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Abstract. This article gives an introduction to one kind of automata and logic connection
in the setting of terms, represented as trees. Automata process terms to accept term lan-
guages, and logical formulae define such languages. There is a close connection between the
formalisms. The article then proceeds to structures which are more general than trees, but
can be interpreted into trees. Automata continue to process terms, the logics can be used to
define languages of the general structures. A connection is maintained through a theory of
transductions. Finally the article generalizes terms to straight-line programs, which allow
shared processing by concurrent automata, while the logic defines partially ordered sets.
Here some connections have been obtained, but the picture is not complete.
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1. Introducing terms

Fix a finite signature Σ = (Σ0, . . . ,Σm,ΣAC) of finite sets of function symbols of arity 0
to m, m ≥ 0, as well as an additional set of function symbols ΣAC . At least Σ0 and Σm

are nonempty. Function symbols of arity 0 are called constants (a set of variables X will
sometimes be used), arity 1 symbols are unary, arity 2 symbols are binary, and so on. ΣAC is
a set of binary function symbols which are declared to be associative and commutative. Σ is
often equated with the set Σ0∪ · · ·∪Σm∪ΣAC . Abbreviations are Σ>0 = Σ1∪ . . .Σm∪ΣAC ,
Σ≥2 = Σ2 ∪ . . .Σm ∪ ΣAC and so on.

The set of all terms over Σ is written TΣ, or TΣ(X) when a set of variables X is used. Famil-
iar terms over an arithmetic signature are (a+b)2, and a2 +(2×a×b)+b2. The infix notation
assumes that +,× ∈ ΣAC are declared associative and commutative, and so is exponentia-
tion. With Add, T imes,Exp ∈ Σ2, they would not be assumed associative or commutative.
With constant 2 ∈ Σ0, variables a, b ∈ X, the first term would be written Exp(Add(a, b), 2)
and the second one would be written Add(Exp(a, 2), Add(Times(2, T imes(a, b)), Exp(b, 2))).

Thus a term is seen as a Σ-labelled tree t, with its domain a prefix-closed set of nodes,
say dom(t) ⊆ N∗, such that a node labelled by Σi, i = 0,m, has i successor (child) nodes, a
node labelled by ΣAC has at least 2 children. When ΣAC is empty, m = 1 and there is one
constant, the unary terms are called words. A set of terms is called a term language.

I thank Paritosh Pandya, Deepak D’Souza and the Calcutta Logic Circle for providing me opportunities
to lecture on some of the material for this article. I thank the referee and the editors for allowing me space
for clarity.
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The tree structure (dom(t), { ◦ n | n ∈ N}, {f( ) | f ∈ Σ}) is given by the tree nodes,
concatenating a node by a number to form a child and monadic predicates indicating the
node label from Σ. We denote the child relations by S1, . . . , Sm or just their union, S. At
each node, the monadic predicate corresponding to the Σ-label at that position holds, and no
other. The descendant relation S∗ is abbreviated desc. Its converse is the ancestor relation
anc. A node with a label from ΣAC can have any finite number of children (at least two),
which are unordered. Otherwise the arity of the symbol determines the number of children
the node has, and they are ordered.

To say it differently, Exp(Add(a, b), 2) is a tree with some node labels. 2, a, b, Add,Exp
have no meaning, they are symbols. In the definition above the natural numbers are used
just to index positions in the tree. Why? As shall be seen later in this article, one can
model things which are very different from arithmetic, and where discussion of reasoning
and computation makes sense. Addition will be used in a restricted way to count nodes in
the tree. This abstract view of terms started from the work of the logician Gottlob Frege
in 1879, and was significantly developed by Jacques Herbrand and Kurt Gödel in the
1930s.

In the term rewriting literature, the treatment of symbols with associativity and com-
mutativity properties is important. See for instance the work of Deepak Kapur and
G. Sivakumar on their Rewrite Rule Laboratory. It appears that the first use of a sig-
nature with mixed associativity and commutativity properties in an automata context was
in papers by Lodaya and Pascal Weil around 2000, which dealt with structures more
general than trees: series-parallel posets, which will be seen later in this article.

1.1. Outline. The purpose of this article is to give an introduction to an automata-logic
connection in the setting of terms, requiring trees as well as structures which are more
general than trees. While the results on these structures are discussed, the article mostly
concentrates its explanations on trees.

The term rewriting community within mathematical logic and computer science has known
these connections for decades. For instance an online textbook is maintained by the Tata
group. Wolfgang Thomas has some nice course notes on the subject. Other textbooks are
by Franz Baader and Tobias Nipkow, and by the Terese group. There is excellent
tool support on the logical side, of the Mona tool for monadic second-order (MSO) logic
by Nils Klarlund, Anders Møller and Michael Schwartzbach, and the DCvalid
tool for interval logic developed by Paritosh Pandya around 2001.

Section 5 discusses some applications from natural language parsing. In computer science
it is more common to have examples from compilers or document languages like XML (for
instance, in Thomas’s notes). With developments in machine learning, natural language
processing has grown to be a big area in artificial intelligence. The approach here is a lot
more restricted. As in the work of Noam Chomsky and Joachim Lambek, there is no
attempt to go beyond syntactic structure.

Section 6 describes the theory of transductions, or functions from trees to trees. More
generally one can transduce a tree structure into a graph structure, more than one if the
transduction is a relation. There are few direct ideas of automata which work on structures
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more general than trees, so here logic provides a lead on how to reason about finite state
computation on these structures.

The last two sections consider poset structures. These require terms to be extended to
straight-line programs. The nets of Carl-Adam Petri play the role that the automata
play in earlier sections. The logic used is a significant enhancement of existential monadic
second-order logic with counting comparisons.

2. Predicates and logical formulae

A more systematic notation that programmers and computer scientists have come to
use is logical formulae. Here is an equality formula describing an arithmetic equivalence:
(a + b)2 = a2 + (2 × a × b) + b2. The formula a < b describes an arithmetic predicate, this
can also be denoted by the converse predicate, b > a.

This article works with formulae over trees. As we saw in the previous section, there is
a significant amount of abbreviation involved. The formula above is an abbreviation for
its parse tree, with nodes labelled from the ranked signature with Σ0 = {2, a, b}, Σ2 =
{Eq,Exp, T imes,Add}.

In our logic there are predicates of specified arity on tree positions, such as equality (of
tree positions), order, Si and desc from Section 1 above. Each element of the signature is
a unary predicate, intuitively 2( ) is true and Add( ) is false for tree nodes labelled by 2,
Add( ) is true and 2( ) is false for tree nodes labelled by Add, and so on. That these trees
have arithmetic significance is lost, our logic only sees them as trees.

These unary predicates are subsumed under tree formulae, they have constants true, false,
unary connective ¬ and binary connectives ∧,∨,⊕,⊃,≡. They include also formulae made
up using the quantifiers ∀xα and ∃xα. Inside the formula α occurrences of the variable x
get bound to the quantifier, perhaps to inner quantifiers if x is reused. Variables which are
not bound remain free. We will also use monadic second-order variables standing for sets
and quantify over them ∀Zα and ∃Zα, examples of their use are in the next section. Unary
label predicates f( ) also stand for sets, the positions on the tree which are labelled f , but
they cannot be quantified out.

Formulae with no free variables—that is, all variables occurring in the formula are bound
to quantifiers—are said to be closed. Usually boolean formulae will use terms of another
signature. ∀x∀y(¬(x < y) ∧¬(x > y) ⊃ x = y) is a closed formula with two universal quan-
tifiers over the arithmetic signature which, given an order predicate < between arithmetic
terms, expresses linearity of the order. One can ask whether a closed formula is valid : that
is, it holds over all structures, or if it is satisfiable: it holds over some structure.

Positions of variables in the tree are indicated by pointer functions like s = [x 7→ ε, y 7→ 21],
called “assignments” in logic textbooks—this one says that variable x maps to the root of
the tree, and y to its second child’s first child.

For the tree structure we inductively define the satisfaction relation t, s |= α specifying
that a tree t with assignment s for free variables, satisfies the formula α. Here is an example

3



z

z1 z2

!!!!!)
###=Si

?

lll~Sj

aaaaaq

x y

Figure 1. Going up to a least common ancestor

formula β with pointers to free variables z, x, x′, y, y′ indicated by underlining. There is also
a bound variable v.

f(g(. . . (a))), g′(. . . (a)))) |= (
∨

i=1,m−1

(Si(z, y) ∧ g(y) ∧ desc(y, x)∧∨
j=i+1,m

Sj(z, y
′) ∧ g′(y′) ∧ desc(y′, x′)))∧

f(z) ∧ leaf(x) ∧ a(x) ∧ leaf(x′) ∧ a(x′),

where leaf(x) ⇐⇒ ¬∃v(
∨
i=1,m

Si(x, v))

More precisely, since the underlining is ambiguous, we put the pointers into the tree, ex-
panding the alphabet to Σ × ℘(V ar1), where the variables V ar1 are those which appear in
the first-order formula, constrained to occur exactly once in the model.(

f
{z}

)
(

(
g
{y}

)
(

(
Σ>0

∅

)
. . . (

( a
{x}
)

))),

 g′

{y′}

 (

(
Σ>0

∅

)
. . . (

( a
{x′}

)
)))) |= β(z, x, x′, y, y′)

Position z in the tree having the letter (f, {x, y}) means that in addition to its having the
letter f , the variables x and y are assigned the position z. Quantifying out variables, we get
the formula precedes(x, x′) ⇐⇒ ∃z∃y∃y′β, expressing that the leaf x appears before the
leaf x′ in the frontier of the tree. In the model the variable alphabet shrinks.(

Σ≥2

∅

)
(

(
Σ>0

∅

)
(

(
Σ
∅

)
. . . (

(
Σ0

{x}

)
))),

(
Σ>0

∅

)
(

(
Σ
∅

)
. . . (

(
Σ0

{x′}

)
)))) |= precedes(x, x′)

A Σ-term becomes a model for a closed formula with no free variables. To express that the
frontier has no b before an a, for a, b ∈ Σ0, we have the closed formula:

∀x(a(x) ∧ leaf(x) ⊃ ¬∃y(b(y) ∧ leaf(y) ∧ precedes(x, y))

The set of terms which are finite models for a closed formula, is the language defined by that
formula. Such languages we call definable.

Exercise 1. Write a closed formula for the tree language TwoALeaves saying that there are
at least two a-labelled leaves. Write a formula root(x) with free variable x marking the root
of the tree. Write formulae firstf (x), lastf (x) which identify the leftmost and rightmost
occurrences of an f -labelled node in a tree, and nextf (x, y) which, given an f -labelled node
x, identifies the next f -labelled node y in a left-to-right traversal.
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2.1. Counting formulae. We have neglected to deal with the associative and commutative
signature ΣAC , clearly the previous formulae and exercise have no meaning for a node which
has unordered children. To deal with these we use a special child predicate S(x, φ) in our
tree formulae, where φ is a quantifier-free Presburger formula over the tree signature, using
“count” variables |Z|, Z a monadic second-order variable or unary predicate, and allowing
addition and comparison of these counts. For this formula the assignment of x should be
a ΣAC-labelled node and φ checks a property of the children of this node. For example,
the formula S(x, |a| + |b| = |c| + 1) says that the node assigned by x has c-children whose
number is just one below the sum of its a-children and its b-children. Here + is used inside
the second argument of the S predicate to count children of a tree node, it is not just a label
from the signature as we saw in an example in Section 1. Addition is allowed for counting,
but not multiplication.

These formulae are named after Mojżesz Presburger, a student of Alfred Tarski,
who gave a decision procedure for checking satisfiability and validity of such first-order
formulae in 1930. In the context of trees, formulae like these were used by Silvano Dal-
Zilio and Denis Lugiez in 2003. This logic is called PSMSO , monadic second-order logic
with Presburger successor constraints.

To summarize, a general signature of terms, with operations of various kinds, including
some being declared associative and commutative, has been introduced. These terms can
also be thought of as trees. Logical formulae specify properties of trees, including counting
properties of successors of a node. Checking a logical property of a tree amounts to checking
membership of a tree in a language. Checking satisfiability of a logical formula over a tree
signature amounts to checking nonemptiness of the associated language. This association
will be made effective in the next section, using an idea of computation by automata.

3. Homomorphisms as behaviour

Given a function h : Σ → Q, its homomorphic extension h# : TΣ → Q is given by
h#(f(t1, . . . , tn)) = h(f)(h#(t1), . . . , h#(tn)) for f ∈ Σn. We will sometimes denote h# also
as h. Thus Q becomes an algebra, endowed with term structure. In the special case when
the range is itself a term algebra TΓ, a term homomorphism h# : TΣ → TΓ(Xm) is given
by h#(f(t1, . . . , tn)) = h(f)(xi1 , . . . , xin) for f ∈ Σn, {i1, . . . , in} ⊆ {1, . . . , n}, where the
fresh variables from Xm = {x1, . . . , xm} are assigned xi = h#(ti) for i = 1, n. This allows a
term homomorphism to produce a term, perhaps of different arity, with subterms copied, or
permuted in a different order, as required. We will restrict to linear term homomorphisms,
where every variable in Xm occurs at most once. This allows permutation but not copying.

When Σ has an associative and commutative symbol f ∈ ΣAC , the term homomorphism is
weakened to only preserve counting, h#(f(|Z1|, . . . , |Zn|)) = h(f)(h#(|Zi1|), . . . , h#(|Zin|)).
For example, if h(f)(|a|, |b|, |c|)) = g(|x2|, |x1|, |x3|) and h maps n1, n2, n3 subtrees at children
labelled a, b, c of an f -labelled tree to subtrees ta, tb, tc respectively, these are designated by
the variables |x1|, |x2|, |x3| on the right hand side and the extension h# makes a g-term
having as children n2 copies of ta, n1 copies of tb and n3 copies of tc. Since our signature has
associative and commutative symbols ΣAC represented by Presburger counting conditions,
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Figure 2. Evaluating a Boolean term

this is an appropriate definition of tree homomorphism for these symbols. This has not
appeared in the literature earlier.

3.1. Automata. Cognitive scientists, like Warren McCulloch and Walter Pitts in
the 1940s, invented a graphical notation called automata. For trees, this was developed by
James Thatcher and Jesse Wright.

Formally, a transition system is an algebra, or directed hypergraph (Q, δ) of states, with
Σ-ranked joining hyperedges (called transitions) δ : Σi → (Qi → Q), i = 1,m, taking tuples
of states to a state. An automaton is a transition system with a set of final states F ⊆ Q.

Here is how an automaton operates on a tree. It begins at the leaves, with the transition
for constants determining the state at the node. On each interior node, the transition
with the node’s label takes the states at the children into a state at the node. At the
root, if the automaton reaches a final state, it accepts the tree. Figure 2 describes how an
evaluation proceeds for a Boolean term with signature Σ0 = {true, false}, Σ1 = {not}, Σ2 =
{and, or}, and an automaton with a finite set of states Q = {q0, q1} and F = {q1}. The run
(homomorphic extension) of the automaton on the input tree assigns a state to every node. If
we assume that the states are “output” by the processing of the automaton, we can imagine
the input tree over Σ giving an output tree q1(q1(q1(q1, q0), q1(q0, q1)), q0(q0(q0, q0), q1(q1, q0)))
over the labels Q (which do not form a signature). We will return to such input-output
transductions in Section 5.2.

The language accepted by the automaton is all trees for which the run ends with δ#(t) ∈ F .
The tree in the example above is accepted because the run ended in q1 ∈ F . Languages
accepted by finite automata are called regular languages. The trick here is that we can talk
of languages of terms or languages of trees, using terms as abbreviations for trees.

Exercise 2. Design a finite automaton accepting the language Odd of trees which have an
odd number of f -labelled nodes, f ∈ Σ2.

Does looking at languages using automata help in our attempt to describe them in logic?
Yes, here is a closed formula mimicking the transition system of the automaton in Figure 2,
accepting the regular language of trees (call it EvalTrue) over the boolean signature which
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Figure 3. Evaluating long terms with an associative operation

represent terms evaluating to true. The notation ⊕ is used for exclusive or.

∃Q0∃Q1(∀x(Q0(x)⊕Q1(x))
∧∀z(leaf(z) ⊃ (true(z) ⊃ Q1(z)) ∧ (false(z) ⊃ Q0(z)))
∧∀x∀y∀z(and(z) ∧ S1(z, x) ∧ S2(z, y) ⊃ (Q1(z) ≡ (Q1(x) ∧Q1(y))))
∧∀x∀y∀z(or(z) ∧ S1(z, x) ∧ S2(z, y) ⊃ (Q1(z) ≡ (Q1(x) ∨Q1(y))))
∧∀y∀z(not(z) ∧ S1(z, y) ⊃ (Q1(z) ≡ Q0(y)))
)

This is a formula of monadic second-order logic (MSO), with the variables Q0, Q1 ∈ V ar2

ranging over disjoint sets of positions. (Without a finite set of states there is no finite
formula.) Each set variable stands for a state of the transition system, and is interpreted as
being true for the positions of the tree at which the automaton, operating on the tree, is in
that state. A little more is required to fully describe an automaton—the nodes of the tree
must respect the arity of the signature, and the final states must be used.

Exercise 3. Given an arbitrary finite automaton, make up a closed formula describing the
language accepted by it.

Using the earlier exercises, here is an MSO formula for the language of trees with an odd
number of f -labelled nodes. It is known from model-theoretic arguments that this language
cannot be defined in first-order logic.

∃Odd∃Even∀x( (f(x) ⊃ Odd(x)⊕ Even(x))∧
(firstf (x) ⊃ Odd(x)) ∧ (lastf (y) ⊃ Odd(y))∧

∀y( (nextf (x, y) ⊃ (Odd(x)⊕Odd(y)))))

Formally, models are now also equipped with an interpretation for the second-order variables.
Think of the automaton alphabet as being expanded with a set of first- and second-order
variables, specifying at each position the variables which are true there.

Exercise 4. Construct automata on the alphabet Σ×℘({x, y})×℘({Z}) which check if f(x),
Si(x, y) and Z(y) are true.

3.2. Nets. The treatment of symbols which are associative and commutative is more in-
volved. In the 1960s, Petri came up with a graphical notation called a Petri net system,
defined later in this article, which allows the hyperedges to be used more than once in repet-
itive passes of so-called “tokens”. Lodaya and Weil modelled this by permitting cyclic
joins. The example in Figure 3 illustrates how.
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On the left is a net system with four states. Three of the states are reached by reading
constants a, b, c. The fourth state is reached by two joining hyperedges on the symbol ∗,
assumed associative and commutative. These labels from the signature also name the states.
The hyperedge to the left has a self-loop from a, b, ∗ to ∗, the hyperedge to the right from
a, b, c to ∗ does not. On the right we have a tree c ∗ a ∗ a ∗ a ∗ b ∗ b ∗ b accepted by the
automaton, by processing it as c∗ (a∗ b)∗ (a∗ b)∗ (a∗ b), allowed because ∗ is associative and
commutative. By repeating this idea, it can be seen that any product of a’s and b’s, with one
c and as many a’s as b’s (which can be written as a Presburger constraint |a| = |b| ∧ |c| = 1),
can be accepted by the net automaton.

For the tree signatures, nodes are labelled. The definitions of Lodaya and Weil were
slightly different, they labelled transitions and worked in the setting of series-parallel posets,
which are more general than trees. Trees require either joining or forking hyperedges, whereas
both are required for series-parallel posets. The transitions were thus broken up into joining,
forking and sequential ones. The definitions of net automata with these three kinds of
transitions are not pursued here. Instead an intermediate route is taken, that of Helmut
Seidl, Thomas Schwentick and Anca Muscholl who defined so-called mixed tree
automata, where a joining hyperedge from unboundedly many states to a single target state
is described using a Presburger formula.

Apart from the ranked transitions δ : Σi → (Qi → Q), i = 1,m, for the associative-
commutative symbols, we have transitions δ : ΣAC → (Pres(Q)×Q). The latter transition
is taken only if the sources of the hyperedge satisfy the constraint, a quantifier-free Presburger
formula using variables |q| which count how many sources are in state q.

Independently, John Doner in 1970, and Thatcher and Wright in 1968, proved the
theorem below for MSO , which was extended to the logic extended with Presburger successor
counting (PSMSO) by Seidl, Schwentick and Muscholl in 2008.

Theorem 5. The regular Σ-languages are those definable in PSMSO (as well as ∃PSMSO)
over finite trees.

Proof. The forward direction begins with the exercises seen so far. To deal with cyclic
joining states as in Figure 3, one can introduce a context-free grammar for the derivation
of an acyclic term from a cyclic joining state. Because of associativity and commutativity
of the symbol involved, it follows from the theorem of Rohit Parikh that the positions
of children in the derived term can be described by a semilinear set. Following results of
Seymour Ginsburg and Edwin Spanier, these can be described by Presburger successor
formulae. Hence the entire construction can be done inside PSMSO , in fact, no universal
second-order quantifiers are required.

For the converse, an induction can use the properties that regular languages are closed
under boolean operations. For the Presburger successors, this is a theorem of Samuel
Eilenberg and Marcel-Paul Schützenberger. Closure under projection requires
nondeterministic automata which are introduced in Section 4. �

Andreas Potthoff showed that the language EvalTrue is not definable in first-order
logic. If it were, the simpler formula which just evaluates the negation operation would be
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definable, but evaluating this formula amounts to an odd/even parity check, which is not
definable.

In this section it was shown that imposing a finite automaton structure by using homo-
morphisms into a finite set of states, allows the description of a set of terms by a logical
formula. One can now import a lot of machinery from the theory of automata, which we
rush through in the next section.

4. Regular languages

Michael Rabin and Dana Scott in a 1965 paper showed that one can also consider
nondeterministic transition systems where there are multiple f -labelled joining hyperedges
leaving a state tuple q̄. To see this one considers, instead ofQ, the powerset ℘(Q) as the target
algebra. Since the set of ranked trees TΣ is the free Σ-algebra, the function δ : Σ0 → ℘(Q)
and δ : Σn → (Qn → ℘(Q)) can be freely extended to the homomorphism δ# : TΣ → ℘(Q).
For a nondeterministic automaton with final states F ⊆ Q, we check for acceptance of a run
on t whether δ#(t)∩F 6= ∅. Eilenberg and Schützenberger showed such a construction
which can be adapted for signatures with associative and commutative symbols.

Languages accepted by nondeterministic automata are closed under reversal of direction.
Thus one can also define top-down nondeterministic automata, with f -labelled forking hy-
peredges, possibly many, leaving a state q and forking into an n-tuple of states for f ∈ Σn.
Thus the transitions define a relation δ ⊆ (Q × Σn × Qn), for constants one has final com-
binations δ ⊆ (Q× Σ0). For a top-down automaton with initial states I ⊆ Q, an accepting
run on a tree must start from I and at every leaf, pass through a final combination (and not
get stuck). Deterministic top-down automata accept less than the regular languages.

Exercise 6. Show that any finite deterministic top-down automaton accepting the terms
{f(a, b), f(b, a)} where f ∈ Σ2 and a, b ∈ Σ0, must also accept the terms {f(a, a), f(b, b)}.
Hence there is a finite regular language not accepted by such automata.

As usual, to show that languages are not regular one uses a pumping theorem. We use it
to show that the language {t | t is a full binary tree of height n, n ≥ 1} is not regular.

Theorem 7 (Pumping). For a finite ranked tree automaton with n states, if it accepts a
tree of height ≥ n, then there are two nodes on some path of the tree such that the tree can
be decomposed r[s[t]] at these nodes, where r[ ] and s[ ] are singular contexts and t is a tree,
such that the trees r[t], r[s[s[t]]], r[s[. . . [s[t]]]] . . . , where the context s is iterated i ≥ 0 times,
are all accepted by the automaton.

Corollary 8. The language of all full binary trees is not regular.
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Proof. Suppose a tree automaton accepts a full binary tree of height n. Then it can be
decomposed r[s[t]] as in the pumping theorem. By the theorem, r[s[s[t]]] is accepted, but
this is not a full binary tree. �

For a nondeterministic term automaton one can check whether its language is nonempty
(that is, it accepts at least one tree) by computing the set of states that are reached in a run
on some tree. The algorithm goes up from the states reached by the leaf transitions and then
by joining transitions, towards the root of an input tree. By intersecting with the final states
one can check nonemptiness. There is a converse procedure for a top-down automaton.

Theorem 9. There is an algorithm to check satisfiability of PSMSO formulae over trees.

Proof. The proof from PSMSO formulae to automata is effective, and satisfiability reduces
to nonemptiness of the accepted language. �

4.1. Congruences of finite index. Two terms t and u are equivalent if they define the
same homomorphism h(t) = h(u) on Q. This is a finite-index congruence (called the kernel
of h) studied by John Myhill and Anil Nerode in the 1950s. The relations which map
to final states F in an automaton are a subset of its transition algebra, and the language
accepted is h−1(F ). The result is:

Theorem 10. The regular languages are exactly those which are inverse images of mor-
phisms into (designated subsets of) finite term algebras, as well as exactly those saturated by
finite-index congruences, that is, unions of blocks of such congruences.

Proof. The explanation above gives some idea of the forward directions. For the converse,
the algebra itself (or the quotient by the congruence) can be used as the set of states and
each function operation f(q1, . . . , qn) = q, f ∈ Σ, gives a deterministic f -labelled transition.
The designated subset gives the final states F . �

Myhill and Nerode showed that the congruences corresponding to finite automata
form a lattice. For example, a product of two automata corresponds to an intersection of
congruences. Therefore, given a regular language, there is a maximal saturating finite-index
congruence for it, and hence a minimal deterministic finite automaton accepting it. Its
transition system is called the syntactic algebra of the language.

Lodaya and Weil worked with the more general series-parallel posets, defining algebras
and automata. Dietrich Kuske introduced MSO for series-parallel posets. There is an
equivalence of the regular languages to PSMSO , due to Nicolas Bedon.

At the level of term languages, including those over signatures with associative and com-
mutative symbols, there is an effective equivalence between finite automata and definability
in PSMSO logic which allows transfer of ideas and algorithms in both directions. This gener-
alizes the equivalence over words of finite automata and definability in monadic second-order
logic. The Presburger extension comes into play for ΣAC , otherwise monadic second-order
logic would suffice.
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Figure 5. Parsing an English sentence

5. Applications

5.1. Yield and context-free languages. Chomsky developed grammars for context-free
languages in 1957. Deterministic pushdown automata for the parsing of natural language
sentences were developed by Ida Rhodes, Murray Sherry and Anthony Oettinger
in 1961. Chomsky and Schützenberger connected the grammars to nondeterministic
pushdown automata in 1963. Pushdowns are not examined in this article.

When tree automata were developed in 1965, it was immediately clear that they would
accept parse trees which yield natural language sentences. Formally, the yield of a node of a
tree, or a tree language, is the set of phrases or sentences formed from the subtree generated
by that node, or a tree in the language, by traversing the frontier from left to right. This
can be inductively generated by concatenating the leaves and ignoring the interior nodes. A
parse of a sentence is a tree whose yield gives the sentence. A sentence can have multiple
parses conforming to a single context-free grammar.

The finite set of productions (rules) below give a context-free grammar. Each symbol is
called a nonterminal. They have a nonterminal on the left hand side and a sequence of
nonterminals on the right. The abbreviation N → u1 | · · · | uk for production number (Pi)
stands for j productions N → u1, . . . , N → uj which are numbered (Pi.1), . . . , (Pi.j). There
is also a lexicon relation which assigns constants to nonterminals which is left implicit here.
For example, John is a noun, writes is a transitive verb, furiously is an adverb, and so on.
The productions generate a parse tree top-down, with the lexicon being used at the bottom
level. Figure 5 gives an example parse.

(1) S → NP V P
(2) NP → Adj NP | NP
(3) V P → TV Obj | TV Obj Adv | IV | IV Adv
(4) Obj → Prep N | N

The parse trees of this grammar are accepted by a bottom-up tree automaton with the
constants Σ0 (in this case all words in the English language are constants), and production
numbers as function letters. For example, Σ2 has P1 as a function symbol, Σ3 has P3.2 and
so on. The states of the tree automaton are the nonterminals. The final state required at
the root of the parse is S.

11



δ(John) = N , δ(writes) = TV , δ(furiously) = Adv, . . . ,
δ(P1)(NP, V P ) = S, δ(P2.1)(Adj,NP ) = NP , δ(P2.2)(NP ) = NP ,
δ(P3.1)(TV,Obj) = V P , δ(P3.2)(TV,Obj, Adv) = V P , δ(P3.3)(IV ) = V P ,
δ(P3.4)(IV,Adv) = V P , δ(P4.1)(Prep,N) = Obj, δ(P4.2)(N) = Obj

Exercise 11. Check that this idea works for any context-free grammar. Is the tree automaton
constructed deterministic, or nondeterministic in general?

Associative-commutative productions can be used in a context-free grammar, say:

S → S Conj S, and Conj → then | and.
This could generate sentences like:

Teacher gives an exam paper, then John writes his exam.

Since the first production is associative and commutative, one can also generate:

John writes his exam, then Teacher gives an exam paper.

This is not useful in English, but may be useful in natural languages with free word order,

As an exercise to deal with yields, one can consider parse trees as being built on intervals
of words. Intuitively, an interval [b, e] = {x | b ≤ x ≤ e}, where b, e are positions on a word,
matches a phrase in the word which is the yield of a node in the parse. Thus the interval
[3, 4] marking the positions for the phrase “his exam” in the example corresponds to the
node labelled Obj in the parse. Define this interval to be the value of the node Obj, and the
yield of [3, 4] to be “his exam”. Another way of thinking about the interval structure is by
inserting brackets: [[John][[writes][[his][exam]][furiously]]].

The MSO logic for words is well known, here is one for intervals on words. Intervals are
modelled as second order variables Z which satisfy a connectedness property:

Intv(Z) = ∀x∀y∀z(x < y ∧ y < z ∧ Z(x) ∧ Z(z) ⊃ Z(y))

To reflect the parse tree structure, first of all a domain formula is required to say that the
overlapping interval structure is tree-like:

∃x(Z(x) ∧ Y (x) ∧ Intv(Z) ∧ Intv(Y )) ⊃ ∀x(Y (x) ⊃ Z(x)) ∨ ∀x(Z(x) ⊃ Y (x))

The following atomic predicates, similar to those considered by Joseph Halpern and
Yoav Shoham, are used. SB(Z, Y ) and SE(Z, Y ) say the interval Y is the first (last) child
of interval Z in the parse. That is, Y is a beginning (ending) subinterval at the next level,
there are no beginning (ending) subintervals between Z and Y (this last condition is stronger
than in the Halpern-Shoham logic). SA(Z, Y1, Y2) says that, given that Y1 is a child of Z in
the parse, Y2 is the next child of Z after it in the parse. This is called the “first child, next
sibling, last child” interpretation of a tree.

By reflexive transitive closure During(Z, Y ) can be defined saying that Y is a descendant
of Z in the parse, that is, it is a subinterval occurring during the course of the current
interval. Following Halpern-Shoham logic one could define Begins and Ends as the reflexive
transitive closures of SB amd SE. Precedes(Z1, Z2) says that the interval Z1 comes before
Z2 in a preorder traversal of the parse tree, thus During(Z, Y ) implies Precedes(Z, Y ). Its
definition follows that of precedes on tree nodes which appeared earlier in this article.
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Figure 6. Building an output tree with V al(f)(q1, . . . , qn) = g(xj, x1, xi, xk)

Theorem 12. The logic MSO(SB, SE, SA) on tree-like intervals of words is decidable.

Proof. To formalize the interval logic as a tree-to-word interpretation of intervals of words in
MSO logic on trees, translations are needed, as formalized in Section 6 below. The translation
of SB(Z, Y ) says that Y is a child of Z which precedes other children, that of SE(Z, Y ) says
that Y is a child of Z which is preceded by other children, and that of SA(Z, Y1, Y2) says
that Y1, Y2 are children of Z which either precede or are preceded by other children. The
monadic second-order variables for intervals translate to connected sets of leaf nodes with
the linear order < being represented by a precedes formula. The atomic predicates also have
translations as tree formulae. Then Corollary 15 below gives decidability. �

5.2. Transducers and the realization of tree homomorphisms. A deterministic bottom-
up tree transducer (Q, δ, V al, F ) from Σ-terms to Γ-terms has, in addition to its states Q,
final states F ⊆ Q and transition function δ, an output function V al, for constants this is
from Σ0 → TΓ and for function symbols we have linear V al : Σi → (Qi → TΓ(Xi)), where
there is at most one occurrence of a variable on the right hand side.

A transducer works on a tree from the leaves upwards just like an automaton does. An
additional thing happens, Figure 6 illustrates the description which follows. Suppose a
bottom-up transition δ(f)(q1, . . . , qn) is taken from the n children of a node, the roots of the
processed Σ-terms t1, . . . , tn, to the n-ary f -labelled parent, the root of the to-be-processed
Σ-term t = f(t1, . . . , tn). Then the linear Γ-term V al(f)(q1, . . . , qn) = g(xj, . . . , xk), over
variables x1, . . . , xn, is appended with the so far output Γ-terms u1, . . . , un for the processed
terms t1, . . . , tn (respectively), to form the to-be-output Γ-term g(uj, . . . , uk), where the terms
ui are substituted for the variables xi, i = 1, n. That is, the Γ-terms ui = V al#(ti), i = 1, n,
are put together to form the Γ-term u = V al#(t). There was an example immediately
following Figure 2 describing the run of an automaton. (That does not work here because
the output signature is not well-defined, this will be fixed soon and there is a proper example
coming up.)

The function {(t 7→ V al#(t)) | δ#(t) ∈ F} is called a transduction TΣ → TΓ. It real-
izes the tree homomorphism given by h(f(t1, . . . , tn)) = h(f)(x1, . . . , xn), where xi = h(ti)
and h(f(|Z1|, . . . , |Zn|)) = h(f)(|Zi1|, . . . , |Zin|). The book of Bruno Courcelle and
Joost Engelfriet shows that such linear tree transductions can again be seen as MSO
interpretations of the Γ-signature inside the Σ-signature. Their results extend to PSMSO .

Here is an example transduction based on the one in Section 5.1. The grammar is a little
expanded.
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(1) S → NP V P
(2) NP → Adj NP | NP
(3) V P → TV Obj | TV Obj Adv | IV | IV Adv
(4) Obj → Prep N | N
(5) Adv → N Modif
(6) TV → TV C Part

In this case we have in the Γ signature, Γ2 = {S,NP, V P,Obj, TV,Adv}, Γ3 = {V P} and
Γ0 has all the words in the Hindi language, with obvious outputs, such as:

V al(exam) = pariksha,
V al(Adv) = Adv(x1, x2), V al(TV ) = TV (x1, x2),
V al(P3.4)(IV,Adv) = V P (x2, x1), V al(P3.2)(TV,Obj, Adv) = V P (x2, x3, x1),
V al(P4.1)(Prep,N) = Obj(x1, x2)

These produce Γ-terms as expected. The output rules in the middle are more interesting, here
phrases are rotated, as required for the translation from English to Hindi. Hindi makes slight
use of counting, for example in a sentence like Jab jab aap aayenge, tab tab aapko milenge.

5.3. Transformational grammars. Chomsky advocated transformational grammar in
1965 as a defining mechanism for linguistic structure. To illustrate this, the earlier example
is converted from a declarative to an interrogative sentence.

(1) S → AdvQ NP V P
(2) NP → Adj NP | NP
(3) V P → TV Obj AdvTr | IV AdvTr
(4) Obj → Prep N | N
(5) AdvQ→ AdvWh Aux

Some of the transitions of the automaton for the parse tree are now:

δ(How) = AdvWh, δ(does) = Aux,
δ(P3.2)(IV,AdvTr) = V P, δ(P3.1)(TV,Obj, AdvTr) = V P

Chomsky gave a short way of describing the move to an interrogative sentence by the
transformation rule below, which transforms the sentence as shown in the figure. His 1965
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book discusses many such transformations which apply in a natural language setting. De-
scribing such tree transformations requires moving to richer notions of transduction.

S(NP, V P (TV,Obj, Adv)) =⇒ S(AdvQ(AdvWh,Aux), NP, V P (TV,Obj, AdvTr))

This section discussed applications of the ideas seen earlier, from the domain of linguis-
tics, inspired by the book of Lambek. There is a large computer science literature on
transductions of various kinds. Some details are provided in the next section. Modelling
transformations required in linguistics has not yet been fully addressed.

6. Semantic interpretations into trees

This section gives a formal basis for the study of tree transductions. Semantic inter-
pretations are an old technique going back to the beginning of model theory, which was
effectively used for showing decidability of theories by Rabin around 1970 after he proved
that the MSO theory of the infinite tree is decidable. Detlef Seese and Courcelle
sought to use this technique in the late 1980s for proving decidability of MSO theories of
sets of graphs of so-called bounded treewidth, which is not defined here. The technique was
to interpret them in tree languages. This has been developed in the book of Courcelle
and Engelfriet.

The next definition is from the textbook of Wilfrid Hodges. It is a bit of a mouthful
because it is very general. The basic idea is that the “graph” is imagined inside a “tree”. The
“vertices” of the graph are the set defined by a “domain formula” with one free variable. The
“edges” of the graph are defined by a “translation formula” Tran(E) with two free variables.
The “equality” of two graph vertices is defined by another “translation formula” Tran(=)
which should describe a congruence relation. The “coordinate map” shows how one talks
about the graph inside the tree. The transduction V al maps the tree to the graph.

Definition 13. An interpretation of a set G of graphs (Γ-structures) in a set T of trees
(Σ-structures), alternatively of a Γ-theory Υ in a Σ-theory Θ, consists of:

(1) • A domain formula (in Σ) Dom with one free variable;
• Translation formulas (in Θ): Tran(E) and Tran(=) each with two free vari-

ables, and Tran(Pa), a ∈ A, each with one free variable. The relation defined by
Tran(=) must be a congruence.
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For every Σ-structure T , these defining formulas yield (upto isomorphism) a Γ-
structure G = (Dom, Tran(E), {Tran(Pa), a ∈ A}) “inside” T .

(2) An onto coordinate map c : Dom→ G such that for all u, v ∈ Dom,
• G |= E(c(u), c(v)) ⇐⇒ T |= Tran(E)(u, v);
• G |= c(u) = c(v) ⇐⇒ T |= Tran(=)(u, v);
• G |= Pa(c(u)) ⇐⇒ T |= Tran(Pa)(u).

(3) A value map V al, defined to map T to the quotient of G by Tran(=), is required
to be an onto function from T to G. If the map is a tree homomorphism, we could
specify V al and use its extension V al# as the required map.

V al is also known as a definable transduction or reduction. Note that it goes in the opposite
direction to the translating formulae in the interpretation! If you think of Σ-structures as
representing terms, V al gives the graph corresponding to a term. Going back to the tree
transducers of Section 5.2, imagine now a tree-to-graph transducer running on an input tree
and putting out not just a tree but a graph. The value map does the same thing, but no
automata are necessary to build up V al# from V al. Instead, Tran induces a translation
Tran# from Γ-formulae to Σ-formulae:

Tran#(Pa(x)) = Dom(x) ∧ Pa(x)
Tran#(E(x1, x2)) = Dom(x1) ∧Dom(x2) ∧ Tran(E)(x1, x2)
Tran#(t1 = t2) = Tran(=)(Tran#(t1), T ran#(t2))
Tran#(|X|+ |Y | = |Z|) = |X|+ |Y | = |Z|
Tran#(¬α) = ¬Tran#(α)
Tran#(α ∨ β) = Tran#(α) ∨ Tran#(β)
Tran#(∃xα) = ∃x(Dom(x) ∧ Tran#(α))
Tran#(∃Xα) = ∃X(∀y(X(y) ⊃ Dom(y)) ∧ Tran#(α))

Theorem 14 (Reduction). T |= Tran#α ⇐⇒ V al(T ) |= α.

Corollary 15 (Decidability). If there is an interpretation of G in T (with computable Tran),
then Th(T ) is decidable implies Th(G) is decidable.

Proof. To decide satisfiability of Γ-formula α, compute Tran#α and return its satisfiability.

If the algorithm returns yes, ∃T ∈ T : T |= Tran#α. By reduction, T has V al(T ) |= α.

If the algorithm returns no and supposing ∃G ∈ G : G |= α, since V al is onto, there is
T ∈ T such that T |= Tran#α, a contradiction. �

6.1. Evaluating definable problems. Evaluating a formula on a given graph (this includes
so-called model checking) can also be transferred. An interpretation is said to be evaluation
preserving polytime if V al has a polynomial time converse function Parse which identifies a

representative term (parse tree) for each graph, and f(G)(V al([a])) =
∑
b∈[a]

f(Parse(G))(b).

Stefan Arnborg, Jens Lagergren and Seese used this to transfer efficient algorithms.

Theorem 16 (Polytime reduction). If G has an evaluation preserving polytime interpretation
in T , every Γ-definable evaluation problem π on G has a polynomial time algorithm.
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Proof. The algorithm computes Parse(G) and Tran#π. Evaluating a PSMSO-definable
problem on a tree is linear in the size of the tree. �

6.2. An example: series-parallel posets. A poset is a transitive directed acyclic graph.
Let SP be the signature with Σ2 = {◦} and ΣAC = {||}, called “series” and “parallel”
operations. Usually the series operation is required to be associative, but here we stick with
the general tree signature. These objects are called the series-parallel posets (sp-posets), we
define them by interpretation:

V al(a) = singleton graph labelled by a ∈ A
V al(G||H) = disjoint union of graphs G and H
V al(G ◦H) = disjoint union and edges from all of G to all of H.

TSP stands for SP -terms and GSP for the range of V al on graphs. To show that V al
from TSP to GSP is a PSMSO-reduction, we must produce the (backwards) interpretation
of sp-posets in trees. The defining Σ-formulas are:

Dom(x) = (leaf(x) ⊃
∨
a∈Σ0

a(x)) ∧ (¬leaf(x) ⊃ ||(x) ∨ ◦(x)),

Tran(a)(x) = a(x), Tran(=)(x, y) = (x = y),
Tran(E)(x, y) = the least common ancestor of x and y is a ◦-labelled node.

Every sp-poset has one or more term representations, so V al is onto; and one of them
can be found in polynomial time. We can conclude that the PSMSO theory of sp-posets
is decidable and PSMSO-definable evaluation problems on sp-posets have polynomial time
algorithms.

As mentioned earlier, the papers of Lodaya and Weil work directly with languages of
sp-posets, which generalize trees. Thus they have algebras and automata directly running on
these structures. Bedon provided a logical characterization, directly connecting this work
to PSMSO logic. Following the ideas of PSMSO transductions presented in this section, it
could also have been possible to work indirectly using automata on trees which are imagined
to interpret sp-posets. This allows using the large number of tools which are available for
tree automata.

This section presented the theory of transductions for the logic PSMSO that was used
earlier.

7. Generalizing terms to straight-line programs

Terms were generalized to “jungles” by Annegret Habel, Hans-Jörg Kreowski and
Detlef Plump to allow sharing of subterms. These ideas were used by Zoltán Ésik and
Lodaya to model the basic transitions of Petri’s nets, which are multi-output functions,
taking a set of i elements as argument and returning a set of j elements as value. First
signatures are generalized. Note that the associativity and commutativity requirements seen
in Section 1 are dropped.

Definition 17. A signature Σ consists of a finite set, associated with each element is its
arity j← i, more formally a pre-arity i and a post-arity j.
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If f j←i is an i-to-j-ary function symbol from the signature, the “assignment command”
{v1, . . . , vj} := f{u1, . . . , ui} is called an iΣj-transition (or Σ-transition). Here the u1, . . . , ui
(“preconditions”) and v1, . . . , vj (“postconditions”) are distinct variables, which come from
a set B.

The syntactic entities are called straight-line programs. The aim is to map them to runs
of a Petri net just as terms get mapped to runs of an automaton.

Definition 18. A (straight-line) Σ-program is a sequence of Σ-transitions, satisfying
the following conditions:

• All the variables occurring on the right and left hand side of a transition must be
distinct. (Sets of variables, not multisets.)
• The variables on the left hand side can only occur on the right hand side of later

transitions. (A variable cannot be read and then written to.)
• A variable can be assigned to only once. (A variable cannot be overwritten.)
• A variable can appear only once on the right hand side. (Linearity.)

The input variables of the program are those which appear on the right hand side but
not on the left hand side of any transition in the program. The output variables are those
which appear on the left hand side but not on the right. The rest of the variables are called
internal, and programs upto renaming of internal variables are identified. The arity of a
program is o← n if it has n input variables and o output variables. Such a program is
called an nΣo-program. We also use nΣ-program if all outputs are allowed. An nΣ-
(nΣo-)language is a set of nΣ- (nΣo-)programs.

Programs of arbitrary length are possible, independent of |Σ|, because of the unbounded
number of variables available. In a sense, every “control point” of a program is named by a
unique variable.

Here is an example program with a potential “run”, which will be defined in the next
section (along with the notation). Figure 9 has a hypergraph and a poset derived from the
program, which are defined below.

{q1, buf} := f{p1}
{r1} := g{q1}
{q2} := g{p2}
{r2} := h{buf, q2}

Hp1, p2I
g−→Hp1, q2I

f−→Hq1, buf, q2I
h−→Hq1, r2I

g−→Hq2, r2I

7.1. Hypergraph representation. A Σ-program can be represented as a finite directed
hypergraph S = (B, {Ef |f ∈ Σ}), where B is the set of variables in the program, and
each transition {v1, . . . , vj} := f{u1, . . . , ui} is modelled by a directed hyperedge in Ef from
the source nodes u1, . . . , ui to the target nodes v1, . . . , vj where f has arity j ← i. The
conditions on a Σ-program ensure that the hypergraph is acyclic and unbranched, that is,
two different hyperedges do not share source and target vertices. Renaming of variables
yields an isomorphic hypergraph. Hypergraphs whose labelling respects the signature Σ are
called Σ-hypergraphs.

18



��
��
p1

��
��
q1

��
��
r1

��
��
buf

��
��
p2

��
��
q2

��
��
r2

?
f

?
g

?

g

?h

@
@@R



@
@@R

�

��
��
p1

��
��
q1

��
��
r1

��
��
buf

��
��
p2

��
��
q2

��
��
r2

f

g

g

h

?

?

?

?

?

?

?

?

@
@@R

@
@@R

f

g

g

h
? ?

HH
HHHHj

Figure 9. Hypergraph, bipartite graph and derived poset of a straight-line program

Conversely, from an acyclic unbranched Σ-hypergraph we can easily write a Σ-program
corresponding to it by using its nodes as names of variables.

A directed hypergraph can in turn be represented as a bipartite directed graph K =
(B,E, F, l) where B is as before a “sort” of nodes and E is a “sort” of transitions (hyper-
edges). The source and target nodes are connected by an incidence relation F ⊆ (B ×E) ∪
(E × B) as follows: for the hyperedge e representing the transition above, there are edges
in F from the source nodes u1, . . . , ui of the hyperedge to e, and from e to the target nodes
v1, . . . , vj of the hyperedge. l labels nodes of sort E by letters from Σ: the vertex e of the
graph above is labelled f .

Such graphs are known in the literature as (labelled finite) causal nets. B is the set of basic
conditions of the net, E is the set of events and F is called the flow relation. A causal net is
unbranched, that is, all its basic conditions b have at most one predecessor and one successor,
and acyclic: the reflexive transitive closure of F is antisymmetric (that is, a partial order).
Since l : E → Σ is an arity-respecting labelling, we call them causal Σ-nets. They give a
purely relational representation of an acyclic unbranched Σ-hypergraph.

7.2. Labelled posets. A Σ-labelled poset P = (E,F ∗ ∩ (E × E), l) can be derived from
an acyclic unbranched hypergraph. The picture above shows the poset corresponding to the
program and hypergraph to its left.

For an element e of P , let •e and e • stand for the immediate predecessors and successors
of e in the Hasse diagram of P . The arity of l(e) in Σ is lower bounded by |e •| ← |•e|, but
can be higher. An anonymous referee gave an example showing two programs with different
signatures which map to the same poset. Suppose r is the transition {w1, w2} := f{v1}
and s the transition {v2} := g{w1, w2}. The arity of f and g is higher in r; s than in r′; s′,
where r′ is {w} := f{v1} and s′ is {v2} := g{w}. But the derived poset is the same for both
programs.

Conversely, from P we can define the hypergraph (H, {Ef |f ∈ Σ}), where H is the set of
edges in the Hasse diagram of P together with the minimal and maximal elements, and Ef
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takes •e to e • precisely when e is labelled f , and an obvious extension for the minimal and
maximal elements.

The width of a poset is the size of its largest antichain. A Σ-language is said to be
bounded width if there is a bound k ∈ N such that the width of the posets corresponding
to each term in it is at most k.

7.3. Composition. Programs seem straightforward, but the difficulty lies in formalizing the
composition s; t of two programs (assuming the result is a program), which we have done in
the example by sequencing t after s. Lodaya and Weil introduced the notion of a series
Σ-algebra where one Σ-term t can be sequenced after another s. But the semantics there
requires that the execution of s be complete before the execution of t begins.

Series semantics is inadequate to model the N-shaped execution in the example above. If
s has postconditions J ∪ J1 and t takes preconditions J1 to postconditions K, then their
composition has postconditions J ∪K. Conversely, if we sequence a program t after s, we
get a composition depending on the relationship between the postconditions of s and the
preconditions of t. This was studied by Ursula Goltz and Wolfgang Reisig.

Simple projection operations πk, k ∈ N, do not work either. The names of the variables
in J1 are crucial to making the definition of composition unambiguous. But it is not really
the names which are important, they are just “place-holders” !

Remark. Suppose s is the transition {w1} := f1{v1} and t the transition {w2} := f2{v2}.
We say the two programs are independent since they work with disjoint sets of variables.
This example suggests representing programs by the traces of Antoni Mazurkiewicz.
However, note that f1 and f2 may or may not be independent in different contexts, so
independence is not coded into the action label (as would be the case for Mazurkiewicz
traces). The two g actions in the picture above are independent.

Authors have grappled with this problem in different ways within the field denoted by
Robin Milner as “process calculi”. José Meseguer and Ugo Montanari and Ésik
and Lodaya moved to categories, Gheorghe Ştefănescu used operators for permuting
a tuple, Jos Baeten and Jan Bergstra introduced an explicit set of causes similar to
the program variables above.

This section presented an approach to generalizing results on terms using straight-line
programs, which allow sharing of subterms. The next section generalizes from algebras to
the clones of equational theories of F. William Lawvere, providing the means to process
programs.

8. Theories for concurrent behaviour

Ésik and Lodaya gave a categorical model following Meseguer and Montanari,
extending earlier work on tree theories by Ésik and on finitary preclones by Ésik and Weil.
This section presents this hitherto unpublished sketch of work. Lodaya then obtained a
Myhill-Nerode result.
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Definition 19. A concurrency theory over signature Σ and variables B is a strictly
symmetric monoidal category C with objects the finite nonempty multisets over B, arrows
the Σ-programs and a commutative tensor functor || : C×C → C whose operation over objects
is multiset union and over arrows (programs) is their parallel product. The theory is said
to allow redistribution if it also has duplicating arrows εu,{v,w} and collapsing arrows
ε{u,v},w for variables u, v, w subject to the conditions below. Using the identity, duplicating
and collapsing arrows, we can define the arrows εM,N , where M,N are any objects. These
arrows are required to satisfy the equations εM,NεN,P = εM,P and εM,N ||εP,Q = εM ||P,N ||Q. A
theory morphism from a concurrency theory to another is a functor which preserves the
tensor, and the special arrows as well if the theory allows redistribution.

The notation Hp, p, q, q, qI is used to denote a multiset with 5 elements, against the usual
{p, q} for its base set with 2 elements. || stands for multiset union.

Each iΣj-transition N := fM , where we drop the distinctness condition on variables

from the previous section, defines an arrow M
f→N . Composition of Σ-programs is modelled

by composition of arrows and parallel product. For example, if M
r→N1||N and N1

s→P , we

get the arrow M
r(s||εN )−→ P ||N as their composition.

The main interest is morphisms which map into theories F which are finitely generated,
where the set of variables is finite, as well as locally finite, where every hom-set F(M,N) is
finite. We call a theory finite if it is finitely generated and locally finite.

Definition 20. An nΣo-language L ⊆ C(M,N) is a recognizable language if there is a
morphism φ : C → F , F finite, such that L = φ−1φ(L). An nΣ-language is recognizable if
each of its nΣo restrictions is recognizable.

8.1. Petri nets. A finite concurrency theory allowing redistribution, with objects multisets
(called markings) over a finite set of variables P (called places, each element of a marking is
a “token” located at a place) and Σ-labelled atomic arrows T (called transitions) can be rep-
resented as a Σ-hypergraph (P, {Tf |f ∈ Σ}), which need be neither acyclic nor unbranched.
As for automata, if there can be many transitions with the same label enabled at a marking,
the labelled hypergraph is said to be nondeterministic, otherwise deterministic.

A relational representation of such a Σ-labelled hypergraph was called a (Σ-labelled) net
by Petri: a bipartite edge-weighted graph N = (P, T,W, `) where P is a set of places, T a
(disjoint) set of transitions, and W : (P ×T )∪ (T ×P )→ N defines a weighted flow relation
which models hyperedges. The labelling ` is arity-respecting in the present article.

For a place or transition y, its pre-set {x | W (x, y) > 0} (the sources of a transition) is
conventionally denoted •y and its post-set {z | W (y, z) > 0} (the targets of a transition) is
denoted x •. W satisfies the condition that for each transition a, •a and a • are nonempty,
and for each place p, either •p or p • is nonempty. For all transitions a, the arity of `(a) is
from the indegree of a to its outdegree (

∑
qW (a, q)←

∑
pW (p, a)). If a net satisfies this

condition, we call it a Σ-net. The label of an unlabelled deterministic Petri net can be taken
to be the signature of the transition.
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Conversely, any (finite) Σ-net is a Σ-hypergraph and a deterministic net is a (finite)
concurrency theory allowing redistribution, with objects its set of places and atomic arrows
its set of transitions.

By specifying an initial multiset, a finite concurrency theory allowing redistribution can be
represented as a Petri net system, a net with an initial marking. A set of final multisets can
be provided as final markings. It is conventional for Petri nets to model system behaviours
which go on as long as possible from a single initial marking.

Unlike general Σ-programs, Petri nets have a fixed interpretation. A marking is a multiset
of places, fixing the domain as NP . The interpretation of every transition a is a fixed partial

function N
•a×a • → N

•a×a • (which can be extended to the other places which remain
unaffected), dependent only on its signature iΣj. It is defined (a can be fired) when all
pre-places p of a occur ≥ W (p, a) times in the marking, in which case the function removes
W (p, a) occurrences of each pre-place p from the marking and adds W (a, q) occurrences of
each post-place q, to obtain the target marking.

A tensor composition of arrows allows defining the run of the net system (or firing sequence
of transition labels) from an initial marking, the enabling condition for each firing has to be
met all along the run for the functions in the interpretation to be applied. Firing sequences
are words which describe the behaviour of a net system and can be collected into a language.
An example run of the net system in Figure 9 with initial marking Hp1, p2I was shown in the
previous section.

8.2. k-safe Petri nets. The net system in Figure 9 is 1-safe, it was sufficient to use sets
rather than multisets for the markings. A net system is said to be k-safe if for all markings
M reachable from the initial marking and for all places p, p occurs at most k times in M .
As a consequence, the weight of the flow relation of a 1-safe net system can only be 0 or 1
and we can interpret it as a subset of (P × T ) ∪ (T × P ), markings M are then subsets of
places P .

Figure 10 shows a 1-safe net system modelling a bank example, in its bipartite graph
representation. Depending on the choice made, either a ticket is printed or cash is withdrawn.
More sophisticated modelling would have a k-safe system where k is the cash storage capacity
of the ATM and withdrawal of amounts upto k.

This article does not go into applications of Petri nets on which there is a large litera-
ture. A couple of favourite examples are the client-server choreographies modelled in logic
by R. Ramanujam and S. Sheerazuddin, and the negotiations modelled as games by
Jörg Desel and Javier Esparza. Recent theoretical work on 1-safe nets includes that
on regular expressions by Ramachandra Phawade and Lodaya and on complexity by
M. Praveen and Lodaya.

8.3. Labelled posets as behaviour. A non-sequential process of a net system N , studied
by Ursula Goltz and Wolfgang Reisig, is a more refined notion of behaviour than
a firing sequence. A non-sequential process is a causal net K = (B,E, F, l) such that there
are two functions π : B → P and π : E → T (the context will make clear which function is
meant) satisfying the following properties:
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Figure 10. An ATM offering a choice of showing balance and withdrawing money

• for all e in E, π(•e) is in bijection with •π(e), π(e •) is in bijection with π(e) • and
`(π(e)) = l(e) (transition neighbourhood and labelling respected);
• The initial marking is the multiset Hp | •b = ∅ & π(b) = pI (minimal elements

respect initial marking).

The bijection requirement can be relaxed for weighted nets. The definition of K as a
non-sequential process of N is close to that of Σ-programs corresponding to K forming a
morphism into the concurrency theory corresponding to N . A graphical example was seen
in Figure 3. The poset language of N is formed using the next definition, since a poset can
be derived from a causal net.

Definition 21. A net system N accepts an nΣ-program t if a causal net for t is a non-
sequential process of N .

Extending Theorem 5, Michel Parigot and Elisabeth Pelz used existential second-
order formulae (that is, no universal second-order quantifiers are used) of MSO logic with
threshold counting comparisons for monadic predicates (not just for children of a node), call
it ∃ThrMSO . This is more expressive than regular word languages, for example the formula
|a| = |b| ∧ |b| = |c| can describe the semilinear set of words with equal numbers of letters
a, b, c. Parigot and Pelz’s proof extends to posets.

Theorem 22. Word and poset languages of Petri nets can be defined using closed formulae
of ∃ThrMSO over a linear order and over a partial order respectively.

Proof. For each place p, use monadic predicates (similar to Parigot and Pelz’s Ep and Sp)
for positions where a token is added to p and removed from p, respectively. Comparisons of
counts of these predicates are used to ensure that a transition is firable. The firing sequence
is coded as a linear order, the nonsequential process as a partial order. �
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Parigot and Pelz proved a converse for sets of words using the fact that first-order
word languages are regular, and regular languages are closed under complement. Bedon’s
PSMSO characterization for sets of sp-posets used the Eilenberg-Schützenberger result
to prove closure under complement. For sets of posets in general this technique breaks down.

8.4. Poset languages, bounded width and bounded layering. A finite k-safe net sys-
tem with set of places P can only accept a language with width bounded by k|P |, because
its set of markings has maximum cardinality k|P |. (If one only considers firing sequences, a
k-safe net system accepts a regular language.) Conversely, if a net system accepts a bounded
width poset language, then there is a k-safe net system accepting the same language, for
some k.

Those Σ-programs which violate the k-safety condition in their execution are no longer
valid. Thus at a marking M , one can list which Σ-transitions are possible in the net and
which are valid but not present in the net. By using this property, a Rabin-Scott powerset
construction and a translation of Eike Best and Harro Wimmel from k-safe nets to
1-safe nets, Lodaya obtained a Myhill-Nerode theorem for bounded width Σ-languages
accepted by 1-safe Σ-nets. The corresponding poset languages can be seen as analogues of
regular languages in a jungle setting, wider than that of words (and Mazurkiewicz traces),
terms and series-parallel posets, seen earlier in this article. The development needs to be
related to logic.

B. Meenakshi and Ramanujam defined languages of posets which have bounded or
communication-closed layering, a notion defined by Tzilla Elrad and Nissim Francez
which allows decomposition of posets into “episodic” structure. They also have a logic.
Béatrice Bérard, Stefan Haar and Löıc Hélouët showed that such layering leads to
the notion of bounded treewidth which appeared in graph theory and was briefly mentioned
in Section 6. Tying up ideas in this direction in a general framework for hypergraphs and
posets, as was done for graphs earlier, remains to be done.

9. Summary

This article began with the representation of terms as trees and algebras as automata.
Closed formulae of PSMSO logic were used to define term languages, in other words, boolean
functions of terms. From accepting or rejecting, automata were generalized to deterministic
transducers which computed functions from terms to terms. An application to context-free
grammars, seen as defining languages of parse trees, suggested possible uses in translation
from one natural language to another. The model-theoretic technique of PSMSO trans-
ductions further allowed graph languages to be interpreted as term languages, with closed
logical formulae directly defining graph languages. Towards the end, terms were generalized
to programs which can be represented as hypergraphs or posets, allowing discussion of poset
languages. The last section moved from algebras to Lawvere theories representable as Petri
nets, which generalize automata. Closed formulae of ∃ThrMSO define poset languages, but
here the results need to be improved further.
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In brief, the article presents a view articulated frequently in computing science, that the
structures which are processed in computation and the processors that are used, be seen
through a logical perspective.
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Zoltán Ésik and Kamal Lodaya. Notes on Petri nets and recognizability, manu-
script (2005).

Gottlob Frege. Begriffsschrift, a formula language, modelled upon that of arithmetic,
for pure thought, in van Heijenoort, pp 5–82.

Seymour Ginsburg and Edwin Spanier. Semigroups, Presburger formulas, and lan-
guages, Pacific J. Math. 16,2 (1966), pp 285–296.
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José Meseguer and Ugo Montanari. Petri nets are monoids, Inform. Comput.
88 (1990), pp 105–155.

Robin Milner. Calculi for interaction, Acta Inform. 33 (1996), pp 707–737.

John Myhill. Finite automata and the representation of events , WADD TR-57-624 (1957).

Anil Nerode. Linear automaton transformations, Proc. AMS 9,4 (August 1958), pp
541–544.

Paritosh Pandya. Specifying and deciding quantified discrete-time duration calculus for-
mulae using DCvalid, in Proc. RTtools, Aalborg (2001).

Michel Parigot and Elisabeth Pelz. A logical approach of Petri net languages, The-
oret. Comp. Sci. 39 (1985), pp 155–169.

Rohit Parikh. On context-free languages, J. ACM 13,4 (Oct 1966), pp 570–581.

Carl-Adam Petri. Fundamentals of a theory of asynchronous information flow, Proc.
2nd IFIP, Munich (C.M. Popplewell, ed.), North-Holland (1962), pp 386–390.

Ramachandra Phawade and Kamal Lodaya. Kleene theorems for synchronous prod-
ucts with matching, Trans. Petri Nets Other Models Conc. X, in LNCS 9410 (2015), pp
84–108.

27



Andreas Potthoff. Modulo-counting quantifiers over finite trees, Theoret. Comp. Sci.
126,1 (1994), pp 97–112.

M. Praveen and Kamal Lodaya. Parameterized complexity results for 1-safe Petri nets,
in Proc. Concur, Aachen (Joost-Pieter Katoen and Barbara König, eds.), LNCS
6901 (2011), pp 358–372.
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