
Succinct ordinal trees with level-ancestor queries

RICHARD F. GEARY AND RAJEEV RAMAN
University of Leicester, UK
and
VENKATESH RAMAN
Institute of Mathematical Sciences, Chennai, India
__

We consider succinct or space-efficient representations of trees that efficiently support a
variety of navigation operations. We focus on static ordinal trees, i.e., arbitrary static
rooted trees where the children of each node are ordered. The set of operations is
essentially the union of the sets of operations supported by previous succinct
representations (Jacobson, Proc. 30th FOCS, 549-554, 1989; Munro and Raman, SIAM J.
Comput. 31 (2001), 762-776; and Benoit et. al Proc. 6th WADS, LNCS 1663, 169-180,
1999), to which we add the level-ancestor operation.

Our representation takes 2n + o(n) bits to represent an n-node tree, which is within o(n)
bits of the information-theoretic minimum, and supports all operations in O(1) time on
the RAM model. These operations also provide a mapping from the n nodes of the tree
onto the integers {1, …, n}. In addition to the existing motivations for studying such data
structures, we are motivated by the problem of representing XML documents compactly
so that XPath queries can be supported efficiently.

1. INTRODUCTION

Trees are a fundamental structure in computing. They are used in almost every aspect of

modelling and representation for explicit computation. Their specific uses include

searching for keys, maintaining directories, primary search structures for graphs, and

representations of parsing − to name just a few. Explicit storage of trees, with a pointer

per child as well as other structural information, is often taken as a given, but can account

for the dominant storage cost.

This cost can be prohibitive (see [4, 9, 15, 16] for examples). Our focus is on static

ordinal trees, i.e., arbitrary static rooted trees where the children of each node are

ordered. Following the early work of Jacobson [15] there have been some more recent

papers on succinct representations of static ordinal trees. These representations require

This research was supported in part by UISTRF grant 2001.04/IT and an EPSRC
Doctoral Training Account grant.
Authors' addresses: Author1&2: Department of Computer Science, University of
Leicester, Leicester LE1 7RH, UK. {r.geary, r.raman}@mcs.le.ac.uk. Author 3: Institute
of Mathematical Sciences, Chennai, India 600 113. vraman@imsc.res.in.

Permission to make digital/hard copy of part of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date of
appear, and notice is given that copying is by permission of the ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© 2001 ACM 1073-0516/01/0300-0034 $5.00

only 2n + o(n) bits to represent an n-node tree, but permit a reasonable class of primitive

operations to be performed quickly (in O(1) time). Since the information-theoretic

lower bound on the space for representing an n-node ordinal tree is

⎡lg(() / (2n + 1))⎤ = 2n − O(lg(n)) bitsn
n 12 +

1, this space bound is optimal to within lower-

order terms. In this paper, we consider the following set of primitive operations:

• RANKZ(x): return the position of node x in z-order, for z ∈ {pre, post};

• SELECTZ(i): return the i-th node in z-order, for z ∈ {pre, post};

• CHILD(x, i): for i ≥ 1 return the i-th child of node x;

• DEG(x): return the number of child nodes of x;

• CHILDRANK(x): return i such that x is the i-th child of its parent;

• DEPTH(x): return the depth of x, the length of the unique path from the root to x;

• DESC(x): return the number of descendants of x, including x itself (also called

the subtree size); and

• ANC(x, i): for i ≥ 0 return the i-th ancestor of node x.

Representing a tree to support ANC queries is known as the level-ancestor problem,

which has a number of algorithmic applications (see [7, 11, 12]). A number of O(1)-

time, Θ(n lg n)-bit representations have been devised for this problem [1, 3, 6, 11].

Previous tree representations using 2n + o(n) bits only supported a proper subset of

these operations. Jacobson's LOUDS (level order unary degree sequence) representation

[15] represents a node of degree d as a string of d 1s followed by a 0; these nodes are then

represented in a level order traversal of the tree. The parenthesis representation of Munro

and Raman [16] represents each node as a pair of parentheses, with the children of each

node represented recursively inside each pair. The parenthesis representation was

augmented with additional operations by Chiang, Lin and Lu [7], and in recent

independent work, by Munro and Rao [17]. The DFUDS (depth first unary degree

sequence) representation [4, 5] is similar to LOUDS in that it represents each node of

degree d as a sequence of d opening parentheses followed by a single closing parenthesis,

but the sequence of nodes is represented in a depth first order. An example of each

different representation is shown in Figure 1.1, and a summary of all the operations that

they support is given in Table 1.1. It is worth noting that the LOUDS data structure

supports an additional operation that allows enumeration of all nodes at a level, however,

it is difficult to see how LOUDS could support e.g., DESC because the descendants of any

one node are not kept contiguously.

1 Throughout this paper we use "lg x" to denote "log2 x".

 LOUDS: 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0

 Parenthesis: (() (() () (() (() ())) ()) ())

 DFUDS: (((()) (((())) (()) (()))))

Figure 1.1 Example ordinal tree of n nodes, with three different 2n-bit representations.

 {RANK, SELECT}pre {RANK, SELECT}post CHILD DEG CHILDRANK DEPTH DESC ANC

LOUDS [15]
Parenthesis [16]
Parenthesis-a [8]
Parenthesis-b [17]
DFUDS [4, 5]
New

Table 1.1 Functionality of previous representations. An entry of or indicates whether the

representation can or cannot support the operation in O(1) time. All the above representations can

find the parent in O(1) time, and hence report ANC(x, i) in O(i) time. The parentheses

representation can support CHILD(x, i) in O(i) time.

We give a 2n + O(n lg lg lg n / lg lg n)-bit representation that supports all the above

operations. As can be seen from Table 1.1 we provide all the functionality of the

previous representations while adding the ANC operation. We assume, as do [4, 5, 16,

17], the unit-cost RAM model with word size O(lg n) bits2.There is a natural mapping

between a balanced string of 2n parentheses, where the first (opening) parenthesis

matches the last (closing) parenthesis, and an n-node tree [16]. By applying this

transformation, we are able to support natural operations on the parenthesis string, such

as finding the closing parenthesis corresponding to an opening one, or finding the i-th

outer enclosing parenthesis, extending and generalising the operations of [16].

One of the key ingredients in our result is a way of ‘partitioning’ an arbitrary ordinal

tree into equal-sized (to within a constant factor) connected subtrees of polylogarithmic

size each. Of course, this is not always possible − consider a tree comprising a root and

2 Jacobson's original results were stated as requiring O(lg n) probes in the bit-probe
model.

n – 1 children − so we obtain a family of subtrees that cover the original tree and may

intersect only at their common roots. For binary trees, one can actually partition the tree,

and there is a standard transform that converts any ordinal tree into a binary tree with the

same number of nodes (see e.g. [16]). Unfortunately this transformation does not

preserve either distances or pre- and post- orders.

We also consider succinct representations of ordinal trees where each node in the tree

is labelled with a symbol from an alphabet Σ. We would like to support “labelled”

versions of each of the previously defined operations, for example, ANC(x, σ, i) chooses

the i-th ancestor of x that is labelled with σ, and SELECTpre(σ, i) chooses the i-th node in

pre-order that is labelled with σ, for any σ ∈ Σ. The information-theoretic space lower

bound for such trees is n lg |Σ| + 2n − O(lg n) bits. We show how to modify the above

representation so that using n (lg |Σ| + 2) + O(|Σ| n lg lg lg n / lg lg n) bits, it can support

the labelled operations in O(1) time as well. Thus, if |Σ| is a constant the labelled

operations are also handled optimally, and the space used is n(lg |Σ| + 2) +

o(n(lg |Σ| + 2)), i.e., optimal to within lower-order terms, whenever |Σ| = o(lg lg n).

This result is a first step towards the space-efficient representation of (large, static)

XML documents. The correspondence between XML documents and ordinal trees is

obvious and well understood (see Figure 1.2 for a simplified example). The XML

document object model (DOM) [14] provides a framework to access XML documents

using the query language XPath [10]. Unfortunately, an implementation of the DOM

(using explicit storage of the tree with several pointers per node) can take up many times

more memory space than the equivalent raw XML file (which is already verbose). This

‘XML bloat’ significantly impedes scalability of current XML query processors [2].

Our data structure gives an XML representation that supports the axis specifiers in

XPath location path expressions (LPE). An XPath LPE refers to a node, or an ordered

node set in the document tree. At any given point when evaluating an XPath LPE, we

have an ordered set S of nodes matching some part of the LPE. The next step in the

query could involve updating S to include specific nodes in the document that are located

along one of several axis specifiers relative to any node x ∈ S (x is called the context

node). Some example axis specifiers are:

child All children of the context node.

descendant All descendants of the context node.

ancestor All ancestors of the context node.

preceding All nodes before the context node in pre-order, excluding any

ancestors of the context node.

<Complaint>
 <Note></Note>
 <Details>
 <Name></Name>
 <Description></Description>
 <When>
 <Note></Note>
 <Time>
 <Hour></Hour>
 <Minute></Minute>
 </Time>
 </When>
 <Note></Note>
 </Details>
 <Note></Note>
</Complaint>

12

3 1

2

1

2

1 2

3 4descendant

preceding
self

following

ancestor

.

Figure 1.2 Small XML fragment (only tags shown) and corresponding tree representation. Five

axis specifiers are shown with nodes numbered according to their position along the given axis.

self denotes the current context node.

Most axis specifiers return nodes in pre-order, except ones such as ancestor and

preceding, which return nodes in reverse pre-order. These axis specifiers may be

followed by a label, which indicates the label of the node sought, and a number, which

indicates the position of the node sought along the given axis (e.g., child::a[10] selects

the 10th child of the context node that is labelled a).3 Using the labelled tree operations,

we can select along each of the axis specifiers in O(1) time. Evaluating XPath LPEs

efficiently is central to XML query processing, but we are not aware of any other O(1)-

time implementations for these crucial subroutines.

The rest of this paper is organised as follows. Section 2 deals with preliminaries,

including the tree-covering algorithm. Section 3 gives a 2n + o(n)-bit representation that

supports essentially only ANC queries. Section 4 shows how to combine and extend

many the ideas in Sections 2 and 3 to give the final result. Section 5 extends the results

to labelled trees and fleshes out the connection to XML documents, and Section 6

concludes with some open problems.

2. PRELIMINARIES

2.1 A tree covering procedure.

We now show how, given an integer parameter, M ≥ 2, and an ordinal tree, T, we can

cover the vertices of T with a number of connected subtrees, all of which are of size

3 This is a simplified view of axis specifiers that ignores text, comment nodes etc.; see
Section 5 for more.

Θ(M), except possibly one subtree containing the root of T, which could be of size O(M).

Additionally, two subtrees are either disjoint or intersect only at their common root. An

example of the kind of cover we propose is given in Figure 2.1.

To achieve this, we consider each node x ∈ T in turn in post-order and call the

procedure GROUP(x) described below. This procedure either creates a set of new cover

elements (i.e. subtrees that will form part of the cover) rooted at x, or designates a set of

currently uncovered nodes, including x, as a partially completed subtree (PCS). As will

become apparent below, a PCS is a connected subgraph of T, which is too small to be

designated as a cover element. Since we visit nodes in post-order, when we call

GROUP(x), all of x’s children have been visited; in general, some of x’s children will be

roots of PCSs. The effect of GROUP(x) is to coalesce these PCSs into larger connected

subtrees that include x.

In what follows, all cover elements and PCSs are represented by sets of vertices, and

the algorithm uses the notation U S = ∪X∈S X, whenever S is a set of sets:

GROUP(x):

1. If x is a leaf, {x} becomes a PCS; return.

2. Otherwise, x has a number of children, each of which is either the root of a cover

element or the root of a PCS. Denote by Y = {S1, …, Sp} the set of all “child” PCSs

of x (numbered so that the root of Si comes before the root of Si + 1).

a. If │ Y│ < M – 1 then make {x}∪(Y) into a PCS and return. U

U

U

b. Otherwise, perform the following steps:

i. Create a new cover element Z = {{x}, SU q, Sq+1, …, Sr}, where Sq is the

leftmost PCS in Y, and r is the smallest index such that│Z│ ≥ M – 1.

ii. Set Y = Y – {Sq, Sq+1, …, Sr}.

iii. If │ Y│ < M – 1, then set Z = Z ∪ (U Y), output Z as a cover element and

return. Otherwise, output Z as a cover element and go to (i).

After the last step of the algorithm, there may be a PCS at the root of T, which is then

made into a cover element as well (see Figure 2.1). Clearly, two cover elements are

either disjoint or intersect only at their common root, and the sizes of cover elements are

also bounded as claimed before:

LEMMA 2.1. Suppose the above procedure is run on an ordinal tree with some parameter

M ≥ 2. Then, for any cover element A in the generated cover, │A│≤ 3M – 4. Also,

unless A contains the root of the tree, │A│ ≥ M.

Proof. At any step in the processing, a given node x will have k ≥ 0 partially completed

child subtrees, {S1, S2, …, Sk}. If │S1│ + … + │Sk│ ≤ M – 2, then the algorithm will

combine all the subtrees with x to form another PCS of size ≤ M – 1 and return; otherwise

it will create a number of cover elements.

If │S1│ + … + │Sk│ ≥ M – 1, the algorithm will select the first p PCSs such that

│S1│ + … + │Sp│ ≥ M – 1. These PCSs will be combined with x to form a cover

element A of size ≥ M. By definition,│S1│ + … + │Sp-1│ < M – 1, and │Sp│ ≤ M – 1,

so│S1│ + … + │Sp│ ≤ 2M – 3. Including x,│A│ ≤ 2M – 2, which is the maximum size

of a cover element that is generated when the test at the start of step b(iii) fails.

Figure 2.1 Example tree subdivided using our tree cover algorithm with parameter M = 7.

This process is continued for all the PCSs, {│Sp+1│, …, │Sk│}. If at some point the size

of the remaining PCSs is insufficient to produce another cover element with size ≥ M (i.e.

the test of b(iii) succeeds) then up to M – 2 elements may be added to the last cover

element created, giving a cover element of size at most 2M – 2 + M – 2 = 3M – 4. �

2.2 Tree cover decomposition

We cover the given tree T using the above procedure, choosing M = max(⎡(lg n)4⎤, 2).

We call the resulting cover a tier 1 cover, and use the term mini-trees to denote the

elements of this cover. We then apply the above procedure to each mini-tree with

parameter M' = max(⎡(lg n) / 24⎤, 2), obtaining a tier 2 cover formed of micro-trees.

tier 2 pre−order boundary node
tiers 1 and 2 pre−order boundary node

X

Figure 2.2 Two level tree cover decomposition with M = 7 and M' = 3. Solid curves enclose mini-

trees while dashed curves enclose micro-trees.

For i = 1, 2, a tier i pre-order boundary node is either the first node in pre-order (i.e.,

the root) of a tier i subtree or the last node in pre-order of a tier i subtree. We define tier i

post-order boundary nodes analogously. Since any micro-tree is entirely contained

within a mini-tree, and all mini-trees are covered by micro-trees, it follows that all tier 1

pre- and post-order boundary nodes are also tier 2 pre- and post-order boundary nodes,

respectively (see Figure 2.2); in particular a mini-tree root is also a micro-tree root.

Let pre(x) denote the depth-first pre-order position of node x in a tree T. When A

denotes a mini- (or micro-) tree, let root(A) denote the root of the tree and let last(A) and

second(A) denote nodes such that, for all x∈A, if x ≠ root(A), then

pre(second(A)) ≤ pre(x) ≤ pre(last(A)). Given two cover elements A and B within the

same tier, say that A B if either pre(root(A)) < pre(root(B)) or root(A) = root(B) and

pre(second(A)) < pre(second(B)).

p

p

We now prove the following property of the tree cover:

LEMMA 2.2. Let σ be a sequence of nodes that appear consecutively in a pre-order

traversal of the given tree T, such that σ contains no tier i pre-order boundary nodes, for

i ∈ {1, 2}. Then all nodes in σ appear consecutively in a pre-order traversal of a single

tier i subtree. The above also holds if we replace ‘pre-order’ by ‘post-order’.

We begin by proving the following proposition:

PROPOSITION 2.3. Given any two cover elements A and B in a tree T, such that A B, one

of the two cases below holds:

• if root(A) ≠ root(B), then for all x∈T such that pre(root(B)) ≤ pre(x) ≤

pre(last(B)), x is not in A.

• if root(A) = root(B), then pre(last(A)) ≤ pre(second(B)).

 Proof. First assume root(A) ≠ root(B), so A and B must be disjoint. Suppose that

root(B) is a descendant of root(A) (Case 1, Figure 2.3). Let SB denote the subtree rooted

at root(B). By definition, the sequence of │SB│nodes in the pre-order listing of T that

starts at root(B) is a complete list of nodes that are in SB. Since A is connected, SB

contains no nodes in A, but every node in B is contained within SB, so (i) holds in this

case. If root(B) is not a descendant of root(A), then (Case 2, Figure 2.3) every node in A

is visited before the first node in B is visited, hence the sequence of nodes between

root(B) and last(B) does not contain any node in A, so (i) holds in this case as well.

Now suppose that z = root(A) = root(B) (Case 3, Figure 2.3). Let a be the rightmost

child of z that belongs to A, and let b be the leftmost child of z that belongs to B. By

definition of the cover algorithm, pre(a) < pre(b). If Sa and Sb are the subtrees rooted at a

and b respectively, we know that all nodes in Sa (including last(A)) come before all nodes

in Sb (including second(B)) in the pre-order. �

iii)

A

B

A B

A B

i) ii)

Figure 2.3 Proposition 2.3 (i) case 1; (ii) case 2; (iii) case 3.

Proof (of Lemma 2.2). It is enough to show that given two consecutive nodes, x followed

by y, in a depth-first pre-ordering of a tree T, that belong to different cover elements, P

and Q respectively, one of the nodes, x or y, must be a boundary node. The proof for

post-order boundary nodes is similar.

Since roots of cover elements are boundary nodes, assume that neither x nor y is the

root of the cover element to which it belongs. We consider three cases: (a)

pre(root(P)) > pre(root(Q)) (b) pre(root(P)) < pre(root(Q)), or (c) root(P) = root(Q):

(a) By Proposition 2.3, the sequence of nodes between root(P) and last(P) does not

contain any nodes that are in Q; thus we must have x = last(P), so x is a boundary

node.

(b) By Proposition 2.3, the sequence of nodes between root(Q) and last(Q) cannot

contain any nodes that are in P. We already know that y ≠ root(Q), so x is in

between two nodes in Q; this is a contradiction, so case (b) cannot occur.

(c) By Proposition 2.3, either all non-root nodes in P must precede all non-root

nodes in Q, or vice-versa. As x precedes y, the second alternative is impossible.

Thus, x = last(P), and so x is a boundary node. �

2.3 Node names.

From an external viewpoint, we assume the name of a node in the given tree T is just its

pre-order number (this also provides the promised mapping from the nodes of T to

{1, …, n}). Suppose that we have determined tier 1 and 2 covers of T as above. Then,

we number the mini-trees t1, t2, … in a way that ensures that t1 p t2p … For each mini-

tree ti, we number the micro-trees within it as µ<i,1>, µ<i,2>, ... in the same way, and we also

number each node in a micro-tree consecutively in pre-order starting from 1. This allows

us to refer to a node x (for internal purposes) by an alternate name

τ(x) = 〈τ1(x), τ2(x), τ3(x)〉, meaning that x is the τ3(x)-th node in pre-order in micro-tree

number µ<τ1(x), τ2(x)>. For example, 〈3, 2, 4〉 would correspond to the node marked X in

Figure 2.2. Since mini- and micro- trees are not disjoint, a root of a micro- or mini- tree

may have more than one τ-name; we will refer to the lexicographically smallest τ-name

for a node as its canonical name, and the copy of a node with the canonical name as a

canonical copy. Note that by Lemma 2.1, there are at most t1 = ⎣n / M⎦ + 1 mini-trees, t2

= ⎣3M / M′⎦ + 1 micro-trees within a mini-tree and t3 = 3M′ nodes in a micro-tree, so a τ-

name can be viewed as a ⎡lg t1⎤ + ⎡lg t2⎤ + ⎡lg t3⎤ = lg n + O(1)-bit integer.

2.4 Previous results used

A key data structure which we use in the paper is a bitvector, which represents a

sequence of n bits b1b2…bn. A bitvector supports the operations RANK0(i) and RANK1(i),

which report the number of 0 bits and 1 bits respectively in b1…bi, as well as supporting

the operations SELECT0(i) and SELECT1(i), which report the indices of the i-th 0 bit and 1

bit respectively. Theorem 2.1 below is from [18]:

THEOREM 2.1. A bitvector of length n can support RANK0(i), RANK1(i), SELECT0(i) and

SELECT1(i) in O(1) time, using lg() + O(n lg lg n / lg n) bits, where m is the number of

bits that have value 1.

n
m

We remark that since lg () ≤ n, the space used by the data structure is never more than

n + o(n) = O(n) bits. A space bound of n + o(n) bits was previously obtained by [9,15]

using a simpler data structure. We also use the following results. Theorem 2.2 describes

the DFUDS (depth first unary degree sequence) representation; Theorem 2.3 gives

simple, rather than the strongest, results from [1, 3].

n
m

THEOREM 2.2. [4, 5] There is a 2n + o(n) bit representation of an n-node ordinal tree that

provides a mapping from the nodes of the tree to {1, …, n} and supports DEG, CHILD,

CHILDRANK, DESC, and finding the parent of a node, in constant time.

THEOREM 2.3. [1, 3] There is an O(n lg2 n) bit representation of an n-node ordinal tree in

which ANC queries can be answered in constant time. The nodes of the tree can be

named using arbitrary distinct integers of lg n + O(1) bits each.

We will frequently represent micro-trees and other suitably small objects using

implicit representations. An implicit representation of an object o would contain some

short “header” information, followed by an integer r(o) that represents the object in (close

to) the information-theoretic minimum number of bits. For example, if o were an ordinal

tree with i nodes, its implicit representation might comprise of a header that contains the

integer i, and an integer r(o), which could be a sequence of 2i bits that encode the tree in

a parenthesis encoding. To compute f(o, x1, …, xk) for some function f, we index a pre-

computed table that contains the value of f for all possible values of its arguments, using

an index formed out of r(o), x1, … , xk . This is the “four Russians” trick, and is used in

many contexts within this paper and other papers dealing with succinct data structures.

In all cases of interest to us, the lookup table takes o(n) bits of space.

3. A 2n + o(n)-BIT REPRESENTATION SUPPORTING ANCESTOR AND
DEPTH QUERIES

We begin our description with a structure that uses 2n+o(n) bits to represent an n-node

tree and supports ANC(x, i) queries. We assume for now that x is specified by its τ-name,

and that we return the τ-name of ANC(x, i).

We first argue that the tier 1 and 2 covers described in Section 2.2 can be represented

using 2n + o(n) bits. We represent each micro-tree µ, |µ| = i, that comprises the number i

in a fixed-size field of ⎡lg lg n⎤ bits, and a further 2i bits that specify the structure of µ

using (say) the parenthesis representation. Since micro-trees can only have root nodes in

common, the total size of all O(n / lg n) micro-trees is n + O(n / lg n), and the implicit

representations of these micro-trees take up 2n + O(n lg lg n / lg n) bits in all.

Each mini-tree has at most 3M nodes (Lemma 2.1), or 3M / M' nodes after the

compression of each micro-tree by its index. Hence each mini-tree can be represented

(using the standard pointer representation) using O((M lg M) / M') bits which is

O((lg n)3 lg lg n) bits for each mini-tree for a total of O((n lg lg n) / lg n) bits. The (at

most n / M) pointers connecting mini-trees will take even less space.

In addition to the tier 1 and 2 covers we will have a macro tree consisting of macro

nodes. As in [1], a node in the given tree T is called a macro node if it is either the root

of T (denoted root(T)) or its depth is a multiple of M and it has at least M descendants.

We obtain the macro tree, T', from T by deleting all but the macro nodes, and adding

edges from a macro node x to its nearest macro node ancestor in T; the macro tree T'

consists of O(n / M) nodes.

We will represent the macro tree T' using Theorem 2.3; this takes

O((n (lg n)2) / M) = O(n / lg n) bits and supports ANC queries in O(1) time. Essentially

the macro tree helps us to jump in O(1) time to within M of the required ancestor. To

find ancestors at a distance of at most M, we will keep some auxiliary pointers with the

root of every mini tree, which we call skip pointers.

A (∆, l) skip pointer list at a node x which is at a depth d from the root, is a 2-

dimensional array A, where A[i, j], for 0 ≤ i ≤ l – 1 and 1 ≤ j ≤ ∆ contains the τ-name of

the min{d, j∆i}-th ancestor of x. Hence, the A[0, *] entries contain ancestors at distances

1, 2, …, ∆ from x, the A[1, *] entries contain ancestors at distances ∆, 2∆, …, ∆2 from x,

and so on. With the root of every mini-tree t, we keep

• its depth, denoted by d(t),

• the τ-name of its closest macro node ancestor m(t), along with its distance from

root(t), and

• a (⎡ M ⎤, 2) skip pointer list, st.

These take up O(M) values each of length O(lg n) bits with every mini-tree root for a

total of O(n lg n / M) = o(n) bits. Similarly, with the root of every micro-tree µ within

t, we keep

• its distance from the root of the mini-tree it is in, denoted d(µ) and

• a (⎡ nlg ⎤, 8) skip pointer list sµ, essentially as above, but with no pointer

pointing beyond root(t).

Note that d(µ) = O(M) = O((lg n)4) and hence takes O(lg lg n) bits. Since all the skip

pointers point to nodes in the same mini-tree, their τ1-names are the same as that of the

root, and we don't need to store their τ1-names. Hence each of these names takes only

O(lg lg n) bits for a total of O(nlg lg lg n) bits for each micro-tree, or a total of

O(n lg lg n / nlg) bits for all micro-trees.

To support ancestor queries whose answers lie within a micro-tree, we use table look-

up. The table has, for every possible micro tree of up to 3 M' nodes, and for every node x

in such a micro-tree, two items:

• its distance d(x) from the micro-tree root,4 and

• for every distance i up to the height of the micro-tree, the τ3 value of ANC(x, i)

(the τ1 and the τ2 values are the same as that of x).

The table is indexed using the implicit representation of the micro-tree, together with

τ3(x) and the argument i to the ANC query. Each entry in this table is clearly O(lg n) bits,

and the number of entries is at most i'3
1

M
i=Σ 2 ⋅ 22i ≤ 18 (M')2 ⋅ 26M', so the table has size

O(n¼(lg n)3) = o(n) bits. We now argue that this data structure supports ANC and DEPTH

queries in O(1) time:

THEOREM 3.1. There exists a data structure to represent an n-node tree taking

2n + O(n lg lg n / nlg) bits that supports ANC and DEPTH queries in constant time.

Proof. The description of the data structure is as above. We first focus on (the

straightforward) task of computing DEPTH(x) for a node x in a micro-tree µ within a mini-

tree t. If x = root(t) then d(t) is the answer. Otherwise if x = root(µ) then

DEPTH(x) = d(t) + d(µ). Otherwise, we obtain d(x), the distance of x from root(µ) from

the table, and DEPTH(x) = d(t) + d(µ) + d(x). Note that the τ-name of a node indicates

whether or not it is a micro- or mini-tree root (see Figure 3.1).

The algorithm to compute ANC(x, i) is given in Figure 3.1. The correctness of the

algorithm is immediate. Now we argue that it runs in O(1) time. In Case 1, the algorithm

either stops or a recursive call takes us to the root of a micro-tree (Case 2).

In Case 2, the algorithm stops or a recursive call takes us to the root of a mini-tree

(case 3) or we move upwards in the mini-tree by a factor of nlg each time (since

s < k ≤ 8). So in at most 8 steps (each of which may involve going through a step in case

1), we get the answer or move to the mini-tree root.

4 Note that we use the same symbol d for the depth of a node from its micro-tree root, the
(relative) depth information we keep at micro-tree roots, and the (true) depth stored at
mini-tree roots.

Begin

case 1: x is not a root of a micro-tree (i.e., τ3(x) > 1).

d ← d(τ3(x)) (obtained from a table look-up).

If i ≤ d find a = ANC(x,i) from the table representation of its micro-tree

 τ3(x) and return 〈τ1(x), τ2(x), a〉.

Else (i > d) set i ← i – d, x ← 〈τ1(x), τ2(x), 1〉 (the root of its micro-tree);

 return (recursively) ANC(x, i).

case 2: x is the root of a micro-tree µ = τ2(x), but not a root of a mini-tree (i.e.,

 τ3(x) = 1, τ2(x) > 1).

Set δ ← ⎡ nlg ⎤ and d ← d(µ) (Note: d ≤ δ8).

If i > d, then x ← 〈τ1(x), 1, 1〉 and i ← i – d and return (recursively)

 ANC(x, i).

Else (i ≤ d) (answer lies within the mini-tree, and δk ≥ d ≥ i for some

 integer k ≤ 8.):

 find r, s for some 1 ≤ r ≤ δ and 0 ≤ s < k ≤ 8 such that rδs ≤ i < (r+1)δs.

 Let x' ← 〈τ1(x), sµ[s, r]〉.

 Then x' is an ancestor of x and distance(x, x') ≤ i < distance(x, x') + δs.

 If s=0, then return x' else x ← x' and i ← i – rδs and return ANC(x, i).

case 3: x is a root of the mini-tree t = τ1(x) (i.e., τ2(x) = τ3(x) = 1).

δ ← ⎡ M ⎤.

If i ≤ M, then find r, s such that 1 ≤ r ≤ δ and s ∈ {0, 1} such that

 rδs ≤ i < (r + 1)δs. Let x' ← st[s, r].

 Then x' is an ancestor of x and distance(x, x') ≤ i < distance(x, x') + δs.

 If s = 0, then return x' else x ← x' and i ← i – rδs and return ANC(x, i).

Else (i > M), find the closest macro node ancestor m(t) and its distance

 d' from the root of t.

 Let x' = ANC(m(t), ⎣(i – d') / M ⎦) in the macro tree T'.

 Return ANC(x', (i – d') mod M).
end

Figure 3.1 Code for ANC(x, i). The argument x is given as its τ-name 〈τ1(x), τ2(x), τ3(x)〉; the output

is the τ-name of the i-th ancestor of x.

In Case 3, first, by using the level-ancestor structure in the macro-tree, if necessary,

we reach an ancestor node whose distance to the answer is at most M. Then, using the

skip pointers, we reach a node whose distance to the answer is at most M . Then

perhaps after an execution of a step in each of case 1 and case 2, we get the answer from

the skip pointers at the first level in the mini-tree root. So overall the running time of the

algorithm is a constant. �

4. A COMPLETE 2n + o(n)-BIT REPRESENTATION

This section has three parts. Subsection 4.1 describes a modified tree cover, addressing

the difficulty that, while the representation described in Section 3 is adequate for ANC

queries, it does not support the remaining queries. CHILD queries, for example, seem

difficult to support in O(1) time using the representation of Section 3 since the children of

a node may be spread over several micro- or mini-trees. Subsection 4.2 describes how

the modified tree cover helps to support all operations bar RANK, SELECT and DESC in

O(1) time, provided that nodes are referred to by τ-names. Subsection 4.3 shows how to

convert between τ-names and pre-order/post-order numbers, thus allowing us to support

RANK, SELECT and DESC as well, and proving our main result.

4.1 A modified tree cover

We start with the cover created in Section 2. Nodes in the original cover are called

original nodes. In addition we will extend each micro-tree to possibly include a number

of promoted nodes, which are copies of original nodes in other micro-trees. Nodes are

promoted as follows:

• For every node x that is the root of a micro-tree, we promote x into the extended

micro-tree to which the parent of x, p(x), belongs. If p(x) belongs to more than

one micro-tree then we promote x into one particular extended micro-tree as

follows (p(x) is the root of each of these micro-trees):

– let y be the rightmost sibling to the left of x that is not the root of a

micro-tree. We promote x to the extended micro-tree that y is in.

– if no such y exists, then we promote x to the left-most extended micro-

tree of which p(x) is the root.

PROPOSITION 4.1. Except for the roots of micro-trees, all other nodes have the property
that (at least a promoted copy of) each of their children is in the same extended micro-
tree as themselves.

Proof. If the child x of a node y is not in the same micro-tree as y, then x must be the root

of a micro-tree. By the above, x is promoted to at least one of the micro-trees containing

y. If y is not the root of a micro-tree, then y belongs to only one micro-tree, and all its

children are promoted to the same micro-tree as y. �

The τ-name of a vertex x remains the same as before the promotion; i.e., we ignore

promoted nodes when counting τ3(x). We now discuss the representation of extended

micro-trees (which can be very large!). We say that an extended micro-tree is of type 1 if

its size is ≤ ¼ lg n and type 2 otherwise. We first note that:

PROPOSITION 4.2. The number of type 2 extended micro trees is O(n / (lg n)2) and the
number of original nodes in all type 2 extended micro trees put together is O(n / lg n).

Proof. Each type 2 extended micro tree has at most 3M′ – 4 original nodes, and so at

least ¼ lg n – 3M′ + 4 promoted nodes. Since M′ = max(⎡(lg n) / 24⎤ , 2), each type 2

extended micro-tree has Ω(lg n) promoted nodes. There are O(n / lg n) promoted nodes

in all, so the first part follows. Now the second part is immediate. �

4.1.1 The base representation. We now describe the representation of the micro-trees.

We will sometimes talk about bitvectors that indicate whether a particular node in a tree

satisfies a particular property. In this case, we will by default assume that the i-th

element of the bitvector refers to the i-th node of the tree in pre-order, unless specified

otherwise. Bitvectors are represented according to Theorem 2.1; if the strong space

bound of the Theorem is indeed necessary, we say that a compressed representation is

used, in order to make this explicit. Otherwise, we will merely use the linear upper

bound given in the remark following Theorem 2.1, to simplify calculations.

We first describe the basic data structures associated with each extended micro-tree,

and introduce others as and when needed.

4.1.2 Type 1 extended micro-trees. The principal data we store for a type 1 extended

micro-tree µi (comprising pi promoted nodes and oi original nodes) are:

1. O(lg lg n)-bit header information needed to parse the following information,

including the type of the micro-tree; numbers pi and oi; start/end positions of various

sub-parts.

2. A bitstring (called treei) containing a 2(pi + oi)-bit implicit representation of µi.

3. A bistring (called nodetypesi) that contains an implicit representation (using

⎡lg()⎤ bits) of the subset of all nodes in µ
ip

ioi +p
i that are promoted.

4. A representation (edgesi) of all edges that leave µi:

a. A string of pi bits which specifies whether a promoted node is in the same mini-

tree as µi;

b. Two arrays that contain τ2-names and τ1-names, respectively, of the original

copy of the promoted nodes of µi, depending on whether the original copy of the

promoted node is in the same mini-tree as µi. The sizes of the arrays are p'i and

(pi – p'i) respectively, where p'i is the number of promoted nodes that belong to

the same mini-tree as µi.

4.1.3 Type 2 extended micro-trees. The principal data we store for a type 2 extended

micro-tree i (comprising pi promoted nodes and oi original nodes) are:

5. O(lg n)-bit header information needed to parse the following information, including

the type of the extended micro-tree; numbers pi and oi; start/end positions of various

sub-parts etc.

6. A representation (treei) of the tree structure consisting of:

a. An O(pi + oi)-bit DFUDS representation of the extended micro-tree (Theorem

2.2);

b. A 2oi-bit implicit representation of the micro-tree (excluding promoted nodes).

7. A bitvector (nodetypesi) of length pi + oi that specifies if a node in µi is original

(denoted 1) or promoted (denoted 0).

8. A representation (edgesi) of all edges that leave µi, as in (4) above.

4.1.4 Roots of extended micro-trees. Let µi be an extended micro-tree and let

ri = root(µi). Suppose that ri has di children, which may be in one or more mini- or

micro-trees. We store the following data, associated only with the canonical copy of ri:

9. Two bitvectors (childi) ─ one where the first bit is 1, and for j = 2, … , di, the j-th bit

is 1 if the j-th child of ri is in a different mini-tree from the (j – 1)-st child; the other

is analogous but for micro-trees.

10. Like (4, 8) τ1 or τ2 names of the other micro- and mini-trees of which ri is the root

(edgesi).

We now calculate the space used so far. Since there are O(n / lg n) and O(n / (lg n)2)

extended micro-trees of Types 1 and 2 respectively, the space used by items (1) and (5) is

o(n) bits. We use the following facts extensively:

(a) For nonnegative integers ai, bi, ; ⎟
⎠
⎞

⎜
⎝
⎛≤⎟

⎠
⎞⎜

⎝
⎛

∑
∑∏

i i

i i

i

i

b
a

i b
a

(b) lg ⎜⎜ = O(n lg lg n / lg n); ⎟⎟
⎠

⎞
)n⎝

⎛
lg/(
)(

nO
nO

(c) Let k = O(n / lg n). If x1,…, xk ≥ 2 and Σi xi = O(n), then Σi xi lg lg xi / lg xi =

O(n lg lg lg n / lg lg n).

The last one of these follows from the concavity of the function f(x) = x lg lg x / lg x.

Letting s = Σi xi,, by Jensen’s inequality [19], the sum Σi xi lg lg xi / lg xi is maximised

when all the xi’s are equal. Hence, Σi xi lg lg xi / lg xi ≤ s lg lg (s / k) / lg (s / k). It is easy

to check that s lg lg (s / k) / lg (s / k) is maximised when both s and k are as large as they

can be, i.e., when s = Θ(n) and k = Θ(n / lg n), thus giving (c).

Let Sj with j ∈ {1, 2} consist of the indices i such that each µi is an extended micro-

tree of type j. We note the following ((iii) restates Proposition 4.2):

(i) and ∑ are both O(n / lg n); ∑∈Si 1
ip i

1
io

∑∈ 2Si io

∈ 2Si
p

(ii) = n + O(n / lg n); ∑∈Si

(iii) = O(n / lg n).

micro-tree τ-name 〈1, 1〉 〈2, 1〉 〈3, 1〉

tree structure

type (1, 5) 1 2 1
pi (1, 5) 2 3 0
oi (1, 5) 1 4 3

treei (2, 6.a) ((())) ((((() ())) ())) ((()))
(6.b) n/a ((() ())) n/a

nodetypesi (3, 7) 0 0 1 1 1 0 1 0 0 Λ
edgesi (4.a, 8.a) 0 1 1 1 1 Λ

(τ2) (4.b, 8.b) [2] [2, 3, 5] []
(τ1) (4.b, 8.b) [2] [] []

di (9) 2 4 4
childi (mini) (9) 1 0 1 0 0 0 1 0 0 0

(micro) (9) 1 0 1 0 0 0 1 0 1 0
edgesi (τ1) (10) [] [] []

(τ2) (10) [] [] [2]

Figure 4.1 Example representation of three selected extended micro-trees from the tree in Figure

2.2. White denotes original nodes while grey denotes promoted nodes. For illustrative purposes

we assume that type 1 extended micro-trees have at most 6 nodes. n/a denotes data that is not

stored (due to tree type) and λ denotes an empty bitstring. Numbers in parentheses in the left-hand

column refer to the data description above.

From these facts, we obtain that the number of bits used by treei summed over all type 1

extended micro-trees is:

∑ ∈
+≤+

1
lg/(2)(2

Si ii nnOnop)

)n

,

and summed over all type 2 extended micro-trees is

∑ ∈
=+

2
lg/()(

Si ii nOopO .

The space used by nodetypesi (for type 1 extended micro-trees) is

)lg/lglg()lg/(
)lg/(

)(
lglglg 1

1

1

1
nnnOnnO

nnO
nO

S
p

op

p
op

Si i

Si ii

Si
i

ii =+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
≤⎥

⎥

⎤
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

∑
∑∑

∈

∈
∈

;

for type 2 extended micro-trees, it is O(n / lg n) as before. Thus, the space used so far is

2n + O(n lg lg n / lg n) bits.

We now add up the space required by the data structures childi and edgesi. In (4) and

(8) there are bitvectors of size O(pi); these add up to O(n / lg n) bits as before. In (9) the

bitvectors are stored in compressed format; for the i-th root the bitvector for micro-trees

takes ⎡lg ()⎤ + O(dim
id

i lg lg di / lg di) bits by Theorem 2.1, where mi is the number of

micro-trees in which the children of ri lie, and di is the degree of ri. Since

Σi mi = O(n / lg n), as before, the first term adds up to O(n lg lg n / lg n) bits. For the

second term, we first note that there are at most O(n / lg n) micro-trees, and hence only

O(n / lg n) micro-trees whose roots have degree ≥ 2. Applying fact (c) above, the second

term sums up to O(n lg lg lg n / lg lg n) bits over micro-tree roots with degree ≥ 2; for

micro-trees with degree 1 this term anyway sums up to O(n / lg n) bits. A similar

argument is used for the mini-tree bitvector.

Next, note that each of the full O(lg n)-bit τ-names stored in (4, 8, 10) represents an

edge between two mini-trees and each such edge is represented at most twice (once each

with a root of an extended micro-tree and the extended micro-tree itself). Thus, storing

these full τ-names takes O((n / M) lg n) = O(n / lg3 n) = o(n) bits in all. Similarly, storing

the τ2 names corresponding to edges between micro-trees takes O(n lg lg n / lg n) = o(n)

bits overall as well.

4.2 τ-name operations.

We now describe how to compute ANC, DEPTH, CHILD, CHILDRANK and DEG in O(1)

time, but refer to nodes using their τ-names; these names take lg n + O(1) bits.

4.2.1 ANC and DEPTH operations. We augment the structure above (which takes

2n + o(n) bits) with the auxiliary data structures (macro tree, skip pointer lists, depth

information, and tables) for ANC queries from the previous section, which take o(n) bits

as well. In order to support DEPTH and ANC queries in O(1) time, it suffices to support

them in O(1) time within an extended micro-tree. Both of these are readily accomplished

using table lookup ― either on the bitvector that is the concatenation of treei and

nodetypesi (which has size at most ¾ lg n) for a type 1 extended micro-tree i, or on the

implicit representation of the original nodes in treei for a type 2 extended micro-tree i

(recall that promoted nodes are not counted for the purpose of τ3 names).

4.2.2 CHILD operations. We now discuss how to compute CHILD(c, i) for a node c with

τ-name 〈x, y, z〉. If z ≠ 1 we proceed as follows, making use of Proposition 4.1. First the

i-th child c' of c is found. If c' is not a promoted node, it is returned, but if it is, we find

the rank of c' among the other promoted nodes. For type 1 nodes, both these steps take

O(1) time using table lookup. For type 2 nodes, c' is found using the DFUDS

representation, and the type (and rank) of c' is found using the bitvector nodetypesx; again

both steps take O(1) time. Using RANK and SELECT on the bitvector in edgesi we can

then easily access the τ-name of c' from the two arrays of τ-names in O(1) time.

If c = root(y), we use childy to determine the micro-tree y' in which the i-th child lies

(this is done by a RANK query on each of the bitvectors in childy and looking up edgesy)

and the number i' of children of c that are in micro-trees before y' (a SELECT operation on

the bitvectors in childy). This takes O(1) time, after which we look for the (i – i')-th child

of the root(y') (which is of course a copy of c) which can be found from the DFUDS

representation or by a table look-up.

4.2.3 CHILDRANK operations. Next, we now describe how to compute CHILDRANK(c)

for a node c with τ-name 〈x, y, z〉. If z ≠ 1 and parent(c) ≠ root(µ〈x, y〉) we first find the

parent p of c. Using Proposition 4.1, we know a copy of each of the children of p is in y,

which enables us to compute CHILDRANK as follows. For type 1 nodes, both these steps

take O(1) time using table lookup. For type 2 nodes, we look at the DFUDS

representation of the extended micro-tree (the mapping between τ-names and the nodes in

the extended micro-tree is handled as for the CHILD operation) and from this we can

determine the parent of c, and, using the DFUDS representation’s functionality,

CHILDRANK(c) as well; again, both steps take O(1) time.

If parent(c) = root(y) the siblings of c are not necessarily in the same extended micro

tree y (the micro-tree y may overlap with other mini-/micro-trees at the root). We must

store the following additional data, which is of size o(n):

a. with each mini-tree, t, we store crankt, an O(lg n) bit integer representing the number

of siblings to the left of second(t);

b. with each micro-tree, µ, we store:

i. crankµ, an O(lg lg n) bit integer representing the number of siblings to the left of

second(µ) within the current mini-tree; and

ii. isrootµ, a single bit (true/false) indicating if the root of µ is also the root of a

mini-tree.

We can now calculate CHILDRANK as follows: first, we compute, as above, cr(c), the rank

of c among the set of c’s siblings that lie within the same micro-tree as c. Now, if

isrootµ = true, then CHILDRANK(c) = crankt + crankµ + cr(c), otherwise CHILDRANK(c) =

crankµ + cr(c).

Finally, if c = root(y) then there is a promoted copy of c in another micro-tree. We

just need to navigate to that micro-tree (by performing an ANC(c, 1) query) and then do a

CHILDRANK operation on the promoted copy of c within that micro-tree, using one of the

two methods above.

4.2.4 DEG operations. It is easy to compute the degree, DEG(c), of a given node, c, with

τ-name 〈x, y, z〉. If c ≠ root(y) then from Proposition 4.1, all children of c are in y. If c is

in a type 1 micro-tree, then we can compute DEG(c) using table lookup, otherwise we can

determine it from the DFUDS representation of the type 2 micro-tree. Each of these

takes O(1) time.

If c = root(y), (note that 〈x, y, z〉 is the canonical τ-name of c), then the degree, di, of c

is stored explicitly at the root of the micro-tree (Section 4.1.4).

We have now shown the following:

THEOREM 4.1. There is a representation of an n-node ordinal tree which occupies

2n + O(n lg lg lg n / lg lg n) bits and supports the operations ANC, CHILD, CHILDRANK,

DEPTH and DEG in O(1) time. The representation labels the nodes of the tree using

integers of lg n + O(1) bits each.

4.3 Pre- and Post-order Number Operations

In this section we now assume that nodes are referred to by their pre-order number (or

their post-order number). This not only gives us the promised labelling of nodes from

{1, …, n}, but also makes RANKpre and SELECTpre trivial. To preserve the validity of

Theorem 4.1 we must first provide conversion methods between τ-names and pre-/post-

order numbers. We then show that we are able to support the operations RANKz, SELECTz

(for z ∈ {pre, post}) and DESC in O(1) time.

4.3.1 Converting pre-/post-order numbers to τ-names. We store a compressed bitvector

B1 of length n, whose i-th bit is 1 if the i-th node in pre-order is a tier 1 pre-order

boundary node (in what follows, we temporarily drop the qualifier ‘pre-order’). Another

bitvector B2 marks the tier 2 boundary nodes. By Theorem 2.1, the bitvectors occupy

O(n lg lg n / lg n) = o(n) bits.

We also store two arrays C1 and C2, as follows. Let

1 = root(T) = x1 < x2 < … < = n be the tier 1 boundary nodes. By Lemma 2.2, all

nodes x such that x
1nx

i < x < xi + 1 belong to the same mini-tree, say tj; we let C1[i] = j. (If no

such node x exists, then if xi is the root of a micro-tree we let C1[i] = τ1(xi), otherwise, we

let C1[i] = τ1(xi + 1).) As a τ1-name is O(lg n) bits long, and the array C1 contains

O(n / M) entries, C1 occupies O(n / (lg n)3) = o(n) bits in all.

Likewise, we store in C2, for each sequence of nodes that belong to the same micro-

tree µ, the τ2-name of this micro-tree. A little care must be taken, however, to ensure that

the data stored allows τ3-names to be computed correctly. For this, entries in C2 are of

the form 〈q, r, b〉, where q and r are data for calculating τ2 and τ3 names, respectively, and

b is a 0/1 value. The details are as follows.

Let xi be the i-th tier 2 boundary node. If xi is the root of some micro-tree we set

C2[i] = 〈τ2(xi), 1, 1〉. Otherwise, let y be the last node (if any) before xi such that we have

not yet visited all nodes in y's micro-tree, and such that y is in the same mini-tree as xi. If

y exists, we set C2[i] = 〈τ2(y), τ3(y), 0〉. Otherwise, we set C2[i] = 〈–, –, 0〉 (see Figure

4.2). As a τ2-name and a τ3-name are both O(lg lg n) bits long, and the array C2 contains

O(n / lg n) entries, C2 occupies O(n lg lg n / lg n) = o(n) bits in all.

tiers 1 and 2 pre−order boundary node
tier 2 pre−order boundary node

{

1 101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 0 0 0 0 0 0

1 2 1 3 1 −
1 1 2 1 − 3 4 − 5 − 2 1 2 3 2 2 −
1 1 1 3 − 1 1 − 1 − 1 1 1 1 3 2 −
1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0

1B
2B

τ11C
τ2
τ32C

0 0 01 1 1 1 1 1 1 1 11 1 1

root?

1

node type

1 101 0 0 0 0 0 0 0 0 1 10

Figure 4.2 Pre-order node sequence of the example tree; lines divide the sequence into mini/micro

tree subsequences, while corresponding values in the arrays B1, B2, C1 and C2 are shown below it.

(– denotes values that will never be accessed.)

If x is a non-boundary node, we compute τ(x) in O(1) time as follows. We perform

RANK1 queries on B1 and B2 and use the results to index into C1 and C2, respectively,

obtaining some values p and 〈q, r, b〉. Then τ1(x) = p, τ2(x) = q and τ3(x) = r + (x – x'),

where x' is the pre-order number of the tier 2 boundary node we used to index into C2

(which can be found by a SELECT1 query on B2). Now suppose x is a boundary node. If

x is a boundary node that is the root of a micro-tree (the final value stored in C2 lets us

determine this), the above procedure works. If not, let p and 〈q, r, b〉 denote the last

entries of C1 and C2 before the entries corresponding to x. Then τ1(x) = p, τ2(x) = q and

τ3(x) = r + (x – x'), where x' is the pre-order number of the last tier 2 boundary node

before x.

To convert from post-order numbers to τ-names, we use an analogous approach,

storing compressed bitvectors B3, B4 and arrays C3, C4.

4.3.2 Converting τ-names to pre-/post-order numbers. Let in(t) for some mini- or

micro-tree t be defined as pre(second(t)) – 1 (the pre-order number of the node before the

second node in t). If Ct is the set of all children of root(t) that have an (original or

promoted) node inside t, then let out(t) be defined as the largest pre-order number among

the descendants of Ct. With the root of each mini-tree t we store these numbers in(t) and

out(t). As in and out are Θ(lg n)-bit numbers, storing them explicitly for mini-trees costs

o(n) bits, but we cannot afford to do the same for micro-trees. We now discuss how to

store O(lg lg n) bits per micro-tree root and still compute in and out in O(1) time for a

micro-tree root, focussing on the in values; out is very similar.

 Intuitively, with the root of each micro-tree µi, contained within a mini-tree t, we

store an O(lg lg n)-bit “pointer” to an appropriate mini-tree root r, whose in or out value

is within (lg n)O(1) of in(µi), together with the difference in pre-order between r and

root(µ). In more detail, we consider two cases. In a pre-order traversal, the sequence s of

nodes between root(t) and second(µi) may either contain nodes in other mini-trees (case

1) or it may not (case 2).

Case 1: There are a number, j ≥ 1, of mini-trees t1, …, tj contained in s such that the

parent of the root of each mini-tree is in t. Let tj be the mini-tree in this set with

the highest τ1 number (and therefore the last of these mini-trees to be visited

before second(µi) in a pre-order traversal). We store:

a. lasti, the 〈τ2, τ3〉-name of parent(root(tj));

b. lsibi, the 〈τ2, τ3〉-name of the first sibling to the right of root(tj), if it exists

as an original node within t, and NULL otherwise; and

c. ldisti, the difference in pre-order between out(tj) and in(µi).

Case 2: We store:

a. lasti = NULL;

b. lsibi = NULL; and

c. ldisti, the difference in pre-order between in(t) and in(µi).

We can now calculate in(µi) for a micro-tree µi in O(1) time in one of three ways:

a. If lasti = NULL then in(µi) = in(t) + ldisti; otherwise

b. If lsibi = NULL then we find tj by performing the query CHILD(lasti, DEG(lasti)),

and calculate in(µi) = out(tj) + ldisti; otherwise

c. we find tj by performing the query CHILD(lasti, CHILDRANK(lsibi) – 1), and

calculate in(µi) = out(tj) + ldisti.

In a similar manner, to enable us to calculate out(µi), we do the following. Let t' be

the first mini-tree (if any), the parent of whose root is in t, that is visited after root(µi).

We store nexti, which equals the 〈τ2, τ3〉-name of parent(root(t')) if t' exists, and NULL

otherwise; nsibi, the 〈τ2, τ3〉-name of the first sibling to the left of root(t1), if it exists in t,

and NULL otherwise; and ndisti, which equals the difference in pre-order between out(µj)

and in(t'), if t' exists, and the difference between out(µj) and in(t), otherwise. We can now

calculate out(µi) for a micro-tree µi in O(1) time as above.

Since lasti, lsibi, nexti and nsibi are in t, we can safely omit their τ1 components. The

value of ldisti and ndisti is never more than the number of nodes in a mini-tree.

Therefore, we are able to store this data in O(lg lg n) bits.

mini-tree τ-name 〈1〉 〈2〉 〈3〉
in(t) 1 2 21

out(t) 30 18 29

micro-tree τ-name 〈1, 1〉 〈1, 2〉 〈2, 4〉

tree structure

lasti NULL 〈1, 1〉 NULL
lsibi NULL 〈2, 1〉 NULL

ldisti 0 1 7
nexti NULL NULL NULL
nsibi NULL NULL NULL

ndisti 0 0 5
Figure 4.3 Example representation of τ-name to post order conversion data stored with the three

mini-trees and three selected extended micro-trees from the tree in Figure 2.2. White denotes

original nodes while grey denotes promoted nodes.

Next, we show how to calculate the pre-order number of a given original node x with

τ(x) = 〈i, j, k〉. We consider 3 possible cases.

Case1: There exists a promoted node in the extended micro-tree 〈i, j〉 with pre-order

number less than x. Let x' be the last promoted node in 〈i, j〉 before x in pre-

order and d be the difference in pre-order between x and x'. These can be found

by table lookup for type 1 extended micro-trees. For type 2 extended micro-

trees, we look at nodetypes〈i, j〉; x' is the SELECT0(RANK0(SELECT1(k)))-th node

and d = SELECT1(k) – SELECT0(RANK0(SELECT1(k))). We find the τ-name of x'

as before (Section 4.3.1), determining the (micro- or mini-) tree uj' that x' is a

root of. The pre-order number of x is now out(µj') + d.

Case 2: No such node x' exists and 〈i, j〉 is the first micro-tree rooted at 〈i, j, 1〉. The pre-

order number of x is simply in(µi) + d.

Case 3: No such node x' exists and 〈i, j〉 is not the first micro-tree rooted at 〈i, j, 1〉. We

need to find the last micro-tree µj'' rooted at 〈i, j, 1〉 that comes before 〈i, j〉. If

j ≠ 1, then µj'' = 〈i, j – 1〉, otherwise we need to find the micro-tree µj''' containing

the canonical copy of 〈i, j, 1〉 (one way to do this would be to convert in(µj) to a

τ-name). We then do a RANK query and an array access respectively on the

bitvector childi (micro) and array edgesi (τ2) associated with µj''' to obtain

µj'' = 〈i – 1, j'〉, where j' = edgesi(RANK1childi(CHILDRANK(〈i, j, 1〉)) – 1). The pre-

order number of x is now out(µj'') + d.

A related approach allows us to convert between post-order numbers and τ-names in O(1)

time using similar additional data structures.

4.3.3 RANK, SELECT and DESC operations. RANK and SELECT operations in constant

time now become trivial: we simply convert to pre- (or post-) order names. Finally, for a

node x, DESC(x) = 1 + RANKpost(x) − RANKpre(x) + DEPTH(x). We have thus shown:

THEOREM 4.2. There is a representation of an n-node ordinal tree which occupies

2n + O(n lg lg lg n / lg lg n) bits and supports the operations ANC, CHILD, CHILDRANK,

RANKz/SELECTz for z ∈ {pre, post}, DESC, DEPTH and DEG in O(1) time. The

representation labels the nodes of the tree using integers from {1, …, n}.

5. OPERATIONS ON LABELLED TREES AND REPRESENTING XML
DOCUMENTS

5.1 Operations on Labelled Trees

The previous section described a data structure to represent an ordinal tree. We now

consider representing an ordinal tree where each node in the tree is labelled with a

symbol from an alphabet Σ. We would like to support ‘labelled’ versions of each of the

previously defined operations:

• RANKZ(x, σ): return the number of nodes that have label σ and precede x in z-

order, for z ∈ {pre, post};

• SELECTZ(i, σ): return the i-th node in z-order that has label σ, for z ∈ {pre, post};

• CHILD(x, σ, i): for i ≥ 1 return the i-th child of node x;

• DEG(x, σ): return the number of child nodes of x labelled σ;

• CHILDRANK(x, σ): return the number of siblings of x with label σ that precede x;

• DEPTH(x, σ): return the number of ancestors of x that have label σ;

• DESC(x, σ): return the number of descendants of x that have label σ, including x

itself; and

• ANC(x, σ, i): for i ≥ 0 return the i-th ancestor of node x that has label σ.

The information-theoretic space lower bound for these kinds of labelled trees is easily

seen to be n(lg |Σ| + 2) − O(lg n). Suppose that the representation of Theorem 4.2 uses

2n + f(n) bits. We sketch a fairly easy modification of this representation, that uses

n(lg |Σ| + 2) + O(|Σ| f(n)) bits and supports the labelled operations in O(1) time as well.

Thus, if |Σ| is a constant the labelled operations are also handled optimally. Indeed, in

Theorem 4.2, we noted that f(n) = O(n lg lg lg n / lg lg n), so the representation uses

optimal space, to within lower-order terms, for |Σ| = o(lg lg n).

We sketch the modifications required (assuming |Σ| = o(lg lg n)). Firstly, we reduce

M' (the size of micro-trees) to max ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

Σ
2,

lg24
lg n (and similarly change the threshold for

type 1/2 micro-trees); this lets all labels of a type 1 micro-tree µ be stored along with its

tree structure in ⎡|µ| lg |Σ|⎤ + 2|µ| bits whilst allowing table lookup. For type 2 micro-trees

we store |Σ| more bitvectors, one for each σ ∈ Σ, that indicate if the i-th node is labelled σ.

At the (canonical copy of the) root ri of a micro-tree µi, in addition to childi, we store

several bitvectors as follows. If ri's children are in l different micro-trees, and for

j = 1, …, l there are ≥ 0 children labelled σ in the j-th micro-tree, then the sequence

 is stored as a compressed bitvector (there are 2|Σ| such bitvectors, one for

jσ

10
σ
ja

a

1100 21
σσ aa K

each σ ∈ Σ and one each for the partition of a node’s children induced by micro- and

mini-trees). If the degree of ri is di, then the total sizes of all bitvectors (including childi)

is bounded by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ

Σ+
)(

)(
lg

lO
ldO i plus lower-order terms; this sums up to o(n) over all roots.

Finally, we store analogues of lasti, ini, outi for each σ ∈ Σ. It is easy to verify that this

information suffices to handle the labelled versions of all operations except ANC.

For ANC we make the following observations. By storing separate skip pointers for

each label, we can find labelled ancestors within mini- and micro- trees in O(1) time.

These skip pointers use o(n) space. The major difference, however, is in the macro tree,

where we need to find the nearest macro node to the ancestor that we seek. In the

unlabelled case, successive macro nodes in the macro tree are separated by exactly M real

nodes. However, in the labelled version, there may be a variable number of nodes of a

particular colour lying between any two successive macro nodes. We store |Σ| copies of

the macro tree, one for each σ ∈ Σ. On each copy, we now have to solve a weighted

version of the level-ancestor problem, where the weight of an edge between two macro

nodes for some σ ∈ Σ gives the number of nodes labelled with σ between the two macro

nodes. Specifically, we wish to answer the query succ(x, d), which returns the last

(highest) node z on the path from x to the root, such that the sum of weights on the path

between x and z is less than d. The distance between two successive macro nodes is

O((lg n)4), so the weight of an edge in the macro tree is also O((lg n)4). As the weights

are polylogarithmic in n, Alstrup and Holm [1] can solve this problem in O(1) time (in

contrast to the O(lg lg n) solutions proposed by [11, 12]). We have thus shown:

THEOREM 5.1. There is a representation of an n-node ordinal tree, where each node is

labelled with some σ∈Σ, |Σ| = o(lg lg n), which occupies (lg |Σ| + 2)n + o((lg |Σ| + 2)n)

bits and supports the labelled versions of the operations ANC, CHILD, CHILDRANK,

RANKz/SELECTz for z ∈ {pre, post}, DESC, DEPTH and DEG in O(1) time. The

representation names the nodes of the tree using integers from {1, …, n}.

5.2 Representing XML documents

As noted in the introduction, an XML tree is an ordinal tree where each node is labelled

with a tag name σ from a set of tags T. We consider the following location step problem,

which appears to be an important subtask for evaluating Location Path Expressions

(LPEs) in XPath. A single location step takes as input a context node c, and an axis

specifier, and a node test, to select the appropriate nodes(s) along these axis specifiers.

There are 13 axis specifiers, but we only consider the non-trivial ones below5:

child All children of the context node.

parent The parent of the context node.

descendant All descendants of the context node.

ancestor All ancestors of the context node.

following All nodes after the context node in pre-order, excluding any

descendants of the context node.

preceding All nodes before the context node in pre-order, excluding any

ancestors of the context node.

following-sibling All siblings that come after the context node.

preceding-sibling All siblings that come before the context node.

To a first approximation, a node test is simply a label σ ∈ T, and an LPE of the form

axis::σ ensures that only nodes with label σ along the appropriate axis are considered.

Of particular interest to us is the ability to randomly index into the set of selected nodes

along a given axis. Thus, a LPE of the form axis::σ[i] refers to the i-th node labeled σ

along axis. (e.g., in Figure 1.2, the LPE descendant::NOTE[4], evaluated at the root,

returns the root's rightmost child). If c is the context node, then selecting the i-th node

labelled σ along the above axes may be implemented as follows:

child(c, σ, i) CHILD(c, σ, i)

parent(c, σ) ANC(c, σ, 1)

descendant(c, σ, i) SELECTpre(RANKpre(c, σ) + i, σ), if i ≤ DESC(c, σ)

ancestor(c, σ, i) ANC(c, σ, i)

following(c, σ, i) SELECTpre(RANKpre(c, σ) + DESC(c, σ) + i, σ)

preceding(c, σ, i) SELECTpost(RANKpost(c, σ) – DESC(c, σ) – i, σ)

following-sibling(c, σ, i) CHILD(ANC(c, σ, 1), σ , CHILDRANK(c, σ) + i)

preceding-sibling(c, σ, i) CHILD(ANC(c, σ, 1), σ , CHILDRANK(c, σ) – i)

To apply this labelled tree representation to XPath however, requires a little care. A

node test, in reality, is not just a tag name. XPath considers each node to be one of 7

types: root, element (tag), attribute, comment, namespace, processing instruction or text.6

If we have a LPE of the form axis::σ[i], σ does not have to be a specific tag name, and

instead could be one of the following:

5 The omitted axis specifiers are self, ancestor-or-self, descendant-or-
self, attribute and namespace.
6 However, attributes and namespaces are not considered to be actual nodes in the ordinal
tree representing the XML document.

* selects from the set of element nodes;

text() selects from the set of text nodes;

comment() selects from the set of comment nodes;

processing-instruction() selects from the set of processing instruction nodes; and

node() selects from the complete set of all nodes.

Therefore we wish the set of labels to be Σ = T ∪ {*, text(), comment(),

processing-instruction(), node()}. The addition of the node sets * and node()

create a problem, because they are not disjoint from the other labels (* = T and

node() = U {*, text(), comment(), processing-instruction()}). We need to create

auxiliary data structures for * and node() like those for the other labels. Because each of

these auxiliary data structures uses o(n) bits, and there are only two extra ones to create,

the space bound stated in Theorem 5.1 is still valid for a data structure supporting XPath

queries.

U

6. CONCLUSION

We have described a 2n + o(n) bit representation of an n-node static ordinal tree,

which supports the operations of RANKZ, SELECTZ, for z ∈ {pre, post}; CHILD, DEG,

CHILDRANK, DEPTH, DESC and ANC in O(1) time on the RAM model of computation.

This set of operations is essentially the union of the sets of operations supported by

previous succinct representations, to which we added the ANC operation, and it is also

relevant to the processing of XML documents. We use the approach of covering the

given ordinal tree with a number of small, connected trees. There appears to be no

particular reason why this approach can support precisely the set of operations we

consider, and no other operations. It would be interesting to characterise which kinds of

operations are intrinsically supported by representations based on this approach.

Finally, we modified the ordinal tree representation to allow nodes to be labelled with

symbols from an alphabet, while supporting labelled versions of the above operations.

Our representation of labelled trees uses optimal space, to within lower-order terms, but

only for very small alphabet sizes. Nevertheless, it is a first step towards the succinct

representation of XML documents. An obvious question is whether a labelled tree

representation can be found that remains space-efficient for larger alphabets, and [13] is a

very recent advance in this direction.

REFERENCES
1. ALSTRUP, S. AND HOLM, J. Improved algorithms for finding level ancestors in

dynamic trees. In Automata, Languages and Programming, 27th International
Colloquium, ICALP 2000, Proceedings. Lecture Notes in Computer Science 1853
Springer 2000, pp. 73-84.

2. APACHE SOFTWARE FOUNDATION. Apache Xindice: Frequently Asked
Questions. http://xml.apache.org/xindice/faq.html, October 2005.

3. BENDER, M.A. AND FARACH-COLTON, M. The level ancestor problem
simplified. In LATIN 2002: Theoretical Informatics, 5th Latin American
Symposium, Proceedings. Lecture Notes in Computer Science 2286 Springer 2002,
pp. 508-515.

4. BENOIT, D.A., DEMAINE, E.D., MUNRO, J.I., RAMAN, R., RAMAN, V.,
AND RAO, S.S. Representing trees of higher degree. Algorithmica 43 (2005), pp.
275-292.

5. BENOIT, D.A., DEMAINE, E.D., MUNRO, J.I., AND RAMAN, V. Representing
trees of higher degree. In Algorithms and Data Structures, 6th International
Workshop, WADS '99, Proceedings. Lecture Notes in Computer Science 1663
Springer 1999, pp. 169-180.

6. BERKMAN, O. AND VISHKIN, U. Finding level-ancestors in trees. Journal of
Computer and System Sciences, 48 (1994), pp. 214-230.

7. CHAZELLE, B. Computing on a free tree via complexity-preserving mappings.
Algorithmica, 2 (1987), pp. 337-361..

8. CHIANG, Y.-T., LIN, C.-C. AND LU, H.-I. Orderly spanning trees with
applications. SIAM Journal on Computing, 34 (2005), pp. 924-945. Preliminary
version in SODA 2001.

9. CLARK, D. AND MUNRO, J.I. Efficient suffix trees on secondary storage
(extended Abstract). In Proceedings of the Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms. ACM/SIAM, 1996, pp. 383-391.

10. CLARK, J. AND DEROSE, S. XML path language (XPath) Version 1.0. W3C
Recommendation. http://www.w3.org/TR/xpath, W3C Consortium,
1999.

11. DIETZ, P.F. Finding level-ancestors in dynamic trees. In Algorithms and Data
Structures, 2nd Workshop WADS '91, Proceedings. Lecture Notes in Computer
Science 519 Springer 1991, pp. 32-40.

12. FARACH, M. AND MUTHUKRISHNAN, S. Perfect hashing for strings:
formalization and algorithms. In Combinatorial Pattern Matching, 7th Annual
Symposium, CPM 96, Proceedings. Lecture Notes in Computer Science 1075
Springer 1996, pp. 130-140.

13. FERRAGINA, P., LUCCIO, F., MANZINI, G AND MUTHUKRISHNAN, S..
Structuring labeled trees for optimal succinctness, and beyond. In Proceedings of
the 46th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 184-
196, 2005.

14. LE HORS, A., LE HÉGARET, P., WOOD, L., NICOL, G., ROBIE, J,.
CHAMPION, M. AND BYRNE, S. Document object model (DOM) level 2 core
specification Version 1.0. W3C Recommendation.
http://www.w3.org/TR/DOM-Level-2-Core, W3C Consortium, 2000.

15. JACOBSON, G. Space-efficient static trees and graphs. In Proceedings of the
30th IEEE Symposium on Foundations of Computer Science. pp. 549-554, 1989.

16. MUNRO, J.I. AND RAMAN, V. Succinct representation of balanced parentheses
and static trees. SIAM Journal on Computing, 31 (2001), pp. 762-776.

17. MUNRO, J.I. AND RAO, S.S. Succinct representations of functions. In
Proceedings of the 31st International Colloquium on Automata, Languages and
Computation, LNCS 3142, pp. 1006-1015, 2004.

18. RAMAN, R., RAMAN, V., AND RAO, S.S. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms. ACM/SIAM,
2002, pp. 233-242.

19. RUDIN, W. Real & Complex Analysis, 3rd ed. McGraw-Hill, 1987.

http://xml.apache.org/xindice/faq.html

	INTRODUCTION
	PRELIMINARIES
	A tree covering procedure.
	Tree cover decomposition
	Node names.
	Previous results used

	A 2n + o(n)-BIT REPRESENTATION SUPPORTING ANCESTOR AND DEPTH
	A COMPLETE 2n + o(n)-BIT REPRESENTATION
	A modified tree cover
	The base representation. We now describe the representation
	Type 1 extended micro-trees. The principal data we store fo
	Type 2 extended micro-trees. The principal data we store fo
	Roots of extended micro-trees. Let μi be an extended micro-

	τ-name operations.
	Anc and Depth operations. We augment the structure above (w
	Child operations. We now discuss how to �
	Childrank operations. Next, we now descr�
	Deg operations. It is easy to compute th�

	Pre- and Post-order Number Operations
	Converting pre-/post-order numbers to τ-names. We store a c
	Converting τ-names to pre-/post-order numbers. Let in(t) fo
	Rank, Select and Desc operations. Rank and Select operation

	OPERATIONS ON LABELLED TREES AND REPRESENTING XML DOCUMENTS
	Operations on Labelled Trees
	Representing XML documents

	CONCLUSION

