Succinct Dynamic Data Structures*

Rajeev Raman', Venkatesh Raman2, S. Srinivasa Rao?

! Department of Mathematics and Computer Science
University of Leicester, Leicester LE1 TRH, UK.
r.raman@mcs.le.ac.uk.

2 Institute of Mathematical Sciences, Chennai, India 600 113,
{vraman,ssrao}@imsc.ernet.in

Abstract. We develop succinct data structures to represent (i) a se-
quence of values to support partial sum and select queries and update
(changing values) and (ii) a dynamic array consisting of a sequence of
elements which supports insertion, deletion and access of an element at
any given index.

For the partial sums problem on n non-negative integers of k bits each,
we support update operations in O(b) time and sum in O(log, n) time,
for any parameter b, Ign/lglgn < b < n® for any fixed positive € < 1.
The space used is kn+o(kn) bits and the time bounds are optimal. When
b=Ign/lglgn or k =1 (i.e., when we are dealing with a bit-vector),
we can also support the select operation in the same time as the sum
operation, but the update time becomes amortized.

For the dynamic array problem, we give two structures both using o(n)
bits of extra space where n is the number of elements in the array:
one supports lookup in constant worst case time and updates in O(n®)
worst case time, and the other supports all operations in O(lgn/lglg n)
amortized time. The time bounds of both these structures are optimal.

1 Introduction

Recently there has been a surge of interest in the study of succinct data struc-
tures [1-3,9-13]. The aim is to design data structures that are asymptotically
optimal with respect to operation times, but whose space usage is optimal to
within lower-order additive terms. Barring a few exceptions [2, 13], most of these
are static structures. In this paper we look at succinct solutions to two clas-
sical interrelated dynamic data structuring problems, namely maintaining partial
sums and dynamic arrays. We assume a RAM model with word size ©(lgn) bits,
where n is the input size. In this model, reading and writing O(lg n) consecutively
stored bits, arithmetic and bit-wise boolean operations on O(lgn)-bit operands
can be performed in constant time. In more detail, the problems considered are:

* Research supported in part by UK-India Science and Technology Research Fund
project number 2001.04/IT and in part by UK EPSRC grant GR L/92150.

Partial Sums This problem has two positive integer parameters, the item size
k = O(lgn), and the mazimum increment §pep = 1g°") n. The problem consists
in maintaining a sequence of n numbers A[l],..., A[n], such that 0 < A[i] <
2% — 1 under the operations:

— sum(i): return the value Zj.zl Alj].
— update(i, 6): set A[i] « A[i] + 9, for some integer ¢ such that 0 < A[i] +6 <
2% — 1 and || < bmaz-

We also consider adding the following operation:
— select(j): find the smallest 7 such that sum(i) > j.

In what follows, we refer to the partial sums problem with select as the searchable
partial sums problem.

Dietz [4] has given a structure for the partial sums problem that supports
sum and update in O(lgn/lglgn) worst-case time using ©(nlgn) bits of extra
space, for the case k = ©(lgn). As the information-theoretic space lower bound
is kn bits, Dietz’s data structure uses a constant factor extra space even when
k = O(lgn), and is worse for smaller k. We modify Dietz’s structure to obtain a
data structure that solves the searchable partial sums problem in O(lgn/1glgn)
worst case time using kn + o(kn) bits of space. Thus, we improve the space
utilisation and add the select operation as well.

For the partial sums problem we can trade off query and update times as
follows: for any parameter b > lgn/lglgn we can support sum in O(lg, n) time
and update in O(b) time!. The space used is the minimum possible to within a
lower-order term.

Our time bounds are optimal in the following sense. Fredman and Saks [5]
gave lower bounds for this problem in the cell probe model with logarithmic word
size, a much stronger model than ours. For the partial sums problem, they show
that an intermixed sequence of n updates and queries requires 2(lgn/lglgn)
amortized time per operation. Furthermore, they give a more general trade-off [5,
Proof of Thm 3'] between the number of memory locations that must be written
and read by an intermixed sequence of updates and queries. Our data structure
achieves the optimal trade-off between reads and writes, for the above range of
parameter values. If we require that queries be performed using read-only access
to the data structure—a requirement satisfied by our query algorithms—then
the query and update times we achieve are also optimal.

Next, we consider a special case of the searchable partial sums problem that
is of particular interest.

Dynamic Bit Vector Given a bit vector of length n, support the following
operations:

! In the partial sum and bit-vector results, other trade-offs that allow expensive queries
and cheap updates are possible. These are mentioned in the appropriate sections.

— rank(i): find the number of 1’s occurring before and including the ith bit
— select(j): find the position of jth one in the bit vector and
— flip(7): flip the bit at position 4 in the bit vector.

A bit vector supporting rank and select is a fundamental building block for
succinct static tree and set representations [2,11]. Given a (static) bit vector,
we can support the rank and select operations in O(1) time using o(n) bits of
extra space [3,10].

As the dynamic bit vector problem is simply the searchable partial sums
problem with & = 1, we immediately obtain a data structure that supports
rank, select and flip operations in O(lgn/lglgn) worst case time using o(n)
bits of extra space. For the bit vector, however, we are able to give a trade-
off for all three operations. Namely, for any parameter b > lgn/lglgn we can
support rank and select in O(lg, n) time and update in amortised O(b) time. In
particular, we can support rank and select in constant time if we allow updates
to take O(n®) amortised time for any constant € > 0.

If we remove the select operation from the dynamic bit vector problem, we
obtain the subset rank problem considered by Fredman and Saks [5]. From their
lower bound on the subset rank problem, we conclude that our time bounds are
optimal, in the sense described above.

Next we consider another fundamental problem addressed by Fredman and
Saks [5].

Dynamic Array Given an initially empty sequence of records, support the
following operations:

— insert(x,:): insert a new record x at position ¢ in the sequence
— delete(i): delete the record at position ¢ in the sequence and
— index(i): return the ith record in the sequence.

Dynamic arrays are useful data structures in efficiently implementing the
data types such as the Vector class in Java and C++. The dynamic array problem
was called the List Representation problem by Fredman and Saks, who gave a
cell probe lower bound of 2(1gn/lglgn) time for this problem, and also showed
that n?(1) update time is needed to support constant-time queries. For this
problem, Goodrich and Kloss [8] obtained a structure that supports insert and
delete operations in O(n¢) amortized time while supporting the index operation
in O(1/€) worst case time. This structure uses O(n'~¢) words of extra space,
(besides the space required to store the n elements of the array) for any fixed ¢,
0 < e < 1. Here n is the size of the current sequence.

We first observe that the structure of Goodrich and Kloss can be viewed as a
version of the well-known implicit data structure: the ‘rotated list’ [7]. Using this
connection, we observe that the structure of Goodrich and Kloss can be made
to take O(n®) worst case time for updates while maintaining the same storage
(o(n) additional words) and O(1) worst case time for the index operation. Then
using this structure in small blocks, we obtain a dynamic array structure that

supports insert, delete and index operations in O(lgn/lglgn) amortized time
using o(n) bits of extra space. Due to the lower bound result of Fredman and
Saks, both our results above are on optimal points of the query time-update time
trade-off while using optimal (within lower order term) amount of extra space.

We should also point out that the resizable arrays of Brodnik et al. [1] can be
used to support inserting and deleting elements at either ends of an array and
accessing the ith element in the array, all in constant time. The data structure
uses O(y/n) words of extra space if n is the current size of the array. Brodnik et
al. do not support insertion into the middle of the array.

For the dynamic array problem, we assume a memory model in which the
system returns a pointer to the beginning of a block of requested size. L.e. any
element in a block of memory can be accessed in constant time given the block
pointer and an integer index into the block. This is the same model used by
Brodnik et al. [1]. We count the time as the number of word operations, and
space as the number of bits used to store the data structure. To simplify notation,
we ignore rounding as it does not affect our asymptotic analysis.

In Section 2, we describe our space efficient structures for the partial sum
problem. In Section 3, we look at the special case of the partial sum problem
when the given elements are bits, and give the details of a structure that supports
full tradeoff between queries (select and rank) and update (flip). Section 4
addresses the problem of supporting the dynamic array operations. We conclude
with some open problems in Section 5.

2 Partial Sums

2.1 Searchable Partial Sums

In this section we describe a structure for the searchable partial sums problem
that supports all operations in O(lgn/lglgn) time. The space used is kn+ o(kn)
bits. We begin by solving the problem on a small set of integers in O(1) time,
by adapting an idea of Dietz [4].

Lemma 1. On a RAM with a word size of w bits, we can solve the searchable
partial sum problem on a sequence of m = w® numbers, for any fited 0 < e < 1,
with item size k < w, in O(1) worst-case time and using O(mw) bits of space.
The data structure requires a precomputed table of size O(2€Iw) for any fized
e > 0.

Proof. Let A[1],...,A[m] denote the sequence of elements for which the partial
sums are to be calculated. We store another array B[1], ..., B[m] which contains
the partial sums of A, i.e. B[i] = E;Zl Ali]. As we cannot hope to maintain B
under the update operation, we use Dietz’s idea of letting B get slightly ‘out of
date’. More precisely, B is not changed after each update; instead, after every m
updates B will be refreshed, or brought up to date. Since the cost of refreshing
is O(m), the amortized cost is O(1) per update.

To answer queries, we maintain an array C[1],...,C[m] in addition to A and
B. C is set to all zeros when B is refreshed. Otherwise, when an update changes
A[i] by 8, we set C[i] < C[i]+46. Since |C[i]| < MOmaz = w") always, the entire
array C occupies O(m lgw) bits, which is less than €/w bits for sufficiently large
w. As observed by Dietz, sum(i) can be computed by adding to B[i] a corrective
term obtained by using C' to index into a pre-computed table.

We now show how to perform select in O(1) time. For this, we use the Q-heap
structure given by Fredman and Willard [6], which solves the following dynamic
predecessor problem:

Theorem 1. [6] For any 0 < M < 2%, given a set of at most (Ig M)'/* integers
of O(w) bits each, one can support the operations insert, delete, predecessor
and successor operations in constant time where predecessor(x) (successor(x))
returns the largest (smallest) element y in the set such that y <z (y > x). The
data structure requires a precomputed table of size O(M).

By choosing M = 251“’, we can do predecessor queries on sets of size m' =
we/* in O(1) time, using a table of size O(M). By using this data structure in
a tree with branching factor m’, we can support O(1)-time operations on sets of
size m as well. We store the elements of B in the Q-heap data structure. Note
that changes to the Q-heap caused by refreshing have O(1) amortised cost.

If the array B were up-to-date, then we can answer select queries in O(1)
time by finding the successor of j in the Q-heap. However, again we face the
problem that B may not be up-to-date. To overcome this, we let D[1],..., D[m]
be an array where D[i] = min{A[i], m0mqz}. As with C, D is also stored in a
single word, and is changed in O(1) time (using either table lookup or bitwise
operations) whenever A is changed by an update. To implement select(j), we first
consult the Q-heap data structure to determine an index ¢ such that B[t — 1] <
j < BIJt]. By calculating sum(t — 1) and sum(t) in O(1) time we determine
whether ¢ is the correct answer. In general, the correct answer would be an index
t' # t; assume for specificity that ¢’ > t. Note that ¢’ is the smallest integer such
that A[t+1]+- - -+ A[t'] > j—sum(t). Since j < B[t] and B[t]—sum(t) < mdmaz,
it follows that j — sum(t) < mdmaz. By the definition of D, it also follows that
t' is the smallest integer such that D[t + 1]+ ...+ D[t'] > j — sum(t). Given D,
Jj — sum(t) and t, one can look up a table to calculate ¢’ in O(1) time. A similar
procedure is followed if ¢’ < t.

Finally, we note that amortization can be eliminated by Dietz’s incremental
refreshing approach [4]. |

For larger inputs, we choose a parameter m = (Ign)¢, for some positive
constant € < 1. We create a complete m-ary tree, the leaves of which correspond
to the entries of the input sequence A. We define the weight of a node (leaf or
internal) as the sum of the sequence elements under it. At each internal node
we store the weights of its children in the data structure of Lemma 1. The
tree has O(n/m) internal nodes, each occupying O(m) words and supporting all
operations in constant time. From this we get:

Lemma 2. There is a data structure for the searchable partial sums problem
that supports all operations in O(lgn/lglgn), and requires O(n) words of space.

We now modify this structure reducing the space complexity of the structure
to kn + o(kn) bits. For this, we need the following;:

Lemma 3. For any parameter b > 4, there is a data structure for the searchable
partial sums problem that supports update in O(log, n) time and sum and search
in O(blogyn) time. The space used is kn + O(((k +1gb) - n)/b) bits.

Proof. We construct a complete b-ary tree over the elements of the input se-
quence A. At each internal node we store the sum of the elements of A under
it. Clearly update takes time proportional to the height of the tree, and sum
and select can be implemented within the claimed bounds by traversing the tree
from the root to a leaf, looking at all the children of a node at each level. The
space bounds follow after a straightforward calculation. O

We take the input and divide it into groups of numbers of size (Ign)? each.
The groups are represented internally using Lemma 3, with b = (Ign)'/2. This
requires kn+o(kn) bits, and all operations within a group take O((Ign)/?) time,
which is negligible. The n/(Ign)? group sums are stored in the data structure
of Lemma 2, which requires o(n) bits now. The precomputed tables (required in
Lemma 1) also require o(n) bits. Thus we have:

Theorem 2. There is a data structure for the searchable partial sums problem
that supports all operations in O(1gn/lglgn) worst-case time and uses kn+o(kn)
bits of space.

2.2 Trade-offs for Partial Sums

We now observe that one can trade off query and update times for the partial
sums problem, and show that for any parameter 2 < b < n, we can support
sum in O(logy n) and update in O(blog, n) time, while still ensuring that the
data structure is space-efficient. As these bounds are subsumed by Theorem 2
for b < (Ign)?, we will assume that b > (Ign)? in what follows.

We construct a complete tree with branching factor b, with the given se-
quence of n elements at the leaves. Clearly this tree has height h = log, n. At
each internal node, we store the weight of that node, i.e. the sum of the leaves
descended from it, and also store an array containing the partial sums of the
weights of all its children. By using the obvious O(b) time algorithm, the par-
tial sum array at an internal node is kept up-to-date after each update. This
gives running times of O(blg, n) and O(lg, n) for update and sum respectively.
Unfortunately, the space used to store this ‘simple’ structure is O(kn) bits.

To get around this, we use one of two methods, depending on the value
of k. If k > (lg n)l/ ? then we divide the input values into groups of size lgn.
Within a group, we do not store the A[i]’s explicitly, but store only their partial
sums. The sums of elements in each of the n/lgn groups are stored in the

simple structure above, but the space required by that data structure is now
O((k + 1glgn)n/lgn) (as the size of each sum could be k + lglgn) which is
o(kn) bits. The space required by each group is lgn(k + lglgn) bits; this sums
up to kn+nlglgn = kn+ o(kn) bits overall. Clearly the asymptotic complexity
of update and sum are not affected by this change.

If k < (Ign)'/? then we divide the given sequence of elements into groups
of elgn/k each. Again, group sums are stored in the simple structure, which
requires O(kn(k+1glgn)/lgn) = o(kn) bits. Noting that an entire group requires
elgn bits, we answer sum queries within a group by table lookup.

Finally, noting that given any parameter b > (lgn)?, we can reduce the
branching factor from b to b/lgn without affecting the complexity of sum;
however, update would now take O(b) steps. Combining this with Theorem 2
we have:

Theorem 3. For any parameter lgn/lglgn < b < n, there is a data structure
for the partial sums problem that supports sum in O(lg, n) time and update in
O(b) time, and uses kn + o(kn) bits of space.

Remark 1. Note that Lemma 3 combined with Theorem 2 also gives a trade-
off whereby update takes O(log,n) and sum takes O(b) time, for any b >

lgn/lglgn.

3 Dynamic Bit Vector

The dynamic bit vector problem operation is a special case of the searchable
partial sum problem. The following corollary follows from Theorem 2.

Corollary 1. Given a bit vector of length n, we can support the rank, select
and flip operations in O(lgn/lglgn) time using o(n) bits of space in addition
to the bit vector.

Similarly, Theorem 3 immediately implies the following result (the only thing to
observe is that of the two cases in Theorem 3, we apply the one that stores the
input sequence explicitly):

Corollary 2. For any parameter lgn/lglgn < b < n, there is a data structure
for the dynamic bit vector problem that supports rank in O(lg, n) time and flip
in O(b) time, using o(n) bits of space in addition to the bit vector.

3.1 Trade-off between query and update times

In this section we show that the trade-off’s between sum and update for par-
tial sums established in Section 2.2, also hold between select and update for
the special case of the dynamic bit vector problem. We first note the following
proposition.

Lemma 4. The operations select and flip can be supported in O(1) time on a
bit-vector of size N = (Ign)°® on a RAM with word size O(Ign), using a fived
pre-computed table of size O(n®) bits for some constant € < 1. The space required
is o(N) bits in addition to the pre-computed table and the bit-vector itself.

Proof. Simply store the values in a balanced tree with branching factor /Ign,
and stop the tree at the level when the number of leaves at the subtree rooted
at the nodes is about (Ign)/2. With each internal node, we keep the searchable
structure of Lemma 1. At the leaf level, we will use a precomputed table to
support flip and select in constant time.

Since the height of the tree is a constant, select and flip can be supported in
constant time. The space used is o(IN) besides the O(n¢) bits required for the
precomputed table. O

We now show how to support select in O(lg, n) time if flip takes O(b) time,
for any parameter (Ign)* < b < n. We divide the bit vector into superblocks
of size (Ign)*. With each superblock we store the number of ones in it. The
sequence of superblock counts is stored in the data structure of Theorem 3 with
the same value of b. This enables us, O(lg, n) time, to look up the number of
ones to the left of any given superblock. We store each of the superblocks using
the structure of Lemma 4. The space required is o(n) bits.

In addition, we divide the ones in the bit vector into groups of O((lgn)?)
successive ones each. A group’s size varies between 0.5(1gn)? and 2(lgn)?. We
construct a weight-balanced B-tree (WBB tree) in the sense of Dietz [4], each
leaf of which corresponds to a group leader. Roughly speaking, the branching
of this tree is b. Some small modifications need to be made to Dietz’s balance
conditions: for example, the weight of an internal node needs to be redefined to
be the sum of the sizes of the groups under it (we omit details of the WBB tree
in this abstract). Given an integer j, using Dietz’s ideas we can locate the group
in which the j-th one lies in O(lg, n) time, and support changes due to flips in
O(b) amortised time.

With each group we store the index of the superblock in which the group’s
leader lies. Equally, with each superblock, we store all group leaders which lie in
that superblock.

The span of a group is the index of the superblock in which the next group’s
leader lies minus the index of the superblock in which its group leader lies. If
the span of a group is > 2 we say it is sparse. With each sparse group, we store
an array which gives the location of each 1 in the group. Since the maximum
size of this array is O((Ign)?), using either the implementation of Goodrich
and Kloss or the implementation of Theorem 5, we get a dynamic array which
allows insertions and deletions in O(lgn) time and accesses in O(1) time. This
requires O((lgn)?) bits per sparse group, but there can only be O(n/(lgn)*)
sparse groups, so the total space used here is O(n/lgn).

To execute select(j) we first locate the group in which the j-th one lies in
O(lg, n) time, spending O(1) time at each level of the tree. If this group is sparse
then we look up the array associated with the group in O(1) time. Otherwise,

we look in the superblock in which the group leader lies, as well as the adjacent
superblock, where we can answer the query in O(1) time each by Lemma 4

To set bit j to 1, we first locate the group to which position 5 would belong.
This is easy given the space bounds: recall that via rank and select one can
move from the ¢ + 1st one bit to the ith one bit in O(1) time. As we move along
this “virtual linked list” of 1 bits, we check to see if we have reached a group
leader (by looking to see if it is listed among the group leaders in the current
superblock). Having thus located the group leader in poly-log (negligible) time,
we then either insert into the appropriate array (if the group is sparse) and also
into the data structure associated with the superblock. Group splits and merges
are handled straightforwardly. Again for b > lg*n, we can actually make the
branching factor to be b/lgn. For other values of b, using Corollaries 1 and 2,
we have:

Theorem 4. Given a bit vector of length n, we can support the rank and select
operations in O(lg, n) time and flip in O(b) amortised time for any parameter
b, b > lgn/lglgn using o(n) bits of extra space.

Remark 2. Note that one can also get a trade-off similar to that of Remark 1
whereby flip takes O(log, n) and rank/select takes O(b) time, for any b >
lgn/lglgn, using o(n) bits of extra space.

4 Dynamic Arrays

We look at the problem of maintaining an array structure under the operations
of insertion, deletion and indexing. Goodrich and Kloss [8] have given a structure
that supports (arbitrary) insert and delete operations in O(n) amortized time
and index operation in O(1) worst case time using o(n) bits of extra space to
store a sequence of n elements. Here, first we describe a structure that essen-
tially achieves the same bounds above (except that we can now support updates
in O(n®) worst case time) using a well known implicit data structure called
recursively rotated list [7]. Using this as a basic block, we will give a structure
that supports all the dynamic array operations in O(lgn/lglgn) amortized time
using o(n) bits of extra space.

We assume a memory model in which the system returns a pointer to the
beginning of a block of requested size and hence any element in a block of memory
can be accessed in constant time given its index within the block and the block
pointer. This is the same model used in the resizable array of Brodnik et al. [1].

Rotated lists were discovered to support dictionary operations implicitly, on
a totally ordered set. A (1-level) rotated list is an arbitrary cyclic shift of the
sorted order of the given list. We can search for an element in a rotated list on n
elements in O(lgn) time by a modified binary search, though updates (replacing
one value with another) can take O(n) time. However, replacing the largest
(smallest) element with an element smaller (larger) than the smallest (largest)
can be done in O(1) time if we know the position of the smallest element in the
list. A 2-level rotated list consists of elements stored in an array divided into

blocks where the i-th block is a rotated list of ¢ elements. It is easy to see that
such a structure containing n elements has r = O(y/n) blocks. In addition, all
the elements of block ¢ are less than every element of block 7 + 1, for 1 < i < r.

This structure supports searches in O(lg n) time and updates in O(y/n) time,
if we also explicitly store the position of the smallest element in each block
(otherwise the updates take O(y/nlgn) time). This is easily generalized to an [-
level rotated list where searches take O(2! lgn) time and updates take O(2in!/?)
time. See [7] for details.

To use this structure to implement a dynamic array, we do the following. We
simply store the elements of the array in a rotated list based on their order of
insertions. We also keep the position of the first element in each recursive block.
Since we know the size of each block, index (i) operation just takes O(I) time
in an [-level rotated list implementation of a dynamic array. Similarly insert-
ing/deleting at position ¢ can be done in a similar fashion as in a rotated list
taking O(2'n'/?) time. Thus we have,

Theorem 5. A dynamic array having n elements can be implemented using an
I-level rotated list such that queries can be supported in O(l) time and updates
in O(2'n'/") time using an extra space of O(n'='/!) pointers.

Choosing I to be a small constant, we get

Corollary 3. A dynamic array containing n elements can be implemented to
support queries in constant time, and updates in O(n¢) time using O(n'=¢) point-
ers, where € is any fixed positive constant.

Using this structure, we now describe a structure that supports all the dy-
namic array operations in O(lgn/lglgn) amortized time using o(n) bits of extra
space.

We divide the given list of length n into sub lists of length @(Ig* n). In partic-
ular, each sub-list will be of length between %lg4 n and 21g* n. (We implement
these leaves using the dynamic array structure of Theorem 5.) We construct a
weight-balanced B-tree (WBB tree) in the sense of Dietz [4], each leaf of which
corresponds to a sub-list. Some small modifications need to be made to Dietz’s
balance conditions: for example, the weight of an internal node needs to be re-
defined to be the sum of the sizes of the sub-lists under it. The space required
to store this tree is o(n) bits. Supporting insert and delete in O(lgn/lglgn)
amortized time is done as in [4]. To find the jth element of the list, we first find
the block in which the jth element occurs, using the select(j) operation on the
WBB tree and then find the required element in that block. Thus we have:

Theorem 6. A dynamic array can be implemented using o(n) bits of extra space
besides the space used to store the m records, in which all the operations can be
supported in O(lgn/lglgn) amortized time, where n is the current size of the
array.

5 Conclusions

We have given a succinct searchable partial sum data structure where sum, select
and update can be supported in optimal O(lgn/lglgn) time. We have also given
structures in which sum can be supported in (lg, n) time and update in O(b)
time for any b > lgn/lglgn. These tradeoffs also hold between select/rank and
update (flip) for the dynamic bit vector problem. These structures use at most
o(n) extra words than necessary.

For the dynamic array, we have given two structures, both using o(n) bits of
extra space where n is the number of elements in the array: one supports lookup
in constant worst case time and updates in O(n®) worst-case time, and the other
supports all operations in O(lgn/lglgn) amortized time.

The following problems remain open:

1. In the searchable partial sums problem, we were able to support select in
O(lg, n) time and update in O(b) time using o(kn) bits for the special case
of kK =1. When is this trade-off achievable in general?

2. For the dynamic array problem, are there tradeoffs (both upper and lower
bounds) similar to those in the partial sum problem between query and
update operations? In particular is there a structure where updates can be
made in O(1) time and access in O(n) time?

3. Another related problem looked at by Dietz, and Fredman and Saks is the
List indexing problem which is like the dynamic array problem, but adds the
operation position(x), which gives the position of item z in the sequence, and
also modifies insert to insert a new element after an existing one. Dietz has
given a structure for this problem that takes O(n) extra words and supports
all the operations in the optimal O(lgn/lglgn) time. It is not clear that one
can reduce the space requirement to just o(n) extra words, and still support
the operations in optimal time.

References

1. A. Brodnik, S. Carlsson, E. D. Demaine, J. I. Munro and R. Sedgewick, “Resizable
Arrays in Optimal Time and Space”, Proceedings of Workshop on Algorithms and
Data Structures, LNCS 1663, 37-48 (1999).

2. A. Brodnik and J. I. Munro, “Membership in Constant Time and Almost Minimum
Space”, STAM Journal on Computing, 28(5), 1628-1640 (1999).

3. D. R. Clark, “Compact Pat Trees”, Ph.D. Thesis, University of Waterloo, 1996.

4. Paul F. Dietz, “Optimal Algorithms for List Indexing and Subset Rank”, Proceed-
ings of Workshop on Algorithms and Data Structures, LNCS 382, 39-46 (1989).

5. M. L. Fredman and M. Saks, “The Cell Probe Complexity of Dynamic Data Struc-
tures”, Proceedings of the 2158 ACM Symposium on Theory of Computing, 345-354
(1989).

6. M. L. Fredman and D. E. Willard, “Trans-dichotomous Algorithms for Minimum
Spanning Trees and Shortest Paths”, Journal of Computer Systems Science, 48,
533-551 (1994).

7.

8.

10.

11.

12.

13.

G. N. Fredrickson, “Implicit Data Structures for the Dictionary Problem”, Journal
of Association of the Computing Machinery, 30, 80-94 (1983).

M. T. Goodrich and J. G. Kloss II, “Tiered Vectors: Efficient Dynamic Array
for JDSL”, Proceedings of Workshop on Algorithms and Data Structures, LNCS
1663, 205-216 (1999).

R. Grossi and J. S. Vitter, “Compressed Suffix Arrays and Suffix Trees with Ap-
plications to Text Indexing and String Matching”, Proceedings of Symposium on
Theory of Computing, 397-406 (2000).

G. Jacobson, “Space Efficient Static Trees and Graphs”, Proceedings of the IEEE
Symposium on Foundations of Computer Science, 549-554 (1989).

J. I. Munro and V. Raman, “Succinct representation of balanced parentheses, static
trees and planar graphs”, Proceedings of the IEEE Symposium on Foundations of
Computer Science (1997) 118-126.

J. I. Munro, V. Raman and S. S. Rao, “Space Efficient Suffix trees”, Proceedings of
the conference on Foundations of Software Technology and Theoretical Computer
Science, LNCS 1530, 186-196 (1998).

J. I. Munro, V. Raman and A. Storm, “Representing Dynamic Binary Trees Suc-
cinctly”, Proceedings of Symposium on Discrete Algorithms, 529-536 (2001).

