
Sn - nth symmetric group.

λ - integer partition of n.
(ρλ,Vλ) - irreducible representation of Sn corresponding to λ.

The problem

The map w 7→ det(ρλ(w)) is either the trivial character, or the
sign character of Sn.
We call λ chiral if w 7→ det(ρλ(w)) is the sign character of Sn.
For how many partitions of n are chiral?

Definition

b(n) = number of chiral partitions of n.
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n p(n) b(n) b(n)/p(n)
1 1 1
2 2 1
3 3 2
4 5 3
5 7 5
6 11 4
7 15 8
8 22 12
9 30 20

10 42 8
11 56 16
12 77 24
13 101 40
14 135 32
15 176 64
16 231 88
17 297 152
18 385 16
19 490 32
20 627 48
21 792 80
22 1002 64
23 1255 128
24 1575 192
25 1958 320
26 2436 128
27 3010 256
28 3718 384
29 4565 640
30 5604 512
31 6842 1024
32 8349 1360
33 10143 2384
34 12310 32



n p(n) b(n) b(n)/p(n)

100 190569292 6144 3.2240241518× 10−05

200 3972999029388 98304 2.47430213984× 10−08

300 9253082936723602 196608 2.12478372176× 10−11

400 6727090051741041926 2883584 4.28652504697× 10−13

500 2300165032574323995027 3221225472 1.40043232828× 10−12

600 458004788008144308553622 6291456 1.37366598881× 10−17

700 60378285202834474611028659 805306368 1.33376820043× 10−17

800 5733052172321422504456911979 178257920 3.10930224673× 10−20

900 415873681190459054784114365430 50331648 1.21026288213× 10−22

1000 24061467864032622473692149727991 412316860416 1.71359811773× 10−20

1100 1147240591519695580043346988281283 1572864 1.37099751493× 10−27

1200 46240102378152881298913555099661657 369098752 7.98222177325× 10−27

1300 1607818855017534550841511230454411672 12582912 7.82607565568× 10−30

1400 49032194652550394774839040691532998261 103079215104 2.10227618475× 10−27

1500 1329461690763193888825263136701886891117 824633720832 6.20276407031× 10−28

1600 32417690376154241824102577250721959572183 22699573248 7.0022179201× 10−31

1700 717802041964941442478681516751205185010007 6442450944 8.97524744617× 10−33

1800 14552716211005418005132948684850541312590849 1610612736 1.10674372581× 10−34

1900 272089289788583262011466359201428623427767364 6597069766656 2.42459737088× 10−32





Closed Formula for number of representations of Sn with
non-trivial determinant

Suppose n has binary expansion:

n = ε+ 2k1 + 2k2 + · · ·+ 2kr , with 0 < k1 < · · · < kr , ε ∈ {0, 1},

Then the number of partitions λ of n for which w 7→ det(ρλ(w)) is
the sign character is

2k2+···+kr
(

2k1−1 +

k1−1∑
v=1

2(v+1)(k1−2)−(v2) + ε2(k1
2 )
)
.

Example Take n = 41 = 1 + 23 + 25.
So ε = 1, k1 = 3, and k2 = 5.

b(41) = 25 × (23−1 + 22×1−(1
2) + 23×1−(2

2) + 2(3
2)) = 640.
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A Combinatorial Interpretation of the Determinant

The vector space Vλ has a basis (Young’s orthogonal form)

{vT | T a standard tableau of shape λ}.

ρλ(si )vT =

{
vT if i and i + 1 are in the same row of T ,

−vT if i and i + 1 are in the same column of T ,

If neither case holds, then the action is more complicated.
But 1 and 2 are always in the same row or same column.
The vectors vT are eigenvectors of ρλ(s1) with eigenvalue ±1.
Let gλ denote the number of standard tableaux with 1 and 2 in the
same column.

Conclusion
det ◦ρλ is the sign character if and only if gλ is odd.
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Relation to the character value at (2, 1n−2)

fλ - number of SYT of shape λ,
dim(Vλ)

gλ - number of such SYT with 1 and 2 in the same column
multiplicity of −1 as eigenvalue of ρλ(s1)

fλ − gλ - number of SYT with 1 and 2 in the same row
multiplicity of +1 as eigenvalue of ρλ(s1)

fλ − 2gλ - trace of ρλ(s1)
=χλ(2, 1n−2)

The character value χλ(2, 1n−2) has a nice formula:

χλ(2, 1n−2) =
fλC (λ)(n

2

) .

(Macdonald, Symmetric functions and Hall polynomials, p. 118,
using the theory of skew-Schur functions)
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Content of a Partition

The content of (i , j) is j − i .
The content of a partition is the sum of the contents of the cells in
its Young diagram:

λ = (4, 2) =

C (λ) =
∑ 0 1 2 3

−1 0
= 5

Character Formula:

χλ(2, 1n−2) =
fλC (λ)(n

2

) .
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Formula for gλ
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To understand v2(fλ)

One ingredient is the hook-length formula (Frame, Robinson and
Thrall):

fλ =
n!∏

(i ,j)∈λ h(i , j)

Example

Hook-lengths of (4, 2) are

5 4 2 1

2 1
,

so

f(4,2) =
6!

5× 4× 2× 1× 2× 1
= 9.
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To understand v2(fλ)

Another ingredient is the theory of cores and quotients of
partitions:

λ↔ (corepλ, quopλ).

The partition corepλ is what remains of Young diagram of λ after
successively removing the rims of as many p-hooks as possible.
The p-quotient quopλ is a p-tuple (λ0, . . . , λp−1) of partitions.
The total number of cells in quopλ is the number of p-hooks
whose rims were removed from λ to obtain corepλ.

|λ| = |corepλ|+ p(|λ0|+ · · ·+ |λp−1|).

The size of the partition λk in the p-quotient is the number of
nodes in the Young diagram of λ whose hook-lengths are multiples
of p, and whose hand-nodes have content congruent to k modulo
p (by definition, the content of the node (i , j) is j − i). The
partition λ can be recovered uniquely from corepλ and quopλ.
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Example of core

The 2-core of (5, 4, 2, 2, 1) is (3, 2, 1):



Example of quotient

The hook-lengths of (5, 4, 2, 2, 1, 1) are:

10 7 4 3 1

8 5 2 1

5 2

4 1

2

1

And its 2-quotient is given by

,
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A result from Frame-Robinson-Thrall

Lemma
There exists a bijection from the set of cells in quopλ onto the set
of cells in λ whose hook-lengths are divisible by p under which a
cell of hook-length h in quopλ is mapped to a cell of hook-length
ph in λ.

In our example:

10 7 4 3 1

8 5 2 1

5 2

4 1

2

1

→ 5 2

4 1

2

1

,
1
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Recursive Criterion for odd Dimensionality

If n has binary expansion

n = ε+ 2k1 + 2k2 + · · ·+ 2kr , with 0 < k1 < · · · < kr , ε ∈ {0, 1},

and λ is a partition of n with core2λ of size a, and quo2λ having
partitions µ0 and µ1 of sizes m0 and m1 (so n = a + 2m0 + 2m1),

Theorem (Macdonald)

fλ is odd if and only if

I a = ε,

I The binomial coefficient (n−ε)!
(2m0)!(2m1)! is odd,

I fµ0 and fµ1 are odd.

Remark
The binomial coefficient n!

k!(n−k)! is odd if and only if the binary
digits of k and n − k are in disjoint positions.
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Recursion of core and quotient construction: the core
tower

If λ is a partition with core α and quotient µ0 and µ1, then its
2-core tower T (λ) is a binary tree, defined recursively as follows:

T (λ) = core2λ

T (µ0) T (µ1)
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If λ is a partition with core α and quotient µ0 and µ1, then its
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Example of 2-core tower

The 2-core tower of (5, 4, 2, 2, 1, 1) is:

(1)

∅ (1)

∅ (1) ∅ ∅

(1) ∅ ∅ ∅ ∅ ∅ ∅ ∅

Let wi (λ) = sum of sizes of entries in ith row.
Here: wi (λ) = 1 for i = 0, 1, 2, 3, and 0 otherwise.
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Olsson’s criterion for fλ being odd

Let νi (n) be the ith digit in the binary expansion of n.
So n =

∑
i 2νi (n).

Theorem
Let λ be a partition of n. Then fλ is odd if and only if∑

wi (λ) =
∑

νi (n).
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Example of 2-core tower

The 2-core tower of λ = (5, 4, 2, 2, 1, 1) (a partition of 15) is:
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∅ (1)

∅ (1) ∅ ∅

(1) ∅ ∅ ∅ ∅ ∅ ∅ ∅

fλ is odd.
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Counting odd dimensional representations

Theorem (Macdonald, bijective proof via Olsson)

The number of partitions λ of n such that fλ is odd is 2
∑

i iνi (n).

To prove, count the possible 2-core towers.
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n = 15
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∅ (1)

∅ (1) ∅ ∅
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2-core tower and 2-power hooks

The 2-core tower of λ tells us how the core of λ can be obtained
by removing a sequence of maximal 2-power rim hooks.

A box in the ith row corresponds to a 2i -rim hook.

In the example of (5, 4, 2, 2, 1, 1):
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Contents in a rim-hook

0 1 2

−1

−3 −2

−4

−5

C (h3) = 2× 23 −
(

23

2

)

The head node contribution is even on the left side of the tree and
odd on the right side.
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2-core towers of chiral partitions

Chiral partitions λ of n are partitions for which

v2(fλ) + v2

((n
2

)
− C (λ)

)
= v2

(
n

2

)
By carefully keeping track of the contributions of different
rim-hooks, we were able to characterize the 2-core towers of chiral
partitions.



2-core towers of chiral partitions

Chiral partitions λ of n are partitions for which

v2(fλ) + v2

((n
2

)
− C (λ)

)
= v2

(
n

2

)

By carefully keeping track of the contributions of different
rim-hooks, we were able to characterize the 2-core towers of chiral
partitions.



2-core towers of chiral partitions

Chiral partitions λ of n are partitions for which

v2(fλ) + v2

((n
2

)
− C (λ)

)
= v2

(
n

2

)
By carefully keeping track of the contributions of different
rim-hooks, we were able to characterize the 2-core towers of chiral
partitions.



If n = ε + 2k1 + 2k2 + · · · + 2kr , with 0 < k1 < · · · < kr , ε ∈ {0, 1}. Then a partition λ of n is chiral if and
only if one of the following happens:

1. The partition λ satisfies

wi (λ) =

{
1 if i ∈ {k1, . . . , kr}, or if ε = 1 and i = 0,

0 otherwise,

and the unique non-trivial partition in the k1th row of the 2-core tower of λ is αx , where the binary
sequence x of length k begins with ε. In this case fλ is odd.

2. For some 0 < v < k1,

wi (λ) =


2 if i = k1 − v,

1 if k1 − v + 1 ≤ i ≤ k1 − 1 or i ∈ {k2, . . . , kr},
or if ε = 1 and i = 0,

0 otherwise,

and the two non-trivial partitions in the (k − v)th row of the 2-core tower of λ are αx and αy , for binary
sequences x and y such that x begins with 0 and y begins with 1. In this case v2(fλ) = v .

3. We have ε = 1 and the partition λ satisfies

wi (λ) =

{
3 if i = 0,

1 if i ∈ {1, . . . , k1 − 1, k2, . . . , kr}.

In this case, v2(fλ) = k1.



Counting such towers gives:

If n = ε+ 2k1 + 2k2 + · · ·+ 2kr , with 0 < k1 < · · · < kr , ε ∈ {0, 1},
then the number bv (n) of chiral partitions λ of n for which
v2(fλ) = v is given by

bv (n) = 2k2+···+kr ×


2k1−1 if v = 0,

2(v+1)(k1−2)−(v2) if 0 < v < k1,

ε2(k1
2 ) if v = k ,

0 if v > k1.

b(n) = 2k2+···+kr
(

2k1−1 +

k1−1∑
v=1

2(v+1)(k1−2)−(v2) + ε2(k1
2 )
)
.
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Growth

Let a(n) be the number of partitions of n for which fλ is odd.
Recall b(n) is the number of chiral partitions of n.

a(n) = 2k1+···+kr ,

b(n) = 2k2+···+kr
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Comparison of a(n) and b(n + 2)

2/5 ≤ a(n)/b(n + 2) ≤ 1.



Growth

For all n:
n ≤ a(n) ≤ 2log2(n+1)(log2(n+1)−1)/2.

Hardy-Ramanujan formula:

p(n) ∼ 1

4n
√

3
exp(π

√
2n/3) as n→∞.

So a(n)/p(n)→ 0, and b(n)/p(n)→ 0.
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n p(n) b(n) b(n)/p(n)

100 190569292 6144 3.2240241518× 10−05

200 3972999029388 98304 2.47430213984× 10−08

300 9253082936723602 196608 2.12478372176× 10−11

400 6727090051741041926 2883584 4.28652504697× 10−13

500 2300165032574323995027 3221225472 1.40043232828× 10−12

600 458004788008144308553622 6291456 1.37366598881× 10−17

700 60378285202834474611028659 805306368 1.33376820043× 10−17

800 5733052172321422504456911979 178257920 3.10930224673× 10−20

900 415873681190459054784114365430 50331648 1.21026288213× 10−22

1000 24061467864032622473692149727991 412316860416 1.71359811773× 10−20

1100 1147240591519695580043346988281283 1572864 1.37099751493× 10−27

1200 46240102378152881298913555099661657 369098752 7.98222177325× 10−27

1300 1607818855017534550841511230454411672 12582912 7.82607565568× 10−30

1400 49032194652550394774839040691532998261 103079215104 2.10227618475× 10−27

1500 1329461690763193888825263136701886891117 824633720832 6.20276407031× 10−28

1600 32417690376154241824102577250721959572183 22699573248 7.0022179201× 10−31

1700 717802041964941442478681516751205185010007 6442450944 8.97524744617× 10−33

1800 14552716211005418005132948684850541312590849 1610612736 1.10674372581× 10−34

1900 272089289788583262011466359201428623427767364 6597069766656 2.42459737088× 10−32




