Kernelization Lower Bounds: A Brief History

G Philip

Max Planck Institute for Informatics, Saarbrücken, Germany

New Developments in Exact Algorithms and Lower Bounds.
Pre-FSTTCS 2014 Workshop, IIT Delhi
December 14, 2014

Parameterized Complexity

A brief review

- One way of coping with NP-hard problems

Parameterized Complexity

A brief review

Example (Vertex Cover, standard parameterization)

- Input:
- A graph $G=(V, E)$
- A positive integer k
- Question: Is there a set $S \subseteq V$ of at most k vertices (a vertex cover of G) such that every edge in G has at least one vertex of S as an end-point?
- "Standard" parameter: The number k

Notions of Tractability

Fixed-parameter tractability

Definition (Fixed-parameter tractability)

A parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm which solves instances (x, k) of the problem in time $f(k) \cdot|x|^{c}$ where

- $f()$ is a computable function of k alone;
- c is a constant, independent of k and $|x|$.

Example (Vertex Cover is FPT)

- A simple branching algorithm which runs in $\mathcal{O}\left(2^{k} \cdot|G|\right)$ time.

Notions of Tractability

Fixed-parameter tractability

Problem	$\mathbf{f}(\mathbf{k})$
Vertex Cover	1.2738^{k}
FEEDBACK VERTEX SET	3.619^{k}
d-HItTING SET	$(d-1+\varepsilon)^{k}$
k-Path	4^{k}
CONNECTED VERTEX COVER	2^{k}
STEINER TREE	2^{k}
DIRECTED FEEDBACK VERTEX SET	$4^{k} \cdot k!$
\vdots	\vdots
\vdots	

- From the Table of FPT Races at http://fpt.wikidot.com/fpt-races.

Notions of Tractability

Fixed-parameter tractability

- The corresponding notion of intractability: W-hardness.
- If a parameterized problem is W-complete, then it is unlikely to be FPT
- Because they "must all hang together, or they shall all hang separately"
- Just like NP-completeness
- Lots of examples of W-hard problems
- Standard parameterizations of Independent Set (so also Clique), Dominating Set, ...

Notions of Tractability

Kernelization

Definition (Kernelization, Kernel, Kernel size)

A kernelization algorithm for a parameterized problem is an algorithm which, given an input (x, k) of the problem,

- Runs in time polynomial in $|x|+k$;
- Outputs an instance (x^{\prime}, k^{\prime}) of the problem where:
- $\left(x^{\prime}, k^{\prime}\right)$ is a Yes instance iff (x, k) is a Yes instance, and,
- $\left|x^{\prime}\right|, k^{\prime} \leq g(k)$ for some computable function $g()$
- $\left(x^{\prime}, k^{\prime}\right)$ is called a kernel
- $g(k)$ is the size of the kernel

Notions of Tractability

Kernelization

Example (The "Buss" kernel for Vertex Cover)

- Observation: If a vertex is not in a vertex cover, then all its neighbours must be in that vertex cover.
- Implication: Every vertex of degree more than k must be in any vertex cover of size at most k.
- Algorithm:
- Pick all vertices of degree more than k
- If these are already more than k, then return No
- Now: if there are more than k^{2} edges left, then return No
- Return the remaining graph: a kernel with $\mathcal{O}\left(k^{2}\right)$ vertices and edges

Notions of Tractability

Kernelization

Problem	$\mathbf{f}(\mathbf{k})$	Size of the small- est known kernel
VERTEX COVER	1.2738^{k}	$\mathcal{O}\left(k^{2}\right)$
FEEDBACK VERTEX SET	3.619^{k}	$\mathcal{O}\left(k^{2}\right)$
d-HITTING SET	$(d-1+\varepsilon)^{k}$	$\mathcal{O}\left(k^{d}\right)$
k-PATH	4^{k}	4^{k}
CONNECTED VERTEX COVER	2^{k}	2^{k}
STEINER TREE	2^{k}	2^{k}
DIRECTED FEEDBACK VERTEX SET	$4^{k} \cdot k!$	$4^{k} \cdot k!$

Notions of Tractability

The "first theorem" of Parameterized Complexity

Theorem
A parameterized problem is fixed-parameter tractable if and only if it has a kernel.

Remark
The proof of the more interesting direction shows that if a problem can be solved in $f(k) \cdot n^{c}$ time then it has a kernel of size $f(k)$.

Notions of Tractability

Kernelization lower bounds I

- What is a corresponding notion of intractability?
- The theorem rules out kernels of any size for W-hard problems*
- What about problems which are FPT?
- The (proof of the) theorem gives kernels of size $f(k)$
- $f(k)$ is exponential in k for NP-hard problems ${ }^{\dagger}$
- We have polynomial-size kernels for many FPT problems
- Which FPT problems do not have polynomial kernels?
- How do we go about proving such lower bounds?
*Under widely believed assumptions.
${ }^{\dagger}$ For sensible parameters k, and if solving NP-hard problems takes exponential time.

Notions of Tractability

Kernelization lower bounds II

- What about problems which do have polynomial-size kernels?
- Kernel sizes tend to decrease with passing years
- Example: Feedback Vertex Set
- First polynomial-size kernel: $\mathcal{O}\left(k^{11}\right)$ (Burrage et al., 2006)
- Improved to: $\mathcal{O}\left(k^{3}\right)$ (Bodlaender, 2007)
- Current best: $\mathcal{O}\left(k^{2}\right)$ (Thomassé, 2009)
- How far can this go on?
- When do we know to stop?
- How do we prove lower bounds on the polynomial degrees of kernel sizes?

A (somewhat) different look at kernelization

- Given an instance of a (classical) decision problem:
- How small can we make it in polynomial time, without losing the Yes/No answer?
- If the problem is in P, then we can reduce it all the way to 1 bit
- If the problem is NP-hard, then we cannot ${ }^{a}$ reduce its size
- Even by one bit, without losing the Yes/No answer.
- (Otherwise, we could repeat the procedure and solve the problem in PTIME.)

[^0]
A (somewhat) different look at kernelization

- What is a "correct" question to ask about the polynomial-time "compressibility" of NP-hard problems?
- The PC view: ask how small we can make an instance in terms of the parameter, in polynomial time
- When we ask for kernels and kernel-size lower bounds, we are asking the question "What can we (not) do in polynomial time?"
- For a more refined notion of "do" which is relevant for NP-hard problems

Compressing Clique

A non-standard parameterization

Definition (CLIQUE parameterized by number of vertices)

- Input:
- A graph $G=(V, E)$ on n vertices
- A positive integer k
- Question: Is there a set $S \subseteq V$ of at least k vertices (a clique) in G such that there is an edge in G between every pair of vertices in S ?
- Parameter: The number n
- What is the smallest kernel for this parameterization of CliQue?

Compressing Clique

A non-standard parameterization

- How much can we compress CliQue in polynomial time w/o losing the Yes/No answer?
- Recall: the size of the kernel is measured in terms of the parameter, here n.
- A kernel of size $\mathcal{O}\left(n^{2}\right)$ is easy:
- Encode G as its adjacency matrix: $\mathcal{O}\left(n^{2}\right)$ bits
- Encode k in binary: $\mathcal{O}(\log n)$ bits
- Is this trivial encoding for CliQue the best we can do in polynomial time?
- The size of the encoding is measured in terms of n
- n is not the size of the input instance here!
- An encoding into, say, $n^{\frac{3}{2}}$ bits does not directly imply that $P=N P$
- A question about kernel lower bounds!

Summarizing ...

- Kernelization is polynomial-time reduction in instance size
- Sizes are measured in terms of a parameter
- A parameterized problem has a kernel (of some size) iff it is FPT
- Interesting questions:
- How do we separate FPT problems which have polynomial-size kernels, from those which don't?
- How do we prove lower-bounds on the polynomial degree of problem kernels?
- The latter question is interesting from a purely classical pov as well (e.g: Clique.)

This Talk

Outline

- Introduction
- Ruling out polynomial-size kernels
- For problems which do have exponential-size kernels
- AKA problems which have FPT algorithms
- Based on Fortnow and Santhanam (STOC 2008), Bodlaender et al (ICALP 2008).
- Lower-bounding the degrees of polynomial-size kernels
- Can we have smaller-than- $\mathcal{O}\left(k^{2}\right)$ kernels for Vertex Cover or Feedback Vertex Set...
- Or compress Clique to less than n^{2} bits in polynomial time?
- Based on Dell and van Melkebeek (STOC 2010).

Ruling Out Polynomial Kernels

Based on ...

- On problems without polynomial kernels
- Bodlaender, Downey, Fellows and Hermelin,
- ICALP 2008, JCSS 2009
- Infeasibility of instance compression and succinct PCPs for NP
- Fortnow and Santhanam
- STOC 2008, JCSS 2011

Composition algorithms

- Simple criterion for ruling out polynomial kernels
- Simple to understand
- Not always easy to apply!

OR-Composition Algorithms

For parameterized problems

Definition

An OR-composition algorithm for a parameterized problem L is an algorithm that:

- Takes as input a list of instances $\left(\left(x_{1}, k\right),\left(x_{2}, k\right), \ldots,\left(x_{t}, k\right)\right)$ for any integer t;
- Runs in time polynomial in $\sum_{i}\left(\left|x_{i}\right|+k\right)$;
- And outputs an instance $\left(y, k^{\prime}\right)$ such that

1. $\left(y, k^{\prime}\right) \in L$ if and only if at least one $\left(x_{i}, k\right) \in L$
2. k^{\prime} is polynomial in k.

OR-Composition Algorithms

For parameterized problems

Definition

An OR-composition algorithm for a parameterized problem L is an algorithm that:

- Takes as input a list of instances $\left(\left(x_{1}, k\right),\left(x_{2}, k\right), \ldots,\left(x_{t}, k\right)\right)$ for any integer t;
- Runs in time polynomial in $\sum_{i}\left(\left|x_{i}\right|+k\right)$;
- And outputs an instance $\left(y, k^{\prime}\right)$ such that

1. $\left(y, k^{\prime}\right) \in L$ if and only if at least one $\left(x_{i}, k\right) \in L$
2. k^{\prime} is polynomial in k.

Example (OR-composition)

- k-Path: Does graph G have a simple path of length at least k ?

Polynomial kernel lower bounds

Theorem (Bodlaender et al., Fortnow and Santhanam)
Let L be a parameterized problem whose underlying classical problem is NP-complete. Then at most one of the following is true:

- L has an OR-composition;
- L has a polynomial-size kernel, unless coNP \subseteq NP/poly.

Remark

The condition coNP \subseteq NP/poly is considered unlikely, because it implies a collapse in the Polynomial Hierarchy.

Polynomial kernel lower bounds

Theorem (Bodlaender et al., Fortnow and Santhanam)

Let L be a parameterized problem whose underlying classical problem is NP-complete. Then at most one of the following is true:

- L has an OR-composition;
- L has a polynomial-size kernel, unless coNP \subseteq NP/poly.

Remark

The condition coNP \subseteq NP/poly is considered unlikely, because it implies a collapse in the Polynomial Hierarchy.

Corollary
k-Path does not have a polynomial-size kernel, unless coNP \subseteq NP/poly.

Some consequences of the Theorem

Problems with no polynomial kernels unless coNP \subseteq NP/poly

- Essentially every NP-complete problem which asks for a "subgraph of some kind": к-РАth, к-Сycle, к-Ехаст Cycle, k-Minor Order Test, k-Planar Subgraph Test, k-Bounded Treewidth Subgraph Test, ...
- Many NP-complete problems parameterized by the treewidth of the input graph: w-Vertex Cover, w-Independent Set, w-Clique, w-Dominating Set
- Many more problems, using clever composition techniques and reductions. E.g: k-Disjoint Cycles, k-Disjoint Paths (Bodlaender, Thomassé, Yeo, eSA 2009), Connected Vertex Cover, Steiner Tree (Dom, Lokshtanov, Saurabh, ICALP 2009)
- Lots of problems by now!

Revisiting the table ...

Problem	$\mathbf{f}(\mathbf{k})$	Kernel size
Vertex Cover	1.2738^{k}	$\mathcal{O}\left(k^{2}\right)$
FEEDBACK VERTEX SET	3.619^{k}	$\mathcal{O}\left(k^{2}\right)$
d-Hitting Set	$(d-1+\varepsilon)^{k}$	$\mathcal{O}\left(k^{d}\right)$
k-Path	4^{k}	No $k^{\mathcal{O}(1)}$
CONNECTED VERTEX CoVER	2^{k}	No $k^{\mathcal{O}(1)}$
STEINER TREE	2^{k}	No $k^{\mathcal{O}(1)}$
DIRECTED FEEDBACK VERTEX SET	$4^{k} \cdot k!$	$4^{k} \cdot k!$

AND-Composition

Replace "at least one instance" with "all instances"

Theorem (Bodlaender et al., ICALP 2008)

k-TrEEWIDTH (and many other problems) does not have polynomial-size kernels unless NP-complete problems can have AND-distillation algorithms.

- Bodlaender et al. thought it unlikely that NP-complete problems have AND-distillation algorithms
- They could not connect this to any complexity-theoretic assumption.

AND-Composition

Replace "at least one instance" with "all instances"

Theorem (Bodlaender et al., ICALP 2008)

k-TrEEWIDTH (and many other problems) does not have polynomial-size kernels unless NP-complete problems can have AND-distillation algorithms.

- Bodlaender et al. thought it unlikely that NP-complete problems have AND-distillation algorithms
- They could not connect this to any complexity-theoretic assumption.

Theorem (Drucker, FOCS 2012)
If NP-complete problems have AND-distillation algorithms, then coNP \subseteq NP/poly.

Lower-Bounding the Degrees of Polynomial Kernels

Based on ...

- Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses
- Dell and van Melkebeek
- STOC 2010, JACM 2014

An Oracle Communication Protocol

- Two players, Alice and Bob
- Alice is polynomially bounded, Bob has unbounded computational power
- Together, they want to decide if a string x belongs to a specified language L
- In the beginning, Alice holds the string x
- In the end, Alice should know if $x \in L$
- They can communicate with each other to achieve this
- The cost of this protocol is the number of bits sent from Alice to Bob
- The bits sent from Bob to Alice do not count in the cost

An Oracle Communication Protocol

- Two players, Alice and Bob
- Alice is polynomially bounded, Bob has unbounded computational power
- Together, they want to decide if a string x belongs to a specified language L
- In the beginning, Alice holds the string x
- In the end, Alice should know if $x \in L$
- They can communicate with each other to achieve this
- The cost of this protocol is the number of bits sent from Alice to Bob
- The bits sent from Bob to Alice do not count in the cost
- Again: "What can we (not) do in polynomial time?"
- For yet another notion of "do"

An Oracle Communication Protocol

- Two players, Alice and Bob
- Alice is polynomially bounded, Bob has unbounded computational power
- Together, they want to decide if a string x belongs to a specified language L
- In the beginning, Alice holds the string x
- In the end, Alice should know if $x \in L$
- They can communicate with each other to achieve this
- The cost of this protocol is the number of bits sent from Alice to Bob
- The bits sent from Bob to Alice do not count in the cost
- A generalization of kernelization
- E.g: Vertex Cover has a protocol of cost $\mathcal{O}\left(k^{2}\right)$

1. Alice computes a kernel of size $\mathcal{O}\left(k^{2}\right)$
2. She sends the kernel to Bob
3. Bob solves the instance and sends Yes or No back to Alice
4. Total cost: $\mathcal{O}\left(k^{2}\right)$

An Oracle Communication Protocol

- Two players, Alice and Bob
- Alice is polynomially bounded, Bob has unbounded computational power
- Together, they want to decide if a string x belongs to a specified language L
- In the beginning, Alice holds the string x
- In the end, Alice should know if $x \in L$
- They can communicate with each other to achieve this
- The cost of this protocol is the number of bits sent from Alice to Bob
- The bits sent from Bob to Alice do not count in the cost

> Theorem(Dell and van Melkebeek)
> Vertex Cover admits no protocol of cost $\mathcal{O}\left(k^{2-\varepsilon}\right)$ where k is the standard parameter, unless coNP $\subseteq \mathrm{NP} /$ poly.

Some More Lower Bounds

All these carry over directly to the standard parameterizations
Theorem
Vertex Cover admits no protocol of cost $\mathcal{O}\left(n^{2-\varepsilon}\right)$ where n is the number of vertices, unless coNP \subseteq NP/poly. So also for Clique.
Theorem
More generally: for any $d \geq 2$, d-Hitting Set over a universe of size n admits no protocol of cost $\mathcal{O}\left(n^{d-\varepsilon}\right)$, unless coNP \subseteq NP/poly.
Theorem
Let Π be a nontrivial graph property that is inherited by subgraphs. There is no protocol of $\operatorname{cost} \mathcal{O}\left(k^{2-\varepsilon}\right)$ for deciding if a graph satisfying Π can be obtained from a given graph by deleting at most k vertices, unless coNP \subseteq NP/poly.

Corollary
Feedback Vertex Set has no kernel of size $\mathcal{O}\left(k^{2-\varepsilon}\right)$ unless ...

The table, one final time

Problem	$\mathbf{f}(\mathbf{k})$	Kernel size
VERTEX Cover	1.2738^{k}	$\mathcal{O}\left(k^{2}\right) ;$ No $\mathcal{O}\left(k^{2-\varepsilon}\right)$
FEEDBACK VERTEX SEt	3.619^{k}	$\mathcal{O}\left(k^{2}\right) ;$ No $\mathcal{O}\left(k^{2-\varepsilon}\right)$
d-Hitting Set	$(d-1+\varepsilon)^{k}$	$\mathcal{O}\left(k^{d}\right) ;$ No $\mathcal{O}\left(k^{d-\varepsilon}\right)$
k-PATH	4^{k}	No $k^{\mathcal{O}(1)}$
CONNECTED VERTEX CoVER	2^{k}	No $k^{\mathcal{O}(1)}$
STEINER TREE	2^{k}	No $k^{\mathcal{O}(1)}$
DIRECTED FEEDBACK VERTEX SET	$4^{k} \cdot k!$	$4^{k} \cdot k!$

A closer look at the lower bounds

- Vertex Cover: Kernels with $\mathcal{O}\left(k^{2}\right)$ edges, no kernel with $\mathcal{O}\left(k^{2-\varepsilon}\right)$ edges
- What about the number of vertices in a kernel?
- The relaxed Vertex Cover LP has the half-integrality property
- Can find an optimal $\left\{0, \frac{1}{2}, 1\right\}$-solution in PTIME
- Theorem (Nemhauser and Trotter, 1975): There is a smallest vertex cover which contains all the 1 s and none of the 0 s
- All the $\frac{1}{2}$ s together induce a kernel with $\leq 2 k$ vertices

A closer look at the lower bounds

- Vertex Cover: Kernels with $\mathcal{O}\left(k^{2}\right)$ edges, no kernel with $\mathcal{O}\left(k^{2-\varepsilon}\right)$ edges
- What about the number of vertices in a kernel?
- The relaxed Vertex Cover LP has the half-integrality property
- Can find an optimal $\left\{0, \frac{1}{2}, 1\right\}$-solution in PTIME
- Theorem (Nemhauser and Trotter, 1975): There is a smallest vertex cover which contains all the 1 s and none of the 0 s
- All the $\frac{1}{2}$ s together induce a kernel with $\leq 2 k$ vertices
- Upper bound on \#vertices in a kernel: $\mathcal{O}(k)$

A closer look at the lower bounds

- Vertex Cover: Kernels with $\mathcal{O}\left(k^{2}\right)$ edges, no kernel with $\mathcal{O}\left(k^{2-\varepsilon}\right)$ edges
- What about the number of vertices in a kernel?
- The relaxed Vertex Cover LP has the half-integrality property
- Can find an optimal $\left\{0, \frac{1}{2}, 1\right\}$-solution in PTIME
- Theorem (Nemhauser and Trotter, 1975): There is a smallest vertex cover which contains all the 1 s and none of the 0 s
- All the $\frac{1}{2}$ s together induce a kernel with $\leq 2 k$ vertices
- Upper bound on \#vertices in a kernel: $\mathcal{O}(k)$
- Lower bound on \#vertices in a kernel: $\Omega(k)$
- Follows directly from the size lower bound
- n-vertex graphs can be encoded with $\mathcal{O}\left(n^{2}\right)$ bits
- E.g: An $\mathcal{O}\left(k^{\frac{3}{4}}\right)$-vertex kernel would have total size $\mathcal{O}\left(k^{\frac{3}{2}}\right)=\mathcal{O}\left(k^{2-\frac{1}{2}}\right)$ bits, contradiction.

A closer look at the lower bounds

- Vertex Cover:
- Kernels with $\mathcal{O}\left(k^{2}\right)$ edges, no kernel with $\mathcal{O}\left(k^{2-\varepsilon}\right)$ edges
- Kernels with $\mathcal{O}(k)$ vertices, no kernel with $\mathcal{O}\left(k^{1-\varepsilon}\right)$ edges
- Feedback Vertex Set:
- Kernels with $\mathcal{O}\left(k^{2}\right)$ edges, no kernel with $\mathcal{O}\left(k^{2-\varepsilon}\right)$ edges
- Current upper bound on \#vertices: $\mathcal{O}\left(k^{2}\right)$
- Dell and van Melkebeek only rule out kernels with $\mathcal{O}\left(k^{1-\varepsilon}\right)$ vertices
- Gap!

A closer look at the lower bounds

- Vertex Cover:
- Kernels with $\mathcal{O}\left(k^{2}\right)$ edges, no kernel with $\mathcal{O}\left(k^{2-\varepsilon}\right)$ edges
- Kernels with $\mathcal{O}(k)$ vertices, no kernel with $\mathcal{O}\left(k^{1-\varepsilon}\right)$ edges
- Feedback Vertex Set:
- Kernels with $\mathcal{O}\left(k^{2}\right)$ edges, no kernel with $\mathcal{O}\left(k^{2-\varepsilon}\right)$ edges
- Current upper bound on \#vertices: $\mathcal{O}\left(k^{2}\right)$
- Dell and van Melkebeek only rule out kernels with $\mathcal{O}\left(k^{1-\varepsilon}\right)$ vertices
- Gap!
- d-Hitting Set:
- Best known kernels have $\mathcal{O}\left(k^{d}\right)$ sets over a universe of size $\mathcal{O}\left(k^{d-1}\right)$
- Dell and van Melkebeek rule out kernels with $\mathcal{O}\left(k^{d-\varepsilon}\right)$ sets or a universe of size $\mathcal{O}\left(k^{1-\varepsilon}\right)$
- Gap!

A tight non-trivial "structural" kernel lower bound

- For a variant of Hitting Set
- The first result of this kind
- An application of the full power of the protocol
- Point Line Cover: The Easy Kernel is Essentially Tight
- Stefan Kratsch, G. Philip, and Saurabh Ray, SODA 2014

The Point-Line Cover problem

- Input:
- A set $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ of n points in the plane
- Each point is a pair of rational coordinates: $p_{i}=\left(x_{i}, y_{i}\right)$
- A positive integer k
- Question: Is there a set \mathcal{L} of at most k lines in the plane which together cover all points in \mathcal{P} ?
- Each point in the set \mathcal{P} must lie on at least one of the lines in \mathcal{L}.

The Point-Line Cover problem

- Input:
- A set $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ of n points in the plane
- Each point is a pair of rational coordinates: $p_{i}=\left(x_{i}, y_{i}\right)$
- A positive integer k
- Question: Is there a set \mathcal{L} of at most k lines in the plane which together cover all points in \mathcal{P} ?
- Each point in the set \mathcal{P} must lie on at least one of the lines in \mathcal{L}.

The Point-Line Cover problem

- NP-hard (Megiddo and Tamir, 1982)
- Standard parameter: k
- Kernel with $\leq k^{2}$ points
- Langerman and Morin, 2005
- Uses the "Buss" idea, like for Vertex Cover
- Open: Is there a kernel with $o\left(k^{2}\right)$ points?

Our Result

$\varepsilon>0$ is any positive constant

Theorem
The Point-Line Cover problem does not have a kernel with $\mathcal{O}\left(k^{2-\varepsilon}\right)$ points unless coNP \subseteq NP/poly.

Our Result

$\varepsilon>0$ is any positive constant

Theorem
The Point-Line Cover problem does not have a kernel with $\mathcal{O}\left(k^{2-\varepsilon}\right)$ points unless coNP \subseteq NP/poly.

- This does not rule out kernels with, say, $\mathcal{O}\left(\frac{k^{2}}{\log k}\right)=o\left(k^{2}\right)$ points
- We use $\Omega\left(k^{2}\right)$ to denote a bound like in the theorem.

Tight bound for \#points in Point-Line Cover kernels

 A first attempt- We have: $\mathcal{O}\left(k^{2}\right)$ upper bound on \#points
- We want: $\Omega\left(k^{2}\right)$ lower bound on \#points
- How?

Tight bound for \#points in Point-Line Cover kernels

A first attempt

- We have: $\mathcal{O}\left(k^{2}\right)$ upper bound on \#points
- We want: $\Omega\left(k^{2}\right)$ lower bound on \#points
- How?
- We derive: $\Omega\left(k^{2}\right)$ lower bound on total size
- The $\Omega\left(k^{2}\right)$ lower bound on Vertex Cover kernel size
- Reduction from Vertex Cover to Point-Line Cover
- $k \rightarrow 2 k$

Tight bound for \#points in Point-Line Cover kernels

 A first attempt- We have: $\Omega\left(k^{2}\right)$ lower bound on total size
- We want: An $\mathcal{O}(n \cdot \operatorname{polylog}(n))$-bit polynomial-time encoding of Point-Line Cover instances with n points

Tight bound for \#points in Point-Line Cover kernels

A first attempt

- We have: $\Omega\left(k^{2}\right)$ lower bound on total size
- We want: An $\mathcal{O}(n \cdot \operatorname{polylog}(n))$-bit polynomial-time encoding of Point-Line Cover instances with n points
- The best known such encoding has $\mathcal{O}\left(n^{2}\right)$ bits
- This gives: $\Omega(k)$ lower bound on \#points in a kernel
- E.g: An $\mathcal{O}\left(k^{3 / 4}\right)$-point kernel implies a kernel of total size $\mathcal{O}\left(k^{3 / 2}\right)$
- Contradicting the $\Omega\left(k^{2}\right)$ lower bound on kernel size
- Doesn't rule out kernels with, say, $\mathcal{O}\left(k^{\frac{3}{2}}\right)$ points
- Such a kernel has total size $\mathcal{O}\left(k^{3}\right)$ bits, contradicting nothing

Tight bound for \#points in Point-Line Cover kernels

A first attempt

- The best-known encoding gives : $\Omega(k)$ lower bound on \#points
- One way to improve this to $\Omega\left(k^{2}\right)$: Find an $\mathcal{O}(n \log n)$-bit polynomial-time encoding for n-point instances
- Open since the very first SOCG (1985)
- It is known that there exists such an encoding
- The hard (and unknown) part is to find it in polynomial time
- We achieve this without finding a better encoding
- Using the Oracle Communication Protocol

An Outline of the Proof

- Recall: A Point-Line Cover instance is $(\mathcal{P}, k) ; \mathcal{P}$ is a set of n points.
- The proof has two main ingredients:

1. A lower bound of $\Omega\left(k^{2}\right)$ on the cost of a protocol for Point-Line Cover
2. An upper bound of $\mathcal{O}(n \log n)$ on the cost of a protocol for Point-Line Cover

- Together, these give us a lower bound of $\Omega\left(k^{2}\right)$ on the number of points in a kernel

An Outline of the Proof

- Recall: A Point-Line Cover instance is $(\mathcal{P}, k) ; \mathcal{P}$ is a set of n points.
- The proof has two main ingredients:

1. A lower bound of $\Omega\left(k^{2}\right)$ on the cost of a protocol for Point-Line Cover
2. An upper bound of $\mathcal{O}(n \log n)$ on the cost of a protocol for Point-Line Cover

- Together, these give us a lower bound of $\Omega\left(k^{2}\right)$ on the number of points in a kernel
- Suppose there was a kernel for Point-Line Cover with $k^{2-\varepsilon}$ points
- Alice is given an instance (\mathcal{P}, k) ; $|\mathcal{P}|=n$ of Point-Line Cover
- She computes kernel ($\mathcal{P}^{\prime}, k^{\prime}$) with $n^{\prime}=\left|\mathcal{P}^{\prime}\right|=k^{2-\varepsilon}$ points
- Alice and Bob use the second ingredient to decide $\left(\mathcal{P}^{\prime}, k^{\prime}\right)$
- Cost: $\mathcal{O}\left(n^{\prime} \log n^{\prime}\right)=\mathcal{O}\left(k^{2-\varepsilon} \log \left(k^{2-\varepsilon}\right)\right)=\mathcal{O}\left(k^{2-\varepsilon} \log k\right)=\mathcal{O}\left(k^{2-\varepsilon^{\prime}}\right)$
- This contradicts the cost lower bound

The Lower Bound

A brief look

Theorem

The Point-Line Cover problem does not admit an oracle communication protocol of $\operatorname{cost} \mathcal{O}\left(k^{2-\varepsilon}\right)$ unless coNP \subseteq NP/poly.

- Outline of the proof:
- Polynomial-time, parameter-preserving reduction from Vertex Cover to Point-Line Cover
- (G, k) goes to ($\mathcal{P}, 2 k$)
- The theorem now follows from the $\Omega\left(k^{2-\varepsilon}\right)$ lower bound on the cost of Vertex Cover protocols

The Upper Bound

A closer look

Theorem
There is an oracle communication protocol which can solve Point-Line Cover instances with n points at a cost of $\mathcal{O}(n \log n)$.

The Upper Bound

A first attempt at such a protocol

- Given an instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ of Point-Line Cover
- Alice computes an encoding X of \mathcal{P}, where X has $\mathcal{O}(n \log n)$ bits
- She then sends X over to Bob
- Cost: $\mathcal{O}(n \log n)$
- Using X, Bob computes the size s of a smallest point-line cover of \mathcal{P}
- He then sends s over to Alice
- Cost: Zero
- Alice outputs $s \stackrel{?}{\leq} k$
- Total cost: $\mathcal{O}(n \log n)$

The Upper Bound

A first attempt at such a protocol

- Given an instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ of Point-Line Cover
- Alice computes an encoding X of \mathcal{P}, where X has $\mathcal{O}(n \log n)$ bits
- She then sends X over to Bob
- Cost: $\mathcal{O}(n \log n)$
- Using X, Bob computes the size s of a smallest point-line cover of \mathcal{P}
- He then sends s over to Alice
- Cost: Zero
- Alice outputs $s \stackrel{?}{\leq} k$
- Total cost: $\mathcal{O}(n \log n)$
- What's missing here?
- No known Alice-time encoding of \mathcal{P} into $\mathcal{O}(n \log n)$ bits

The Upper Bound

A first attempt at such a protocol

- Given an instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ of Point-Line Cover
- Alice computes an encoding X of \mathcal{P}, where X has $\mathcal{O}(n \log n)$ bits
- She then sends X over to Bob
- Cost: $\mathcal{O}(n \log n)$
- Using X, Bob computes the size s of a smallest point-line cover of \mathcal{P}
- He then sends s over to Alice
- Cost: Zero
- Alice outputs $s \stackrel{?}{\leq} k$
- Total cost: $\mathcal{O}(n \log n)$
- Our way out:
- An Alice-time encoding of \mathcal{P} which effectively has $\mathcal{O}(n \log n)$ bits
- This encoding actually has many more bits, namely n^{3}

The Upper Bound

A first attempt at such a protocol

- Given an instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ of Point-Line Cover
- Alice computes an encoding X of \mathcal{P}, where X has $\mathcal{O}(n \log n)$ bits
- She then sends X over to Bob
- Cost: $\mathcal{O}(n \log n)$
- Using X, Bob computes the size s of a smallest point-line cover of \mathcal{P}
- He then sends s over to Alice
- Cost: Zero
- Alice outputs $s \stackrel{?}{\leq} k$
- Total cost: $\mathcal{O}(n \log n)$
- Our way out:
- An Alice-time encoding of \mathcal{P} which effectively has $\mathcal{O}(n \log n)$ bits
- This encoding actually has many more bits, namely n^{3}
- Any n-point instance of Point-Line Cover encodes to one of a set of $2^{\mathcal{O}(n \log n)}$ strings, each of length n^{3}
- We replace a small encoding with a sparse one

The Upper Bound

The sparse encoding

Theorem (Alon, 1986)
There is an encoding of sets of points on a plane into bit strings such that:

1. The encoding can be computed in polynomial time
2. It maps every n-point set to a bit string of length n^{3}
3. For each n, all these n^{3}-bit strings belong to a set $B_{n} ;\left|B_{n}\right|=n^{\mathcal{O}(n)}$
4. If point sets \mathcal{P} and \mathcal{Q} map to the same string in B_{n}, then they are equivalent with respect to Point-Line Cover

- The encoding is called an Abstract Order Type Representation

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly
- Alice sends the number n over to Bob
- Cost: $\mathcal{O}(\log n)$

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly
- Alice sends the number n over to Bob
- Cost: $\mathcal{O}(\log n)$
- Using n, Bob computes a sorted list B_{n} of all possible encodings of n-point sets;
$\left|B_{n}\right|=n^{\mathcal{O}(n)}$

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly
- Alice sends the number n over to Bob
- Cost: $\mathcal{O}(\log n)$
- Using n, Bob computes a sorted list B_{n} of all possible encodings of n-point sets;
$\left|B_{n}\right|=n^{\mathcal{O}(n)}$
- He then sends the median element M of this back to Alice
- Cost: Zero

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly
- Alice sends the number n over to Bob
- Cost: $\mathcal{O}(\log n)$
- Using n, Bob computes a sorted list B_{n} of all possible encodings of n-point sets; $\left|B_{n}\right|=n^{\mathcal{O}(n)}$
- He then sends the median element M of this back to Alice
- Cost: Zero
- Alice compares M with X and tells Bob whether M is before, after, or equal to X in lexicographic order
- Cost: A bit and a half

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly
- Alice sends the number n over to Bob
- Cost: $\mathcal{O}(\log n)$
- Using n, Bob computes a sorted list B_{n} of all possible encodings of n-point sets; $\left|B_{n}\right|=n^{\mathcal{O}(n)}$
- He then sends the median element M of this back to Alice
- Cost: Zero
- Alice compares M with X and tells Bob whether M is before, after, or equal to X in lexicographic order
- Cost: A bit and a half
- Bob throws out that half of the list B_{n} where X cannot be present

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly
- Alice sends the number n over to Bob
- Cost: $\mathcal{O}(\log n)$
- Using n, Bob computes a sorted list B_{n} of all possible encodings of n-point sets; $\left|B_{n}\right|=n^{\mathcal{O}(n)}$
- He then sends the median element M of this back to Alice
- Cost: Zero
- Alice compares M with X and tells Bob whether M is before, after, or equal to X in lexicographic order
- Cost: A bit and a half
- Bob throws out that half of the list B_{n} where X cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly
- Alice sends the number n over to Bob
- Cost: $\mathcal{O}(\log n)$
- Using n, Bob computes a sorted list B_{n} of all possible encodings of n-point sets; $\left|B_{n}\right|=n^{\mathcal{O}(n)}$
- He then sends the median element M of this back to Alice
- Cost: Zero
- Alice compares M with X and tells Bob whether M is before, after, or equal to X in lexicographic order
- Cost: A bit and a half
- Bob throws out that half of the list B_{n} where X cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure
- After going back and forth for $\mathcal{O}\left(\log \left(\left|B_{n}\right|\right)\right)=\mathcal{O}(n \log n)$ rounds, Bob knows what X is

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly
- Alice sends the number n over to Bob
- Cost: $\mathcal{O}(\log n)$
- Using n, Bob computes a sorted list B_{n} of all possible encodings of n-point sets; $\left|B_{n}\right|=n^{\mathcal{O}(n)}$
- He then sends the median element M of this back to Alice
- Cost: Zero
- Alice compares M with X and tells Bob whether M is before, after, or equal to X in lexicographic order
- Cost: A bit and a half
- Bob throws out that half of the list B_{n} where X cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure
- After going back and forth for $\mathcal{O}\left(\log \left(\left|B_{n}\right|\right)\right)=\mathcal{O}(n \log n)$ rounds, Bob knows what X is
- Using X, Bob computes the size s of a smallest point-line cover of \mathcal{P}

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly
- Alice sends the number n over to Bob
- Cost: $\mathcal{O}(\log n)$
- Using n, Bob computes a sorted list B_{n} of all possible encodings of n-point sets; $\left|B_{n}\right|=n^{\mathcal{O}(n)}$
- He then sends the median element M of this back to Alice
- Cost: Zero
- Alice compares M with X and tells Bob whether M is before, after, or equal to X in lexicographic order
- Cost: A bit and a half
- Bob throws out that half of the list B_{n} where X cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure
- After going back and forth for $\mathcal{O}\left(\log \left(\left|B_{n}\right|\right)\right)=\mathcal{O}(n \log n)$ rounds, Bob knows what X is
- Using X, Bob computes the size s of a smallest point-line cover of \mathcal{P}
- He then sends s back to Alice
- Cost: Zero

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly
- Alice sends the number n over to Bob
- Cost: $\mathcal{O}(\log n)$
- Using n, Bob computes a sorted list B_{n} of all possible encodings of n-point sets; $\left|B_{n}\right|=n^{\mathcal{O}(n)}$
- He then sends the median element M of this back to Alice
- Cost: Zero
- Alice compares M with X and tells Bob whether M is before, after, or equal to X in lexicographic order
- Cost: A bit and a half
- Bob throws out that half of the list B_{n} where X cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure
- After going back and forth for $\mathcal{O}\left(\log \left(\left|B_{n}\right|\right)\right)=\mathcal{O}(n \log n)$ rounds, Bob knows what X is
- Using X, Bob computes the size s of a smallest point-line cover of \mathcal{P}
- He then sends s back to Alice
- Cost: Zero
- Alice outputs $s \leq k$

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly
- Alice sends the number n over to Bob
- Cost: $\mathcal{O}(\log n)$
- Using n, Bob computes a sorted list B_{n} of all possible encodings of n-point sets; $\left|B_{n}\right|=n^{\mathcal{O}(n)}$
- He then sends the median element M of this back to Alice
- Cost: Zero
- Alice compares M with X and tells Bob whether M is before, after, or equal to X in lexicographic order
- Cost: A bit and a half
- Bob throws out that half of the list B_{n} where X cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure
- After going back and forth for $\mathcal{O}\left(\log \left(\left|B_{n}\right|\right)\right)=\mathcal{O}(n \log n)$ rounds, Bob knows what X is
- Using X, Bob computes the size s of a smallest point-line cover of \mathcal{P}
- He then sends s back to Alice
- Cost: Zero
- Alice outputs $s \leq k$
- Total cost: $\mathcal{O}(n \log n)$

The Upper Bound

A protocol of $\operatorname{cost} \mathcal{O}(n \log n)$ for Point-Line Cover

- The input instance $(\mathcal{P}, k) ;|\mathcal{P}|=n$ is with Alice
- Alice computes Alon's encoding X of \mathcal{P}, where $|X|=n^{3}$
- She cannot send all of X over to Bob, it's too costly
- Alice sends the number n over to Bob
- Cost: $\mathcal{O}(\log n)$
- Using n, Bob computes a sorted list B_{n} of all possible encodings of n-point sets; $\left|B_{n}\right|=n^{\mathcal{O}(n)}$
- He then sends the median element M of this back to Alice
- Cost: Zero
- Alice compares M with X and tells Bob whether M is before, after, or equal to X in lexicographic order
- Cost: A bit and a half
- Bob throws out that half of the list B_{n} where X cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure
- After going back and forth for $\mathcal{O}\left(\log \left(\left|B_{n}\right|\right)\right)=\mathcal{O}(n \log n)$ rounds, Bob knows what X is
- Using X, Bob computes the size s of a smallest point-line cover of \mathcal{P}
- He then sends s back to Alice
- Cost: Zero
- Alice outputs $s \leq k$
- Total cost: $\mathcal{O}(n \log n)$
- This is our second main ingredient: a protocol of $\operatorname{cost} \mathcal{O}(n \log n)$

Open problems

- Close other such "structural" gaps in kernel bounds
- A first candidate: Feedback Vertex Set
- We have: $\mathcal{O}\left(k^{2}\right)$ upper bound on \#vertices and \#edges
- $\Omega\left(k^{2}\right)$ lower bound on \#edges
- But only: $\Omega(k)$ lower bound on \#vertices
- TODO: bridge this gap in the \#vertices

Thank You!

[^0]: ${ }^{a}$ Unless $\mathrm{P}=\mathrm{NP}$.

