images in each region before moving to the next step.

The AbstractCheckSafety algorithm successfully completed
(either proved safety or found a collision) on all the considered
environments. As can be seen, the time to prove safety grad-
ually increases with the number of edges in the environment.
The Z3 solver to which AIRVERIF makes calls to generate
images iteratively for a region is given a timeout of 3 min
per call. For example, for env8 and initial region I3, the
solver timed out while trying to generate the complete set of
images corresponding to the region. In such cases, we proceed
with the partial set of generated images, find corresponding
invariant regions and propagate them to the next step. Note
that even in this case, a collision found is indeed valid. If
the forward propagation with the partial set of images does
not find a collision, we partition the initial region into smaller
regions and restart the algorithm from each of the smaller
regions, with the hope to conclude safety on some subset of the
original initial region. For example, in env8, the solver timed
out on initial region I1, so we partitioned the initial region into
smaller regions and reran the program on these sub-regions;
the time to prove safety of a smaller 0.5×0.5×1 cm cuboid
region I4, is reported in the table.

The results show that abstraction-based techniques are likely
to be effective in helping the basic algorithm scale to more
complex environments.

2) Falsification: We ran our FindCollisions algorithm on
several example environments with obstacles of varying sizes,
and compared it against a simulation algorithm that uses
prioritization but does not compute invariant regions. The goal
of these experiments was to see whether invariant regions
provide any advantage in finding collisions over a simple
random simulation based algorithm.

The simulation algorithm works as follows. We divide
the initial region into several smaller regions, chose a point
uniformly at random inside each of these smaller regions,
compute the priority of each of these points similar to the
FindCollisions algorithm (Sec. VI), arrange them in descend-
ing order of priority, and then propagate each of them forward
until a collision is found or the target region is reached.

TABLE II
SAFETY CHECKING

CheckSafety AbstractCheckSafety
Env #Edges I Time (#Paths) Safe Time Safe
env1 36 I1 0m 54s (All) Yes 2m 58s Yes
env2 39 I2 0m 13s (1) No 0m 50s No
env3 39 I1 3m 42s (All) Yes 3m 15s Yes
env4 66 I1 30 m 0s (86) - 4m 0s Yes
env5 186 I1 30m 0s(47) - 18m 16s Yes
env6 336 I1 30m 0s(53) - 17m 18s Yes
env7 636 I1 30m 0s(15) - 27m 38s Yes

env8 786 I4 30m 0s(9) - 16m 0s Yes
I3 1m 9s (1) No 45m 20s+ No

env9 100 I1 30m 0s(24) - 3m 45s Yes
env10 100 I1 30m 0s(30) - 5m 9s Yes
env11 310 I1 30m 0s(42) - 16m 0s Yes
env12 313 I1 30m 0s(38) - 40m 9s Yes
env13 42 I1 0m 6s (1) No 0m 32s No
env14 51 I1 0m 7s (1) No 0m 50s No
env15 57 I1 0m 4s (1) No 0m 57s No
env16 78 I1 5m 34s (16) No 1m 3s No
env17 171 I1 3m 10s (12) No 2m 50s No

The results are reported in Table III. Columns “1st Coll”
report the time taken to find the first collision in the simula-
tion and FindCollisions algorithms respectively. A ‘-’ entry
indicates that the algorithm found no collisions in 30 min.
Columns “Tot Coll” report the total number of collisions
discovered by the algorithms in 30 min.

We observed that for these environments with very few
collisions, the falsification algorithm performed significantly
better than the simulation algorithm, even though both were
prioritized to detect collisions. Due to the low chance of a path
colliding with environment obstacles, the simulation algorithm
was unable to detect any collisions with the environment.
On the other hand, the falsification algorithm was able to
detect these collisions because it propagates entire invariant
regions. For environments with larger number of collisions
(env18 and env19), the simulation algorithm detected much
more collisions in 30 min as compared to the falsification
algorithm. We also observed that the falsification algorithm
always found a collision in the first path it explored, indicating
that the combination of prioritization with invariant regions is
effective.

We also compared the falsification algorithm with our
CheckSafety algorithm. We observe that in several cases the
CheckSafety algorithm finds the first collision quicker. This
is because the CheckSafety algorithm does not generate all
images in a region before propagating. Hence, if it finds a
collision in the first path it explores, it performs better than the
FindCollisions algorithm. However, as we can see from env16,
when the CheckSafety algorithm has to explore several paths
before detecting the collision, the FindCollisions algorithm
performs significantly better.

IX. DISCUSSION

In this section we discuss the challenges faced by the current
algorithm and how we could relax some of the assumptions
made.

13

TABLE III
FindCollisions VS SIMULATION

Simulation FindCollisions
Env #Edges I 1st Coll Tot Coll 1st Coll Tot Coll
env2 39 I2 - - 291 s 1
env8 786 I3 - - 709 s 3
env13 42 I1 - - 27 s 4
env14 51 I1 - - 141 s 6
env15 57 I1 - - 88 s 12
env16 78 I1 - - 55 s 7
env17 171 I1 - - 273 s 3
env18 186 I3 1 s 23 357 s 8
env19 45 I1 1 s 15 97 s 3

a) Scalability: Scalability is clearly a major challenge
for our verification algorithm. The factors contributing to
time taken include the size of the initial region, and the
complexity of the given 3D-scene in terms of the number of
vertices and edges present, which impacts the solver’s ability
to generate new invariant regions. Abstraction techniques
are a promising way forward, and our AbstractCheckSafety
algorithm demonstrates the potential benefits. However our
abstraction algorithm still requires us to generate all the
invariant regions, which impacts scalability. Instead, it would
be interesting to investigate the use of abstract image represen-
tations (like “interval” images) in conjunction with techniques
like [15], [16] for abstractly interpreting neural networks on
these images.

b) Availability of Triangulations: We are using a syn-
thetic model of the 3D environment where all objects are repre-
sented using triangle meshes. We can create triangulated mod-
els of real environments using urban reconstruction methods
(see [17] for a comprehensive overview of these techniques).
In this way we can build triangulated models of test tracks
and do our analysis on the generated synthetic environment.

c) Camera Orientation: For simplicity we have assumed
that the autonomous vehicle has a fixed orientation along the
negative z-axis of world space. Since the camera is mounted
on the vehicle, it will have the same orientation as the vehicle.
In the camera model section, we use the function to con-
vert a vertex from world-coordinates to camera coordinates.
To handle a dynamic orientation of the vehicle, our system
state will now need to be a six-dimensional vector, with the
first three components representing the vehicle’s position in
world coordinates, and the last three components representing
the vehicle’s orientation, i.e., angles relative to the world coor-
dinate axes. Our world-to-camera conversion function WtoC
can be easily extended to consider the orientation by using the
standard 4× 4 geometric transformation matrix (see [18]).

We will also need to update the invariant region computation
to take into account the vehicle’s orientation. Initially we have
a given orientation, and each time we move the vehicle left
or right, the orientation will change according to the vehicle
dynamics. If we assume that the change in orientation in a
single time step does not depend on the position of the vehicle,
then each invariant region will have a common orientation.
We can now compute invariant regions similar to what we do
in the invariant region section, with a slight modification in
the world-to-camera conversion which considers the camera’s

orientation.
d) Vehicle Dynamics: Even though we consider a sim-

ple dynamics in our experiments, our algorithm extends to
systems with general linear or non-linear dynamics. We can
use standard approximation techniques to get a safe over-ap-
proximation of the position of the vehicle at each sampling
step. We can then consider this approximate region as the one
step successor and partition it into invariant regions. The rest
of the algorithm will remain the same.

X. RELATED WORK

We discuss related work under verification, testing and
simulation based approaches.

a) Verification: Among verification approaches, the most
closely related are that of O’Kelly et al [7] and Sun et al [8],
both of which consider the problem of verifying safety in a
given environment. O’Kelly et al [7] consider dynamic objects
like other vehicles and pedestrians, and make use of testing
and verification tools S-TaLiRo [19] and dReach [20] to carry
out their analysis. However they don’t handle camera sensors,
and their scenes are not generic 3D-scenes.

Sun et al [8] give an abstraction based technique to verify
lidar-based vehicles in a given 2D-scene. To handle the non-
linearity of the lidar readings w.r.t. the vehicle positions
they use a partitioning of vehicle space into “image-adapted”
regions in which the lidar image can be described by affine
constraints. They abstract the overall system (including the
neural network) and check feasibility of transitions between
abstract regions using an SMC solver. Our work differs in
several ways. The lidar image is continuous function of the
position of vehicle, while the camera image is a discrete
function of the position of the vehicle; and we exploit the latter
property. Our invariant regions guarantee a common output
from the neural network, and this lets us avoid reasoning
about the neural network which can be expensive due to its
non-linearity and size. Further (with some assumptions on the
vehicle dynamics), our approach gives a decision procedure
while theirs is an abstraction-refinement approach with no
guarantee of termination. Finally, we consider 3D-scenes while
they consider only 2D-scenes.

Ivanov et al [21] present a verification case study in which
an autonomous racing car with a NN controller navigates
a structured environment using LiDAR measurements only.
They encode the neural network with sigmoid/tanh activation
functions as a hybrid system and compose it along with the
plant’s hybrid system, and verify properties using the Flow∗

tool. This method can only handle networks with a small
number of inputs and nodes. The paper also presents results
that compare real-world systems and the simulation model,
showing that real-world behavior can also be captured in the
simulation. In contrast our work exploits the properties of
camera image generation to solve the reach-avoid verification
problem.

Corsi et al. [22] introduce a novel approach based on in-
terval algebra to verify the behavioral properties of a neural
network controller defined over a large input space. The idea is
to divide the input domain intervals iteratively (by exploiting

14

matrix operations) and check each sub-interval for property vi-
olation. The tool’s output is a percentage of the neural network
input area that violated the property. This work specifically
looks for property violation of the neural network component,
which can help train a safe neural network.

b) Directed Testing: In directed testing for finding bugs,
Dreossi et al [23] consider the setting of an vehicle with
ML components (like neural network controllers based on
camera sensor inputs), and suggest the idea of compositionally
analyzing the vehicle abstract model and machine learning
components, to come up with a sequence of inputs that violate
a given Signal Temporal Logic (STL) specification. In a
similar setting, Zhang et al [24] give an optimization-based
technique for falsification of STL properties of a hybrid system
model. Unlike our setting, these works don’t have a given 3D-
scene, and are free to use images/inputs from a pre-specified
set U , to drive the system to violate the given specification.
Tuncali et al [6] consider the falsification of STL properties
in a camera-based perception setting with a 3D environment
similar to ours. They use the S-TaLiRo tool to find a trajectory
that optimizes a cost-function. In contrast to our work, they
do not benefit from using invariant regions and cannot verify
safety.

c) Testing and Simulation: The DeepTest tool [4] focuses
on testing of DNN models used by camera-based self-driving
cars. Their aim is to generate test inputs that provide good
neuron-coverage, using changing of contrast, brightness, blur-
ring, and rotation of images. In a similar setting, DeepRoad
[5] focuses on generating realistic transformations of driving
scenes. In contrast, in our setting we have a fixed environment,
and no leeway to transform images seen.

The VerifAI software toolkit [25] focuses on simulation-
based verification of AI-based cyber-physical systems, where
one is given a closed-loop system including its environment
in form of a dynamic 3D-scene specified in Scenic [26]. The
toolkit includes various kinds of analysis on the model, like
temporal logic based falsification, fuzz testing, and parameter
synthesis. However, unlike our technique, it cannot prove
safety of the system, and its falsication technique does not
exploit invariant regions.

Finally, AirSim [2] and LGSVL [3] simulate the flight
of autonomous drones and autononmous vehicles in a given
synthetic 3D-scene. While these are useful tools for testing and
visualization, they do not provide any verification guarantees.

XI. CONCLUSION AND FUTURE WORK

In this paper, we have given effective procedures for rea-
soning about the safe trajectory of camera-based autonomous
vehicles in given 3D-scenes, based on the notion of image-
invariant regions. Our initial experiments are encouraging
and point towards the benefits of effective abstraction-based
techniques.

There are several interesting directions going ahead. Apart
from investigating other abstraction techniques mentioned
earlier, we would like to consider more realistic dynamics,
again with the help of abstraction techniques. Finally, it would
also be interesting to consider dynamic environments in which
obstacles are moving, and extend our techniques to this setting.

REFERENCES

[1] D. J. Fremont, E. Kim, Y. V. Pant, S. A. Seshia, A. Acharya, X. Bruso,
P. Wells, S. Lemke, Q. Lu, and S. Mehta, “Formal scenario-based testing
of autonomous vehicles: From simulation to the real world,” in 23rd Intl.
Conf. Intelligent Transportation Systems (ITSC 2020), Rhodes, Greece.
IEEE, 2020, pp. 1–8.

[2] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles,” in Res.
11th Intl. Conf. on Field and Service Robotics (FSR 2017), Zurich,
Switzerland. Springer, 2017, pp. 621–635.

[3] LG Electronics America R&D Lab, “SVL Simulator,” https://www.
svlsimulator.com/, last accessed: 2022-06-07.

[4] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated Testing
of Deep-Neural-Network-Driven Autonomous Cars,” in Proc. 40th Intl.
Conf. on Software Engineering (ICSE 2018), Gothenburg, Sweden.
ACM, 2018, pp. 303–314.

[5] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad:
GAN-Based Metamorphic Testing and Input Validation Framework for
Autonomous Driving Systems,” in Proc. 33rd ACM/IEEE Intl. Conf.
on Automated Software Engineering (ASE 2018), Montpellier, France.
ACM, 2018, pp. 132–142.

[6] C. E. Tuncali, G. E. Fainekos, H. Ito, and J. Kapinski, “Sim-ATAV:
Simulation-Based Adversarial Testing Framework for Autonomous Ve-
hicles,” in Proc. 21st Intl. Conf. on Hybrid Systems: Computation and
Control (HSCC 2018), Porto, Portugal, 2018, pp. 283–284.

[7] M. O’Kelly, H. Abbas, and R. Mangharam, “Computer-Aided Design
for Safe Autonomous Vehicles,” U. Pennsylvania, Tech. Rep., May
2017. [Online]. Available: https://repository.upenn.edu/mlab papers/99

[8] X. Sun, H. Khedr, and Y. Shoukry, “Formal verification of neural
network controlled autonomous systems,” in Proc. 22nd ACM Intl. Conf.
on Hybrid Systems: Computation and Control (HSCC 2019), Montreal,
Canada, 2019, pp. 147–156.

[9] P. Prakash, C. Murti, J. S. Nath, and C. Bhattacharyya, “Optimizing
DNN Architectures for High Speed Autonomous Navigation in GPS
Denied Environments on Edge Devices,” in Proc. 16th Pac. Rim Intl.
Conf. on Artificial Intelligence (PRICAI 2019), Fiji, 2019, pp. 468–481.

[10] J.-C. Prunier, “Scratchapixel: An Overview of the Rasterization
Algorithm,” https://www.scratchapixel.com/lessons/3d-basic-rendering/
rasterization-practical-implementation, last accessed: 2020-09-28.

[11] Blender 3D Creation Suite, https://www.blender.org/, last accessed:
2022-03-08.

[12] M. Fitting, First-Order Logic and Automated Theorem Proving, Second
Edition, ser. Graduate Texts in Computer Science. Springer, 1996.

[13] L. M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
Proc. 14th Intl. Conf. Tools and Alg. Constr. Anal. Systems (TACAS).
Springer, 2008, pp. 337–340.

[14] R. Bagnara, P. M. Hill, and E. Zaffanella, “The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems,” Sci. Comput. Program.,
vol. 72, no. 1–2, pp. 3–21, 1 June 2008.

[15] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. T. Vechev, “AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation,” in Proc. IEEE Symp. Security
and Privacy (SP 2018), San Francisco, USA, 2018, pp. 3–18.

[16] G. Singh, T. Gehr, M. Püschel, and M. T. Vechev, “An abstract domain
for certifying neural networks,” PACMPL, vol. 3, no. POPL, pp. 41:1–
41:30, 2019.

[17] P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. Van Gool,
and W. Purgathofer, “A survey of urban reconstruction,” in Computer
graphics forum, vol. 32, no. 6. Wiley Online Library, 2013, pp. 146–
177.

[18] J.-C. Prunier, “Mathematics of computing the 2D coordinates
of a 3D point,” https://www.scratchapixel.com/lessons/
3d-basic-rendering/computing-pixel-coordinates-of-3d-point/
mathematics-computing-2d-coordinates-of-3d-points.

[19] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems,”
in Proc. 17th Intl. Conf. Tools and Alg. Constr. Anal.s of Systems (TACAS
2011), Saarbrücken. Springer, 2011, pp. 254–257.

[20] S. Kong, S. Gao, W. Chen, and E. M. Clarke, “dReach: δ-Reachability
Analysis for Hybrid Systems,” in Proc. 21st Intl. Conf. Tools and Alg.
Constr. Anal. Systems (TACAS 2015), London. Springer, 2015, pp.
200–205.

[21] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and I. Lee,
“Case study: verifying the safety of an autonomous racing car with a

15

neural network controller,” in Proc. 23rd International Conference on
Hybrid Systems: Computation and Control (HSCC 2020), 2020, pp. 1–7.

[22] D. Corsi, E. Marchesini, and A. Farinelli, “Formal verification of neural
networks for safety-critical tasks in deep reinforcement learning,” in
Uncertainty in Artificial Intelligence. PMLR, 2021, pp. 333–343.

[23] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional Falsification of
Cyber-Physical Systems with Machine Learning Components,” in Proc.
9th NASA Formal Methods (NFM 2017), USA, 2017, pp. 357–372.

[24] Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini, and I. Hasuo, “Two-
Layered Falsification of Hybrid Systems Guided by Monte Carlo Tree
Search,” Trans. Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 37, no. 11, pp. 2894–2905, 2018.

[25] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh,
M. Vazquez-Chanlatte, and S. A. Seshia, “VerifAI: A Toolkit for the
Formal Design and Analysis of Artificial Intelligence-Based Systems,”
in Proc. 31st Intl. Conf. on Computer Aided Verification (CAV 2019),
New York City, USA, 2019, pp. 432–442.

[26] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: a language for scenario specifica-
tion and scene generation,” in Proc. 40th Conf. Programming Language
Design and Implementation (PLDI 2019), Phoenix, USA, June 22-26,
2019. ACM, 2019, pp. 63–78.

