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Abstract. We show that every problem in MAX SNP has a lower bound on the
optimum solution size that is unbounded and that the above guarantee question
with respect to this lower bound is fixed parameter tractable. We next introduce
the notion of “tight” upper and lower bounds for the optimum solution and show
that the parameterized version of a variant of the above guarantee question with
respect to the tight lower bound cannot be fixed parameter tractable unless P =
NP, for a class of NP-optimization problems.

1 Introduction

In this paper, we consider the parameterized complexity of NP-optimization prob-
lems Q with the following property: for non-trivial instance I of Q, the optimum
opt(I), is lower-bounded by an increasing function of the input size. That is, there
exists a function f : N → N which is increasing such that for non-trivial instances I ,
opt(I) ≥ f(|I|). For such an optimization problem Q, the standard parameterized ver-
sion Q̃ defined below is easily seen to be fixed parameter tractable. For if k ≤ f(|I|),
we answer ‘yes’; else, f(|I|) < k and so |I| < f−1(k)1 and we have a kernel.

Q̃ = {(I, k) : I is an instance of Q and opt(I) ≥ k}

Thus for such an optimization problem it makes sense to define an “above guaran-
tee” parameterized version Q̄ as

Q̄ = {(I, k) : I is an instance of Q and opt(I) ≥ f(|I|) + k}.

Such above guarantee parameterized problems were first considered by Mahajan and
Raman in [5]. The problems dealt with by them are MAX SAT and MAX CUT. An in-
stance of the MAX SAT problem is a boolean formula φ in conjunctive normal form and
the standard parameterized version asks whether φ has at least k satisfiable clauses, k
being the parameter. Since any boolean formula φ with m clauses has at least dm/2e
satisfiable clauses (see Motwani and Raghavan [6]), by the above argument, this prob-
lem is fixed parameter tractable. The above guarantee MAX SAT question considered in
[5] asks whether a given formula φ has at least dm/2e+ k satisfiable clauses, with k as
parameter. This was shown to be fixed parameter tractable.

1 Assuming f to be invertible; the functions considered in this paper are.



The standard parameterized version of the MAX CUT problem asks whether an
input graph G has a cut of size at least k, where k is the parameter. This problem is also
fixed parameter tractable since any graph G with m edges has a cut of size dm/2e. The
above guarantee MAX CUT question considered in [5] asks whether an input graph G
onm edges has a cut of size at least dm/2e+k, where k is the parameter. This problem
was shown to be fixed parameter tractable too.

In this paper, we consider above guarantee questions for problems in the class MAX
SNP. This paper is structured as follows. In Section 2, we introduce the necessary
ideas about parameterized complexity and state some basic definitions needed in the
rest of the paper. In Section 3, we show that every problem in the class MAX SNP has
a guaranteed lower bound that is an unbounded function of the input size and that the
above guarantee problem with respect to this lower bound is fixed parameter tractable.
In Section 4, we define a notion of tight lower bound and show that a variant of the
above guarantee question with respect to tight lower bounds is hard (unless P = NP)
for a number of NP-maximization problems. Finally in Section 5, we end with a few
concluding remarks.

2 Preliminaries

We briefly introduce the necessary concepts concerning optimization problems and
parameterized complexity.

To begin with, a parameterized problem is a subset of Σ∗ × N, where Σ is a finite
alphabet and N is the set of natural numbers. An instance of a parameterized problem
is therefore a pair (I, k), where k is the parameter. In the framework of parameterized
complexity, the run time of an algorithm is viewed as a function of two quantities: the
size of the problem instance and the parameter. A parameterized problem is said to be
fixed parameter tractable (fpt) if there exists an algorithm for the problem with time
complexityO(f(k) · |I|O(1)), where f is a recursive function of k alone. The class FPT
consists of all fixed parameter tractable problems.

A parameterized problem π1 is fixed-parameter-reducible to a parameterized prob-
lem π2 if there exist functions f, g : N → N, Φ : Σ∗ × N → Σ∗ and a polynomial p(·)
such that for any instance (I, k) of π1, (Φ(I, k), g(k)) is an instance of π2 computable
in time f(k) · p(|I|) and (I, k) ∈ π1 if and only if (Φ(I, k), g(k)) ∈ π2.

An NP-optimization problem Q is a 4-tuple Q = {I , S, V, opt}, where

1. I is the set of input instances. (w.l.o.g., I can be recognized in polynomial time.)
2. S(x) is the set of feasible solutions for the input x ∈ I .
3. V is a polynomial-time computable function called the cost function and for each
x ∈ I and y ∈ S(x), V (x, y) ∈ N.

4. opt ∈ {max, min}.
5. The following decision problem (called the underlying decision problem) is in NP:

Given x ∈ I and an integer k, does there exist a feasible solution y ∈ S(x) such
that V (x, y) ≥ k, when Q is a maximization problem (or, V (x, y) ≤ k, when Q is
a minimization problem).



The class MAX SNP was defined by Papadimitriou and Yannakakis [7] using log-
ical expressiveness. They showed that a number of interesting optimization problems
such as MAX 3-SAT, INDEPENDENT SET-B, MAX CUT, MAX k-COLORABLE SUB-
GRAPH etc. lie in this class. They also introduced the notion of MAX SNP-completeness
by using a reduction known as the L-reduction. We define this next.

Let Q1 and Q2 be two optimization (maximization or minimization) problems. We
say that Q1 L-reduces to Q2 if there exist polynomial-time computable functions f, g,
and constants α, β > 0 such that for each instance I1 of Q1:

1. f(I1) = I2 is an instance of Q2, such that opt(I2) ≤ α · opt(I1).
2. Given any solution y2 of I2, g maps (I2, y2) to a solution y1 of I1 such that

|V (I1, y1)− opt(I1)| ≤ β · |V (I2, y2)− opt(I2)|

We call such an L-reduction from Q1 to Q2 an 〈f, g, α, β〉 reduction.
A problemQ is MAX SNP-hard if every problem in the class MAX SNP L-reduces

to Q. A problem Q is MAX SNP-complete, if Q is in MAX SNP and is MAX SNP-
hard. Cai and Chen [1] established that all maximization problems in the class MAX
SNP are fixed parameter tractable. In the next section, we show that for all problems in
MAX SNP, a certain above-guarantee question is also fixed parameter tractable.

3 Parameterizing above Guaranteed Values

Consider the problem MAX 3-SAT which is complete for the class MAX SNP. An
instance of MAX 3-SAT is a boolean formula f in conjunctive normal form with at
most three literals per clause. As already stated, any boolean formula with m clauses
has at least dm/2e satisfiable clauses, and the following above guarantee parameterized
problem is fixed parameter tractable.

L = {(f, k) : f is a MAX 3-SAT instance and ∃ an assignment satisfying
at least k + dm/2e clauses of the formula f }.

Since MAX 3-SAT is MAX SNP-complete and has a guaranteed lower bound, we have

Proposition 1 IfQ is in MAX SNP, then for each instance x ofQ there exists a positive
number γx such that γx ≤ opt(x). Further, if Q is NP-hard, then the function γ : x→
γx is unbounded, assuming P 6= NP.

Proof. Let Q be a problem in MAX SNP and let 〈f, g, α, β〉 be an L-reduction from
Q to MAX 3-SAT. Then for an instance x of Q, f(x) is an instance of MAX 3-SAT
such that opt(f(x)) ≤ α · opt(x). If f(x) is a formula with m clauses, then dm/2e ≤
opt(f(x)) and therefore opt(x) is bounded below by dm/2e/α. This proves that each
instance x of Q has a lower bound. We can express this lower bound in terms of the
parameters of the L-reduction. Since f(x) is an instance of MAX 3-SAT, we can take
the size of f(x) to be m. Then γx = |f(x)|/(2 · α). Further, note that if m is not
unbounded, then we can solve Q in polynomial time via this reduction.



Note that this lower bound γx depends on the complete problem to which we reduce
Q. By changing the complete problem, we might construct different lower bounds for
the problem at hand. It is also conceivable that there exist more than one L-reduction
between two optimization problems. Different L-reductions should give different lower
bounds. Thus the polynomial-time computable lower bound that we exhibit in Propo-
sition 1 is a special lower bound obtained from a specific L-reduction to a specific
complete problem (MAX 3-SAT) for the class MAX SNP. Call the lower bound of
Proposition 1 a MAX 3-SAT-lower bound for the problem Q.

Since the above guarantee parameterized version L of MAX 3-SAT is known to be
in FPT, we immediately have the following.

Theorem 1. For a maximization problem Q in MAX SNP, let 〈f, g, α, β〉 be an L-
reduction from Q to MAX 3-SAT, and for an instance x of Q, let γx represent the
corresponding MAX 3-SAT-lower bound. Then the following problem is in FPT:

LQ = {〈x, k〉 : x is an instance of Q and opt(x) ≥ γx + k}

Proof. We make use of the fact that there exists a fixed parameter tractable algorithm
A for MAX 3-SAT which takes as input, a pair of the form 〈ψ, k〉, and in time O(|ψ|+
h(k)), returns YES if there exists an assignment to the variables of ψ that satisfies at
least dm/2e+ k clauses, and NO otherwise. See [5, 9] for such algorithms.

Consider an instance 〈x, k〉 of LQ. Then f(x) is an instance of MAX 3-SAT. Let
f(x) have m clauses. Then the guaranteed lower bound for the instance x of Q, γx =
m
2α , and opt(f(x)) ≤ α · opt(x). Apply algorithm A on input 〈f(x), kα〉. If A outputs
YES, then opt(f(x)) ≥ m/2 + k · α, implying opt(x) ≥ m

2·α + k = γx + k. Thus
〈x, k〉 ∈ LQ.

If A answers NO, then
⌈

m
2

⌉
≤ opt(f(x)) <

⌈
m
2

⌉
+ kα. Apply algorithm A

kα times on inputs (f(x), 1), (f(x), 2), . . . , (f(x), kα) to obtain opt(f(x)). Let c′ =
opt(f(x)). Then use algorithm g of the L-reduction to obtain a solution to x with cost
c. By the definition of L-reduction, we have |c − opt(x)| ≤ β · |c′ − opt(f(x))|. But
since c′ = opt(f(x)), it must be that c = opt(x). Therefore we simply need to compare
c with γx + k to check whether 〈x, k〉 ∈ LQ.

The total time complexity of the above algorithm is O(kα · (|f(x)| + h(kα)) +
p1(|x|) + p2(|f(x)|)), where p1(·) is the time taken by algorithm f to transform an
instance of Q to an instance of MAX 3-SAT, and p2(·) is the time taken by g to output
its answer. Thus the algorithm that we outlined is indeed an FPT algorithm for LQ.

Note that the proof of Proposition 1 also shows that every minimization problem
in MAX SNP has a MAX 3-SAT-lower bound. For minimization problems whose op-
timum is lower bounded by some function of the input, it makes sense to ask how far
removed the optimum is with respect to the lower bound. The parameterized question
asks whether for a given input x, opt(x) ≤ γx + k, with k as parameter. The following
result can be proved similarly to Theorem 1.

Theorem 2. For a minimization problem Q in MAX SNP, let 〈f, g, α, β〉 be an L-
reduction from Q to MAX 3-SAT, and for an instance x of Q, let γx represent the
corresponding MAX 3-SAT-lower bound. Then the following problem is in FPT:

LQ = {〈x, k〉 : x is an instance of Q and opt(x) ≤ γx + k}



Examples of minimization problems in MAX SNP include VERTEX COVER-B and
DOMINATING SET-B which are, respectively, the restriction of the VERTEX COVER
and the DOMINATING SET problems to graphs whose vertex degree is bounded by B.

4 Hardness Results

For an optimization problem, the question of whether the optimum is at least lower
bound + k, for some lower bound and with k as parameter, is not always interesting
because if the lower bound is “loose” then the problem is trivially fixed parameter
tractable. For instance, for the MAX CUT problem, the question of whether an input
graph has a cut of size at least m

2 + k is fpt since any graph G with m edges, n vertices
and c components has a cut of size at least m

2 + dn−c
4 e [8]. Thus if k ≤ dn−c

4 e, we
answer YES; else, dn−c

4 e < k and we have a kernel.
We therefore examine the notion of a tight lower bound and the corresponding above

guarantee question. A tight lower bound is essentially the best possible lower bound on
the optimum solution size. For the MAX SAT problem, this lower bound is m/2: if φ is
an instance of MAX SAT, then opt(φ) ≥ m/2, and there are infinitely many instances
for which the optimum is exactlym/2. This characteristic motivates the next definition.

Definition 1 (Tight Lower Bound) Let Q = {I , S, V, opt} be an NP-optimization
problem and let f : N → N. We say that f is a tight lower bound for Q if the following
conditions hold:

1. f(|I|) ≤ opt(I) for all I ∈ I .
2. There exists an infinite family of instances I ′ ⊆ I such that opt(I) = f(|I|) for

all I ∈ I ′.

Note that we define the lower bound to be a function of the input size rather than
the input itself. This is in contrast to the lower bound of Proposition 1 which depends
on the input instance. We can define the notion of a tight upper bound analogously.

Definition 2 (Tight Upper Bound) Let Q = {I , S, V, opt} be an NP-optimization
problem and let g : N → N. We say that g is a tight upper bound for Q if the following
conditions hold:

1. opt(I) ≤ g(|I|) for all I ∈ I .
2. There exists an infinite family of instances I ′ ⊆ I such that opt(I) = g(|I|) for

all I ∈ I ′.

Some example optimization problems which have tight lower and upper bounds
are given below. The abbreviations TLB and TUB stand for tight lower bound and tight
upper bound, respectively.

1. MAX EXACT c-SAT
INSTANCE A boolean formula F with n variables andm clauses with each clause

having exactly c distinct literals.
QUESTION Find the maximum number of simultaneously satisfiable clauses.
BOUNDS TLB = (1− 1

2c )m; TUB = m.



The expected number of clauses satisfied by the random assignment algorithm is (1 −
1
2c )m; hence the lower bound. To see tightness, note that if φ(x1, . . . , xc) denotes the
EXACT c-SAT formula comprising of all possible combinations of c variables, then φ
has 2c clauses of which exactly 2c − 1 clauses are satisfiable. By taking disjoint copies
of this formula one can construct EXACT c-SAT instances of arbitrary size with exactly
(1− 1

2c )m satisfiable clauses.

2. CONSTRAINT SATISFACTION PROBLEM (CSP)
INSTANCE A system of m linear equations modulo 2 in n variables, together

with positive weights wi, 1 ≤ i ≤ m.
QUESTION Find an assignment to the variables that maximizes the total weight

of the satisfied equations.
BOUNDS TLB = W

2 , where W =
∑m

i=1 wi; TUB = W .

If we use {+1,−1}-notation for boolean values with −1 corresponding to true then we
can write the ith equation of the system as

∏
j∈αi

xj = bi, where each αi is a subset
of [n] and bi ∈ {+1,−1}. To see that we can satisfy at least half the equations in the
weighted sense, we assign values to the variables sequentially and simplify the system
as we go along. When we are about to give a value to xj , we consider all equations
reduced to the form xj = b, for a constant b. We choose a value for xj satisfying at
least half (in the weighted sense) of these equations. This procedure of assigning values
ensures that we satisfy at least half the equations in the weighted sense. A tight lower
bound instance, in this case, is a system consisting of pairs xj = bi, xj = b̄i, with each
equation of the pair assigned the same weight. See [3] for more details.

3. MAX INDEPENDENT SET-B
INSTANCE A graph G with n vertices such that the degree of each vertex is

bounded by B.
QUESTION Find a maximum independent set of G.
BOUNDS TLB = n

B+1 ; TUB = n.

A graph whose vertex degree is bounded by B can be colored using B + 1 colors,
and in any valid coloring of the graph, the vertices that get the same color form an
independent set. By the pigeonhole principle, there exists an independent set of size at
least n/(B + 1). The complete graph KB+1 on B + 1 vertices has an independence
number of n

B+1 . By taking disjoint copies of KB+1 one can construct instances of
arbitrary size with independence number exactly n

B+1 .

4. MAX PLANAR INDEPENDENT SET
INSTANCE A planar graph G with n vertices and m edges.
QUESTION Find a maximum independent set of G.
BOUNDS TLB = n

4 ; TUB = n.

A planar graph is 4-colorable, and in any valid 4-coloring of the graph, the vertices that
get the same color form an independent set. By the pigeonhole principle, there exists an
independent set of size at least n

4 . A disjoint set ofK4’s can be use to construct arbitrary
sized instances with independence number exactly n

4 .



5. MAX ACYCLIC DIGRAPH
INSTANCE A directed graph G with n vertices and m edges.
QUESTION Find a maximum acyclic subgraph of G.
BOUNDS TLB = m

2 ; TUB = m.

To see that any digraph withm arcs has an acyclic subgraph of size m
2 , place the vertices

v1, . . . , vn ofG on a line in that order with arcs (vi, vj), i < j, drawn above the line and
arcs (vi, vj), i > j, drawn below the line. Clearly, by deleting all arcs either above or
below the line we obtain an acyclic digraph. By the pigeonhole principle, one of these
two sets must have size at least m

2 . To see that this bound is tight, consider the digraph
D on n vertices: v1 � v2 � v3 � . . . � vn which has a maximum acyclic digraph of
size exactly m

2 . Since n is arbitrary, we have an infinite set of instances for which the
optimum matches the lower bound exactly.

6. MAX PLANAR SUBGRAPH
INSTANCE A connected graph G with n vertices and m edges.
QUESTION Find an edge-subset E′ of maximum size such that G[E′] is planar.
BOUNDS TLB = n− 1; TUB = 3n− 6.

Any spanning tree of G has n − 1 edges; hence any maximum planar subgraph of G
has at least n−1 edges. This bound is tight as the family of all trees achieves this lower
bound. An upper bound is 3n − 6 which is tight since for each n, a maximal planar
graph on n vertices has exactly 3n− 6 edges.

7. MAX CUT
INSTANCE A graph G with n vertices, m edges and c components.
QUESTION Find a maximum cut of G.
BOUNDS TLB = m

2 + dn−c
4 e; TUB = m.

The lower bound for the cut size was proved by Poljak and Turzı́k [8]. This bound is
tight for complete graphs. The upper bound is tight for bipartite graphs.

A natural question to ask in the above-guarantee framework is whether the language

L = {〈I, k〉 : opt(I) ≥ TLB(I) + k}

is in FPT. The parameterized complexity of such a question is not known for most prob-
lems. To the best of our knowledge, this question has been resolved only for the MAX
SAT and MAX c-SAT problems [5] and, very recently, for the LINEAR ARRANGEMENT
problem [2].

In this section, we study a somewhat different, but related, parameterized question:
Given an NP-maximization problem Q which has a tight lower bound (TLB) a function
of the input size, what is the parameterized complexity of the following question?

Q(ε) = {〈I, k〉 : opt(I) ≥ TLB(I) + ε · |I|+ k}

Here |I| denotes the input size, ε is some fixed positive rational and k is the parameter.
We show that this question is not fixed parameter tractable for a number of problems,
unless P = NP.



Theorem 3. For any problem Q in the following, the Q(ε) problem is not fixed param-
eter tractable unless P = NP:

Problem TLB(I) + ε · |I| + k Range of ε

1. MAX SAT ( 1
2

+ ε)m + k 0 < ε < 1
2

2. MAX c-SAT ( 1
2

+ ε)m + k 0 < ε < 1
2

3. MAX EXACT c-SAT (1 − 1
2c + ε)m + k 0 < ε < 1

2c

4. CSP ( 1
2

+ ε)m + k 0 < ε < 1
2

5. PLANAR INDEPENDENT SET ( 1
4

+ ε)n + k 0 < ε < 3
4

6. INDEPENDENT SET-B ( 1
B+1

+ ε)n + k 0 < ε < B
B+1

7. MAX ACYCLIC SUBGRAPH ( 1
2

+ ε)m + k 0 < ε < 1
2

8. MAX PLANAR SUBGRAPH (1 + ε)n − 1 + k 0 < ε < 2

9. MAX CUT m
2

+ dn−c
4

e + εn + k 0 < ε < 1
4

10. MAX DICUT m
4

+
q

m
32

+ 1
256

− 1
16

+ εm + k 0 < ε < 3
4

The proof, in each case, follows this outline: Assume that for some ε in the spec-
ified range, Q(ε) is indeed in FPT. Now consider an instance 〈I, s〉 of the underlying
decision version of Q. Here is a P-time procedure for deciding it. If s ≤ TLB, then the
answer is trivially YES. If s lies between TLB and TLB + ε|I|, then “add” a gadget of
suitable size corresponding to the TUB, to obtain an equivalent instance 〈I ′, s′〉. This in-
creases the input size, but since we are adding a gadget whose optimum value matches
the upper bound, the increase in the optimum value of I ′ is more than proportional, so
that now s′ exceeds TLB + ε|I ′|. If s already exceeds TLB + ε|I|, then “add” a gadget
of suitable size corresponding to the TLB, to obtain an equivalent instance 〈I ′, s′〉. This
increases the input size faster than it boosts the optimum value of I ′, so that now s′

exceeds TLB + ε|I ′| by only a constant, say c1. Use the hypothesized fpt algorithm for
Q(ε) with input 〈I ′, c1〉 to correctly decide the original question.

Rather than proving the details for each item separately, we use this proof sketch
to establish a more general theorem (Theorem 4 below) which automatically implies
items 1 through 10 above. We first need some definitions.

Definition 3 (Dense Set) Let Q = {I , S, V, opt} be an NPO problem. A set of in-
stances I ′ ⊆ I is said to be dense with respect to a set of conditions C if there exists
a constant c ∈ N such that for all closed intervals [a, b] ⊆ R+ of length |b − a| ≥ c,
there exists an instance I ∈ I ′ with |I| ∈ [a, b] such that I satisfies all the conditions
in C. Further, if such an I can be found in polynomial time (polynomial in b), then I ′

is said to be dense poly-time uniform with respect to C.

For example, for the MAXIMUM ACYCLIC SUBGRAPH problem, the set of all oriented
digraphs is dense (poly-time uniform) with respect to the condition: opt(G) = |E(G)|.

We also need the notion of a partially additive NP-optimization problem.

Definition 4 (Partially Additive Problems) An NPO problem Q = {I , S, V, opt} is
said to be partially additive if there exists an operator + which maps a pair of instances
I1 and I2 to an instance I1 + I2 such that



1. |I1 + I2| = |I1|+ |I2|, and
2. opt(I1 + I2) = opt(I1) + opt(I2).

A partially additive NPO problem that also satisfies the following condition is said to
be additive in the framework of Khanna, Motwani et al [4]: there exists a polynomial-
time computable function f that maps any solution s of I1 + I2 to a pair of solutions s1
and s2 of I1 and I2, respectively, such that V (I1 + I2, s) = V (I1, s1) + V (I1, s2).

For many graph-theoretic optimization problems, the operator + can be interpreted
as disjoint union. Then the problems MAX CUT, MAX INDEPENDENT SET-B, MINI-
MUM VERTEX COVER, MINIMUM DOMINATING SET, MAXIMUM DIRECTED ACYCLIC
SUBGRAPH, MAXIMUM DIRECTED CUT are partially additive. For other graph-theoretic
problems, one may choose to interpret + as follows: given graphs G and H , G + H
refers to a graph obtained by placing an edge between some (possibly arbitrarily cho-
sen) vertex of G and some (possibly arbitrarily chosen) vertex of H . The MAX PLA-
NAR SUBGRAPH problem is partially additive with respect to both these interpretations
of +. For boolean formulae φ and ψ in conjunctive normal form with disjoint sets of
variables, define + as the conjunction φ∧ψ. Then the MAX SAT problem is easily seen
to be partially additive.

Let Q = {I , S, V,max} be an NP-maximization problem with tight lower bound
f : N → N and tight upper bound g : N → N. We assume that both f and g are
increasing and satisfy the following conditions

P1 For all a, b ∈ N, f(a+ b) ≤ f(a) + f(b) + c∗, where c∗ is a constant (positive or
negative),

P2 There exists n0 ∈ N and r ∈ Q+ such that g(n)− f(n) > rn for all n ≥ n0.

Property P1 is satisfied by linear functions (f(n) = an + b) and by some sub-linear
functions such as

√
n, log n, 1

n . Note that a super-linear function cannot satisfy P1.
Define R to be the set

R = {r ∈ Q+ : g(n)− f(n) > rn for all n ≥ n0},

and p = supR. For 0 < ε < p, define Q(ε) as follows

Q(ε) = {(I, k) : I ∈ I and max(I) ≥ f(|I|) + ε|I|+ k}.

Note that for 0 < ε < p, the function h defined by h(n) = g(n)− f(n)− εn is strictly
increasing, and h(n) > 0 ∀n ≥ n0 ∈ N.

Theorem 4. Let Q = {I , S, V,max} be a polynomially bounded NP-maximization
problem such that the following conditions hold.

1. Q is partially additive.
2. Q has a tight lower bound (TLB) f , which is increasing and satisfies condition
P1. The infinite family of instances I ′ witnessing the tight lower bound is dense
poly-time uniform with respect to the condition max(I) = f(|I|).

3. Q has a tight upper bound (TUB) g, which with f satisfies condition P2. The infinite
family of instances I ′ witnessing the tight upper bound is dense poly-time uniform
with respect to the condition max(I) = g(|I|).



4. The underlying decision problem Q̃ of Q is NP-hard.

For 0 < ε < p, define Q(ε) to be the following parameterized problem

Q(ε) = {(I, k) : max(I) ≥ f(|I|) + ε|I|+ k}

where p = supR. If Q(ε) is FPT for any 0 < ε < p, then P = NP.

Proof. Suppose that for some 0 < ε < p, the parameterized problem Q(ε) is fixed
parameter tractable and let A be an fpt algorithm for it with run timeO(t(k)poly(|I|)).
We will use A to solve the underlying decision problem of Q in polynomial time.

Let (I, s) be an instance of the decision version of Q. Then (I, s) is a YES-instance
if and only if max(I) ≥ s. We consider three cases and proceed as described below.

Case 1: s ≤ f(|I|).
Since max(I) ≥ f(|I|), we answer YES.

Case 2: f(|I|) < s < f(|I|) + ε|I|.
In this case, we claim that we can transform the input instance (I, s) into an ‘equiv-

alent’ instance (I ′, s′) such that

1. f(|I ′|) + ε|I ′| ≤ s′.
2. |I ′| = poly(|I|).
3. opt(I) ≥ s if and only if opt(I ′) ≥ s′.

This will show that we can, without loss of generality, go to Case 3 below directly. Add
a TUB instance I1 to I . Define I ′ = I + I1 and s′ = s + g(|I1|). Then it is easy to
see that max(I) ≥ s if and only if max(I ′) ≥ s′. We want to choose I1 such that
f(|I ′|) + ε|I ′| ≤ s′. Since |I ′| = |I|+ |I1| and s′ = s+ g(I1), and since f(|I|) < s, it
suffices to choose I1 satisfying

f(|I|+ |I1|) + ε|I|+ ε|I1| ≤ f(|I|) + g(|I1|)

By Property P1, we have f(|I|+ |I1|) ≤ f(|I|) + f(|I1|) + c∗, so it suffices to satisfy

f(|I1|) + c∗ + ε|I|+ ε|I1| ≤ g(|I1|)

By Property P2 we have g(|I1|) > f(|I1|) + p|I1|, so it suffices to satisfy

c∗ + ε|I| ≤ (p− ε)|I1|

Such an instance I1 (of size polynomial in |I|) can be chosen because 0 < ε < p, and
because the tight upper bound is polynomial-time uniform dense.

Case 3: f(|I|) + ε|I| ≤ s
In this case, we transform the instance (I, s) into an instance (I ′, s′) such that

1. f(|I ′|) + ε|I ′|+ c1 = s′, where 0 ≤ c1 ≤ c0 and c0 is a fixed constant.
2. |I ′| = poly(|I|).
3. max(I ′) ≥ s′ if and only if max(I) ≥ s.



We then run algorithm A with input (I ′, c1). Algorithm A answers YES if and only
if max(I ′) ≥ s′. By condition 3 above, this happens if and only if max(I) ≥ s. This
takes time O(t(c1) · poly(|I ′|)).

We want to obtain I ′ by adding a TLB instance I1 to I . What if addition of any
TLB instance yields an I ′ with s′ < f(I ′) + ε|I ′|? In this case, s must already be
very close to f(|I|) + ε|I|; the difference k , s − f(|I|) − ε|I| must be at most
εd + c∗, where d is the size of the smallest TLB instance I0. (Why? Add I0 to I to
get s + f(d) < f(|I| + d) + ε(|I| + d); applying property P1, we get s + f(d) <
f(|I|) + f(d) + c∗ + ε|I| + εd, and so k < c∗ + εd.) In such a case, we can use the
fpt algorithm A with input (I, k) directly to answer the question “Is max(I) ≥ s?” in
time O(t(εd+ c∗) · poly(|I|)).

So now assume that k ≥ c∗+εd, and it is possible to add TLB instances to |I|. Since
f is an increasing function, there is a largest TLB instance I1 we can add to I to get I ′

while still satisfying s′ ≥ f(I ′) + ε|I ′|. The smallest TLB instance bigger than I1 has
size at most |I1|+ c, where c is the constant that appears in the definition of density. We
therefore have the following inequalities

f(|I ′|) + ε|I ′| ≤ s′ < f(|I ′|+ c) + ε(|I ′|+ c).

Since f is increasing and satisfies property P1, we have [f(|I ′|+ c) + ε(|I ′|+ c)] −
[f(|I ′|) + ε|I ′|] ≤ f(c) + c∗ + εc , c0, and hence s′ = f(|I ′|) + ε|I ′| + c1, where
0 ≤ c1 ≤ c0. Note that c0 is a constant independent of the input instance (I, s). Also,
since Q is a polynomially bounded problem, |I1| is polynomially bounded in |I|.

Remark. Note that there are some problems, notably MAX 3-SAT, for which the con-
stant c0 in Case 3 of the proof above, is 0. For such problems, the proof of Theorem 4
actually proves that the problem Q′ = {(I, k) : max(I) ≥ f(|I|) + ε|I|} is NP-hard.
But in general, the constant c0 ≥ 1 and so this observation cannot be generalized.

We can extend Theorem 4 to minimization problems. For a minimization problem
Q = {I , S, V,min}, we need the tight lower bound f : N → N and tight upper bound
g : N → N to be increasing functions and satisfy the following conditions

P3 For all a, b ∈ N, g(a+ b) ≤ g(a) + g(b) + c∗, where c∗ is a constant,
P4 There exists r ∈ Q+ such that g(n)− f(n) > rn for all n ≥ n0 for some n0 ∈ N.

Define R to be the set

R = {r ∈ Q+ : g(n)− f(n) > rn for all n ≥ n0},

and p = sup R. For 0 < ε < p, define Q(ε) as follows

Q(ε) = {(I, k) : I ∈ I and min(I) ≤ g(|I|)− ε|I| − k}.

For minimization problems, we have the following

Theorem 5. Let Q = {I , S, V,min} be a polynomially bounded NP-minimization
problem such that the following conditions hold.

1. Q is partially additive.



2. Q has a tight lower bound (TLB) f such that the infinite family of instances I ′

witnessing the tight lower bound is dense poly-time uniform with respect to the
condition min(I) = f(|I|).

3. Q has a tight upper bound (TUB) g which is increasing, satisfies condition P3, and
with f satisfies P4. The infinite family of instances I ′ witnessing the tight upper
bound is dense poly-time uniform with respect to the condition min(I) = g(|I|).

4. The underlying decision problem Q̃ of Q is NP-hard.

For 0 < ε < p, define Q(ε) to be the following parameterized problem

Q(ε) = {(I, k) : I ∈ I and min(I) ≤ g(|I|)− ε|I| − k}

where p = supR. If Q(ε) is FPT for any 0 < ε < p, then P = NP.

The proof of this is similar to that of Theorem 4 and is omitted.

5 Conclusion

We have shown that every problem in MAX SNP has a lower bound on the optimal
solution size that is unbounded and that the above guarantee question with respect to
that lower bound is in FPT. We have also shown that the TLB(I)+ ε · |I|+k question is
hard for a general class that includes a number of NP-maximization problems. However
we do not know the parameterized complexity of tight lower bound + k questions for
most NPO problems. In particular, apart from MAX SAT, MAX c-SAT and LINEAR
ARRANGEMENT, this question is open for the rest of the problems stated in Theorem 3.
It would be interesting to explore the parameterized complexity of these problems and
above guarantee problems in general.
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