
Bidimensionality and EPTAS

Fedor V. Fomin∗ Daniel Lokshtanov†‡ Venkatesh Raman§ Saket Saurabh§

Abstract

Bidimensionality theory appears to be a powerful framework

for the development of meta-algorithmic techniques. It was

introduced by Demaine et al. [J. ACM 2005] as a tool

to obtain sub-exponential time parameterized algorithms

for problems on H-minor free graphs. Demaine and Haji-

aghayi [SODA 2005] extended the theory to obtain polyno-

mial time approximation schemes (PTASs) for bidimensional

problems, and subsequently improved these results to EP-

TASs. Fomin et. al [SODA 2010] established a third meta-

algorithmic direction for bidimensionality theory by relating

it to the existence of linear kernels for parameterized prob-

lems. In this paper we revisit bidimensionality theory from

the perspective of approximation algorithms and redesign

the framework for obtaining EPTASs to be more powerful,

easier to apply and easier to understand.

One of the important conditions required in the framework

developed by Demaine and Hajiaghayi [SODA 2005] is that

to obtain an EPTAS for a graph optimization problem Π, we

have to know a constant-factor approximation algorithm for

Π. Our approach eliminates this strong requirement, which

makes it amenable to more problems. At the heart of our

framework is a decomposition lemma which states that for

“most” bidimensional problems, there is a polynomial time

algorithm which given an H-minor-free graph G as input

and an ε > 0 outputs a vertex set X of size ε · OPT such

that the treewidth of G\X is O(1/ε). Here, OPT is the ob-

jective function value of the problem in question This allows

us to obtain EPTASs on (apex)-minor-free graphs for all

problems covered by the previous framework, as well as for

a wide range of packing problems, partial covering problems

and problems that are neither closed under taking minors,

nor contractions. To the best of our knowledge for many

of these problems including Cycle Packing, Vertex-H-

Packing, Maximum Leaf Spanning Tree, and Partial

r-Dominating Set no EPTASs on planar graphs were pre-

viously known.

∗Department of Informatics, University of Bergen, Norway.

fedor.fomin@ii.uib.no
†Department of Computer Science and Engineering, University

of California, San Diego, USA. dlokshtanov@cs.ucsd.edu
§The Institute of Mathematical Sciences, Chennai, India.
{vraman|saket}@imsc.res.in

1 Introduction

While most interesting graph problems remain NP com-
plete even when restricted to planar graphs, the restric-
tion of a problem to planar graphs is usually consider-
ably more tractable algorithmically than the problem on
general graphs. Over the last four decades, it has been
proved that many graph problems on planar graphs
admit subexponential time algorithms [18, 25, 33],
subexponential time parameterized algorithms [1, 26],
(Efficient) Polynomial Time Approximation Schemes
((E)PTAS) [4, 28, 11, 20, 27, 29] and linear ker-
nels [2, 5, 8]. Amazingly, the emerging theory of Bidi-
mensionality developed by Demaine et al. [15, 16, 13] is
able to simultaneously explain the tractability of these
problems within the paradigms of parameterized algo-
rithms [13], approximation [14] and kernelization [24].
The theory is built on cornerstone theorems from Graph
Minors Theory of Robertson and Seymour, and allows
not only to explain the tractability of many problems,
but also to generalize the results from planar graphs and
graphs of bounded genus to graphs excluding a fixed
minor. Roughly speaking, a problem is bidimensional
if the solution value for the problem on a k × k-grid is
Ω(k2), and the contraction or removal of an edge does
not increase solution value. Many natural problems
are bidimensional, including Dominating Set, Feed-
back Vertex Set, Edge Dominating Set, Ver-
tex Cover, Connected Dominating Set, Cycle
Packing, Connected Vertex Cover, and Graph
Metric TSP.

A PTAS is an algorithm which takes an instance
I of an optimization problem and a parameter ε > 0
and, runs in time nO(f(1/ε)), produces a solution that
is within a factor ε of being optimal. A PTAS with
running time f(1/ε) · nO(1), is called efficient PTAS
(EPTAS). Prior to bidimensionality [14], there were
two main approaches to design (E)PTASs on planar
graphs. The first one was based on the classical Lipton-
Tarjan planar separator theorem [32]. The second, more
widely used approach was given by Baker [4]. In the
Lipton-Tarjan based approach we split the input n-
vertex graph into two pieces of approximately equal size
using a separator of size O(

√
n). Then we recursively

approximate the problem on the two smaller instances

and glue the approximate solutions at the separator.
This approach was only applicable to problems where
the size of the optimal solutions was at least a constant
fraction of n.

The main idea in Baker’s approach is to decompose
the planar graph into overlapping subgraphs of bounded
outerplanarity and then solve the problem optimally
in each of these subgraphs using dynamic program-
ming. Later Eppstein [20] generalized this approach
to work for larger class of graphs, namely apex minor
free graphs. Khanna and Motwani [29] used Baker’s ap-
proach in an attempt to syntactically characterize the
complexity class of problems admitting PTASs, estab-
lishing a family of problems on planar graphs to which
it applies. The same kind of approach is also used by
Dawar et al. [11] to obtain EPTASs for every minimiza-
tion problem definable in first-order logic on every class
of graphs excluding a fixed minor. Baker’s approach
seemed to be limited to “local” graph problems–where
one is interested in finding a vertex/edge set satisfying
a property that can be checked by looking at constant
size neighborhood around each vertex.

Demaine and Hajiaghayi [14] used bidimensionality
theory to strengthen and generalize both approaches.
In particular they strengthened the Lipton-Tarjan ap-
proach significantly by showing that for a magnitude
of problems one can find a separator of size O(

√
OPT)

that splits the optimum solution evenly into two pieces.
Here OPT is the size of the optimum solution. This
allowed them to give EPTASs for several problems on
planar graphs and more generally on apex-minor-free
graphs or H-minor free graphs. Two important prob-
lems to which their approach applies are Feedback
vertex Set and Connected Dominating Set. Ear-
lier only a PTAS and no EPTAS for Feedback Ver-
tex Set on planar graphs was known [30]. In addition,
they also generalize Baker’s approach by allowing more
interaction between the overlapping subgraphs.

Comparing the generalized versions of the two ap-
proaches, it seems that each has its strengths and weak-
nesses. In the generalized Lipton-Tarjan approach of
Demaine and Hajiaghayi [14] one splits the graph into
two pieces recursively. To ensure that the repeated ap-
plication does not “increase” the approximation factor,
in each recursive step one needs to carefully reconstruct
the solution from the smaller ones. Additionally, to
ensure that the separator splits the optimum solution
evenly, the framework of Demaine and Hajiaghayi [14]
requires a constant factor approximation for the prob-
lem in question. On the other hand, their generaliza-
tion of Baker’s approach essentially identifies a set of
vertices or edges that interacts in a limited way with
the optimum solution, such that the removal of X from

the input graph leaves a graph on which the problem
can be solved optimally in polynomial time. The set X
could be as large as O(n) which in some cases makes
it difficult to bound the amount of interaction between
the set X and the optimum solution.

In this paper we propose a framework which com-
bines the best of both worlds—the generalized Lipton-
Tarjan and generalized Baker’s approaches. In particu-
lar, we show that for most bidimensional problems there
is a polynomial time algorithm that given a graph G
and an ε > 0 outputs a vertex set X of size ε · OPT
such that the treewidth of G \ X is O(1/ε). Because
the size of X is bounded, the interaction between X
and the optimum solution is bounded trivially. Since
X is only removed once, the difficulty faced by a re-
cursive approach vanishes. In our framework to obtain
EPTASs, we demand that the problem in question is
“reducible”, which is nothing else than that the set X
can be removed from the graph, disturbing the optimum
solution by at most O(ε ·OPT). Finally, our algorithm
to compute X does not require an approximation algo-
rithm for the problem in question, and relies only on
a sublinear treewidth bound. For most problems, such
a bound can be obtained via bidimensionality, whereas
for some problems that are not bidimensional, one can
obtain the sublinear treewidth bound directly. This is
where our framework differs significantly from the one
proposed by Demaine and Hajiaghayi [14]. One of the
important condition required to obtain an EPTAS for
a graph optimization problem Π using the framework
developed in [14] is to have a constant-factor approxi-
mation algorithm for Π. Thus our framework removes
this stringent condition of demanding approximation al-
gorithm, which makes it amenable to more problems.

Our new framework allows to obtain EPTASs on
(apex)-minor-free graphs for all problems covered by
the previous framework, as well as for several packing
problems, partial covering problems and problems that
are neither closed under taking minors nor contractions.
For an example consider the Maximum Degree Pre-
serving Spanning Tree problem where given a graph
G the objective is to find a spanning tree such that the
number of vertices which have the same degree in the
tree as in the input graph is maximized. Maximum De-
gree Preserving Spanning Tree is neither closed
under taking minors nor contractions, but one can still
apply our framework to obtain an EPTAS for this prob-
lem. For another example, consider Cycle Packing,
where given a graph G the objective is to find the max-
imum number of vertex disjoint cycles in G. For this
problem, it is not clear how to directly apply the previ-
ous framework to obtain an EPTAS. On the other hand,
using our framework to obtain an EPTAS for this prob-

lem is easy. More generally, we give an EPTAS for the
Vertex-H-Packing problem, defined as follows. Let
H be a finite set of connected graphs such that at least
one graph inH is planar. Input to Vertex-H-Packing
is a graph G and the objective is to find a maximum size
collection of vertex disjoint subgraphs G1, . . . , Gk of G
such that each of them contains some graph from H as a
minor. To the best of our knowledge no EPTASs for Cy-
cle Packing, Vertex-H-Packing, Maximum Leaf
Spanning Tree, or Partial r-Dominating Set were
previously known, even on planar graphs. Our frame-
work to obtain EPTASs seems to be the most general
one could hope for in the context of bidimensionality
and approximation.

Our results are less prone to the impracticality is-
sues that follow most results in algorithmic Graph Mi-
nors. In particular, it is easy to implement our algo-
rithms in a manner completely independent from results
in Graph Minors and only use bounds from graph mi-
nor in the analysis. Furthermore, there is evidence [35]
that the large hidden constants only arise in the analy-
sis, and that with correct fine tuning algorithms could
be made to yield good approximations in practice—at
the expense of the rigorous approximation guarantee.

2 Definitions and Notations

In this section we give various definitions which we
make use of in the paper. Let G be a graph with
vertex set V (G) and edge set E(G). A graph G′ is a
subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G).
The subgraph G′ is called an induced subgraph of G
if E(G′) = {uv ∈ E(G) | u, v ∈ V (G′)}, in this
case, G′ is also called the subgraph induced by V ′ and
denoted by G[V ′]. For a vertex set S, by G \ S we
denote G[V (G) \ S]. A graph class G is hereditary if
for any graph G ∈ G all induced subgraphs of G are
in G. By N(u) we denote (open) neighborhood of u,
that is, the set of all vertices adjacent to u. Similarly,
by N [u] we denote N(u) ∪ {u}. For a subset D ⊆ V ,
we define N [D] = ∪v∈DN [v] and N(D) = N [D] \ D.
The distance dG(u, v) between two vertices u and v of
G is the length of the shortest path in G from u to v.
Define BrG(v) to be the set of vertices within distance
at most r from v, including v itself. For a vertex set S,
define BrG(v) =

⋃
v∈S B

r
G(v). We denote by tw(G) the

treewidth of a graph G. (The definition of treewidth can
be found in Appendix.)

Minors. Given an edge e = xy of a graph G, the
graph G/e is obtained from G by contracting the edge
e. That is, the endpoints x and y are replaced by a new
vertex vxy which is adjacent to the old neighbors of x
and y (except from x and y). A graph H obtained by a

sequence of edge-contractions is said to be a contraction
of G. We denote it by H ≤c G. A graph H is a minor
of a graph G if H is the contraction of some subgraph
of G and we denote it by H ≤m G. We say that a graph
G is H-minor-free if G does not contain H as a minor.
We also say that a graph class GH is H-minor-free (or,
excludes H as a minor) when all its members are H-
minor-free. An apex graph is a graph obtained from
a planar graph G by adding a vertex and making it
adjacent to some of the vertices of G. A graph class GH
is apex-minor-free if GH excludes a fixed apex graph H
as a minor. Let us remark that every planar, and more
generally, graph of bounded genus, is an H-minor-free
graph for some fixed apex graph H.

Grids and their triangulations. Let r be a positive
integer, r ≥ 2. The (r×r)-grid is the Cartesian product
of two paths of lengths r − 1. A vertex of a grid is a
corner if it has degree 2. Thus each (r × r)-grid has 4
corners. A vertex of a (r× r)-grid is called internal if it
has degree 4, otherwise it is called external. Let Γr be
the graph obtained from the (r × r)-grid by triangulat-
ing internal faces of the (r×r)-grid such that all internal
vertices become of degree 6, all non-corner external ver-
tices are of degree 4, and then one corner of degree two
is joined by edges with all vertices of the external face.

Figure 1: The graph Γ6.

The graph Γ6 is shown in
Fig. 1.

Counting Monadic Second
Order Logic. Count-
ing monadic second-order
logic (CMSO) is monadic
second-order logic (MSO)
additionally equipped with an
atomic formula cardn,p(U) for
testing whether the cardinality of a set U is congruent
to n modulo p, where n and p are integers independent
of the input graph such that 0 ≤ n < p and p ≥ 2. We
refer to [3, 9, 10] for a detailed introduction to CMSO.
For reader’s convenience, we provide the definition of
MSO in Appendix. Min-CMSO and Max-CMSO
problems are graph optimization problems where the
objective is to find a maximum or minimum sized vertex
or edge set satisfying a CMSO-expressible property. In
particular, in a Min/Max-CMSO graph problem Π
we are given a graph G as input. The objective is to
find a minimum/maximum cardinality vertex/edge set
S such that the CMSO-expressible predicate PΠ(G,S)
is satisfied.

Bidimensionality and Separability. Our results
concern graph optimization problems where the objec-
tive is to find a vertex or edge set that satisfies a feasibil-
ity constraint and maximizes or minimizes a problem-

specific objective function. For a problem Π and ver-
tex (edge) set S let φΠ(G,S) be the feasibility con-
straint returning true if S is feasible and false oth-
erwise. Let κΠ(G,S) be the objective function. In most
cases, κΠ(G,S) will return |S|. We will only consider
problems where every instance has at least one feasible
solution. Let U be the set of all graphs. For a graph
optimization problem Π let π : U → N be a function re-
turning the objective function value of the optimal solu-
tion of Π on G. We say that a problem Π is minor-closed
if π(H) ≤ π(G) whenever H is a minor of G. Similarly,
we say Π is contraction-closed if π(H) ≤ π(G) whenever
H is a contraction of G. We now define bidimensional
problems.

Definition 1. ([13, 22]) A graph optimization prob-
lem Π is minor-bidimensional if Π is minor-closed and
there is a δ > 0 such that π(R) ≥ δr2 for the (r × r)-
grid R. In other words, the value of the solution on R
should be at least δr2. A graph optimization problem Π
is called contraction-bidimensional if Π is contraction-
closed and there is δ > 0 such that π(Γr) ≥ δr2. In
either case, Π is called bidimensional.

Demaine and Hajiaghayi [14] define the separation
property for problems, and show how separability to-
gether with bidimensionality is useful to obtain EPTASs
on H-minor-free graphs. In our setting a slightly weaker
notion of separability is sufficient. In particular the fol-
lowing definition is a reformulation of the requirement
3 of the definition of separability in [14] and similar to
the definition used in [24] to obtain kernels for bidimen-
sional problems.

Definition 2. A minor-bidimensional problem Π has
the separation property if given any graph G and a
partition of V (G) into L] S] R such that N(L) ⊆ S
and N(R) ⊆ S, and given an optimal solution OPT
to G, π(G[L]) ≤ κΠ(G[L], OPT ∩ L) + O(|S|) and
π(G[R]) ≤ κΠ(G[R], OPT ∩R) +O(|S|).

For contraction-bidimensional parameters we have a
slightly different definition of the separation property.
For a graph G and a partition of V (G) into L] S] R
such that N(L) ⊆ S and N(R) ⊆ S, we define GL (GR
) to be the graph obtained from G by contracting every
connected component of G[R] (G[L]) into the vertex of
S with the lowest index.

Definition 3. A contraction-bidimensional problem
has the separation property if given any graph G and
a partition of V (G) into L] S]R such that N(L) ⊆ S
and N(R) ⊆ S, and given an optimal solution OPT to
G, π(GL) ≤ κΠ(GL, OPT \ R) + O(|S|) and π(GR) ≤
κΠ(GR, OPT \ L) +O(|S|).

In Definitions 2 and 3 we slightly misused notation.
Specifically, in the case that OPT is an edge set we
should not be considering OPT \ R and OPT \ L but
OPT \ E(G[R]) and OPT \ E(G[L]) respectively.

Reducibility, η-Transversability and Graph
Classes with Truly Sublinear Treewidth. We now
define three of the central notions of this article.

Definition 4. A graph optimization problem Π with
objective function κΠ is called reducible if there exists a
Min/Max-CMSO problem Π′ and a function f : N →
N such that

1. there is a polynomial time algorithm that given G
and X ⊆ V (G) outputs G′ such that π′(G′) =
π(G)±O|X|) and tw(G′) ≤ f(tw(G \X)),

2. there is a polynomial time algorithm that given G
and X ⊆ V (G), G′ and a vertex (edge) set S′

such that PΠ′(G′, S′) holds, outputs S such that
φΠ(G,S) = true and κΠ(G,S) = |S′| ± O|X|).

Definition 5. A graph optimization problem Π is
called η-Transversable if there is a polynomial time al-
gorithm that given a graph G outputs a set X of size
O(π(G)) such that tw(G \X) ≤ η.

Definition 6. A class G has truly sublinear treewidth
if there exist constants η, β and λ, such that λ < 1
and for any graph G ∈ G and X ⊆ V (G) such that
tw(G \X) ≤ η, we have tw(G) ≤ η + β|X|λ. We call
η, β and λ the parameters of G.

3 Partitioning Graphs of Truly Sublinear
Treewidth

We need the following well known lemma, see e.g. [6],
on separators in graphs of bounded treewidth.

Lemma 3.1. Let G be a graph of treewidth at most t
and w : V (G) → R+ ∪ {0} be a weight function. Then
there is a partition of V (G) into L] S]R such that

• |S| ≤ t+ 1, N(L) ⊆ S and N(R) ⊆ S,
• every connected component G[C] of G \ S has
w(C) ≤ w(V)/2,
• w(V (G))−w(S)

3 ≤ w(L) ≤ 2(w(V (G))−w(S))
3 and

w(V (G))−w(S)
3 ≤ w(R) ≤ 2(w(V (G)−w(S))

3 .

The next lemma is crucial in our analysis.

Lemma 3.2. Let G be a hereditary graph class of truly
sublinear treewidth with parameters η, λ and β. For any
ε > 1 there is a γ such that for any G ∈ G and X ⊆
V (G) with tw(G\X) ≤ η there is X ′ ⊆ V (G) satisfying
|X ′| ≤ ε|X| and for every connected component C of
G\X ′, we have |C ∩X| ≤ γ and |N(C)| ≤ γ. Moreover
X ′ can be computed from G and X in polynomial time.

Proof. For any γ ≥ 1, define Tγ : N→ N such that Tγ(k)
is the smallest integer such that if G ∈ G and there is a
X ⊆ V (G) with tw(G\X) ≤ η and |X| ≤ k, then there
is a X ′ ⊆ V (G) of size at most Tγ(k) such that for every
connected component C of G \X ′ we have |C ∩X| ≤ γ
and |N(C)| ≤ γ. Informally, Tγ(k) is the minimum size
of a vertex set X ′ such that every connected component
C of G\X ′ has at most γ neighbours in X ′ and contains
at most γ vertices of X, if we know that deleting the k-
sized vertex set X from G yields a graph of treewidth η.
We will make choices for the constants δ, γ and ρ based
on η, λ, β and ε. Our aim is to show that Tγ(k) ≤ εk
for every k.

Observe that for any numbers a > 0, b > 0, we
have aλ + bλ > (a + b)λ since λ < 1. Thus we have
ρ = min1/3≤α≤2/3 α

λ + (1 − α)λ > 1. We choose
δ = (2ε+1)(β+η+1))

ρ−1 and γ = (3δ
ε)

1
1−λ . If tw(G \X) ≤ η

and |X| ≤ γ then we set X ′ = ∅, so Tγ(k) = 0 ≤ εk
for k ≤ γ. We now show that if k ≥ γ/3 then
Tγ(k) = 0 ≤ εk − δkλ by induction on k. For the base
case if γ/3 ≤ k ≤ γ then the choice of γ implies that
εk − δkλ ≥ εγ3 − δγ

λ ≥ 0 = Tγ(k).
We now consider Tγ(k) for k > γ. Let G ∈ G

and X ⊆ V (G) with tw(G \ X) ≤ η and |X| ≤ k.
The treewidth of G is at most η + βkλ. Construct a
weight function w : V (G) → N such that w(v) = 1,
when v ∈ X and w(v) = 0 otherwise. By Lemma 3.1,
there is a partition of V (G) into L, S and R such that
|S| ≤ η+βkλ+1, N(L) ⊆ S, N(R) ⊆ S, |L∩X| ≤ 2k/3
and |R∩X| ≤ 2k/3. Deleting S from the graph G yields
two graphs G[L] and G[R] with no edges between them.
Thus we put S into X ′ and then proceed recursively in
G[L∪S] and G[R∪S] starting from the sets S∪(X∩L)
and S ∪ (X ∩R) in G[L∪ S] and G[R ∪ S] respectively.
This yields the following recurrence for Tγ .

Tγ(k) ≤ max
1/3≤α≤2/3

T (αk + η + βkλ + 1)

+ T ((1− α)k + η + βkλ + 1)

+ η + βkλ + 1

Observe that since k ≥ γ we have αk ≥ γ/3 and
(1 − αk) ≥ γ/3. The induction hypothesis then yields
the following inequality.

Tγ(k) ≤ max
1/3≤α≤2/3

T (αk + η + βkλ + 1)

+ T ((1− α)k + η + βkλ + 1)

+ η + βkλ + 1

≤ max
1/3≤α≤2/3

εk − δ(αk)λ − δ((1− α)k)λ

+ (2ε+ 1)(βkλ + η + 1)

≤ max
1/3≤α≤2/3

εk − δkλ(αλ + (1− α)λ)

+ (2ε+ 1)(βkλ + η + 1)

≤ εk − δkλ − δ(ρ− 1)kλ

+ (2ε+ 1)(βkλ + η + 1)

≤ εk − δkλ.

The last inequality holds whenever δ(ρ − 1)kλ ≥
(2ε+ 1)(βkλ + η+ 1), which is ensured by the choice of
δ and the fact that kλ ≥ 1. Thus Tγ(k) ≤ εk for all k.
Hence there exists a set X ′ of size at most εk such that
for every component C of G \ X ′ we have C ∩ X ≤ γ
and |N(C)| ≤ γ.

What remains is to show that X ′ can be com-
puted from G and X in polynomial time. The in-
ductive proof can be converted into a recursive algo-
rithm. The only computationally hard step of the proof
is the construction of a tree-decompositon of G in each
inductive step. Instead of computing the treewidth
exactly we use the d∗

√
log tw(G)-approximation algo-

rithm by Feige et al. [21], where d∗ is a fixed con-
stant. Thus when we partition V (G) into L, S, and
R using Lemma 3.1, the upper bound on the size of S
will be d∗(η + βkλ)

√
log(η + βkλ) instead of η + βkλ.

However, for any λ < λ′ < 1 there is a β′ such that
d∗(η + βkλ)

√
log(η + βkλ) < η + β′kλ

′
. Now we can

apply the above analysis with β′ instead of β and λ′

instead of λ to bound the size of the set X ′ output by
the algorithm. This concludes the proof of the lemma.
�

The following corollary is a direct consequence of
Lemma 3.2. Nevertheless, we find it worthwhile to
mention it separately.

Corollary 3.1. Let G be a hereditary graph class of
truly sublinear treewidth with parameters η, λ and β.
For any ε > 1 there is a τ with τ = O(1

ε)
λ

1−λ) such that
for any G ∈ G and X ⊆ V (G) with tw(G \ X) ≤ η
there is a X ′ ⊆ V (G) satisfying |X ′| ≤ ε|X| such that
tw(G \X ′) ≤ τ .

Proof. We apply Lemma 3.2 on G and X to obtain
the set X ′ of size ε|X|. Observe that in the proof
of Lemma 3.2, γ = O(1

ε)
1

1−λ). The treewidth of
G \ X ′ equals the maximum treewidth of a connected
component C of G \ X ′. However |C ∩ X| ≤ γ and so
tw(G[C]) = Oγλ), concluding the proof. �

4 Approximation Schemes

Approximation Schemes for η-Transversable
problems.

Theorem 4.1. Let Π be an η-transversable, reducible
graph optimization problem. Then Π has an EPTAS on
every graph class G with truly sublinear treewidth.

Proof. Let G be the input to Π and ε > 0 be fixed.
Since Π is η-transversable there is a polynomial time
algorithm that outputs a set X such that |X| ≤ ρ1π(G)
and tw(G) ≤ η, for a fixed constant ρ1. Let ε′ be a
constant to be selected later. By Lemma 3.2, there exist
γ, λ′ < 1 and β′ depending on ε′, λ, η and β such that
given G and X a set X ′ with the following properties
can be found in polynomial time. First |X ′| ≤ ε′|X|,
and secondly for every component C of G \X ′ we have
that C ∩ X ≤ γ. Thus tw(G \ X ′) = τ ≤ β′γλ

′
+ η.

Since Π is reducible there exists a Min/Max-CMSO
problem Π′, a constant ρ2 and a function f : N → N
such that:

1. there is a polynomial time algorithm that given G
and X ′ ⊆ V (G) outputs G′ such that |π′(G′) −
π(G)| ≤ ρ2|X ′| and tw(G′) ≤ f(τ);

2. there is a polynomial time algorithm that given G
and X ′ ⊆ V (G), G′ and a vertex (edge) set S′

such that PΠ′(G′, S′) holds outputs S such that
φΠ(G,S) holds and |κΠ(G,S)− |S′|| ≤ ρ2|X ′|.

We constuct G′ from G and X ′ using the first polyno-
mial time algorithm. Since tw(G′) ≤ f(τ) we can use
an extended version of Courcelle’s theorem [9, 10] given
by Borie et al. [7] to find an optimal solution S′ to Π′

in g(ε′)|V (G′)| time. By the properties of the first poly-
nomial time algorithm, ||S′| − π(G)| ≤ ρ|X ′| where ρ =
max(ρ1, ρ2). We now use the second polynomial time al-
gorithm to construct a solution S to Π from G, X ′, G′

and S′. The properties of the second algorithm ensure
φΠ(G,S) holds and that |κΠ(G,S)− |S′|| ≤ ρ|X ′|, and
hence |κΠ(G,S)− π(G)| ≤ 2ρ|X ′| ≤ 2ρ2ε′π(G). Choos-
ing ε′ = ε

2ρ2 yields |κΠ(G,S)− π(G)| ≤ επ(G), proving
the theorem. �

Approximation Schemes for Bidimensional prob-
lems. Now we use Theorem 4.1 to give EPTASs
for bidimensional, separable and reducible problems on
graphs excluding a fixed H as a minor. In order to do
this, we show that H-minor-free graphs have truly sub-
linear treewidth and that bidimensional and separable
problems are η-transversible. To show that H-minor
free graphs have truly sublinear treewidth we use the
following result.

Proposition 4.1. ([12, 17, 22]) Let G be a connected
graph excluding a fixed graph H as a minor. Then there
exists some constant c such that if tw(G) ≥ c·r2, then G
contains the r×r-grid as a minor. Moreover, if H is an
apex graph, then G does not contain Γr as a contraction.

Corollary 4.1. Let GH be a class of graphs excluding
a fixed graph H as a minor. Then GH has truly sublinear
treewidth with λ = 1

2 .

Proof. Let ρ be a constant such that any graph G ∈ GH
of treewidth at least t contains a ρt × ρt grid as a
minor. Let G ∈ GH have a vertex subset X such
that tw(G \ X) ≤ η for a fixed constant η. We prove
that tw(G) ≤ η+1

ρ d
√
|X|+ 1e. Suppose not. Then,

by Proposition 4.1, G contains a (η + 1)d
√
|X|+ 1e ×

(η + 1)d
√
|X|+ 1e grid as a minor. Hence G contains

at least |X|+ 1 disjoint η + 1× η + 1 grids as a minor.
The set X is disjoint from at least one of these grids,
and hence G\X contains a η+1×η+1 grid as a minor
and has treewidth at least η + 1, yielding the desired
contradiction. �

For every fixed integer η we define the η-
Transversal problem as follows. Input is a graph
G, and the objective is to find a minimum cardinality
vertex set S ⊆ V (G) such that tw(G \ S) ≤ η. We
now give a polynomial time constant factor approxima-
tion for the η-Transversal problem on H-minor-free
graphs.

Lemma 4.1. For every integer η and fixed graph H
there is a constant c and a polynomial time c-
approximation algorithm for the η-Transversal prob-
lem on H-minor-free graphs.

Proof. Let X be a smallest vertex set in G such that
tw(G \ X) ≤ η. By Lemma 3.2 with ε = 1/2 there
exists a γ depending only on H and η and a set X ′ with
|X ′| ≤ |X|/2 such that for any component C of G \X ′,
|C ∩ X| ≤ γ and |N(C)| ≤ γ. Since X is the smallest
set such that tw(G \ X) ≤ η, there is a component
C of G \ X ′ with treewidth strictly more than η. Let
Z = N(C) and observe that Z ⊆ X ′ is a set of size at
most γ such that C is a conneced component of G \ Z.

The algorithm proceeds as follows. It tries all
possibilities for Z and looks for a connected component
C of G \ Z such that η < tw(G[C]) = O√γ). It
solves the η-Transversal problem optimally on G[C]
by noting that η-Transversal can be formulated as
a Min-CMSO problem and applying the algorithm by
Borie et al [7]. Let XC be the solution obtained for
G[C]. The algorithm adds XC and N(C) to the solution
and repeats this step on G \ (C ∪ N(C)) as long as
tw(G) ≥ η.

Clearly, the set returned by the algorithm is a
feasible solution. We now argue that the algorithm
is a (γ + 1)-approximation algorithm. Let C1, C2,
. . . Ct be the components found by the algorithm in this
manner. Since X must contain at least one vertex in
each Ci it follows that t ≤ |X|. Now, for each i, N(Ci)
contains at most γ vertices outside of

⋃
j<iN(Cj). Thus⋃

i≤tN(Ci) ≤ γ|X|. Furthermore for each C, |XC | ≤
|X ∩C| and hence the size of the returned solution is at
most (γ + 1)|X|, which proves the lemma. �

We use Lemma 4.1 in conjunction with the following
lemma, which is a combination of Lemmata 3.2 and 3.3
of [24].

Lemma 4.2. ([24]) Let Π be a minor- (contraction-)
bidimensional problem with the separation property and
H be a (apex) graph. There exists a constant η such
that for every G excluding H as a minor, there is
a subset X ⊆ V (G) such that |X| = O(π(G)), and
tw(G \X) ≤ η.

Together Lemmata 4.1 and 4.2 yield the following
corollary.

Corollary 4.2. Let Π be a minor- (contraction-) bidi-
mensional problem with the separation property and H
be a (apex) graph. There exists a constant η such
that for every G excluding H as a minor, Π is η-
transversable on H-minor-free graphs.

Finally, combining Theorem 4.1 with Corollaries 4.1
and 4.2 implies the main theorem of this article.

Theorem 4.2. Let Π be a reducible minor-
(contraction-) bidimensional problem with the sep-
aration property and H be a (apex) graph. There is an
EPTAS for Π on the class of graphs excluding H as a
minor.

5 Applications

5.1 Domination and Connectivity Problems In
r-Dominating Set, we are given a graph G, the
objective is to find a minimum size subset S ⊆ V (G)
such that BrG(S) = V (G). For r = 1, if we demand
that G[S] is connected we obtain the Connected
Dominating Set problem. In Connected Vertex
Cover we are given a graph G and the objective is
to find a minimum size subset S ⊆ V (G) such that
G[S] is connected and every edge in E(G) has at least
one endpoint in S. It well-known that r-Dominating
Set, Connected Dominating Set and Connected
Vertex Cover are contraction-bidimensional [13].

Let V (G) = L]S]R with N(L) ⊆ S and N(R) ⊆
S. Let GL and GR be defined as in Definition 3. Let

Z be a minimum size r-dominating set of G and ZL be
a minimum size r-dominating set of GL. We have that
|ZL| ≤ |Z\R|+|S| because (Z\R)∪S is an r-dominating
set of GL and hence |ZL| > |Z \ R| + |S| contradicts
the choice of ZL. Hence |ZL| ≤ |Z \ R| + O|S|) and
r-Dominating Set is separable.

We now show that r-Dominating Set is reducible.
Given a graph G and set X, let G′ = G \ X and let
R = BrG(X) \ X. Clearly tw(G′) = tw(G \ X). The
annotated problem Π′ is to find a minimum sized set
S′ ⊆ V (G′) such that every vertex in V (G′) \ (S ∪R) is
of distance at most r from a vertex in S′. Notice that for
any r-dominating set S of G, S \X is a feasible solution
to Π′ on G′. Conversely, for any feasible solution S′ of
Π′ on G′, we have that S′ ∪X is an r-dominating set of
G. Hence r-Dominating Set is reducible.

The proof that Connected Dominating Set and
Connected Vertex Cover are separable are almost
identical to the proof for r-Dominating Set with
r = 1. We only have to note that if Z is an optimal
solution to G then Z \ R can be made into a feasible
solution to GL by adding S and then observing that
O(|S|) vertices are sufficient to connect the resulting
connected components.

We now prove that Connected Dominating Set
is reducible. Given a graph G and set X, let G′ = G\X
and let R = N(X). The annotated problem Π′ is to find
a minimum sized set S′ ⊆ V (G′) such that every vertex
in V (G′) \ (S ∪ R) has a neighbour in S′ and every
connected component of G′[S′] contains a vertex in R.
Notice that for any connected dominating set S of G,
S \ X is a feasible solution to Π′ on G′. Conversely,
for any feasible solution S′ of Π′ on G′, we have that
S = S′ ∪ X is a dominating set of G and has at most
|X| connected components. Since S is a dominating
set it is sufficient to add 2(|X| − 1) vertices to S in
order to make it a connected dominating set of G.
Hence Connected Dominating Set is reducible. The
proof that Connected Vertex Cover is reducible is
identical.

Finally, let us remark that Connected Vertex
Cover is 0-transversible. Given a graph G we find
a maximal matching in linear time and output the
endpoints of the matching as X. Any vertex cover must
contain at least one endpoint from each edge in the
matching, and thus |X| ≤ 2π(G). Also, tw(G \X) = 0.

Lemma 5.1. r-Dominating Set, Connected Dom-
inating Set and Connected Vertex Cover
are contraction-bidimensional, separable and reducible.
Thus they are η-transversable on apex-minor-free
graphs. Furthermore, Connected Vertex Cover is
0-transversible on general graphs.

Max Leaf Spanning Tree. In the Max Leaf
Spanning Tree problem we are given a connected
graph G and asked to find a spanning tree T of G
maximizing the number of leaves of T .

Lemma 5.2. Max Leaf Spanning Tree is 2-
transversible and reducible.

Proof. We could have shown that the problem is minor-
bidimensional and separable, however, just as for Con-
nected Vertex Cover, it is easier to show that the
problem is 2-transversible directly. In particular, Kleit-
man and West [31] have shown that a connected graph
which contains no spanning tree with at least k leaves
has at most 4k + 2 vertices of degree at least 3. Thus
given a graph we can just return all vertices of degree
at least 3, and the remaining graph will have treewidth
at most 2. Hence, Max Leaf Spanning Tree is 2-
transversible.

We prove that Max Leaf Spanning Tree is
reducible. Given a graph G and set X, let G′ = G \X
and let R = N(X). The annotated problem Π′ is to
find a maximum size set S′ ⊆ V (G′) such that every
vertex in S′ \R has a neighbour outside of S′ and every
connected component of G \ S contains at least one
vertex of R \ S. For a spanning tree T of G let S be
the set of leaves of T . Then S \X is a feasible solution
to the annotated problem. On the other hand, given a
feasible solution S′ to Π′, observe every component of
G \S′ contains a vertex of X. We construct a spanning
forest F of G with at most |X| components by picking
a spanning tree for every component of G \ S and for
every vertex v in S \ R we connect v to a neighbour
outside of S. Notice that all vertices of S are leaves
of the spanning forest F . From F we can construct a
spanning tree T by adding at most |X| − 1 edges. Thus
T has at least |S| − 2(|X| − 1) leaves and we conclude
that Max Leaf Spanning Tree is reducible. �

5.2 Covering and Packing Problems Minor
Covering and Packing. We give below a few generic
problems each of which subsumes many problems in it-
self and fit in our framework. Let H be a finite set of
connected graphs such that at least one graph in H is
planar.

Vertex-H-Covering
Input: A graph G
Objective: Find a minimum size set S ⊆ V (G) such
that G \ S does not contain any of the graphs from
H as a minor.

Vertex-H-Packing
Input: A graph G.
Objective: Find a maximum size collection of vertex
disjoint subgraphs

G1, . . . , Gk of G such that each of them
contains some graph from H as a minor.

It it easy to see that both Vertex-H-Covering
and Vertex-H-Packing are minor-closed problems.
Now, let h be the size of the smallest planar graph H
in H. By a result of Robertson et al. [34], H is a minor
of the (t× t)-grid, where t = 14|V (H)| − 24. Consider a
(r×r)-grid F . F contains r2/t2 disjoint H-minors. Any
covering of F must pick at least one vertex from each
of these minors, therefore both Vertex-H-Covering
and Vertex-H-Packing are minor-bidimensional.

We now prove that Vertex-H-Covering is sepa-
rable. Given a graph G and a partition of V (G) into
L, S and R such that N(L) ⊆ S and N(R) ⊆ S, let
Z be a set of minimum size such that G \ Z contains
no graph of H as a minor. Consider the smallest set
ZL such that G[L] \ ZL contains no graph of H as a
minor. If |Z ∩ L| < |ZL|, this contradicts the choice
of ZL since G[L] \ (Z ∩ L) does not contain a graph
of H as a minor. The proof for ZR is identical, thus
Vertex-H-Covering is separable.

The proof of separability of Vertex-H-Packing
goes along the same lines as the proof for Vertex-H-
Covering, but with a few notable differences. In par-
ticular, we formalize Vertex-H-Packing as a graph
optimization problem where we seek an edge set Z ⊆
E(G). The objective function, κCOV , counts the num-
ber of connected components of the subgraph formed by
Z that contain at least one copy of a graph in H as a
minor, and all edge subsets are considered feasible.

Given a graph G and a partition of V (G) into L,
S and R such that N(L) ⊆ S and N(R) ⊆ S, let Z be
an edge set maximizing κCOV (G,Z) and ZL be an edge
set maximizing κCOV (G[L], ZL). By the choice of ZL we
have κCOV (G[L], ZL) ≥ κCOV (G[L], Z∪E(G[L])). The
proof for ZR is identical, hence Vertex-H-Packing is
separable.

Finally, it is easy to see that both Vertex-
H-Covering and Vertex-H-Packing are reducible.
Given G and X we let G′ = G \ X. For Vertex-H-
CoveringX can be added to the an optimal solution in
G′ at the cost of |X|. For Vertex-H-Packing at most
|X| of the minors of graphs inH contained a vertex in X
and got removed when X was deleted. Expressing both
problems as Min/Max-CMSO problems is routine.

Lemma 5.3. Vertex-H-Covering and Vertex-H-
Packing are minor-bidimensional, separable and re-
ducible.

Vertex-H-Covering contains various problems
as a special case, for example: (a) Vertex Cover
by letting H contain a single graph on a single edge,
(b) Feedback Vertex Set by setting H to contain a
single graph, the complete graph on 3 vertices K3; (c)
Diamond Hitting Set by letting H contain a single
graph, the comlete graph on 4 vertices K4 minus a sin-
gle edge. Other choices for H lead to vertex deletion
into outerplanar graphs, series-parallel graphs, graphs
of constant treewidth (η-Transversal) or pathwidth.
On the other hand, Vertex-H-Packing contains prob-
lems like Cycle Packing as a special case.

Subgraph Covering and Packing. Now we consider
problems about covering and packing subgraphs. These
problems can be handled in much the same way as
covering and packing minors. Let S be a finite set of
connected graphs.

Vertex-S-Covering
Input: A graph G
Objective: Find a minimum size set S ⊆ V (G) such
that G \ S does not contain any of the graphs from
S as a subgraph.

Vertex-S-Packing
Input: A graph G.
Objective: Find a maximum size collection of vertex
disjoint subgraphs

G1, . . . , Gk of G such that each of them
contains some graph from S as a subgraph.

Lemma 5.4. Vertex-S-Covering or Vertex-S-
Packing pre-processed with the Redundant Vertex Rule
are η-transversible and reducible.

Proof. We will not show that Vertex-S-Covering or
Vertex-S-Packing are bidimensional. Instead, we
will give a reduction rule, and show that instances
reduced according to this rule have an r-dominating
set of size O(OPT), where r is the maximum size
of a graph in S. Since r-Dominating Set is η-
transversible there is an algorithm that in polynomial
time outputs a set X ⊆ V (G) of size O(OPT) such
that tw(G \ X) ≤ η. Hence the pre-processed version
of Vertex-S-Covering and Vertex-S-Packing is η-
transversible.

Consider the following rule, the Redundant Vertex
Rule. Given as input G to Vertex-S-Covering or
Vertex-S-Packing remove all vertices that are not
part of any subgraph isomorphic to any graph in S. We
can perform the Redundant Vertex Rule in O(|V | · |S|)
time by looking at a small ball around every vertex v and
check whether the ball contains a subgraph isomorphic

to a graph in S that contains v. This algorithm to check
a subgraph isomorphic to a given graph containing a
particular vertex appears in an article of Eppstein [19].

Consider an instance G of Vertex-S-Covering
reduced according to the Redundant Vertex Rule, and
let S be an optimal solution to G. Since X hits all
copies of graphs in S occuring in G and every vertex
in G appears in some copy of a graph in S it follows
that X is a r-dominating set of G, where r is the
maximum size of a graph in S. Finally, consider an
instance G of Vertex-S-Packing reduced according
to the Redundant Vertex Rule, and consider an optimal
solution G1, . . . , GOPT such that for every i, Gi contains
a graph. �

5.3 Partial Domination and Covering In the
Partial r-Dominating Set problem we are given a
graph G together with an integer t ≤ |V (G)|. The
objective is to find a minimum size set S such that
|BrG(S)| ≥ t. In Partial Vertex Cover we are given
a graph G together with an integer t ≤ |E(G)| and the
objective is to find a minimum size vertex set S such
that |{uv ∈ E : u ∈ S ∨ v ∈ S}| ≥ t. We will call
{uv ∈ E : u ∈ S ∨ v ∈ S} the set of edges covered by S.
PTAS for Partial Vertex Cover on planar graphs
was given in [27]. We are not aware of any PTAS for
Partial r-Dominating Set.

We will not show that Partial r-Dominating
Set and Partial Vertex Cover are bidimensional,
instead we will directly construct a EPTASs for these
problems on apex-minor-free graphs using the tools
developed so far. We will use OPT for the size of
an optimal solution to our instances. Let H be a
fixed apex graph, our input graphs will exclude H
as a minor. We employ an algorithm of Fomin et
al. [23]. They give an algorithm for solving Partial r-

Dominating Set in time 2O(r
√
OPT)nO1) and Partial

Vertex Cover in time 2O(
√
OPT)nO1). A key part of

their algorithm for Partial r-Dominating Set is a
polynomial time algorithm ([23], Lemma 5) that given
a graph G together with integers t and k returns an
induced subgraph G′ of G such that G has a k-sized
vertex set S such that |BrG(S)| ≥ t if and only if G′

has a k-sized vertex set S′ such that |BrG′(S′)| ≥ t.
Furthermore, G′ has a 3r-dominating set of size k. Our
EPTAS loops over all possible values of k and for each
such value produces G′k from G, t and k using Lemma 5
of [23]. If G′k has less than t vertices, then G′k cannot
have any set which covers at least t vertices, and so,
neither can G. If G′k has at least t vertices, we proceed
with the following subroutine.

Just as in the proof of Theorem 4.1, let ε′ be a
constant to be chosen later. By construction G′k has

3r-dominating set of size k. Since 3r-Dominating Set
is η-transversible there is a polynomial time algorithm
that outputs a set X of size at most ρk such that
tw(G′k \X) ≤ η. By Lemma 3.2 there is a polynomial
time algorithm that computes a set X ′ of size at most
ε′ρk such that tw(G′k \ X ′) ≤ δ for a constant δ
depending only on η and H. We put all vertices in X ′

in our solution. Specifically, we remove X ′ from G′k and
put all other vertices of BrG′k(X ′) into a set R. Using
standard dynamic programming (or by formulating the
problem in an extended version of MSO [3]) on graphs
of bounded treewidth, we can find a minimum size set
S′ ⊆ V (G′k)\X ′ such that |X ′|+|R∪BrG′k\X′(S

′)| ≥ t in

time f(δ)nO1). The subroutine returns the set S′ ∪X ′
as a solution.

Since G′ is an induced subgraph of G, any solution
S = S′ ∪ X ′ returned by the subroutine covers at
least t vertices in G. We return the smallest S as
our (1 + ε)-approximate solution. In the iteration of
the outer loop where k = OPT we have that G′k
has a set Z of size OPT that covers t vertices in G′.
Observe that Z \ X ′ covers at least t − |BrG′k(X ′)| of
V (G′k)\BrG′k(X ′) in the graph G′k\X ′. Thus the solution
returned by the dynamic programming algorithm has
size at most |Z \ X ′| ≤ |Z| = OPT and the solution
returned by the subroutine in this iteration is at most
OPT+|X ′| ≤ OPT (1+ε′ρ). Chosing ε′ = ε/ρ concludes
the analysis of our EPTAS for Partial r-Dominating
Set. An EPTAS for Partial Vertex Cover can be
constructed in a similar manner.

Lemma 5.5. There is an EPTAS for Partial r-
Dominating Set and Partial Vertex Cover on
apex-minor-free graphs.

Finally by applying Theorems 4.1 and 4.2 together
with Lemmata 5.1, 5.2, 5.3, 5.4 and 5.5 we get the
following corollary.

Corollary 5.1. Feedback Vertex Set, Ver-
tex Cover, Connected Vertex Cover, Cy-
cle Packing, Diamond Hitting Set, Minimum-
Vertex Feedback Edge Set, Vertex-H-Packing,
Vertex-H-Covering, Maximum Induced Forest,
Maximum Induced Bipartite Subgraph and Max-
imum Induced Planar Subgraph admit an EPTAS
on H-minor-free graphs. Edge Dominating Set,
Dominating Set, r-Dominating Set, q-Threshold
Dominating Set, Connected Dominating Set,
Directed Domination, r-Scattered Set, Mini-
mum Maximal Matching, Independent Set, Max-
imum Full-Degree Spanning Tree, Max In-
duced at most d-Degree Subgraph, Max In-
ternal Spanning Tree, Induced Matching, Tri-

angle Packing, Vertex-S-Covering, Vertex-S-
Packing Partial r-Dominating Set and Partial
Vertex Cover admit an EPTAS on apex-minor-free
graphs.

It should be noted that for a fixed ε, the treewidth τ
in Corollary 3.1 is O(1/ε). For H-minor-free graphs
one can compute the set X ′ from G and X using the
procedure described in the last paragraph of the proof of
Lemma 3.2 but using the constant factor approximation
for treewidth on H-minor-free graphs [21] instead of
the approximation algorithm for general graphs. For
many problems discussed in this paper, the MSO-based
algorithms on graphs of bounded treewidth could be
replaced by standard dynamic programming algorithms
with running time 2Otw(G))n or 2Otw(G) log(tw(G)))n. On
H-minor-free graphs this leads to EPTASs with running
times on the form 2O1/ε)n + nO1) or 2O1/ε log(1/ε))n +
nO1), which is comparable to the fastest previously
known results.

References

[1] J. Alber, H. L. Bodlaender, H. Fernau,
T. Kloks, and R. Niedermeier, Fixed parameter al-
gorithms for dominating set and related problems on
planar graphs, Algorithmica, 33 (2002), pp. 461–493.

[2] J. Alber, M. R. Fellows, and R. Niedermeier,
Polynomial-time data reduction for dominating set,
Journal of the ACM, 51 (2004), pp. 363–384.

[3] S. Arnborg, J. Lagergren, and D. Seese, Easy
problems for tree-decomposable graphs, J. Algorithms,
12 (1991), pp. 308–340.

[4] B. S. Baker, Approximation algorithms for NP-
complete problems on planar graphs, J. ACM, 41
(1994), pp. 153–180.

[5] H. Bodlaender, F. V. Fomin, D. Lokshtanov,
E. Penninkx, S. Saurabh, and D. M. Thilikos,
(Meta) Kernelization, in FOCS 2009, IEEE, 2009,
pp. 629–638.

[6] H. L. Bodlaender, A partial k-arboretum of graphs
with bounded treewidth, Theor. Comp. Sc., 209 (1998),
pp. 1–45.

[7] R. B. Borie, R. G. Parker, and C. A. Tovey, Au-
tomatic generation of linear-time algorithms from pred-
icate calculus descriptions of problems on recursively
constructed graph families, Algorithmica, 7 (1992),
pp. 555–581.

[8] J. Chen, H. Fernau, I. A. Kanj, and G. Xia,
Parametric duality and kernelization: Lower bounds
and upper bounds on kernel size, SIAM J. Comput.,
37 (2007), pp. 1077–1106.

[9] B. Courcelle, The monadic second-order logic of
graphs I: Recognizable sets of finite graphs, Information
and Computation, 85 (1990), pp. 12–75.

[10] , The expression of graph properties and graph
transformations in monadic second-order logic, Hand-
book of Graph Grammars, (1997), pp. 313–400.

[11] A. Dawar, M. Grohe, S. Kreutzer, and
N. Schweikardt, Approximation schemes for first-
order definable optimisation problems, LICS 2006,
(2006), pp. 411–420.

[12] E. D. Demaine, F. V. Fomin, M. Hajiaghayi,
and D. M. Thilikos, Bidimensional parameters and
local treewidth, SIAM J. Discrete Math., 18 (2004/05),
pp. 501–511.

[13] E. D. Demaine, F. V. Fomin, M. Hajiaghayi,
and D. M. Thilikos, Subexponential parameterized
algorithms on bounded-genus graphs and H-minor-free
graphs, J. ACM, 52 (2005), pp. 866–893.

[14] E. D. Demaine and M. Hajiaghayi, Bidimension-
ality: New connections between FPT algorithms and
PTASs, in SODA 2005, ACM-SIAM, 2005, pp. 590–
601.

[15] , Bidimensionality, in Encyclopedia of Algo-
rithms, M.-Y. Kao, ed., Springer, 2008.

[16] , The bidimensionality theory and its algorithmic
applications, Comput. J., 51 (2008), pp. 292–302.

[17] E. D. Demaine and M. Hajiaghayi, Linearity of grid
minors in treewidth with applications through bidimen-
sionality, Combinatorica, 28 (2008), pp. 19–36.

[18] F. Dorn, F. V. Fomin, and D. M. Thilikos, Subex-
ponential parameterized algorithms, Computer Science
Review, 2 (2008), pp. 29–39.

[19] D. Eppstein, Subgraph isomorphism in planar graphs
and related problems, J. Graph Algorithms and Appli-
cations, 3 (1999), pp. 1–27.

[20] , Diameter and treewidth in minor-closed graph
families, Algorithmica, 27 (2000), pp. 275–291.

[21] U. Feige, M. Hajiaghayi, and J. R. Lee, Improved
approximation algorithms for minimum-weight vertex
separators, in Proceedings of the 37th annual ACM
Symposium on Theory of computing (STOC 2005),
New York, 2005, ACM Press, pp. 563–572.

[22] F. V. Fomin, P. A. Golovach, and D. M. Thilikos,
Contraction bidimensionality: the accurate picture, in
ESA 2009, vol. 5757 of LNCS, Sptinger, 2009, pp. 706–
717.

[23] F. V. Fomin, D. Lokshtanov, V. Raman, and
S. Saurabh, Subexponential algorithms for partial
cover problems, in FSTTCS, 2009, pp. 193–201.

[24] F. V. Fomin, D. Lokshtanov, S. Saurabh, and
D. M. Thilikos, Bidimensionality and kernels, in
SODA 2010, ACM-SIAM, 2010, pp. 503–510.

[25] F. V. Fomin and D. M. Thilikos, New upper bounds
on the decomposability of planar graphs, Journal of
Graph Theory, 51 (2006), pp. 53–81.

[26] F. V. Fomin and D. M. Thilikos, New upper bounds
on the decomposability of planar graphs, J. Graph
Theory, 51 (2006), pp. 53–81.

[27] R. Gandhi, S. Khuller, and A. Srinivasan, Ap-
proximation algorithms for partial covering problems,
J. Algorithms, 53 (2004), pp. 55 – 84.

[28] M. Grohe, Local tree-width, excluded minors, and
approximation algorithms, Combinatorica, 23 (2003),
pp. 613–632.

[29] S. Khanna and R. Motwani, Towards a syntactic
characterization of ptas, in STOC 1996, ACM, 1996,
pp. 329–337.

[30] J. Kleinberg and A. Kumar, Wavelength conversion
in optical networks, Journal of Algorithms, 38 (2001),
pp. 25–50.

[31] D. J. Kleitman and D. B. West, Spanning trees
with many leaves, SIAM J. Discrete Math., 4 (1991),
pp. 99–106.

[32] R. J. Lipton and R. E. Tarjan, A separator theorem
for planar graphs, SIAM J. Appl. Math., 36 (1979),
pp. 177–189.

[33] , Applications of a planar separator theorem,
SIAM J. Comput., 9 (1980), pp. 615–627.

[34] N. Robertson, P. D. Seymour, and R. Thomas,
Quickly excluding a planar graph, J. Comb. Theory
Series B, 62 (1994), pp. 323–348.

[35] S. Tazari and M. Müller-Hannemann, Dealing
with large hidden constants: Engineering a planar
steiner tree ptas, in ALENEX, SIAM, 2009, pp. 120–
131.

A Treewidth.

A tree decomposition of a graphG is a pair (X , T), where
T is a tree and X = {Xi | i ∈ V (T)} is a collection
of subsets of V such that the following conditions are
satisfied.

1.
⋃
i∈V (T)Xi = V (G).

2. For each edge xy ∈ (G), {x, y} ⊆ Xi for some
i ∈ V (T).

3. For each x ∈ V (G) the set {i | x ∈ Xi} induces a
connected subtree of T .

The width of the tree decomposition is maxi∈V (T) |Xi|−
1. The treewidth of a graph G, tw(G), is the minimum
width over all tree decompositions of G.

B MSO

The syntax of MSO of graphs includes the logical
connectives ∨, ∧, ¬,⇔,⇒, variables for vertices, edges,
set of vertices and set of edges, the quantifiers ∀, ∃ that
can be applied to these variables, and the following five
binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex
set variable.

2. d ∈ D where d is an edge variable and D is an edge
set variable.

3. inc(d, u), where d is an edge variable, u is a vertex
variable, and the interpretation is that the edge d
is incident on the vertex u.

4. adj(u, v), where u and v are vertex variables u, and
the interpretation is that u and v are adjacent.

5. Equality of variables, =, representing vertices,
edges, set of vertices and set of edges.

