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Abstract. Given a graph G=(V,E) on n vertices, the MAXIMUM r-REGULAR

INDUCED SUBGRAPH (M-r-RIS) problems ask for a maximum sized subset of
vertices R ⊆ V such that the induced subgraph on R, G[R], is r-regular. We
give an O(cn) time algorithm for these problems for any fixed constant r, where
c is a positive constant strictly less than 2, solving a well known open problem.
These algorithms are then generalized to solve counting and enumeration version
of these problems in the same time. An interesting consequence of the enumer-
ation algorithm is, that it shows that the number of maximal r-regular induced
subgraphs for a fixed constant r on any graph on n vertices is upper bounded by
o(2n).

We then give combinatorial lower bounds on the number of maximal r-regular
induced subgraphs possible on a graph on n vertices and also give matching al-
gorithmic upper bounds.

We use the techniques and results obtained in the paper to obtain an improved
exact algorithm for a special case of INDUCED SUBGRAPH ISOMORPHISM that
is INDUCED r-REGULAR SUBGRAPH ISOMORPHISM, where r is a constant.

All the algorithms in the paper are simple but their analyses are not. Some of
the upper bound proofs or algorithms require a new and different measure than
the usual number of vertices or edges to measure the progress of the algorithm,
and require solving an interesting system of polynomials.

1 Introduction

The problem of finding a MAXIMUM/MINIMUM INDUCED SUBGRAPH having prop-
erties like acyclicity [6,14], bipartiteness [3,13], regularity [4,5,7,15,16] and regularity
with dominance [2] is among the fundamental problems in graph algorithms. Here we
study one such problem, namely the MAXIMUM r-REGULAR INDUCED SUBGRAPH

problem. The problem is defined as follows:

MAXIMUM r-REGULAR INDUCED SUBGRAPH (M-r-RIS): Given an undirected
graph G = (V, E), find a maximum subset of vertices R ⊆ V such that the induced
subgraph on R, G[R], is r-regular.

When r is 0 or 1, it corresponds to the well studied MAXIMUM INDEPENDENT SET

and MAXIMUM INDUCED MATCHING problems respectively. While MAXIMUM IN-
DEPENDENT SET problem is among the six classical NP-complete problems [9], MAX-
IMUM INDUCED MATCHING problem was introduced by Stockmeyer and Vazirani in
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[17] who showed it to be NP-complete [17]. But only recently, has it been shown [5] that
the problem of finding a maximum sized r-regular induced subgraph is NP-complete
for any value of r.

In this paper we look at the M-r-RIS problems (a) from exact exponential time
algorithm paradigm and (b) from the view point of combinatorial bounds on the number
of maximal r-regular induced subgraphs possible on a graph on n vertices.

An exact algorithm to find a MAXIMUM INDEPENDENT SET or M-0-RIS problem
has attracted a lot of attention in the area of exact exponential time algorithms [7,15]
and the current fastest known exact algorithm runs in time O(1.2108n) 1[15]. There is
no algorithm better than Θ(2n) is known for larger values of r.

Here, we give a simple-generic algorithm for MAXIMUM r-REGULAR INDUCED

SUBGRAPH problems taking O(cn) time, c < 2, a constant, depending on r alone. As
a corollary, we obtain O(1.6957n), O(1.7069n) and O(1.7362n) time algorithms for
MAXIMUM INDUCED MATCHING, MAXIMUM 2-REGULAR INDUCED SUBGRAPH

and MAXIMUM INDUCED CUBIC SUBGRAPH problems respectively. We then general-
ize the algorithm to solve the counting and enumeration version of M-r-RIS problems
in the same time.

Another interesting consequence of the algorithm is that it gives an algorithmic upper
bound of o(2n) on the number of maximal r-regular induced subgraphs on n vertices,
if r is some constant. We then investigate the lower bounds on the number of maximal
r-regular induced subgraphs of a graph and observe that for larger values of r, the
lower bounds and the upper bounds (mentioned above) on the number of maximal r-
regular induced subgraphs on n vertices are “almost identical”. For small values of r,
we improve the upper bounds using a different technique and give a matching lower and
upper bounds on the number of maximal r-regular induced subgraphs. This generalizes
the result of Moon and Moser [12] who showed an upper and lower bound of 3n/3 on
the number of maximal independent sets on a graph on n vertices.

Applications of the algorithms developed in this paper include non trivial exact al-
gorithms for a special case of INDUCED SUBGRAPH ISOMORPHISM problem, that is
INDUCED r-REGULAR SUBGRAPH ISOMORPHISM problem, where r is a constant,
δ-SEPARATING MAXIMUM MATCHING problem [17] and EFFICIENT EDGE DOMI-
NATING SET problem [10].

All our algorithms are simple but their analyses are non trivial. These algorithms are
based on one of the most important and widely used tool of exact algorithms, namely
the Branch & Reduce paradigm. In this paradigm we obtain an optimal solution to a
problem by combining solutions to many subproblems of smaller size. We also use a
new measure not just the number of vertices or edges to measure the progress of the
algorithms and use it extensively in many of our upper bound proofs. Measure other
than the number of vertices has been source of many recently developed non trivial
exact algorithms [6,7,14]. See recent surveys by Woeginger [18] and Fomin et al. [8] for
an overview and recent developments in designing exponential time exact algorithms.

Organization of the Rest of the Paper: In Section 2, we give a generic algorithm
for MAXIMUM r-REGULAR INDUCED SUBGRAPH problems and then generalize it
1 We round the base of the exponent in all our algorithms which allows us to ignore polynomial

terms and write O(cnnO(1) as O(cn).
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to solve the counting and enumeration version of the problems. In Section 3 we give
matching lower and upper bounds on the number of maximal r-regular induced sub-
graphs for various values of r. In Section 4 we conjure all that we develop that far to
give faster exact algorithms for M-r-RIS problems for r = 1 and 2 than that is possible
from the general theorem. We also obtain a non trivial exact algorithm for INDUCED

r-REGULAR SUBGRAPH ISOMORPHISM problem in this section. We conclude with
some remarks and open problems in Section 5.

In the rest of the paper, we assume that all our graphs are simple and undirected.
Given a graph G = (V, E), n represents the number of vertices, and m represents the
number of edges. For a subset V ′ ⊆ V , by G[V ′] we mean the subgraph of G induced on
V ′. By N(u) we represent all vertices (excluding u) that are adjacent to u, and by N [u],
we refer to N(u) ∪ {u}. Similarly, for a subset D ⊆ V , we define N [D] = ∪v∈DN [v].

2 Maximum r-Regular Induced Subgraph

Our algorithm is based on the Branch & Reduce paradigm. It selects a vertex v and on
one branch of recursion grows a maximum r-regular induced subgraph without v and
on the other a maximum r-regular induced subgraph containing v and then outputs the
one with the maximum size. At any point of time in our algorithm we maintain a set
R (of possible vertices of a M-r-RIS) and construct one connected component of this
R. Once we finish one connected component, say Ri, we remove all the neighbors of
vertices of Ri which are not in Ri, that is N [Ri]−Ri, from the graph and then proceed.
Based on the structure of G[R], we divide our algorithm into two phases:

1. ACTIVE PHASE : G[R] is ∅ or a r regular induced subgraph.
2. GROWTH PHASE : There exists a unique component Ri of G[R] such that G[Ri] is

not a r regular subgraph.

In ACTIVE PHASE we initiate constructing a new connected component for the possible
M-r-RIS. We select a vertex v and at one branch construct a solution not including v
and at other branches we construct a solution containing v and a r-subset of N(v). This
leads to

(|N(v)|
r

)
+ 1 way branching. In the GROWTH PHASE, we choose a vertex v of

an unique component Ri of G[R] (G[Ri] is not a r regular subgraph) such that degree
of v in G[Ri] is rv < r and branch on all possible subsets of size r − rv of N(v) − R,
which leads to

(|N(v)−R|
r−rv

)
way branching.

At any point of time, our algorithm has a 4 tuple (G′ = (V ′, E′), G, r, R). Here,
G′ contains the unexplored vertices (vertices which are neither in R nor those which
have been removed from the consideration). G is the initial input graph. This graph
never changes during recursion and is only used for checking whether or not G[R] is
induced r-regular. R is a set of vertices already chosen for a possible maximum r-
regular induced subgraph. We return −∞ if we detect that the corresponding branch
can not lead to a r-regular induced subgraph; for an example if in GROWTH PHASE, we
find a vertex v ∈ R having degree rv in G[R] but strictly less than r − rv neighbors in
V ′. In our algorithm until we state otherwise N(v) and N [v] mean NG(v) and NG[v]
respectively. The details of our algorithm are presented in Figure 1.
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Algorithm Max-r-RIS (G′ = (V ′, E′), G, r, R)

Step 1: [active phase] If G[R] is not r regular and not empty then go to Step 2.
Step 1a: Obtain a new G′ by removing N [R] from G′.
Step 1b: Remove all vertices of degree < r recursively from G′.
Step 1c: If G′ is non empty then select a vertex v of maximum degree d ≥ r and branch

in following ways: (1) v /∈ R, and (2) v ∈ R and then some r neighbors of v are
in R.

1. R1 ← Max-r-RIS(G′ − v, G, r, R)
2. for (S ⊆ NG′(v) & |S| = r),

RS ← Max-r-RIS(G′ − NG′ [v], G, r, R ∪ S ∪ {v}).
return the set (or number) of maximum size between

{R1} and {RS | S′ ⊆ NG′ (v) |S′| = r}.
Step 2: [growth phase] Let R′ be the unique component of G[R] such that G[R′] is

not a r regular induced subgraph. R1 ← −∞. Choose a vertex v with degree say ri in
G[R′] such that 1 ≤ ri ≤ r − 1 and |N(v) ∩ V ′| ≥ r − ri.

1. for (S ⊆ (N(v) ∩ V ′) & |S| = r − ri & maximum degree of G[R′ ∪ S] is ≤ r )
RS ←Max-r-RIS(G′ − (N(v) ∩ V ′), G, r,R ∪ S)

return the set (or number) of maximum size between
{R1} and {RS′ | S′ ⊆ (N(v) ∩ V ′) & |S′| = r − ri}.

Fig. 1. A Generic Algorithm to find a Maximum r-Regular Induced Subgraph

Theorem 1. Let G = (V, E) be a graph on n vertices and r be a fixed constant. Then
there exists a constant c, c < 2 such that the MAXIMUM r-REGULAR INDUCED SUB-
GRAPH problem can be solved in O(cn) time.

Proof. The correctness of the algorithm is clear. The analysis of time complexity is
involved and we present the details here.

From now onwards let r be a fixed positive constant. Observe that the above algo-
rithm is guided by the following recurrences:

T (n) ≤ T (n − 1) +
(

d

r

)
T (n − d − 1) d ≥ r [Active Phase]. (1)

T (n) ≤
(

d

t

)
T (n − d) d ≥ t, 1 ≤ t ≤ r − 1 [Growth Phase]. (2)

The smallest positive roots of the following inequalities,

hd(x, r)=xd+1−xd−
(

d

r

)

≥ 0 , d ≥ r and gd(x, t) = xd−
(

d

t

)

≥ 0 , d ≥ t, 1 ≤ t ≤ r−1,

are solutions to the above recurrences. It is clear that x = 2 satisfies these inequalities.
Now we show that if r is a constant then we can find a c, a function of r alone, and
c < 2 satisfying these set of inequalities. We need the following easy lemma for our
proof.
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Lemma 1. For any r ≥ 5,
(2r

r

)
≤ 22r

4 .

We concentrate on the polynomials coming from the ACTIVE PHASE as they represent
the dominating recurrences. Observe that

xd −
(

d

r

)
≥ xd(x − 1) −

(
d

r

)
≥ xd+1 − xd −

(
d

r

)
.

The inequality holds as x ≤ 2. This shows that if there exists c = f(r) such that
hd(f(r), r) ≥ 0 then gd(f(r), r) ≥ 0.

Now we show that if there exists a c = f(r) such that h2r(c, r) ≥ 0 then we can

choose a c′ such that hd(c′, r) ≥ 0 for any d. We take c′ = max
{
c, 2r+1

r+1

}
. We prove

this using forward induction for d ≥ 2r and backward induction for d ≤ 2r. For the
base case observe that h2r(c′, r) ≥ h2r(c, r) ≥ 0. Now assume that hd(c, r) ≥ 0 for
some d ≥ 2r. Then

hd+1(c′, r) = c′d+2−c′d+1 −
(

d + 1
r

)

=c′(c′d+1−c′d)−
(

d + 1
r

)

≥c′

(
d

r

)

−
(

d + 1
r

)

≥0.

The second last inequality follows from induction hypothesis while the last inequality

follows as: c′ ≥ (d+1
r )

(d
r)

= d+1
d+1−r ≥ 2r+1

r+1 , for d ≥ 2r. Similarly using backward

induction we can show that hd(c′, r) ≥ 0 for d ≤ 2r. Observe that for r ≥ 0, 1 ≤
2r+1
r+1 < 2, is a constant depending on r alone. So now we are left with showing a

c = f(r) for h2r(x, r). For r ≥ 5, we know that
(2r

r

)
≤ 22r

4 . We choose a c such that

c2r+1 − c2r ≥ 22r

4 which will prove the desired result. We take c = 21− 1
2r for r ≥ 5

and c = 1.761 for r ≤ 4. For small values of r we get the desired number by directly
solving the corresponding equations.

Hence for any r ≥ 0, we choose c = max
{
1.761, 21− 1

2r , 2r+1
r+1

}
. This proves that

our generic algorithm Max-r-RIS takes O(cn) time, c< 2, for any positive constant r.
	


We gave a conservative bound on the value of c in the Theorem 1, as our main aim
there was to obtain a c < 2 for any fixed constant r. For smaller values of r, we obtain
improved bounds on c by directly finding the roots of the polynomials coming from
the recurrences of MAX-r-RIS algorithm. Without going into the details, we list c for
various values of r in the table below where O(cn) is the runtime of our Max-r-RIS
algorithm.

Table 1. Improved Upper Bounds on c for Various r

r = 1 2 3 4 5 6 7 8 9
c = 1.69562 1.70688 1.73615 1.76357 1.78554 1.80351 1.81846 1.83111 1.84195

r = 10 15 20 30 50 75 100 125 150
c = 1.85136 1.88452 1.90486 1.92868 1.95138 1.96458 1.97186 1.97652 1.97979

We observe that the Max-r-RIS algorithm can be generalized to solve the counting
versions of M-r-RIS problems. The counting version of M-r-RIS problems (#M-r-
RIS) asks for the number of maximum r regular induced subgraphs of the given graph



144 S. Gupta, V. Raman, and S. Saurabh

G. We can also consider counting the number of maximal r-regular induced subgraphs of
the given graph G which we call #MAXIMAL-r-RIS problems. To solve these problems
we allow our algorithm Max-r-RIS to enumerate all the R’s it finds during the recursion
for G and check whether they are maximal if we want to count maximal r-regular induced
subgraphs alone. If we want to count maximum r-regular induced subgraphs then we also
need to check the size of R. Thus we give the following theorem.

Theorem 2. Let G = (V, E) be a graph on n vertices and r be a fixed constant. Then
(a) #M-r-RIS problems and (b) #MAXIMAL-r-RIS problems can be solved in O(cn)
time, where c is max of {1.761, 21− 1

2r , (2r + 1)/(r + 1)}.

We observed above that our algorithm enumerates all maximal r-regular induced sub-
graphs. Hence Theorem 2 also implies that the number of maximal r-regular induced
subgraphs of a graph on n vertices is upper bounded by the time complexity of the algo-
rithm. Let Mr(n) denote the number of maximal r-regular induced subgraph of graphs
on n vertices, then we get following theorem.

Theorem 3. Let G = (V, E) be a graph on n vertices and r be a fixed constant. Then
Mr(n) is upper bounded by cn, where c is max of {1.761, 21− 1

2r , (2r + 1)/(r + 1)},
i.e. Mr(n) is upper bounded by o(2n), if r is a fixed constant.

In the next section we consider the lower bounds on the number of maximal r-regular
induced subgraphs on graphs on n vertices and improve the upper bounds coming from
Theorem 3 to match the lower bounds for various r.

3 Bounds on Number of Maximal r-Regular Induced Subgraphs

Moon and Moser [12] gave a matching lower and upper bound of 3n/3 on the number
of maximal independent sets on a graph on n vertices. We generalize this result and
give matching algorithmic lower and upper bounds on Mr(n) for larger values of r.

3.1 Bounds on M1(n) or Number of Maximal Induced Matching

For lower bound assume that n ≡ (0 mod 5). Consider the graph G =
⋃n

5
i=1 Ki

5 that
is n/5 disjoint copies of K5 (Ki

n represents the complete graph on n vertices). Observe
that we need to include one edge from each copy of the K5 (we can include exactly one
edge from each copy) to obtain a maximal induced matching for G. Since a K5 has 10
edges and for any K5 we can select any edge, we get 10n/5 distinct maximal induced
matching for G, giving a lower bound of 10n/5 on M1(n). This shows the following
theorem.

Theorem 4. M1(n) is at least 10n/5 ≈ 1.58489n.

For an upper bound proof, we obtain recurrences for M1(n) by considering various
cases based on the maximum degree of the graph. The proof is long and is similar to
the upper bound proof in Theorem 6 which we prove in detail below.

Theorem 5. M1(n) is at most 10n/5 ≈ 1.58489n and all the maximal induced match-
ing of a graph G can be enumerated with polynomial delay.
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3.2 Bounds on Mr(n) for r ≥ 2

Now we extend the matching upper and lower bounds for larger values of r(≥ 2). To
give the upper bound on Mr(n), we define the following generalized problem.

GEN-r-RIS (G-r-RIS): Given a graph G = (V, E) and R ⊆ V , such that G[R]
is connected induced subgraph of degree at most r. The objective is to find a maxi-
mum R′ ⊆ V − R such that G[R ∪ R′] is a r regular subgraph extending R.

Observe that given any instance (G, R), where R satisfies the constraints in the def-
inition of G-r-RIS problem, if we can give a bound on the number of R′ such that
G[R′ ∪ R] is a maximal r-regular subgraph then by setting R = ∅ we have an up-
per bound on Mr(n). Given an instance (G, R) where R satisfies the constraints in
G-r-RIS problem, we define μ as follows:

μ = α|NR| + β|U |

Here NR = N [R] − R and U = V − N [R]. In other words, we assign a weight of α
to the vertices of NR and β to the vertices of U . The value of α and β depend on the
problem. The weight of a vertex changes in following situation:

1. If a vertex goes to NR from U then the weight changes from β to α and the μ
changes by δ = β − α.

2. If a vertex has current weight either α or β and the vertex is either included in R or
removed from the graph then the weight changes to 0. In this case μ changes either
by α or β.

We use μ as a measure rather than the number of vertices and give an upper bound on
Mr(n) as a function f of μ. We exemplify the approach by giving the matching lower
and upper bound on the number of maximal 2-regular induced subgraphs.

Theorem 6. M2(n) is at most 35n/7 ≈ 1.66181n and there exists a graph on n vertices
such that M2(n) is at least 35n/7 ≈ 1.66181n. Moreover, all the maximal 2-regular
induced subgraphs of a graph G can be enumerated with polynomial delay.

Proof. For the lower bound on M2(n), assume that n ≡ (0 mod 7) and consider

the graph G =
⋃n

7
i=1 Ki

7, n/7 disjoint copies of K7. Any maximal 2-regular induced
subgraph of G contains a 2 regular induced subgraph (a triangle) from each copy of K7.
Every K7 has 35 distinct triangles and hence G has 35n/7 distinct maximal 2-regular
induced subgraphs. This shows the desired lower bound on M2(n).

For upper bound, we consider the generalized problem where we have been given
(G = (V, E), R) and R satisfies the constraints in the definition of the G-2-RIS prob-
lem. We give a bound on the number of R′’s, i.e. is the size of the set {R′ | G[R′ ∪
R] is a maximal 2-regular } as a function f of μ. Depending on various cases we give
recurrence relation for f .

Case 1: (G[R] = ∅) Here we have two cases based on the degree of a vertex in G[R].
For a subset X ⊆ V , by degX(v) we mean the number of neighbors of v in G[X ].
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Suppose we have a vertex v ∈ R such that degR(v) = 2 and have l neighbors in V −R
then

f(μ) ≤ f(μ − αl);

as none of the l neighbors of v in V − R can be selected in any R′ extending R and
hence can be removed from the graph, leading to decrease in μ by at least αl. Now
suppose we have a vertex v such that degree of v is d in G and degR(v) = 1.

Now any maximal 2-regular induced subgraph extending R must contain one of the
neighbors of v in V − R. Hence when we include a neighbor u of v in R we remove all
other neighbors of v from G as they can not be part of any R′ extending R. This reduces
μ by α(d − 1). Since there are d − 1 neighbors of v in V − R, we get the following
recurrence:

f(μ) ≤ (d − 1)f(μ − α(d − 1)).

We can assume that (d − 1) ≥ 1, otherwise in this case R can not be extended to any
maximal 2 regular induced subgraphs resulting in f(μ) = 0.
Case 2: (R = ∅) We assume that the minimum degree of G is at least 2, as the vertices
of degree at most 1 can never be part of any maximal 2 regular induced subgraphs. Also
note that every vertex has weight β now. Let v be a vertex of maximum degree d. A
maximal 2-regular induced subgraph of G either does not contain v or contains v and
its two neighbors. In the first case μ reduces by β and in the other cases where v and its
two neighbors are selected in R and other neighbors of v are removed from the graph,
μ decreases by (d + 1)β. This gives the following worst case recurrence on f(μ):

f(μ) ≤ f(μ − β) +
(

d

2

)
f(μ − (d + 1)β).

When d ≥ 7 this recurrence itself gives us the desired bound on M2(n). So from now
on we assume that the maximum degree of G is at most 6. To obtain the desired bound
in this case we refine the recurrences on f(μ) based on following three cases. These
cases are applied in order of their appearance.
(a) CON-COM CASE: There exists a vertex v such that G[N [v]] is one of the connected
component of G. Call the connected component containing v Cv . Now the number of
maximal 2-regular induced subgraphs of G is maximized when we have Cv such that Cv

has maximum number of maximal 2-regular induced subgraphs. This happens precisely
when Cv = Kt where t = degV (v). So for this case we get:

f(μ) ≤
(

d + 1
3

)
f(μ − β(d + 1)), 2 ≤ d ≤ 6.

(b) CUT-EDGE CASE: We have a vertex v such that it has an unique neighbor u having
an unique neighbor x such that x /∈ N [v]. Since the edge (u, x) is a cut edge it is not
part of any maximal 2-regular induced subgraph. So the number of maximal 2 regular
subgraphs of G is upper bounded by the number of maximal 2 regular subgraphs of G′

obtained from G by removing the edge (u, x). This reduces it to CON-COM CASE.
(c)AT-LEAST-2-IN-N2[v] CASE: In this case every vertex v ∈ V either has a neighbor
u such that u has at least 2 neighbors not in N [v] or there are at least two neighbors of v
which don’t have neighbors in N [v]. For this case we give a generic recurrence. Partition



Fast Exponential Algorithms for Maximum r-Regular Induced Subgraph Problems 147

the neighbor set N(v) of v into W1, W2 and W3 such that every vertex u ∈ W1 has
N(u) ⊆ N [v], each vertex in W2 has an unique neighbor x such that x /∈ N [v] while
every vertex u ∈ W3 has at least 2 neighbors not in N [v]. By Sv

y we mean the set N(y)-
N [v].Let2 ≤

∑3
i=1 |Wi| = d ≤ 6.Weconsider the recurrenceonf(μ)based on whether

or notv is a part of maximal 2-regular induced subgraph. When v /∈ Rμ changes by μ−β.
Now we consider the case when v and its two neighbors u1, u2 and u1 = u2 are in R and
see the change in μ based on which Wi’s, 1 ≤ i ≤ 3, u1 and u2 belong.

(A) [(u1,u2) ∈ W1 × W1] μ changes to μ − β(d + 1).
(B) [(u1,u2) ∈ W1 × W2] The only way we can have a 2-regular induced subgraph

is when (u1, u2) is an edge and v, u1, u2 is a triangle. This implies that x, the
unique neighbor of u2 not in N [v] will be removed from the graph. This reduces μ
to μ − β(d + 1) − β.

(C) [(u1,u2) ∈ W1 × W3] Similar to the previous case we can argue that μ at least
reduces to μ − β(d + 1) − 2β.

(D) [(u1,u2) ∈ W2 × W2] The worst case is when u1 and u2 have a common neigh-
bor x which is not in N [v]. In this case μ changes to μ − β(d + 1) − β.

(E) [(u1,u2) ∈ W2 × W3] If (u1, u2) is an edge or u1 and u2 have a common neigh-
bor x then either {v, u1, u2} or {v, u1, u2, x} forms a 2 regular induced subgraph
leading to a reduction of β(d + 1) − 2β in μ. When none of these cases arise then
since x is an unique neighbor of u1, x gets included in R and two neighbor of u2
become elements of NR, leading to change in μ by β(d + 1) − β − 2δ.

(F) [(u1,u2) ∈ W3 × W3] Here the worst case is when u1 and u2 have exactly two
neighbors not in N [v] and Sv

u1
= Sv

u2
, that is u1 and u2 have common neighbors

not in N [v]. This reduces μ by β(d+1)−2δ as both neighbors of u1 and u2 which
are not in N [v] become element of NR.

Above discussion gives us following recurrence on f(μ).

f(μ) ≤ f(μ − β) +
(

|W1|
2

)
f(μ − β(d + 1)) + |W1||W2|f(μ − β(d + 1) − β)

+|W1||W3|f(μ − β(d + 1) − 2β) +
(

|W2|
2

)
f(μ − β(d + 1) − β)

+|W2||W3|f(μ − β(d + 1) − β − 2δ) +
(

|W3|
2

)
f(μ − β(d + 1) − 2δ).

We assume that
(
l1
l2

)
= 0 if l1 < l2. Note that, |W1| ≤ d − 1 and if there is an unique

neighbor u of v having a neighbor x such that x /∈ N [v] then W2 = ∅ because of the
CUT-EDGE CASE.

We numerically obtain α = 1.45, β = 2 and δ = β − α = 0.55, as values which
minimizes the above set of recurrences on f .

We used a program to generate the above set of recurrences based on different parti-
tions of N(u) and found that the worst case recurrence among the above set after setting
α = 1.45 and β = 2 corresponds to the following scenario:

d = 5, W1 = W2 = ∅ and ∀(y, z) ∈ W3 × W3, |Sv
y ∪ Sv

z | = 2.
The recurrence corresponding to this scenario is: f(μ) ≤ f(μ−β)+10f(μ−6β−2δ).
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r 3 4 5 6 7 8 10 15
lbr 1.71149 1.7468 1.7734 1.7943 1.8113 1.8253 1.8474 1.8828
ubr 1.73615 1.76357 1.78554 1.80351 1.81846 1.83111 1.85136 1.88452

ubr − lbr 0.02466 0.016782 0.012131 0.0091762 0.0071727 0.0057618 0.0039415 0.0017377

Fig. 2. Bounds on the Number of Maximal-r-Regular Induced Subgraphs for Small Values of r

All the recurrences occurring in all the above cases (Cases 1 & 2) are dominated by

f(μ) ≤
(

7
3

)
f(μ − 7β)

which solves to (35)
μ
7β . Now given a graph G, μ(G) ≤ nβ, and hence

M2(n) ≤ f(βn) ≤ 35βn/7β = 35n/7.

This proves the required upper bound. These cases can be changed in branching steps
leading to an enumeration algorithm running in O(35n/7) = O(1.66181n) time. 	

To obtain a lower bound on Mr(n) for larger values of r we need to find a function

g(r) such that when we take G as n
g(r) disjoint copies of Kg(r) then

(
g(r)
r+1

)1/g(r)
is

maximized. We obtain the following description for g(r).

Lemma 2. Given r, g(r) defined below

g(r) =

⎧
⎪⎨

⎪⎩

2r + 3 0 ≤ r ≤ 11
2r + 4 12 ≤ r ≤ 100
2r + 2 +

⌊
1
2 ln

(
(2r+1)π

2

)
+ O

(
(ln r)2

r

)⌋
r > 100

maximizes
(

g(r)
r+1

)1/g(r)
. Hence Mr(n) is at least

(
g(r)
r+1

)n/g(r)
.

The proof of Lemma 2 is based on estimates on binomial coefficients and will appear
in the longer version of the paper.

For a fixed r, let lbr and ubr denote a base of exponent in lower bound and upper
bound on Mr(n), i.e., lbn

r ≤ Mr(n) ≤ ubn
r . When r ≥ 3, we obtain tighter upper

bounds on Mr by directly finding the roots of the polynomials coming from the recur-
rences in MAX-r-RIS algorithm. We can see that the upper bound obtained this way
and the lower bound coming from Lemma 2 are already very close, as Figure 2 shows.
For small values of r, these upper bounds could be made equal to lower bound by
choosing α and β appropriately in the definition of μ and by doing the analysis similar
to the one in Theorem 6. For an example, when r = 3 we can take α = 1.73 and β = 2
and show that lb3 = ub3. We do not go into the details due to lack of space and the
details will appear in the full version of the paper.

4 Improved Algorithms for r = 1 and 2 and Applications

Our generic algorithm Max-r-RIS finds a maximum r-regular induced subgraph in
time O(1.6957n) and O(1.7069n) for r = 1 and 2 respectively. Our algorithmic upper
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bound proofs (on Mr(n)) of Section 3 enumerates all maximal r-regular subgraphs in
time O(1.58469n) and O(1.66181n) for r = 1 and 2 respectively, already improving
the bounds given in Section 2. Here we further improve these algorithms for r = 1 and
2 and give an application of algorithms developed so far in the paper.

4.1 Maximum Induced Matching (MIM) and M-2-RIS Problems

Let G = (V, E) be a graph and v be a vertex having a neighbor u such that N(u) ⊆
N [v]. Consider the set Mv of maximum sized induced matching having v (these may
not be the maximum sized induced matching of G). Then the following is easy to see.

Lemma 3. Let G be a graph and v be a vertex and u ∈ N(v) such that N(u) ⊆ N [v].
Then there exists a M ′ ∈ Mv such that it contains the edge (v, u).

The other observation relates MIM of G to MAXIMUM INDEPENDENT SET (MIS)
of square of the line graph of G. The line graph, L(G) of G = (V, E) is the graph
whose vertices are edges of G, and two edges e1, e2 are adjacent if and only if they are
adjacent edges in G. Gi (ith power of G) is a graph on V and there are edges between
two vertices v1 and v2 if and only if there is a path of length at most i between v1 and
v2.

Lemma 4 ([4]). Let G be a graph then MIM(G) = MIS(L(G)2).

So our algorithm uses branching on a vertex v when the maximum degree of the graph is
at least 5 and distinguishes cases based on Lemma 3. When the maximum degree of the
graph is at most 4, we use the well known algorithms to find a maximum independent
set [7,15] in L(G)2. Without going into further details we state the following theorem.

Theorem 7. Let G = (V, E) be a graph on n vertices, then a MIM can be found in
(a) O(1.4904n) time and space polynomial in n or in (b) O(1.4786n) time and space
exponential in n.

We obtain an improved algorithm for M-2-RIS by refining the measure defined in the
Section 3 and by using new branching rules. We omit the details and simply state the
following theorem.

Theorem 8. Let G = (V, E) be a graph on n vertices, then the MAXIMUM 2-REGULAR

INDUCED SUBGRAPH problem can be solved in O(1.62355n) time.

4.2 Induced r-Regular Subgraph Isomorphism

Here we consider a special case of INDUCED SUBGRAPH ISOMORPHISM (IND-SI)
problem.

IND-SI: Given a graph G = (V, E) and H , the question is to determine whether
there exists a H ′ ⊆ V such that G[H ′] ∼= H .

A brute force algorithm for this is to enumerate all subsets H ′ of size |H | of G and
check whether G[H ′] ∼= H , using the O(no(n)) time graph isomorphism algorithm [1].
The question is: can we do this in time O(cn) time where n is the number of vertices
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in G and c < 2, a constant? Here, we answer this question for a special class of H ,
that is when H is a r-regular graph with r a constant. Even with such restrictions
this problem is NP-hard as it contains problems like INDEPENDENT SET. We show the
following theorem.

Theorem 9. Given a graph G = (V, E) on n vertices and a graph H , where H is
r-regular, for a constant r, we can determine whether there exists a H ′ ⊆ V such that
G[H ′] ∼= H in O(cn) time, where c < 2 a constant depending on r alone.

Proof. Let H = {H1, H2, · · · , Hr} where each Hi is a connected component of
H . If there exists a H ′ ⊆ V such that G[H ′] ∼= H then H ′ can also be written
as {H ′

1, H
′
2, · · · H ′

r}, H ′
i connected component of G[H ′], such that G[H ′

i ] ∼= Hi for
1 ≤ i ≤ r.

The crucial observation is that if there exists a H ′ such that G[H ′] ∼= H then there
exists a maximal r-regular induced subgraph R extending H ′ such that each of the
connected component of H ′ appears as a connected component of G[R]. By applying
Theorem 3, we enumerate all maximal r-regular induced subgraphs of a graph on n
vertices in O(cn) time, c < 2 a constant depending on r alone. Now given a R, a max-
imal r-regular induced subgraph of G, we check the isomorphism of each connected
component of G[R] with each of Hi using the polynomial time bounded degree graph
isomorphism algorithm of Luks [11]. If we obtain a H ′ such that G[H ′] ∼= H then we
return H ′ else we return no. The correctness and the time complexity of the algorithm
follow easily. 	


5 Conclusion

In this paper we developed an O(cn) time exact algorithms for MAXIMUM r-REGULAR

INDUCED SUBGRAPH problems for any fixed constant r, where c < 2 is a constant de-
pending on r alone. We also showed that if r is a constant then the number of maximal
r-regular induced subgraphs on a graph on n vertices is bounded by o(2n). Then we
gave very tight lower and upper bounds on the number of maximal r-regular induced
subgraphs on n vertices. All our algorithms were simple to describe but their analy-
ses were non-trivial and involved a different measure than the usual number of vertices
to measure the progress of the algorithms. We analyzed recurrences having binomial
coefficients and believe that these may trigger some new results in the area of exact
algorithms. Finally, we used the results obtained on the enumeration version of MAXI-
MUM r-REGULAR INDUCED SUBGRAPH problems to give a non trivial exact algorithm
for INDUCED r-REGULAR SUBGRAPH ISOMORPHISM when r is a constant. The other
problems for which we can give non trivial exact algorithms based on the algorithms
and the techniques developed in this paper include EFFICIENT EDGE DOMINATING

SET [10], δ-SEPARATING MAXIMUM MATCHING [17] and MAXIMUM BOUNDED

DEGREE INDUCED SUBGRAPH problems.
It will be interesting to find other applications of the algorithms developed in this

paper. Finding a non trivial exact algorithm for INDUCED SUBGRAPH ISOMORPHISM

problem, even for special classes of H , remains open. Here we obtained an efficient
algorithm for INDUCED SUBGRAPH ISOMORPHISM when H is a r-regular graph for a
constant r.
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