S_n - *n*th symmetric group.

 S_n - *n*th symmetric group.

 λ - integer partition of n.

- S_n *n*th symmetric group.
- λ integer partition of n.

 $(\rho_{\lambda}, V_{\lambda})$ - irreducible representation of S_n corresponding to λ .

- S_n *n*th symmetric group.
- λ integer partition of n.
- $(\rho_{\lambda}, V_{\lambda})$ irreducible representation of S_n corresponding to λ .

The problem

The map $w \mapsto \det(\rho_{\lambda}(w))$ is either the trivial character, or the sign character of S_n .

- S_n *n*th symmetric group.
- λ integer partition of n.
- $(\rho_{\lambda}, V_{\lambda})$ irreducible representation of S_n corresponding to λ .

The problem

The map $w \mapsto \det(\rho_{\lambda}(w))$ is either the trivial character, or the sign character of S_n .

We call λ chiral if $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character of S_n .

- S_n *n*th symmetric group.
- λ integer partition of n.
- $(\rho_{\lambda}, V_{\lambda})$ irreducible representation of S_n corresponding to λ .

The problem

The map $w \mapsto \det(\rho_{\lambda}(w))$ is either the trivial character, or the sign character of S_n .

We call λ chiral if $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character of S_n . For how many partitions of n are chiral?

 S_n - *n*th symmetric group.

 λ - integer partition of n.

 $(\rho_{\lambda}, V_{\lambda})$ - irreducible representation of S_n corresponding to λ .

The problem

The map $w \mapsto \det(\rho_{\lambda}(w))$ is either the trivial character, or the sign character of S_n .

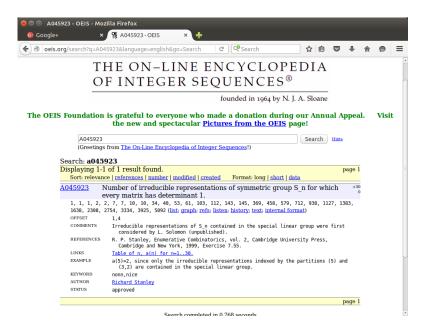
We call λ chiral if $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character of S_n . For how many partitions of n are chiral?

Definition

$$b(n) =$$
 number of chiral partitions of n .

п	<i>p</i> (<i>n</i>)	b(n)	b(n)/p(n)
1	1	1	
2	2 3	1	
3		2	
4	5	3	
5	7	5	
6	11	4	
7	15	8	
8	22	12	
9	30	20	
10	42	8	
11	56	16	
12	77	24	
13	101	40	
14	135	32	
15	176	64	
16	231	88	
17	297	152	
18	385	16	-
19	490	32	_
20	627	48	_
21	792	80	—
22	1002	64	_
23	1255	128	_
24	1575	192	—
25	1958	320	
26	2436	128	-
27	3010	256	—
28	3718	384	—
29	4565	640	
30	5604	512	—
31	6842	1024	—
32	8349	1360	—
33	10143	2384	
34	12310	32	· •

п	p(n)	b(n)	b(n)/p(n)
100	190569292	6144	$3.2240241518 \times 10^{-05}$
200	3972999029388	98304	$2.47430213984 \times 10^{-08}$
300	9253082936723602	196608	$2.12478372176 \times 10^{-13}$
400	6727090051741041926	2883584	$4.28652504697 \times 10^{-13}$
500	2300165032574323995027	3221225472	$1.40043232828 \times 10^{-12}$
600	458004788008144308553622	6291456	$1.37366598881 \times 10^{-1}$
700	60378285202834474611028659	805306368	$1.33376820043 \times 10^{-1}$
800	5733052172321422504456911979	178257920	$3.10930224673 \times 10^{-2}$
900	415873681190459054784114365430	50331648	$1.21026288213 \times 10^{-2}$
1000	24061467864032622473692149727991	412316860416	$1.71359811773 \times 10^{-2}$
1100	1147240591519695580043346988281283	1572864	$1.37099751493 \times 10^{-2}$
1200	46240102378152881298913555099661657	369098752	$7.98222177325 \times 10^{-2}$
1300	1607818855017534550841511230454411672	12582912	$7.82607565568 \times 10^{-3}$
1400	49032194652550394774839040691532998261	103079215104	$2.10227618475 \times 10^{-2}$
1500	1329461690763193888825263136701886891117	824633720832	$6.20276407031 \times 10^{-2}$
1600	32417690376154241824102577250721959572183	22699573248	$7.0022179201 \times 10^{-31}$
1700	717802041964941442478681516751205185010007	6442450944	$8.97524744617 \times 10^{-3}$
1800	14552716211005418005132948684850541312590849	1610612736	$1.10674372581 \times 10^{-3}$
1900	272089289788583262011466359201428623427767364	6597069766656	$2.42459737088 \times 10^{-3}$



▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Suppose *n* has binary expansion:

 $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$,

Suppose *n* has binary expansion:

 $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$,

Then the number of partitions λ of *n* for which $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character is

$$2^{k_2+\cdots+k_r}\left(2^{k_1-1}+\sum_{\nu=1}^{k_1-1}2^{(\nu+1)(k_1-2)-\binom{\nu}{2}}+\epsilon 2^{\binom{k_1}{2}}\right).$$

Suppose *n* has binary expansion:

 $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$,

Then the number of partitions λ of *n* for which $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character is

$$2^{k_{2}+\cdots+k_{r}}\left(2^{k_{1}-1}+\sum_{\nu=1}^{k_{1}-1}2^{(\nu+1)(k_{1}-2)-\binom{\nu}{2}}+\epsilon 2^{\binom{k_{1}}{2}}\right).$$

Example Take n = 41

Suppose *n* has binary expansion:

 $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$,

Then the number of partitions λ of *n* for which $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character is

$$2^{k_2+\cdots+k_r}\left(2^{k_1-1}+\sum_{\nu=1}^{k_1-1}2^{(\nu+1)(k_1-2)-\binom{\nu}{2}}+\epsilon 2^{\binom{k_1}{2}}\right).$$

Example Take $n = 41 = 1 + 2^3 + 2^5$.

Suppose *n* has binary expansion:

 $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$,

Then the number of partitions λ of *n* for which $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character is

$$2^{k_2+\cdots+k_r}\left(2^{k_1-1}+\sum_{\nu=1}^{k_1-1}2^{(\nu+1)(k_1-2)-\binom{\nu}{2}}+\epsilon 2^{\binom{k_1}{2}}\right).$$

Example Take $n = 41 = 1 + 2^3 + 2^5$. So $\epsilon = 1$, $k_1 = 3$, and $k_2 = 5$.

Suppose *n* has binary expansion:

 $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$,

Then the number of partitions λ of *n* for which $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character is

$$2^{k_2+\cdots+k_r}\left(2^{k_1-1}+\sum_{\nu=1}^{k_1-1}2^{(\nu+1)(k_1-2)-\binom{\nu}{2}}+\epsilon 2^{\binom{k_1}{2}}\right).$$

Example Take $n = 41 = 1 + 2^3 + 2^5$. So $\epsilon = 1$, $k_1 = 3$, and $k_2 = 5$. $b(41) = 2^5$

Suppose *n* has binary expansion:

 $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$,

Then the number of partitions λ of *n* for which $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character is

$$2^{k_2+\cdots+k_r}\left(2^{k_1-1}+\sum_{\nu=1}^{k_1-1}2^{(\nu+1)(k_1-2)-\binom{\nu}{2}}+\epsilon 2^{\binom{k_1}{2}}\right).$$

Example Take $n = 41 = 1 + 2^3 + 2^5$. So $\epsilon = 1$, $k_1 = 3$, and $k_2 = 5$. $b(41) = 2^5 \times (2^{3-1} + 2^{2 \times 1 - \binom{1}{2}} + 2^{3 \times 1 - \binom{2}{2}}$

Suppose *n* has binary expansion:

 $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$,

Then the number of partitions λ of *n* for which $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character is

$$2^{k_2+\cdots+k_r}\left(2^{k_1-1}+\sum_{\nu=1}^{k_1-1}2^{(\nu+1)(k_1-2)-\binom{\nu}{2}}+\epsilon 2^{\binom{k_1}{2}}\right).$$

Example Take $n = 41 = 1 + 2^3 + 2^5$. So $\epsilon = 1$, $k_1 = 3$, and $k_2 = 5$. $b(41) = 2^5 \times (2^{3-1} + 2^{2 \times 1 - \binom{1}{2}} + 2^{3 \times 1 - \binom{2}{2}} + 2^{\binom{3}{2}})$

Suppose *n* has binary expansion:

 $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$,

Then the number of partitions λ of *n* for which $w \mapsto \det(\rho_{\lambda}(w))$ is the sign character is

$$2^{k_2+\cdots+k_r}\left(2^{k_1-1}+\sum_{\nu=1}^{k_1-1}2^{(\nu+1)(k_1-2)-\binom{\nu}{2}}+\epsilon 2^{\binom{k_1}{2}}\right).$$

Example Take $n = 41 = 1 + 2^3 + 2^5$. So $\epsilon = 1$, $k_1 = 3$, and $k_2 = 5$. $b(41) = 2^5 \times (2^{3-1} + 2^{2 \times 1 - \binom{1}{2}} + 2^{3 \times 1 - \binom{2}{2}} + 2^{\binom{3}{2}}) = 640$.

The vector space V_{λ} has a basis (Young's orthogonal form)

 $\{v_T \mid T \text{ a standard tableau of shape } \lambda\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The vector space V_{λ} has a basis (Young's orthogonal form)

 $\{v_T \mid T \text{ a standard tableau of shape } \lambda\}.$

$$\rho_{\lambda}(s_i)v_{\mathcal{T}} = \begin{cases} v_{\mathcal{T}} & \text{if } i \text{ and } i+1 \text{ are in the same row of } \mathcal{T}, \\ -v_{\mathcal{T}} & \text{if } i \text{ and } i+1 \text{ are in the same column of } \mathcal{T}, \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The vector space V_{λ} has a basis (Young's orthogonal form)

 $\{v_T \mid T \text{ a standard tableau of shape } \lambda\}.$

$$\rho_{\lambda}(s_i)v_{T} = \begin{cases} v_{T} & \text{if } i \text{ and } i+1 \text{ are in the same row of } T, \\ -v_{T} & \text{if } i \text{ and } i+1 \text{ are in the same column of } T, \end{cases}$$

If neither case holds, then the action is more complicated.

The vector space V_{λ} has a basis (Young's orthogonal form)

 $\{v_T \mid T \text{ a standard tableau of shape } \lambda\}.$

$$\rho_{\lambda}(s_i)v_{T} = \begin{cases} v_{T} & \text{if } i \text{ and } i+1 \text{ are in the same row of } T, \\ -v_{T} & \text{if } i \text{ and } i+1 \text{ are in the same column of } T, \end{cases}$$

If neither case holds, then the action is more complicated. But 1 and 2 are always in the same row or same column.

The vector space V_{λ} has a basis (Young's orthogonal form)

 $\{v_T \mid T \text{ a standard tableau of shape } \lambda\}.$

$$\rho_{\lambda}(s_i)v_{T} = \begin{cases} v_{T} & \text{if } i \text{ and } i+1 \text{ are in the same row of } T, \\ -v_{T} & \text{if } i \text{ and } i+1 \text{ are in the same column of } T, \end{cases}$$

If neither case holds, then the action is more complicated. But 1 and 2 are always in the same row or same column. The vectors v_T are eigenvectors of $\rho_\lambda(s_1)$ with eigenvalue ± 1 .

The vector space V_{λ} has a basis (Young's orthogonal form)

 $\{v_T \mid T \text{ a standard tableau of shape } \lambda\}.$

$$\rho_{\lambda}(s_i)v_{\mathcal{T}} = \begin{cases} v_{\mathcal{T}} & \text{if } i \text{ and } i+1 \text{ are in the same row of } \mathcal{T}, \\ -v_{\mathcal{T}} & \text{if } i \text{ and } i+1 \text{ are in the same column of } \mathcal{T}, \end{cases}$$

If neither case holds, then the action is more complicated. But 1 and 2 are always in the same row or same column. The vectors v_T are eigenvectors of $\rho_\lambda(s_1)$ with eigenvalue ± 1 . Let g_λ denote the number of standard tableaux with 1 and 2 in the same column.

The vector space V_{λ} has a basis (Young's orthogonal form)

 $\{v_T \mid T \text{ a standard tableau of shape } \lambda\}.$

$$\rho_{\lambda}(s_i)v_{\mathcal{T}} = \begin{cases} v_{\mathcal{T}} & \text{if } i \text{ and } i+1 \text{ are in the same row of } \mathcal{T}, \\ -v_{\mathcal{T}} & \text{if } i \text{ and } i+1 \text{ are in the same column of } \mathcal{T}, \end{cases}$$

If neither case holds, then the action is more complicated. But 1 and 2 are always in the same row or same column. The vectors v_T are eigenvectors of $\rho_\lambda(s_1)$ with eigenvalue ± 1 . Let g_λ denote the number of standard tableaux with 1 and 2 in the same column.

Conclusion

det $\circ \rho_{\lambda}$ is the sign character if and only if g_{λ} is odd.

 f_{λ} - number of SYT of shape λ ,

 f_{λ} - number of SYT of shape λ , $\dim(V_{\lambda})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

f_{λ}	-	number of SYT of shape λ ,
		$\dim(V_{\lambda})$
		and the set OVT of the second set of the second

 g_{λ} - number of such SYT with 1 and 2 in the same column

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

f_{λ}	-	number of SYT of shape λ ,
		$\dim(V_\lambda)$
gλ	-	number of such SYT with 1 and 2 in the same column
		multiplicity of -1 as eigenvalue of $ ho_\lambda(s_1)$

f_{λ}	-	number of SYT of shape λ ,
		$\dim(V_\lambda)$
gλ	-	number of such SYT with 1 and 2 in the same column
		multiplicity of -1 as eigenvalue of $ ho_\lambda(extsf{s}_1)$
$f_{\lambda} - g_{\lambda}$	-	number of SYT with 1 and 2 in the same row

f_{λ}	-	number of SYT of shape λ ,
		$\dim(V_\lambda)$
gλ	-	number of such SYT with 1 and 2 in the same column
		multiplicity of -1 as eigenvalue of $ ho_\lambda(extsf{s}_1)$
$f_{\lambda} - g_{\lambda}$	-	number of SYT with 1 and 2 in the same row
		multiplicity of $+1$ as eigenvalue of $ ho_\lambda(s_1)$

f_{λ}	-	number of SYT of shape λ ,
		$\dim(V_\lambda)$
gλ	-	number of such SYT with 1 and 2 in the same column
		multiplicity of -1 as eigenvalue of $ ho_\lambda(extsf{s}_1)$
$f_{\lambda} - g_{\lambda}$	-	number of SYT with 1 and 2 in the same row
		multiplicity of $+1$ as eigenvalue of $ ho_\lambda(extsf{s}_1)$
$f_{\lambda} - 2g_{\lambda}$	-	trace of $ ho_\lambda(s_1)$

f_{λ}	-	number of SYT of shape λ ,
		$\dim(V_{\lambda})$
gλ	-	number of such SYT with 1 and 2 in the same column
		multiplicity of -1 as eigenvalue of $ ho_\lambda(extsf{s}_1)$
$f_{\lambda} - g_{\lambda}$	-	number of SYT with 1 and 2 in the same row
		multiplicity of $+1$ as eigenvalue of $ ho_\lambda(s_1)$
$f_{\lambda} - 2g_{\lambda}$	-	trace of $ ho_{\lambda}(s_1)$
		$=\chi_{\lambda}(2,1^{n-2})$

Relation to the character value at $(2, 1^{n-2})$

f_{λ}	-	number of SYT of shape λ ,	
~		$\dim(V_{\lambda})$	
g_{λ}	-	number of such SYT with 1 and 2 in the same column	
		multiplicity of -1 as eigenvalue of $ ho_\lambda(s_1)$	
$f_\lambda - g_\lambda$	-	number of SYT with 1 and 2 in the same row	
		multiplicity of $+1$ as eigenvalue of $ ho_\lambda(s_1)$	
$f_{\lambda} - 2g_{\lambda}$	-	trace of $ ho_{\lambda}(s_1)$	
		$=\chi_{\lambda}(2,1^{n-2})$	
The character value $\chi_{\lambda}(2,1^{n-2})$ has a nice formula:			

$$\chi_{\lambda}(2,1^{n-2})=\frac{f_{\lambda}C(\lambda)}{\binom{n}{2}}.$$

Relation to the character value at $(2, 1^{n-2})$

f_{λ}	-	number of SYT of shape λ ,	
		$\dim(V_\lambda)$	
gλ	-	number of such SYT with 1 and 2 in the same column	
		multiplicity of -1 as eigenvalue of $ ho_\lambda(s_1)$	
$f_{\lambda} - g_{\lambda}$	-	number of SYT with 1 and 2 in the same row	
		multiplicity of $+1$ as eigenvalue of $ ho_\lambda(extsf{s}_1)$	
$f_{\lambda} - 2g_{\lambda}$	-	trace of $ ho_{\lambda}(s_1)$	
		$=\chi_{\lambda}(2,1^{n-2})$	
The character value $\chi_{\lambda}(2, 1^{n-2})$ has a nice formula:			

$$\chi_{\lambda}(2,1^{n-2})=rac{f_{\lambda}C(\lambda)}{\binom{n}{2}}.$$

(Macdonald, *Symmetric functions and Hall polynomials*, p. 118, using the theory of skew-Schur functions)

<ロ> <@> < E> < E> E のQの

The content of (i, j) is j - i.

<□ > < @ > < E > < E > E のQ @

The content of (i,j) is j-i.

The content of a partition is the sum of the contents of the cells in its Young diagram:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The content of (i, j) is j - i.

The content of a partition is the sum of the contents of the cells in its Young diagram:

$$\lambda = (4,2) =$$

(ロ)、(型)、(E)、(E)、 E) の(の)

The content of (i, j) is j - i.

The content of a partition is the sum of the contents of the cells in its Young diagram:

$$\lambda = (4, 2) =$$

(ロ)、(型)、(E)、(E)、 E) の(の)

The content of (i, j) is j - i.

The content of a partition is the sum of the contents of the cells in its Young diagram:

$$\lambda = (4, 2) =$$

$$C(\lambda) = \sum_{i=1}^{n} \frac{1}{2} \frac{2}{3} = 5$$

Character Formula:

$$\chi_{\lambda}(2,1^{n-2}) = rac{f_{\lambda}C(\lambda)}{\binom{n}{2}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Formula for g_{λ}

$$g_{\lambda} = (f_{\lambda} - \chi_{\lambda}(2, 1^{n-2}))/2$$
$$= f_{\lambda} \left(\frac{\binom{n}{2} - C(\lambda)}{\binom{n}{2}}\right)$$

Formula for g_{λ}

$$g_{\lambda} = (f_{\lambda} - \chi_{\lambda}(2, 1^{n-2}))/2$$
$$= f_{\lambda} \left(\frac{\binom{n}{2} - C(\lambda)}{\binom{n}{2}}\right)$$

So ρ_{λ} is chiral if and only if:

$$v_2(f_{\lambda}) + v_2\left(\binom{n}{2} - C(\lambda)\right) = v_2\binom{n}{2}$$

<□ > < @ > < E > < E > E のQ @

One ingredient is the hook-length formula (Frame, Robinson and Thrall):

$$f_{\lambda} = \frac{n!}{\prod_{(i,j)\in\lambda} h(i,j)}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

One ingredient is the hook-length formula (Frame, Robinson and Thrall):

$$f_{\lambda} = \frac{n!}{\prod_{(i,j)\in\lambda} h(i,j)}$$

Example

Hook-lengths of (4, 2) are

5	4	2	1	
2	1			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

One ingredient is the hook-length formula (Frame, Robinson and Thrall):

$$f_{\lambda} = \frac{n!}{\prod_{(i,j)\in\lambda} h(i,j)}$$

Example

Hook-lengths of (4, 2) are

so

$$f_{(4,2)} = \frac{6!}{5 \times 4 \times 2 \times 1 \times 2 \times 1} = 9.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

<□ > < @ > < E > < E > E のQ @

Another ingredient is the theory of cores and quotients of partitions:

(ロ)、(型)、(E)、(E)、 E) の(の)

Another ingredient is the theory of cores and quotients of partitions:

 $\lambda \leftrightarrow (\operatorname{core}_{p}\lambda, \operatorname{quo}_{p}\lambda).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Another ingredient is the theory of cores and quotients of partitions:

 $\lambda \leftrightarrow (\operatorname{core}_{p}\lambda, \operatorname{quo}_{p}\lambda).$

The partition $\operatorname{core}_p \lambda$ is what remains of Young diagram of λ after successively removing the rims of as many *p*-hooks as possible. The *p*-quotient $\operatorname{quo}_p \lambda$ is a *p*-tuple $(\lambda_0, \ldots, \lambda_{p-1})$ of partitions.

Another ingredient is the theory of cores and quotients of partitions:

 $\lambda \leftrightarrow (\operatorname{core}_{p}\lambda, \operatorname{quo}_{p}\lambda).$

The partition $\operatorname{core}_p \lambda$ is what remains of Young diagram of λ after successively removing the rims of as many *p*-hooks as possible. The *p*-quotient $\operatorname{quo}_p \lambda$ is a *p*-tuple $(\lambda_0, \ldots, \lambda_{p-1})$ of partitions. The total number of cells in $\operatorname{quo}_p \lambda$ is the number of *p*-hooks whose rims were removed from λ to obtain $\operatorname{core}_p \lambda$.

Another ingredient is the theory of cores and quotients of partitions:

 $\lambda \leftrightarrow (\operatorname{core}_{p}\lambda, \operatorname{quo}_{p}\lambda).$

The partition $\operatorname{core}_p \lambda$ is what remains of Young diagram of λ after successively removing the rims of as many *p*-hooks as possible. The *p*-quotient $\operatorname{quo}_p \lambda$ is a *p*-tuple $(\lambda_0, \ldots, \lambda_{p-1})$ of partitions. The total number of cells in $\operatorname{quo}_p \lambda$ is the number of *p*-hooks whose rims were removed from λ to obtain $\operatorname{core}_p \lambda$.

$$|\lambda| = |\operatorname{core}_{p}\lambda| + p(|\lambda_{0}| + \cdots + |\lambda_{p-1}|).$$

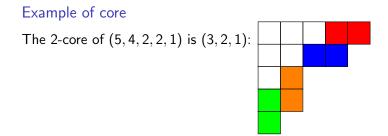
Another ingredient is the theory of cores and quotients of partitions:

 $\lambda \leftrightarrow (\operatorname{core}_{p}\lambda, \operatorname{quo}_{p}\lambda).$

The partition $\operatorname{core}_p \lambda$ is what remains of Young diagram of λ after successively removing the rims of as many *p*-hooks as possible. The *p*-quotient $\operatorname{quo}_p \lambda$ is a *p*-tuple $(\lambda_0, \ldots, \lambda_{p-1})$ of partitions. The total number of cells in $\operatorname{quo}_p \lambda$ is the number of *p*-hooks whose rims were removed from λ to obtain $\operatorname{core}_p \lambda$.

$$|\lambda| = |\operatorname{core}_{p}\lambda| + p(|\lambda_{0}| + \cdots + |\lambda_{p-1}|).$$

The size of the partition λ_k in the *p*-quotient is the number of nodes in the Young diagram of λ whose hook-lengths are multiples of *p*, and whose hand-nodes have content congruent to *k* modulo *p* (by definition, the content of the node (i,j) is j - i). The partition λ can be recovered uniquely from $\operatorname{core}_p \lambda$ and $\operatorname{quo}_p \lambda$.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example of quotient

The hook-lengths of (5, 4, 2, 2, 1, 1) are:

10	7	4	3	1
8	5	2	1	
5	2			
4	1	•		
2				
1				

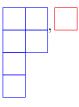
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example of quotient

The hook-lengths of (5, 4, 2, 2, 1, 1) are:

10	7	4	3	1
8	5	2	1	
5	2			
4	1	•		
2				
1				

And its 2-quotient is given by



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A result from Frame-Robinson-Thrall

Lemma

There exists a bijection from the set of cells in $quo_p\lambda$ onto the set of cells in λ whose hook-lengths are divisible by p under which a cell of hook-length h in $quo_p\lambda$ is mapped to a cell of hook-length ph in λ .

A result from Frame-Robinson-Thrall

Lemma

There exists a bijection from the set of cells in $quo_p\lambda$ onto the set of cells in λ whose hook-lengths are divisible by p under which a cell of hook-length h in $quo_p\lambda$ is mapped to a cell of hook-length ph in λ .

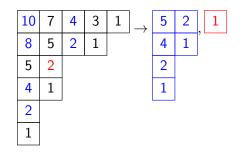
In our example:

A result from Frame-Robinson-Thrall

Lemma

There exists a bijection from the set of cells in $quo_p\lambda$ onto the set of cells in λ whose hook-lengths are divisible by p under which a cell of hook-length h in $quo_p\lambda$ is mapped to a cell of hook-length ph in λ .

In our example:



Recursive Criterion for odd Dimensionality

If n has binary expansion

 $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$,

and λ is a partition of n with $\operatorname{core}_2 \lambda$ of size a, and $\operatorname{quo}_2 \lambda$ having partitions μ_0 and μ_1 of sizes m_0 and m_1 (so $n = a + 2m_0 + 2m_1$),

Recursive Criterion for odd Dimensionality

If n has binary expansion

 $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$,

and λ is a partition of n with $\operatorname{core}_2 \lambda$ of size a, and $\operatorname{quo}_2 \lambda$ having partitions μ_0 and μ_1 of sizes m_0 and m_1 (so $n = a + 2m_0 + 2m_1$), Theorem (Macdonald)

 f_{λ} is odd if and only if

- $a = \epsilon$,
- The binomial coefficient $\frac{(n-\epsilon)!}{(2m_0)!(2m_1)!}$ is odd,
- f_{μ_0} and f_{μ_1} are odd.

Recursive Criterion for odd Dimensionality

If n has binary expansion

 $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$,

and λ is a partition of n with $\operatorname{core}_2 \lambda$ of size a, and $\operatorname{quo}_2 \lambda$ having partitions μ_0 and μ_1 of sizes m_0 and m_1 (so $n = a + 2m_0 + 2m_1$), Theorem (Macdonald)

 f_{λ} is odd if and only if

• $a = \epsilon$,

- The binomial coefficient $\frac{(n-\epsilon)!}{(2m_0)!(2m_1)!}$ is odd,
- f_{μ_0} and f_{μ_1} are odd.

Remark

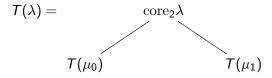
The binomial coefficient $\frac{n!}{k!(n-k)!}$ is odd if and only if the binary digits of k and n-k are in disjoint positions.

Recursion of core and quotient construction: the core tower

If λ is a partition with core α and quotient μ_0 and μ_1 , then its 2-core tower $T(\lambda)$ is a binary tree, defined recursively as follows:

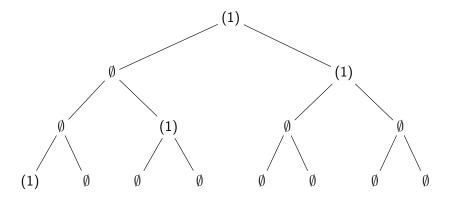
Recursion of core and quotient construction: the core tower

If λ is a partition with core α and quotient μ_0 and μ_1 , then its 2-core tower $T(\lambda)$ is a binary tree, defined recursively as follows:

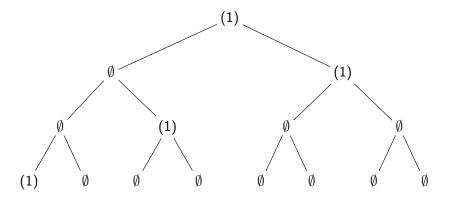


The 2-core tower of (5, 4, 2, 2, 1, 1) is:

The 2-core tower of (5, 4, 2, 2, 1, 1) is:



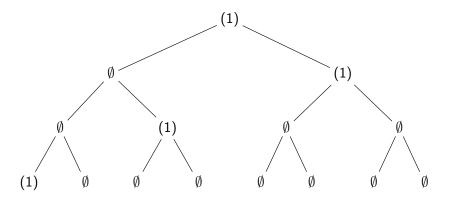
The 2-core tower of (5, 4, 2, 2, 1, 1) is:



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let $w_i(\lambda) =$ sum of sizes of entries in *i*th row.

The 2-core tower of (5, 4, 2, 2, 1, 1) is:



Let $w_i(\lambda) = \text{ sum of sizes of entries in } i\text{th row.}$ Here: $w_i(\lambda) = 1$ for i = 0, 1, 2, 3, and 0 otherwise.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Let $\nu_i(n)$ be the *i*th digit in the binary expansion of *n*.

(ロ)、(型)、(E)、(E)、 E) の(の)

Let $\nu_i(n)$ be the *i*th digit in the binary expansion of *n*. So $n = \sum_i 2^{\nu_i(n)}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $\nu_i(n)$ be the *i*th digit in the binary expansion of *n*. So $n = \sum_i 2^{\nu_i(n)}$.

Theorem

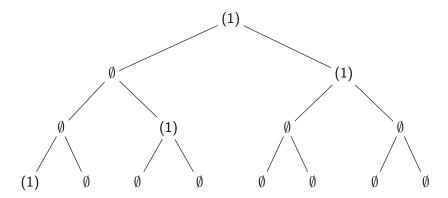
Let λ be a partition of *n*. Then f_{λ} is odd if and only if

$$\sum w_i(\lambda) = \sum \nu_i(n).$$

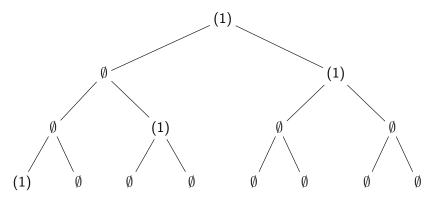
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

The 2-core tower of $\lambda = (5, 4, 2, 2, 1, 1)$ (a partition of 15) is:

The 2-core tower of $\lambda = (5, 4, 2, 2, 1, 1)$ (a partition of 15) is:



The 2-core tower of $\lambda=(5,4,2,2,1,1)$ (a partition of 15) is:



(日)、

3

 f_{λ} is odd.

Counting odd dimensional representations

<ロ> <回> <回> <回> <三> <三> <三> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Counting odd dimensional representations

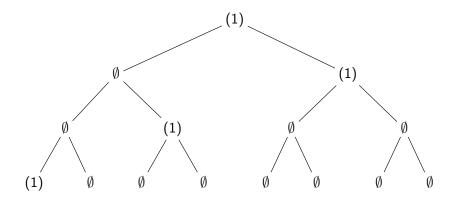
Theorem (Macdonald, bijective proof via Olsson) The number of partitions λ of *n* such that f_{λ} is odd is $2^{\sum_{i} i\nu_{i}(n)}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Counting odd dimensional representations

Theorem (Macdonald, bijective proof via Olsson) The number of partitions λ of n such that f_{λ} is odd is $2^{\sum_{i} i\nu_{i}(n)}$. To prove, count the possible 2-core towers.

n = 15



◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

2-core tower and 2-power hooks

The 2-core tower of λ tells us how the core of λ can be obtained by removing a sequence of maximal 2-power rim hooks.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2-core tower and 2-power hooks

The 2-core tower of λ tells us how the core of λ can be obtained by removing a sequence of maximal 2-power rim hooks. A box in the *i*th row corresponds to a 2^{i} -rim hook.

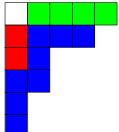
The 2-core tower of λ tells us how the core of λ can be obtained by removing a sequence of maximal 2-power rim hooks. A box in the *i*th row corresponds to a 2^i -rim hook.

In the example of (5, 4, 2, 2, 1, 1):

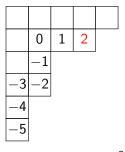
2-core tower and 2-power hooks

The 2-core tower of λ tells us how the core of λ can be obtained by removing a sequence of maximal 2-power rim hooks. A box in the *i*th row corresponds to a 2^{i} -rim hook.

In the example of (5, 4, 2, 2, 1, 1):

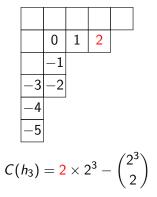


Contents in a rim-hook



$$C(h_3) = \frac{2}{2} \times 2^3 - \binom{2^3}{2}$$

Contents in a rim-hook



The head node contribution is even on the left side of the tree and odd on the right side.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

2-core towers of chiral partitions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

2-core towers of chiral partitions

Chiral partitions λ of n are partitions for which

$$v_2(f_\lambda) + v_2\left(\binom{n}{2} - C(\lambda)\right) = v_2\binom{n}{2}$$

2-core towers of chiral partitions

Chiral partitions λ of n are partitions for which

$$v_2(f_\lambda) + v_2\left(\binom{n}{2} - C(\lambda)\right) = v_2\binom{n}{2}$$

By carefully keeping track of the contributions of different rim-hooks, we were able to characterize the 2-core towers of chiral partitions.

If $n = \epsilon + 2^{k_1} + 2^{k_2} + \cdots + 2^{k_r}$, with $0 < k_1 < \cdots < k_r$, $\epsilon \in \{0, 1\}$. Then a partition λ of n is chiral if and only if one of the following happens:

1. The partition λ satisfies

$$w_i(\lambda) = \begin{cases} 1 & \text{if } i \in \{k_1, \dots, k_r\}, \text{ or if } \epsilon = 1 \text{ and } i = 0, \\ 0 & \text{otherwise,} \end{cases}$$

and the unique non-trivial partition in the k_1 th row of the 2-core tower of λ is α_x , where the binary sequence x of length k begins with ϵ . In this case f_{λ} is odd.

2. For some $0 < v < k_1$,

$$w_i(\lambda) = \begin{cases} 2 & \text{if } i = k_1 - \nu, \\ 1 & \text{if } k_1 - \nu + 1 \le i \le k_1 - 1 \text{ or } i \in \{k_2, \dots, k_r\}, \\ \text{ or if } \epsilon = 1 \text{ and } i = 0, \\ 0 & \text{ otherwise,} \end{cases}$$

and the two non-trivial partitions in the (k - v)th row of the 2-core tower of λ are α_x and α_y , for binary sequences x and y such that x begins with 0 and y begins with 1. In this case $v_2(f_{\lambda}) = v$.

3. We have $\epsilon = 1$ and the partition λ satisfies

$$w_i(\lambda) = \begin{cases} 3 & \text{if } i = 0, \\ 1 & \text{if } i \in \{1, \dots, k_1 - 1, k_2, \dots, k_r\}. \end{cases}$$

In this case, $v_2(f_\lambda) = k_1$.

Counting such towers gives:

If $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$, then the number $b_v(n)$ of chiral partitions λ of n for which $v_2(f_\lambda) = v$ is given by

$$b_{v}(n) = 2^{k_{2}+\dots+k_{r}} \times \begin{cases} 2^{k_{1}-1} & \text{if } v = 0, \\ 2^{(v+1)(k_{1}-2)-\binom{v}{2}} & \text{if } 0 < v < k_{1}, \\ \epsilon 2^{\binom{k_{1}}{2}} & \text{if } v = k, \\ 0 & \text{if } v > k_{1}. \end{cases}$$

Counting such towers gives:

If $n = \epsilon + 2^{k_1} + 2^{k_2} + \dots + 2^{k_r}$, with $0 < k_1 < \dots < k_r, \epsilon \in \{0, 1\}$, then the number $b_v(n)$ of chiral partitions λ of n for which $v_2(f_{\lambda}) = v$ is given by

$$b_{v}(n) = 2^{k_{2}+\dots+k_{r}} \times \begin{cases} 2^{k_{1}-1} & \text{if } v = 0, \\ 2^{(v+1)(k_{1}-2)-\binom{v}{2}} & \text{if } 0 < v < k_{1}, \\ \epsilon 2^{\binom{k_{1}}{2}} & \text{if } v = k, \\ 0 & \text{if } v > k_{1}. \end{cases}$$

.

$$b(n) = 2^{k_2 + \dots + k_r} \left(2^{k_1 - 1} + \sum_{\nu=1}^{k_1 - 1} 2^{(\nu+1)(k_1 - 2) - \binom{\nu}{2}} + \epsilon 2^{\binom{k_1}{2}} \right).$$

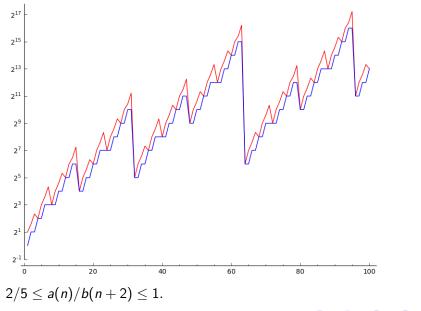
Let a(n) be the number of partitions of n for which f_{λ} is odd. Recall b(n) is the number of chiral partitions of n.

Let a(n) be the number of partitions of n for which f_{λ} is odd. Recall b(n) is the number of chiral partitions of n.

$$a(n) = 2^{k_1 + \dots + k_r},$$

$$b(n) = 2^{k_2 + \dots + k_r} \left(2^{k_1 - 1} + \sum_{\nu=1}^{k_1 - 1} 2^{(\nu+1)(k_1 - 2) - \binom{\nu}{2}} + \epsilon 2^{\binom{k_1}{2}} \right).$$

Comparison of a(n) and b(n+2)



コト 4 聞 ト 4 直 ト 4 直 ト 三 三 - のくで、

For all *n*:

$$n \leq a(n) \leq 2^{\log_2(n+1)(\log_2(n+1)-1)/2}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

For all n:

$$n \le a(n) \le 2^{\log_2(n+1)(\log_2(n+1)-1)/2}$$

Hardy-Ramanujan formula:

$$p(n)\sim rac{1}{4n\sqrt{3}}\exp(\pi\sqrt{2n/3})$$
 as $n
ightarrow\infty.$

For all n:

$$n \le a(n) \le 2^{\log_2(n+1)(\log_2(n+1)-1)/2}$$

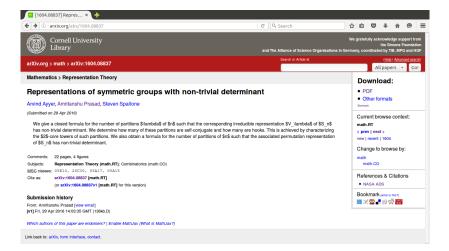
Hardy-Ramanujan formula:

$$p(n) \sim rac{1}{4n\sqrt{3}} \exp(\pi \sqrt{2n/3})$$
 as $n
ightarrow \infty.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

So $a(n)/p(n) \rightarrow 0$, and $b(n)/p(n) \rightarrow 0$.

п	p(n)	b(n)	b(n)/p(n)
100	190569292	6144	$3.2240241518 \times 10^{-05}$
200	3972999029388	98304	$2.47430213984 \times 10^{-08}$
300	9253082936723602	196608	$2.12478372176 \times 10^{-13}$
400	6727090051741041926	2883584	$4.28652504697 \times 10^{-13}$
500	2300165032574323995027	3221225472	$1.40043232828 \times 10^{-12}$
600	458004788008144308553622	6291456	$1.37366598881 \times 10^{-1}$
700	60378285202834474611028659	805306368	$1.33376820043 \times 10^{-1}$
800	5733052172321422504456911979	178257920	$3.10930224673 \times 10^{-2}$
900	415873681190459054784114365430	50331648	$1.21026288213 \times 10^{-2}$
1000	24061467864032622473692149727991	412316860416	$1.71359811773 \times 10^{-2}$
1100	1147240591519695580043346988281283	1572864	$1.37099751493 \times 10^{-2}$
1200	46240102378152881298913555099661657	369098752	$7.98222177325 \times 10^{-2}$
1300	1607818855017534550841511230454411672	12582912	$7.82607565568 \times 10^{-3}$
1400	49032194652550394774839040691532998261	103079215104	$2.10227618475 \times 10^{-2}$
1500	1329461690763193888825263136701886891117	824633720832	$6.20276407031 \times 10^{-2}$
1600	32417690376154241824102577250721959572183	22699573248	$7.0022179201 \times 10^{-32}$
1700	717802041964941442478681516751205185010007	6442450944	$8.97524744617 \times 10^{-3}$
1800	14552716211005418005132948684850541312590849	1610612736	$1.10674372581 \times 10^{-3}$
1900	272089289788583262011466359201428623427767364	6597069766656	$2.42459737088 \times 10^{-3}$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@