Selecting Elliptic Curves for
Cryptography:
an Efficiency and Security Analysis

http://eprint.iacr.org/2014/130.pdf

Craig Costello
ECC2014 — Chennai, India

Joint work with
Joppe Bos (NXP), Patrick Longa (MSR), Michael Naehrig (MSR)

http://eprint.iacr.org/2014/130.pdf

June 2013 — the Snowden leaks

&he New HJork Eimes

“..the NSA had written
the [crypto] standard
and could break it.”

Post-Snowden responses

* Bruce Schneier: “I no longer trust the constants. | believe the NSA has
manipulated them...”

* Nigel Smart: “Shame on the NSA...”

* |ACR: “The membership of the IACR repudiates mass surveillance and the
undermining of cryptographic solutions and standards.”

* TLS Working Group:
formal request to CFRG for new elliptic curves for usage in TLS!!!

* NIST: announces plans to host workshop to discuss new elliptic curves
http://crypto.2014.rump.cr.yp.to/487f98c1a1a031283925d7affdbdeflc.pdf

http://crypto.2014.rump.cr.yp.to/487f98c1a1a031283925d7affdbdef1c.pdf

Pre-Snowden suspicions re: NIST (and their curves)

e 2013 - Bernstein and Lange: “Jerry Solinas at the NSA used this [random
method] to generate the NIST curves ... or so he says...”

e 2008 — Koblitz and Menezes: “However, in practice the NSA has had the
resources and expertise to dominate NIST, and NIST has rarely played a
significant independent role.”

* 2007 — Shumow and Ferguson: “We don’t know how Q = [d]|P was chosen,
so we don’t know if the algorithm designer [NIST] knows [the backdoor] d.”

* 1999 - Scott: “So, sigh, why didn't they [NIST] do it that way? Do they want to
be distrusted?”

NIST’s CurveP256: one-in-a-million?

Prime characteristic: p = 2256 — 2224 4 7192 4 29 _ 1

Elliptic curve: E/F,:y*=x°—=3x+b

Curve constant: b = \/— SHZ(S)

Seed: s = c49d360886e704936a6678e1139d26b7819f7e90
Scott ‘99:

“Consider now the possibility that one in a million of all curves have an exploitable structure
that "they" know about, but we don't.. Then "they" simply generate a million random seeds
until they find one that generates one of "their" curves...”

Rigidity

* Give reasoning for all parameters and minimize “choices” that could
allow room for manipulation

* Hash function needs a seed (digits of e, i, etc), but do choice of seed
and choice of hash function themselves introduce more wiggle room?

e Goal: Justify all choices with (hopefully) undisputable efficiency
arguments

e.g. choose fast prime field and take smallest curve constant that gives
“optimal” group order/s [Bernstein‘06]

So then, what about these?

Replacement curve m Constant b

(NEW) Curve P-256 2256 — 2224 4 2192 4 996 _ 1 2627
(NEW) Curve P-384 2384 _ 128 _ 996 4 932 _ 1 14060
(NEW) Curve P-521 2°21 _1q 167884

e Same fields and equations (E : y? = x> — 3x + b) as NIST curves
e BUT smallest constant b (RIGID) such that #E and #E' both prime
* So, simply change curve constants, and we’re done, right???

(Our) Motivations

1. Curves that regain confidence

- rigid generation / nothing up my sleeves
- public approval and acceptance

2. 15 years on, we can do so much better than the NIST curves
(and this is true regardless of NIST-curve paranoia!)

- side-channel resistance

- faster finite fields and modular reduction
- a whole new world of curve models

3. Whether it’s cricket or crypto, a proper game needs several players...

The players

 Aranha-Barreto-Pereira-Ricardini: M-221, M-383, M-511, E-382,...
* Bernstein-Lange: Curve25519, Curve41417, E-521,...

* Bos-Costello-Longa-Naehrig: the NUMS curves

* Hamburg: Goldilocks448, Ridinghood448,...

* ECC Brainpool: brainpoolP256t1, brainpoolP384t1,...

* your-name-here?: your-curves-here?

The players

 Aranha-Barreto-Pereira-Ricardini: M-221, M-383, M,511, E-382 \ | 3]
* Bernstein-Lange: Curve25519, Curve41417, E-521,...
* Bos-Costello-Longa-Naehrig: the NUMS curves

* Hamburg: Goldilocks448, Ridinghood448,...

* ECC Brainpool: brainpoolP256t1, brainpoolP384t1,...

* your-name-here?: your-curves-here?

Umpire Paterson
(CFRG co-chair)

Contents

PART | : CHOOSING CURVES
Speed-records and security hunches

PART Il : IMPLEMENTING THEM

The last 2 years of “state-of-the-art” speeds

e [LS'12] (AsiaCrypt) & [LFS‘14] (JCEN)
4-GLV/GLS using CM curve over quad. ext. field

e [BCHL'13] (EuroCrypt) & [BCLS14] (AsiaCrypt)
Laddering on genus 2 Kummer surface

e [CHS “14] (EuroCrypt)
2-dimensional Montgomery ladder using Q-curve over quad. ext. field

e [OLAR13] (CHES)
GLS on a composite-degree binary extension field

All of the above offer ~128-bit security against best known attack
BUT
None of the above have been considered in the search for new curves!!!

Security hunches killing all the fun

* Best known attacks against the curves on prior page are = the same

 BUT widespread agreement that random elliptic curves over prime
fields are safest hedge for real world deployment

* By “random”, | mean huge CM discriminant, huge class number, huge
MOV degree... no special structure!

* Basic recipe: over fixed prime field, (rigidly) find curve with “optimal”
group orders (SEA), then assert above are huge (they will be)

Security hunches killing all the fun

WARNING: M\ }XR N M

Contents
PART | : CHOOSING CURVES

Prime fields and modular reduction

PART Il : IMPLEMENTING THEM

Two prime forms analyzed

(1) Pseudo-Mersenne primes: p=2%—y
(2) Montgomery-friendly primes: p = za(zﬁ — y) _1

* For each security level s € {128,192,256}, we benchmarked two of both:
(a) one “full bitlength” prime
(b) one “relaxed bitlength” prime

* In our case, relaxed meant:
- drop one bit for pseudo-Mersenne (lazy reduction)
- drop two bits for Mont-friendly (conditional sub saved in every mul)

* Subject to above, security level determines primes
- a and [determined by s
- smallest y > 0 such that p is prime and p = 3 mod 4

Some premature performance ratios

Target Security Pseudo-Mers Pseudo-Mers Mont-Friendly Mont-Friendly
Level Full Relaxed Full Relaxed
128

1.00x 0.97x 1.00x 0.84x
192 0.94y 0.90y 1.00y 0.90y
256 0.89z 0.85z 1.00z 0.92z

Cost ratios of variable-base scalar multiplications on twisted Edwards curves at three target security levels

* Relaxed version naturally wins in both cases
* Montgomery-friendly vs. Pseudo-Mersenne not as clear cut
* So what did we end up going for....?7??

Full length pseudo-Mersenne primes

* We went for pseudo-Mersenne over Montgomery-friendly
- simpler (may depend on who you ask?)
- take a decent performance hit at 128-bit level
- closer resemblance to NIST-like arithmetic

* We went for full-length over relaxed-bitlength
- take a performance hit of 2-4%
- BUT maximizes ECDLP security, maintains 64-bit alignment,
& avoids temptation to keep going lower

128 22°¢ — 189
192 238% — 317
256 2°12 — 569

Arithmetic for the pseudo-Mersenne primes

* Constant time modular multiplication S GRS
mput: - 0=xy <2ty
x-y€ElZ
_ B2 4] Y S
=h-2%+1 — h(2% — y) mod (2%-y)
=l+y-h Y
+v - R
output: x-y mod (2% —y) - xy
(after fixed=worst-case number of reduction rounds)
* Constant time modular inversion: al=aP?modp
e Constant time modular square-root: Va = a®* /4 mod p

What primes do others like?

* Bernstein and Lange: Curve25519, Curve41417, E-521
p = 2255 _ 19’ p = 2414 _ 17’ p = 2521 —1

* Hamburg: Ed448-Goldilocks, Ed480-Ridinghood

p = 24-4-8 _ 2224- _ 1’ p = 2480 . 2240 —1

* Aranha-Barreto-Pereira-Ricardini: M-221, M-383, M-511 , E-382, etc
p = 2421 3, p = 2383 - 187, p = 2°11 _ 187 p = 2382 — 105

* Brainpool: brainpoolP256t1, brainpoolP384t1, etc

p = 76884956397045344220809746629001649093037950200943055203735601445031516197751

Contents
PART | : CHOOSING CURVES

Curve models and killing cofactors

PART Il : IMPLEMENTING THEM

A world of curve models

y?=x3+ax+b
short Weierstrass curves
y? =x*+ 2ax? + 1

Jacobi quartics
ax® +y3+1=dxy

2 _ .3 2
(twisted) Hessian curves By =x>+Ax"+x
Montgomery curves

ax? + y% =1+ dx?y?

2 _ .3 2
(twisted) Edwards curves y“ =x>+ax“ + l6ax
Doubling-oriented DIK curves

s24+c¢c2=1 N as?+d?=1
Jacobi intersections

See Bernstein and Lange’s Explicit-Formulas Database (EFD) and/or Hisil’s PhD thesis

The chosen ones

Weierstrass Montgomery (twisted) Edwards
curves curves curves

y:2=x3+ax+b By? = x3 + Ax? + x ax? +y? =1+ dx?y?
e Most general form e Subset of curves e Subset of curves
* Prime order possible * Not prime order * Not prime order
 Exceptionsin group law * Fast Montgomery e Fastest addition law
* NIST and ladder * Some

Brainpool curves = Exception have

free complete

group law

Complete addition on Edwards curves

Let d # O in K and consider Edwards curve
E/K : x*+y% =1+ dx?*y*

Forall (1!) P, = (xq,¥1), P2 = (x2,52) € E(K)

X1Y2 T Y1X2 Y1Y2 — X1X3
1+ dx;xy1y, 1 —dx1x%1Y5

P1+P2 ::P3:(

Denominators never zero, neutral element rational = (0,1), etc..
(Bernstein-Lange, AsiaCrypt 2007)

Edwards vs twisted Edwards

General twisted Edwards Eqa: ax? + y* =1+ dx?*y?

When a = 1 (Edwards!) Eiq: x? + y2 =1+ dxzyz

Fastest complete addition (for d # O) 9M+1d
(Bernstein-Lange, AsiaCrypt 2007 and Hisil et al., AsiaCrypt 2008)

Whena = —1 E_14t —x*+y*=1+dx*y?
Fastest addition 8M, also (technically) incomplete when p = 3 mod 4
(Hisil et al., AsiaCrypt 2008)

 Edwards completeness highly desirable, but so are the fast (twisted Edwards) formulas!
* Incomplete formulas still work for any P,Q where P # Q, and both have odd order...

Killing cofactors and the fastest formulas

* (Twisted) Edwards curves necessarily have a cofactor of at least 4,
so assume #E = 4r where r is a large prime

e Users will check that P € E, but cannot easily check whether P has order
r, 27, or 4r

* If secret scalars k are in [1, 1), then attackers could send P of order 4r, and
on receiving [k]P, compute [rk|P = [k mod 4|P € E(F,)[4] to reveal

k mod 4 (i.e. the last two bits of k)

* RECALL: the fastest additions will work for all P # (Q, both of odd order...

Killing cofactors and the fastest formulas

Our approach

- incomplete twisted Edwards curve
E_14:—x*+y*=1+dx*y"
- modified set of scalars
ke[l1,2,..r—1] ok €e€[4,8, 4r — 4]
- initial double-double
PeEEw-Q :=[4]P € E[r]
- fastest formulas to compute

[k]P = [K]Q

“specified curve” incomplete, but uses fastest formulas and stays on one curve

Killing cofactors and the fastest formulas

Hamburg’s approach (http://eprint.iacr.org/2014/027)

- complete Edwards curve
Eig:x*+y*=1+dx?*y?
- use 4-isogeny to incomplete twisted:
¢:Eqg—=>E_14-1
- fastest formulas to compute:
[k]Pon E_y4_q (sinceim(¢) = E_y q_1[r])
- use dual to come back to E 4

¢ E_14-1 2 Ei4

“specified curve” complete and uses fastest formulas, but isogeny needed

http://eprint.iacr.org/2014/027

Killing cofactors and the fastest formulas

Bernstein-Chuengsatiansup-Lange approach (Curve41417)

- complete Edwards curve
Eig:x®+y*=1+dx*y?
- kill torsion with doublings
k € (8,16, ...]

- stay on E 4, at the expense of 1M per addition
but compare *3727M to =3645M (+ ¢ + @)

“specified curve” is complete, stay on it (simple), but slightly slower additions

Contents
PART | : CHOOSING CURVES

Montgomery ladder and twist-security

PART Il : IMPLEMENTING THEM

Textbook arithmeticon y? = x3 + ax + b

/7
- /7

(XTa)/T)/

O (8]

7
/‘€XPnyP)

(X175 Y21 7)
(XT+PYYT1P)

(x[z]T»Y[z]T) = DBL(xr,y1) (Xr4+p,Y74p) = ADD (X1, Y7, XP, YP)

Montgomery’s arithmetic on By? = x3 + Ax? + x

XT X[2]T XPp XT XT+P

x[Z]T — DBL(.XT) XT+p = DIFFADD(XT, Xp, xT_p)

Differential additions ...

g// \D VS, “‘O/_ __Q/__

‘ h \ \
* “Opposite” y’s give different x-coordinate than “same-sign” y’s
* Decide with x-coordinate of difference: x;,.p = DIFFADD (X7, Xp, X7_p)

... and the Montgomery ladder

* Invariant: in x(P), k — x([k]P) , keep this difference fixed as x(P)

* Iteration: at each intermediate step, we always have x(|m|P), x(|m + 1]P) ...
so we always add them and double one (depends on binary rep. of k) to preserve
the invariant

o -
~

Twist-security N

* Ladder gives scalar multiplications on E: By? = x3 4+ Ax* + x as
x([k]P) = LADDER (x(P), k, A)

* Does not depend on B, so works on E”: B'y? = x3 4+ Ax? + x for any B’

* Up to isomorphism, there are only two possibilities for fixed A:
E and its quadratic twist E’

« Soif E and E' are both secure, no need to check P € E for any x(P) € K,
as LADDER (x, k, A) gives discrete logon E or E' forallx € K

* Twist-security only really useful when doing x-only computations, but
why not have it anyway?

Contents
PART | : CHOOSING CURVES

Our chosen curves: the NUMS curves

PART Il : IMPLEMENTING THEM

The NUMS curves

= = = A=

2256 _ 152961 15342 —61370
192 2384 _317 —34568 333194 4—> —1332778
256 2512 _569 121243 637608 <4mmp —2550434

* Primes: Largestp = 2% —y = 3 mod 4
(fun fact: in these cases, largest primes full stop)

* Weierstrass: Smallest |b| such that #F and #E' both prime

« Twisted Edwards: Smallest d > 0 such that #E and #E' both 4 times a prime, and
d > 0 correspondstot > 0.

 Reminder: there are 6 “chosen” curves above, but in paper 26 are benchmarked

Small constants all round for p = 3 mod 4

My: y?>=x3+Ax*+x Epq: ax®*+y? =1+ dx?y?
Searches minimize |A| with A = 2 mod 4

A+2

A—-2 . —_
d, = - (big) dg ’ (small)

=~ . isogeny R
MA) i E—l,dl E_l,do El, do +1
twist twist Both non-squares
Y ~ isogeny /
M_,- E_11/d, -~ E_1,_(da,+1) Ei_a,

Upshot: search that minimizes Montgomery constant size also minimizes size of both
twisted Edwards and Edwards constants (see Lemmas 1-3)

Contents
PART | : CHOOSING CURVES

PART Il : IMPLEMENTING THEM
Constant-time implementations and recoding scalars

Constant time implementations

* Constant time: all computations involving secret data must exhibit regular

execution to provide protection against timing and cache attacks

* No data-dependent branches or table lookups depend on scalar k

* Most naive version: double-and-add -2 double-and-always-add

k=[-00,101,..]

double-and-always-add: initialize Q < P
2]

compute
compute

compute

compute
compute

NN NN

QO QOO

)

)

)

)

) L

NI:NI :NI :NI:NI

1Q+P

Q+P
1Q+P
1Q+P
1Q+P

SENEEN
QO O OO

+ P

+ P

LSO

\H \Q \H

Fixed-window recoding for variable-base

* “Always-add” obviously brings in solid performance penalty: adding twice as
much as usual... BUT not when using bigger/optimal windows!!!

w=1 1[.,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0,..]
..11,1,0,1,0,(1,0,1,0,1,[0,0,0,1, 0}...]

s o
[..., 26, 21, 2,...]
...5 DBL’s — ADD ([26]P) — 5 DBL’s — ADD ([21]P) — 5 DBLs — ADD ([2]P)...

* Basic/naive: pre-compute and store P,[2]P....,[30]P, [31]P

* Chances of 5 zeros in a row = 1/32, but we must still always add something...

Protected “odd-only” fixed-window recoding algorithm

* Window width w: recodes every odd scalar k € [1,7) into (t + 1) odd
values, i.e. k = (ky, ..., kg), where t = [(logz r)}

w

* Each recoded value is an integer in k; € {#+1,£3,+5, ..., 2% — 1}
(only half the precomputed values needed, and there are no zeros)

e e.g. 256-bit scalars, w = 5 optimal for us, 53 windows:
- precompute table {P, |3]P, |5]P, ...,|31]P} (1 DBL, 15 ADDS)
- select first value as [k;|P
- 5 DBL's—»ADD(|k;_4 |P) = ... » 5 DBL's = ADD (| kyP])
Total: 52X5+4+1 =261DBLls,52+ 16 = 68 ADD’s.

e Same total and sequence, whether k = 1, k = r, or anything in between

Much more to constant-time implementations

* ldentical sequence of operations is just the beginning...

e.g: recoding was for odd scalars only: negate every scalar, mask in
the odd one, negate every “final” point, mask correct result...

e.g: recoding the scalars themselves must be constant time

e.g: must access/load every lookup element, every time, and mask
out correct one

see http://eprint.iacr.org/2014/130.pdf and
http://research.microsoft.com/en-us/projects/nums/
for solutions to these problems and more...

* The recoding is mathematically correct, and facilitates constant-time
implementations, BUT only assuming the ECC formulas do their job!

http://eprint.iacr.org/2014/130.pdf
http://research.microsoft.com/en-us/projects/nums/

Contents
PART | : CHOOSING CURVES

PART Il : IMPLEMENTING THEM

Exception-free algorithms and Weierstrass “completeness”

Guaranteeing exception-free routines

* The running multiple Q = [m]P of P could be one of the values
P,[3]P, ..., [2% — 1]P in the lookup table, or their inverse

* Not a problem if addition formulas are complete, but recall that:

(i) complete Edwards additions are not the fastest
(ii) typical Weierstrass additions far from complete

* Not only variable-base scenario [k]P for P (as before), but fixed-base
scenario where P is known (precomps mean larger lookup table — more
potential trouble)

* Can only claim “constant-time” if all combinations of k and P compute
| k] P without exception

Guaranteeing exception-free routines

* Propositions 4,6: (under prior recoding) Weierstrass and twisted
Edwards variable-base scalar multiplications will compute without
exception if:
fastest dedicated addition formulas are used throughout, except the
final addition, which needs to be unified (for our proof to go through)

* Propositions 5,7: (under fixed-base recoding) Weierstrass and twisted
Edwards fixed-base scalar multiplications will compute without
exception if:
complete additions are used throughout (for our proof to go through)

Unified?
Complete?

Weierstrass completeness

* Impossibility Theorem (Bosma-Lenstra): for general elliptic curves, we need
to compute at least two sets of explicit formulae to guarantee every sum is
computed:

i.e. no fy, fy, fz such that

X3 — fX(Xl'Yl'Zl'XZJYZJZZ)
Y3 = fY(Xl' Yl'Zl'XZJ YZJZZ)
ZS — fZ(XlJyl!Zl'XZJYZJZZ)

computes the correct sum (X3:Y3:Z3) = (X1:Y1: Z)+(X,: Y,: Z,) for all
points on a general curve

* Need (fy, fy, fz) and (fx', fy', fz'), where at least one set will always do the
job...

Weierstrass completeness

e e.g. specialized to y? = x3 + ax + b, and in homogeneous space, the sum
(Xl: Yl: Zl)+(X2: YZ: Zz) W|” be at |eaSt one Of (Xg: Y3: Z3) or (X3,: Y3,: Z3,):

Xg = (XqYo = XoY1)(Y1Zo +YoZy) — (XuZo — XoZy)(a(X122 + XoZy) + 302122 — Y1Y2);

Y3 = —(3X1Xo +aZd172)(X1Yo — XoY1)+ (Y1Zo — YoZy)(a(X1Zo + XoZy) +3bZ1Zos — Y1Y2);

Zs = (3X1 Xo+aZ1Z2)(X1Zo — XoZy) — (Y1 2o + Yo Z1) (Y122 — Yo Zy);

Xé — —(lejz + XQYl)(a.(X1Z2 + XQZl) +3bZ1 79 — Ylyzz) — (Y1Z2 + YzZl)(Sb(X1Z2 + XQZl) + a.(X1X2 — a.Z1Z2));

Y] = Y2YSF 4+ 3aX7X3 —20° X1 XoZ1 Zo — (a® +96*) 2125 + (X122 + XoZ1)(3b(3X1 Xo — aZ1 Z>) — a*(XoZy + X1 25)):
Zé = (3X1X2 — a-Z1Z2)(X1YEg — XQY&) + (YiZQ + YEng)(YiY?Z +3bZ17Zo + a-(X'lZQ — XQZl)). (l)
* For our a = —3 Weierstrass curves, our first attempt to optimize the above

gave 22M + 4M, (compared to = 14M for dedicated projective additions)
* AND the true cost ratio would be far worse than the multiplications indicate

... there’s got to be a better way...

Weierstrass “pseudo-completeness”

* We give a “pseudo-complete’ addition algorithm for general Weierstrass curves
* Exploits similarity in doubling and addition formulas (two main cases)

* Resemblance to Chevallier-Mames, Ciet, and Joye: “Side-channel Atomicity”, but
they give separate routines — we merge into one with masking

Algorithm 18 Complete (mixed) addition using masking and Jacobian /affine coordinates on
prime-order Weierstrass curves Ej.

to
(X1Y2t+tY1Xo Y1Y2—X1X2)
1+dx1x2y1Y2 1—dx1X2Y1Y2

Compare

* Edwards elegance unrivalled, but this gets the job done for Weierstrass!
* Jac+aff (dedicated) = 8M+3S, Jac+aff (complete-masking) = 8M+3S+€ (e = 20%)

Contents
PART | : CHOOSING CURVES

PART Il : IMPLEMENTING THEM

Performance numbers and practical considerations

TLS handshake with PFS: ECDH(E)-ECDSA

Three scenarios
* Variable-base: k,P - [k]P (P not known in advance)

- both sides of static DH
- half of ephemeral DH(E)
- constant time (recoding as before, final addition unified)

* Fixed-base k,Pw— |k|P (P known in advance)
- other half of ephemeral DH(E)
- ECDSA signing
- constant time (fixed-base recoding, all additions complete)

* Double-scalar a,b,P,Q — [a]P + |b]Q (P known in advance, Q not)

- ECDSA verification
- constant time unnecessary!

Security Curve Variable | Fixed Double
Level -base |-base -scalar

Weierstrass

128 P =2%"°—189 twisted Edwards 216 82 231
. Weierstrass 714 252 758

192 p=2""=317 twisted Edwards 588 201 614
<) Weierstrass 1,504 488 1,596

256 p=2"7-569 tyisted Edwards 1,242 391 1,308

 Fastest report NIST P-256 (Gueron & Krasnov ‘13): = 400k cycles var-based

* Fixed-base may get a fair bit faster in all scenarios, unified/complete adds
not necessary?? [Hamburg, a few days ago, private communication]

* No assembly above field layer (solid gains possible for our curves)
 Compare Curve25519 = 194,000 to twisted Edwards =~ 216,000 (sandy)

Contents
PART | : CHOOSING CURVES

PART Il : IMPLEMENTING THEM

Conclusions and recommendations

Our work (in a nutshell)

Demonstrate potential of new curves inside the
Transport Layer Security (TLS) protocol

Constant-time, exception-free algorithms to do crypto

128-bit security 192-bit security 256-bit security

Weierstrass twisted
curves Edwards curves

Consider different families of primes for fast arithmetic

The sell: what did we do differently?

* Modular/consistent implementation across three security levels
- twisted Edwards curves generated and implemented the same way
- same for Weierstrass

* Also considered/implemented new/better prime-order curves
- concrete performance comparison
- true gauge on pros and cons of shifting to Edwards

* Two different styles of primes/field arithmetic
- Montgomery and Pseudo-Mersenne
- Stayed fixed on “full-length” Pseudo-Mersenne primes

* Choose Edwards everywhere over Montgomery ladder
- Consistency and no real performance hit
- More versatile

What could we do differently?

* Define curves as Edwards, not twisted
- Douglas Stebila (8 Aug, 2014) on CFRG mailing list:
“implementations [should] readily expose both a scalar point
multiplication operation and a point addition operation”
- Perhaps better to define as Edwards equipped with complete add
(and optionally use Hamburg’s isogeny trick?)
- Fortunately for 3 mod 4, we get minimal d in either form (just rewrite)

* Remove d > 0 with t > 0 restriction
- Mike Hamburg (12 Aug, 2014) on CFRG mailing list:
“If these requirements become final, then surely the complete
curves mod the Microsoft primes with a=1 and no restriction on
the sign of d (choose the one with g<p) should be in the running”.
- Unrestricted curves in our first preprint, imposed d > 0 in v2, go back?

... see also ...

* Report:
http://eprint.iacr.org/2014/130.pdf

 MSR ECC Library:
http://research.microsoft.com/en-us/projects/nums/

* Specification of curve selection:
http://research.microsoft.com/apps/pubs/default.aspx?id=219966

* |[ETF Internet Draft (authored by Benjamin Black)
http://tools.ietf.org/html/draft-black-numscurves-02

http://eprint.iacr.org/2014/130.pdf
http://research.microsoft.com/en-us/projects/nums/
http://research.microsoft.com/apps/pubs/default.aspx?id=219966
http://tools.ietf.org/html/draft-black-numscurves-02

