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Abstract. A feedback vertex set (fvs) of a graph is a set of vertices whose removal results in an acyclic
graph. We show that if an undirected graph on n vertices with minimum degree at least 3 has a fvs on
at most 1

3
n1−ε vertices, then there is a cycle of length at most 6

ε
(for ε ≥ 1/2, we can even improve

this to just 6).

Using this, we obtain a O(( 12 log k
log log k + 6)knω) algorithm for testing whether an undirected graph on

n vertices has a fvs of size at most k. Here nω is the complexity of the best matrix multiplication
algorithm. The previous best parameterized algorithm for this problem took O((2k + 1)kn2) time.

We also investigate the fixed parameter complexity of weighted feedback vertex set problem in
weighted undirected graphs.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Computations on discrete structures; G.2.2 [Discrete Mathe-
matics]: Graph Theory—Graph algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Feedback vertex set, girth, parameterized complexity

1. Introduction

It is well known that a connected undirected graph possesses a cycle of logarithmic
length if its minimum degree or average degree is at least 3. In this article, we
obtain a similar result on the existence of short cycles in graphs having a small
feedback vertex set (fvs). A feedback vertex set of a graph is a subset of vertices
whose removal results in an acyclic graph. We show that if an undirected graph on
n vertices with minimum degree at least 3 has a fvs on at most 1

3
n1−ε vertices, then
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there is a cycle of length at most 6
ε

(for ε ≥ 1/2, we can even improve this to just
6). This is one of the main contributions of this article.

Using this structural result, we also obtain a faster algorithm for solving the fvs
problem. This problem is to determine, given an undirected graph G on n vertices
and a nonnegative integer parameter k, whether G has a set of at most k vertices
whose removal results in an acyclic graph. We explore efficient fixed parameter
algorithms whose worst-case time complexity is bounded by functions of the form
f (k)nO(1) where f is any function of k. Our focus is on making f as slowly growing
(with k) as possible. Such an algorithm is quite useful in practice for small ranges
of k (against a naive nk+O(1) algorithm). Problems for which such algorithms can
be designed are said to be Fixed Parameter Tractable (FPT). Several well-known
NP-complete problems have been shown to be in FPT. Even if a problem is shown
to be FPT, the quest for improving the function f (k) goes on. For example, see
Alber et al. [2001, 2002], Kanj and Perkovic [2002], and Fomin and Thilikos [2003]
for recent attempts in improving the f (k) in the case of the Planar Dominating Set
problem. The book by Downey and Fellows [1999] provides a good introduction
to the topic of Parameterized Complexity.

Fast parameterized algorithms have been proposed for the fvs problem earlier.
See Downey and Fellows [1999] for a O((2k + 1)kn2) time algorithm. In a pre-
liminary version of this article [Raman et al. 2002], the present authors substan-
tially improved the dependence on k by developing a O(max{12, 4 log k}knω)1

time deterministic algorithm. Recently, Kanj et al. [2004] have obtained an
O((2 log k +2 log log k +18)kn2) time algorithm using results from extremal graph
theory. If we are willing to accept uncertainty about the correctness of the answer,
one can solve this problem in O(4kkn) time by a randomized algorithm presented
in Becker et al. [2000].

We improve the known f (k) function for this problem by developing an algorithm

whose running time is O(( 12 log k
log log k + 6)knω) where ω is the exponent in the runtime

for Matrix Multiplication.
All known algorithms for the problem use the bounded search tree technique. In

particular, they work by finding a short cycle in the graph after some preprocessing,
and branching recursively on each vertex of the short cycle. The improvement
presented here also adheres to this paradigm. The correctness and efficiency of
our algorithm is based on the new graph theoretical result (mentioned before) that
connects minimum fvs size and the length of the shortest cycle.

Throughout the paper, we use δ(G) to denote the minimum degree of a graph G
and g(G) to denote its girth, that is, the length of a shortest cycle in the graph.

1.1. OUR RESULTS. First, we obtain the following result on short cycles.

THEOREM 1. Let G be a graph on n vertices with minimum degree 3, having a
feedback vertex set of size k, such that (n − k) > 4 · (k

2

)
. Then, g(G) ≤ 6.

Based on Theorem 1, we present a simple FPT algorithm for finding a fvs of an
undirected graph.

1All logarithms are to the base 2.
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THEOREM 2. Let G be an undirected graph on n vertices. Then, we can deter-
mine whether or not G has a feedback vertex set of size at most k (and find one if
there is) in O(max{6, 4 log k + 2}knω) time.

This is a substantial improvement over the O((2k + 1)kn2) time algorithm of
Downey and Fellows [1999]. The Theorem 1 is further generalized as follows.

THEOREM 3. Let 0 < ε < 1. Let G be a graph on n vertices such that (a)

δ(G) ≥ 3, (b) n ≥ �3
1
ε �, and (c) G has a fvs of size at most 1

3
n1−ε . Then G has a

cycle of length less than 6/ε, that is, g(G) < 6/ε.

By applying Theorem 3 and by being more careful about analyzing and deciding
whether we proceed by finding a short cycle or we apply brute-force approach, we
obtain further significant improvements in the running time. Precisely, we show

THEOREM 4. Let G be an undirected multigraph on n vertices. Then, we can
determine whether or not G has a fvs of size at most k in time

O

((
12 log k

log log k
+ 6

)k

nω

)
.

This results in an improvement in the running time by a factor of ( log log k
6

)k over
the result mentioned in Theorem 2.

We also show that the weighted feedback vertex set problem is solvable in es-
sentially the same time if each vertex has real weight at least 1. In the general case,
when the weights are arbitrary real numbers, we show that the problem is unlikely
to be fixed parameter tractable.

1.2. ORGANIZATION OF THE REST OF THE ARTICLE. Given G and k, one can
construct a graph G ′, in polynomial time, with δ(G ′) ≥ 3 such that G has a fvs
of size at most k if and only if G ′ has a fvs of size at most k. Section 2 describes
this preprocessing step. It also describes a generic, short cycle based branching
algorithm that will be used by the rest of the algorithms we develop.

Section 3 proves one of the main structural results, namely, Theorem 1. It also
derives Theorem 2 as a consequence. Section 4 presents the proof of the other
structural result, Theorem 3 and presents a description of the algorithm stated in
Theorem 4.

Section 5 investigates the parameterized complexity of weighted feedback vertex
set. Finally Section 6 concludes with remarks and further directions.

Throughout this article, we use G = (V, E) to denote an undirected (multi)-
graph on n vertices and m edges. For a subset S ⊆ V , G[S] is the induced subgraph
of G on S. We assume that all graphs are represented in the form of adjacency lists.

2. Preliminaries

In this section, we first describe some preprocessing that removes non-essential
vertices from the input graph without affecting the size of minimum fvs. Then, we
present a generic algorithm for finding a fvs which is going to be the template of
our main algorithmic results.
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2.1. PREPROCESSING. The following lemma is not difficult to verify and is well
known in the literature on fvs problems. See, for example, Bar-Yehuda et al. [1998]
for proofs.

LEMMA 1. Let G be an undirected multigraph. Perform the following steps as
long as possible.

(1) If G has a vertex of degree ≤ 1, remove it (along with the incident edge if any).
(2) If G has a vertex x of degree 2 adjacent to vertices y and z, y 	= x and z 	= x,

short circuit by removing x and joining and y and z by a new edge (even if y
and z were adjacent earlier).

Let G ′ be the resulting multigraph. Then G has a feedback vertex set of size at
most k if and only G ′ has a feedback vertex set of size at most k.

Clearly, the graph G ′ is such that each component of G ′ has minimum degree at
least three unless that component is either an empty graph or a graph on one vertex
with a self loop (in which case that component has a feedback vertex set of size 1).
G ′ can be constructed in O(m) steps where m is the number of edges in G.

LEMMA 2 [BAR-YEHUDA ET AL. 1998]. Given an undirected multi graph G =
(V, E) on m edges, in O(m) time we can produce a multigraph G ′ with minimum
degree 3 such that G has a fvs of size k if and only if G ′ has a fvs of size k.

We also note that:

LEMMA 3. Given an undirected multigraph G = (V, E) on n vertices with
δ(G) ≥ 3, removing a vertex v from G can be achieved in O(n) time.

We recall the following well-known algorithmic results:

LEMMA 4 [CORMEN ET AL. 2001]. Given an undirected multigraph G, we can
test whether G has a cycle or not in O(n) time, where n is the number of vertices
in G.

LEMMA 5 [ITAI AND RODEH 1978]. Given an undirected multigraph G, a
shortest cycle (if there is any) in G can be found in O(min{mn, nω}) time where nω

is the running time of the best-known algorithm for multiplying two n by n matrices.

LEMMA 6 [ITAI AND RODEH 1978]. Given an undirected graph G on n ver-
tices, a cycle of length at most g(G) + 1 in G can be found in O(n2) time.

2.2. A GENERIC ALGORITHM. The following generic algorithm forms the basis
of our main algorithmic results. Here, G is an undirected multigraph and k ≥ 0.
The algorithm returns YES and a feedback vertex set of size at most k in G if there
is one and returns NO otherwise.

Algorithm GFBVS(G, k)

—Step 0′: If G is acyclic, then answer YES and return ∅.

—Step 0: If k = 0 and G contains a cycle, then answer NO and EXIT.

—Step 1: Apply Lemma 1 to get G ′.

—Step 2: Find a shortest cycle C in G ′. (C could possibly be of length 1 or 2.)

—Step 3: If for some vertex v ∈ C , FBVS(G ′ − v, k − 1) is true, then answer YES and return {v}∪
FBVS(G ′ − v, k − 1), else answer NO.
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The correctness of the algorithm follows from Lemma 1 and the fact that any
feedback vertex set must contain a vertex from every cycle in the graph.

Furthermore, if g(G ′) ≤ g for all the graphs G ′ used in Step 2 of the recursive
calls, then the overall algorithm takes O(gknω) time. This is because the recursion
tree at Step 3 has a branching factor of at most g and depth at most k, and Step 2
takes O(nω) time from Lemma 5. Steps 0 and 1 each takes O(m) time by Lemma 4.
Also, in Step 2, instead of finding a shortest cycle, if we find a cycle of length at most
g + 1, then by Lemma 6, the running time of the algorithm will be O((g + 1)kn2)
time. Thus we have

LEMMA 7. Let G be an undirected graph, and let g be the maximum size of the
girth of the graphs G ′ used in Step 2 of GFBVS(G, k). Then we can find a feedback
vertex set of size at most k in G (or determine its absence) in O(gknω) time or in
O((g + 1)kn2) time.

Erdös and Posa [1962] observed that girth of any undirected graph G with min-
imum degree ≥ 3 is bounded by 2 log n. Given such a graph, one can find in O(n)
time a cycle of length at most 2 log n by growing a Breadth First Search (BFS) tree
till the first non-tree edge is encountered. Thus, we get

LEMMA 8. Any graph G with minimum degree at least 3 has a cycle of length
at most 2 log n and such a cycle can be found in O(n) time where n is the number
of vertices in the graph G.

So, in Step 2 of the generic algorithm if we find just a cycle of length at most
2 log n (which may not necessarily be the shortest cycle), then from Lemma 8 and
Lemma 7, we have

THEOREM 5. Given a graph G on n vertices, and an integer parameter k, we
can determine whether or not G has a feedback vertex set of size at most k in
O((2 lg n)kn + m) time, or in O((4k log k)kn + nm) time.

The second bound follows from the observation that

(2 log n)k ≤ (4k log k)k + n

for all n and k ≤ n.

3. Proofs of Theorems 1 and 2

We first present the proof of Theorem 1 and discuss the tightness of our result. Then
we derive Theorem 2 as a consequence. The arguments in Theorem 1 are based on
the following lemma.

LEMMA 9. Let T = (V, E) be a forest on N vertices. Let M ′ = {(i, j) ∈
E | degT (i) = degT ( j) = 2} and L = {a ∈ V | degT (a) ≤ 1}. Then there exist
M ⊆ M ′, such that M is a matching and |W = L ∪ M | ≥ N/4.

PROOF. Without loss of generality assume that T is a tree, otherwise we can
apply the result on each tree of the forest and combine them to get the result. Now
let v be a vertex of degree not equal to 2. Root the tree at v and direct the edges
away from the root, call it Tv . Let D2 be the set of degree 2 vertices of T and D≥3

denotes the set of vertices of degree at least 3 in T . Every connected component of
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FIG. 1. Illustration for Lemma 9.

the induced graph Tv [D2] is either an isolated vertex or a directed path. Let M be
a matching on degree 2 vertices consisting of all the alternate edges starting from
the vertices of indegree 0 of all the paths of Tv [D2] ignoring their direction. Clearly
M ⊆ M ′. Define S to be the set of vertices in D2 unmatched by any edge in M .
Note that each vertex in S is either an isolated vertex of Tv [D2] or the last vertex in
an even length directed path of Tv [D2]. See Figure 1. Now with each vertex u ∈ S,
associate its unique child in Tv , whose degree is either 1 or at least 3 in T . Note that
this association is injective, as in a rooted tree we have a unique parent for every
vertex other than root. This implies that |S| ≤ |L| + |D≥3|. It is well known that
the number of vertices of degree at least 3 in a tree is smaller than the number of
leaves of the tree. So, we have |D≥3| < |L| and |S| ≤ |L| + |D≥3| ≤ 2|L|. This
gives

N = |L| + 2|M | + |S| + |D≥3| < |L| + 2|M | + 2|L| + |L| ≤ 4|L| + 2|M |.
Dividing both sides by 4 gives N/4 < |L| + |M |/2 ≤ |W = L ∪ M |. This
completes the proof.

PROOF OF THEOREM 1. Without loss of generality, we assume that G is a simple
graph having no self-loops and parallel edges. Let F be a fvs of size k in G and let
T denote the induced forest G[V − F] on N = n − k vertices. Apply Lemma 9
to T to get W (mentioned in the Lemma 9). Now with every element a ∈ W , we
associate a (unordered) pair of vertices of F as follows:

Case 1. a ∈ L , that is, a is a vertex of degree 0 or 1.
Since degree of a is at least 3 in G, a has at least two neighbors in F . We pick
arbitrarily two of these neighbors and associate them with the a. We use {xa, ya} to
denote the pair associated with vertex a.

Case 2. a = (u, v) is an edge from M . Since each of u and v has degree at least
3 in G, each of them has at least one neighbor in F . We pick one neighbor (in
F) of each u and v and associate them with a. We use {xu, xv} to denote the pair
associated with a = (u, v). Note that xu = xv possibly.
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FIG. 2. Graph G with g(G) = 6, |FVS| = 5 and δ(G) ≥ 3.

Suppose there is a pair {x, y} associated with some a ∈ W such that x = y. In
that case, a should be an edge (u, v) ∈ M . Thus, we get a 3-cycle (x, u, v, x) in G
proving that g(G) ≤ 6. Hence, we assume that every selected pair {x, y} is such

that x 	= y. Since the number of such pairs is at most
(k

2

)
and as |W | ≥ N

4
>

(k
2

)
,

the association map is not injective. That is, there are a1, a2 ∈ W , a1 	= a2 such
that both a1 and a2 are associated with some pair {x, y} with x 	= y. The following
cases arise.

—Both a1 and a2 are vertices of degree at most 1. In that case, we get a 4-cycle
(x, a1, y, a2, x), thereby proving that g(G) ≤ 4.

—Both a1 and a2 are edges (u1, v1) and (u2, v2) from M such that x is a neighbor
of u1 and u2 and y is a neighbor of v1 and v2. In this case, we get a cycle
(u1, x, u2, v2, y, v1, u1) of length 6. This leads to a cycle of length 6, thereby
proving that g(G) ≤ 6.

—Without loss of generality, a1 is a vertex a of degree ≤ 1 and a2 is an edge (u, v)
from M . Also, x is a neighbor of a and u and y is a neighbor of a and v . This
gives rise to a cycle (a, x, u, v, y, a) of length 5, proving again that g(G) ≤ 6.

In any case, we are guaranteed to have a cycle of length at most 6 thereby proving
Theorem 1.

COROLLARY 1. If a graph on n vertices with minimum degree 3 has a feedback
vertex set of size at most

√
n/2, then g(G) ≤ 6.

Remark 1. Corollary 1 is tight in the sense that there are graphs G satisfying
the hypothesis of the corollary with g(G) = 6, as the following example (Figure 2)
shows.

Let G = (V, E) be a graph on n ≥ 63 vertices such that n is a multiple of 4. The
graph has a cycle C of length n − 4 on vertices 1 to n − 4. The remaining 4 vertices
are named v0, v1, v2 and v3. The vertex vi is adjacent to all vertices j in the cycle
such that j mod 4 = i .

It is easy to see that g(G) = 6, and |F | ≤ 5 as {1, v0, v1, v2, v3} is a feedback
vertex set of G.
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COROLLARY 2. Let G be a graph on n vertices with minimum degree 3 having
a feedback vertex set of size at most k. Then, g(G) ≤ max{6, 4 lg k + 2}.

PROOF. If k ≤ √
n/2, then g ≤ 6 by the previous corollary. Otherwise, n ≤ 2k2

and hence, by Lemma 8, we have g ≤ 2 log n ≤ 4 log k + 2.

PROOF OF THEOREM 2. Modify the Step 2 in our generic algorithm as follows:

—Modified Step 2. Find a shortest cycle C in G ′. If k ≤ √
n/2 and g > 6, then

answer NO.

Now use Corollary 2 and apply Lemma 7 over GFBVS(G, k) with Modified Step
2 to get Theorem 2.

4. Proofs of Theorems 3 and 4

We can generalize Theorem 1 and Corollary 1 to prove upper bound for girth in
graphs having larger sized feedback vertex set (than assumed in Theorem 1). We
will need the following result of Alon et al. [2002].

THEOREM 6 [ALON ET AL. 2002]. Any graph G = (V, E) on n vertices with
average degree d, contains a cycle of length ≤ 2 logd−1 n + 2.

Using this result, we prove Theorem 3.

PROOF OF THEOREM 3. We can assume that ε < 1/2 as otherwise the theorem
follows from Corollary 1. Let G be a graph on n ≥ n0 = �31/ε� vertices with
minimum degree 3 and having a feedback vertex set F of size k ≤ n1−ε/3. As
before, let T denote the induced forest on the remaining N = n − k vertices in G.

We construct a new multigraph G ′ with V (G ′) = F as follows. The edges of
G ′ are included as follows. For every a ∈ W (where W is the set obtained by
applying Lemma 9 on T = G[V − F]), we include an edge between xa and ya
(xa = ya possibly) where {xa, ya} is the the pair associated with a in F in the proof
of Theorem 1. By Lemma 9, we know that W is of size at least N/4. It follows that
G ′ has at least N/4 edges and hence its average degree is ≥ N/2k as |V ′| = k.

Note that if G ′ has a cycle of length at most g, then G has a cycle of length at
most 3g, as any edge of the cycle in G ′ can be replaced by a path of length at most
3 in the original graph G. It is possible that G ′ has either a self-loop or two parallel
edges joining the same pair of vertices in F . In that case, by way of construction,
a self-loop or two parallel edges lead to a cycle of length at most 6 in G, thereby
showing that g(G) ≤ 6 ≤ 6/ε. Hence we assume, without loss of generality, that
G ′ is a simple graph with average degree at least N/2k.

By Theorem 6, G ′ has a cycle of length at most

(2 log(N/2k)−1 k) + 2 = 2 log k

log((N/2k) − 1)
+ 2.

This implies that G has a cycle of length at most

6 log k

log((N/2k) − 1)
+ 6.
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After substituting N = n − k and k ≤ 1
3
n1−ε , we get

g(G) ≤ 6 log(n1−ε/3)

log
(

3
2
nε − 3

2

) + 6

<
6(1 − ε) log n

log nε
+ 6 for n ≥ n0.

≤ 6(1 − ε)

ε
+ 6 = 6

ε

which is what we wanted to show.

COROLLARY 3. Let G be a graph on n vertices with minimum degree ≥ 3
having a feedback vertex set of size at most k. Then, for every ε (0 < ε < 1) such
that n ≥ �31/ε�, g(G) ≤ max{ 6

ε
,

2 log 3k
1−ε

}.
PROOF. If k ≤ n1−ε/3, then g ≤ 6/ε by the previous theorem. Otherwise,

n ≤ (3k)
1

1−ε and hence, by Lemma 8, g ≤ 2 log 3k
1−ε

.

For fixed values of ε, the lower bound on n (required to apply Corollary 3) is
also fixed. Hence, by applying Lemma 7 to GFBVS(G, k), with modified step 2,
very similar to the one in the previous section, we get the following

THEOREM 7. Let G be an undirected graph on n vertices. Then, for every fixed
ε, 0 < ε < 1, we can determine whether or not G has a fvs of size at most k, and
find one if it exists, in O(max( 6

ε
,

2 log 3k
1−ε

)knω) time.

4.1. A FASTER ALGORITHM . In this section, we prove Theorem 4 by providing
a faster FPT algorithm for undirected fvs problem. By the phrase, kernel of the
problem, we mean an equivalent reduced instance I ′ of the original problem instance
I , where the size of I ′ is bounded by some function of the parameter k. Note that
Theorem 3 gives us a kernel of size (3k)1/1−ε for every ε, 0 < ε < 1, in time
O(( 6

ε
)knω). The new algorithm makes use of this reduction by choosing a proper

ε and obtains a kernel. After that, it works by a brute-force approach instead of
branching on a short cycle. The algorithm is presented below. As usual, G is an
undirected multigraph and k ≥ 0 is an integer.

Algorithm Mod-FBVS(G, k)

—Step 0 : If G is acyclic answer YES or if k = 0 answer NO.

—Step 1 : Apply Lemma 1 to get G ′.

—Step 2: Find a shortest cycle C in G ′. Let g be its length.

—Step 3(a): If g < 6( log k+log
√

log k
log

√
log k

), then if for some v ∈ C , Mod-FBVS(G ′ − v, k − 1) is true then

answer YES and return {v}∪ Mod-FBVS(G ′ − v, k − 1), else answer NO.

—Step 3(b): Try all possible k-subsets of V (G) as a possible feedback vertex set of G and say YES,

if any such subset is a fvs and return that subset, else say NO.

Correctness of the algorithm Mod-FBVS follows from its description. When

we reach Step 3(b) of the algorithm, we have g ≥ 6( log k+log
√

log k
log

√
log k

). Then, we use

Theorem 3 by choosing ε = log
√

log k
log k+log

√
log k

and observing that n ≥ �31/ε� since by
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Lemma 8,

2 log n ≥ g ≥ 6

(
log k + log

√
log k

log
√

log k

)

log n ≥ 3

ε

n ≥ 8
1
ε ≥ �3

1
ε �.

Thus, we have

1

3
n1−ε < k ⇐⇒ n < (3k)

1
1−ε ⇐⇒ n < (3k)

log k+log
√

log k
log k ≤ 9k

√
log k

So either the girth is bounded by 12 log k
log log k +6 or we have a kernel of size ≤ 9k

√
log k.

So the time complexity of the algorithm is bounded by:

max

{(
12 log k

log log k
+ 6

)k

nω,

(
9k

√
log k

k

)
n2 ∼ (9e

√
log k)kn2

}
.

Since the first function is asymptotically bigger, we use it to bound the time
complexity. Combining all these, we complete the proof of Theorem 4.

5. Weighted Feedback Vertex Set

The WEIGHTED FEEDBACK VERTEX SET problem (WFVS for short) is: given an
undirected graph G = (V, E), a weight function w : V → R+, and k ∈ R+, find
a feedback vertex set F with total weight at most k. The weight of F is defined as
the sum of weights of v ∈ F .

In the weighted case, the preprocessing described in Lemma 1 cannot be applied
as such because it is possible that every minimum weight fvs contains some degree
two vertex. However, if we assume that w(v) ≥ 1 for every v , then we can modify
the preprocessing as follows. Given a graph G with a vertex weight function w ,
we repeatedly remove vertices of degree 1 to transform G into G ′′ with minimum
degree ≥ 2. Then, for every path P in G ′′ joining two vertices x and y of larger
(≥ 3) degrees such that each internal vertex of P has degree two, we replace P
by the path xzy where z is an internal vertex of P having minimum weight among
all internal vertices of P . Let G ′ be the resulting weighted graph. The weights of
vertices surviving in G ′ are the same assigned to them in G.

Now it is easy to verify that G has a feedback vertex set of weight at most k if and
only if G ′ has a fvs of weight at most k. Let us call such a graph having minimum
degree 2 with each degree 2 vertex connected to two vertices of larger degree as a
branchy graph. It is not difficult to adapt Theorem 3 for branchy graphs and obtain
its weighted version that shows that if a weighted branchy graph G has a fvs of
weight at most 1

3
n1−ε , where 0 < ε < 1, then g(G) < 12

ε
, provided n ≥ �3

1
ε �.

For the weighted case, we modify the algorithm Mod-FBVS by reducing G to a
branchy graph (as described before) in Step 1. We then look for a cycle of length

g < 12

(
log k + log

√
log k

log
√

log k

)
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in Step 3(a) of the algorithm. As before, the algorithm either finds a short cycle and
branches on the vertices of the cycle or applies brute force. In the first case, since
each vertex picked for branching has weight at least 1, the depth of the recursion
is at most k. Also, we can show that in Step 3(b), n = O(k

√
log k), as in the

unweighted case by using the fact that every vertex has weight at least 1. Thus, we
have an analogue of Theorem 4

THEOREM 8. Given an undirected graph G = (V, E), a positive real parameter
k and a weight function w from V to R+ such that for every v ∈ V , w(v) ≥ 1, we
can determine whether or not G has a feedback vertex set of weight at most k in
time

O

((
24 log k

log log k
+ 12

)k

nω

)
.

General-WFVS is the problem of finding a fvs of weight at most k, when the
weights of the vertices are arbitrary real numbers. We show that the problem is not
fixed parameter tractable unless P = NP by proving that it is NP-complete for any
fixed k > 0. We can give a direct reduction from the NP-complete, unweighted
fvs problem on undirected graphs to General-WFVS with k = 1, by defining the
weight function w to be w(v) = 1/k for all v ∈ V . In fact this implies that there
cannot be a f (k)nO(1) or even nO(k) time algorithm for General-WFVS problem
unless P = NP.

THEOREM 9. General-WFVS problem is not fixed parameter tractable unless
P = NP.

6. Conclusions and Further Work

In this article, we proved that graphs with minimum degree 3 having a small fvs
possess short cycles. Using this, we obtained faster algorithms for parameterized
feedback vertex set problem on undirected graphs. Our main result achieves a
significant improvement in the dependence on k (the parameter) of the running

time. We get an algorithm with O(( 12 log k
log log k + 6)knω) running time.

Based on the preliminary report of our work, a number of advances have been
made on reducing the f (k) for the fvs algorithm. Dehne et al. [2005] have recently
obtained an algorithm for fvs that runs in time O(ckn3), where c = 10.567. In-
dependently, Guo et al. [2005] obtained an O(ckmn) time algorithm for the fvs
problem, where c = 37.7.

Apart from its application to the design of FPT algorithms, our Lemma 9 and
Theorems 1 and 3 may be of independent interest in extremal graph theory. Also,
all of the recent improvements on designing FPT algorithms are based (in part)
directly or indirectly on the ideas used in this article.

Theorem 3 essentially shows that the size of the problem kernel for the feedback
vertex set problem is O(k1+2ε) for fixed ε ≤ 1/2. This is because we can reduce
the problem size to O(k1+2ε) in O(( 6

ε
)
k
nω) time. In particular, when ε = 1/2,

Corollary 1 gives us a kernel of size O(k2) in O(6knω) time. We can use this kernel
in connection with newly developed algorithms by first branching on cycles of
length at most 6 and using the improved ck algorithms only when girth of the graph
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exceeds 6 in which case the instance size is at most O(k2). This will give a fixed
parameter tractable algorithm with time complexity O(6knω + (10.567)kk6) using
the algorithm developed in Dehne et al. [2005]. Following questions are interesting
and still remain unanswered.

—Can we get a polynomial size kernel for feedback vertex set in polynomial time?2

—Is the feedback vertex set problem fixed parameter tractable in directed graphs?

—Is the feedback vertex set problem fixed parameter tractable even in planar di-
rected graphs?
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