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Abstract

We give improved parameterized algorithms for two “edge” problems MAXCUT and MAXDAG, where the solution sought is
a subset of edges. MAXCUT of a graph is a maximum set of edges forming a bipartite subgraph of the given graph. On the other
hand, MAXDAG of a directed graph is a set of arcs of maximum size such that the graph induced on these arcs is acyclic. Our
algorithms are obtained through new kernelization and efficient exact algorithms for the optimization versions of the problems.
More precisely our results include:

(i) a kernel with at most αk vertices and βk edges for MAXCUT. Here 0 < α � 1 and 1 < β � 2. Values of α and β depends on
the number of vertices and the edges in the graph;

(ii) a kernel with at most 4k/3 vertices and 2k edges for MAXDAG;
(iii) an O∗(1.2418k) parameterized algorithm for MAXCUT in undirected graphs. This improves the O∗(1.4143k)1 algorithm

presented in [E. Prieto, The method of extremal structure on the k-maximum cut problem, in: The Proceedings of Computing:
The Australasian Theory Symposium (CATS), 2005, pp. 119–126];

(iv) an O∗(2n) algorithm for optimization version of MAXDAG in directed graphs. This is the first such algorithm to the best of
our knowledge;

(v) an O∗(2k) parameterized algorithm for MAXDAG in directed graphs. This improves the previous best of O∗(4k) presented
in [V. Raman, S. Saurabh, Parameterized algorithms for feedback set problems and their duals in tournaments, Theoretical
Computer Science 351 (3) (2006) 446–458];

(vi) an O∗(16k) parameterized algorithm to determine whether an oriented graph having m arcs has an acyclic subgraph with
at least m/2 + k arcs. This improves the O∗(2k) algorithm given in [V. Raman, S. Saurabh, Parameterized algorithms for
feedback set problems and their duals in tournaments, Theoretical Computer Science 351 (3) (2006) 446–458].

In addition, we show that if a directed graph has minimum out degree at least f (n) (some function of n) then DIRECTED

FEEDBACK ARC SET problem is fixed parameter tractable. The parameterized complexity of DIRECTED FEEDBACK ARC SET is
a well-known open problem.

* Corresponding author.
E-mail addresses: vraman@imsc.res.in (V. Raman), saket@imsc.res.in (S. Saurabh).

1 The O∗ notation suppresses polynomial terms. Thus we write O∗(T (x)) for a time complexity of the form O(T (x)) · poly(|x|) where
T (x) grows exponentially with |x|, the input size. See [G. Woeginger, Exact algorithms for NP-hard problems: A survey, in: Combinatorial
Optimization—Eureka! You Shrink! in: Lecture Notes in Comput. Sci., vol. 2570, 2003, pp. 185–207] for a detailed discussion on this.
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1. Introduction

Parameterized Complexity theory is a recently devel-
oped framework for a refined analysis of hard algorith-
mic problems. For decision problems with input size n,
and a parameter k (which typically, and in all the prob-
lems we consider in this paper, is the solution size), the
goal in parameterized algorithms is to design an exact
algorithm with runtime f (k)nO(1) where f is a function
of k alone, against a trivial nk+O(1) algorithm. Problems
having such an algorithm is said to be fixed parameter
tractable (FPT), and such algorithms are practical when
small parameters cover practical ranges. The book by
Downey and Fellows [3] provides a good introduction
to the topic of parameterized complexity. For recent de-
velopments see books by Flum and Grohe [5] and Nie-
dermeier [15].

An aspect of parameterized complexity theory that
has gained importance more recently is its close connec-
tion to obtaining efficient exact exponential algorithms
for optimization problems. Recent years have seen a lot
of growing interest in the field and have led to the devel-
opment of fast exponential time algorithms for various
problems, including SATISFIABILITY [12,22], COLOR-
ING [4,2,1,20], MAXIMUM INDEPENDENT SET [21,6],
DOMINATING SET [8,9], ODD CYCLE TRANSVERSAL

[2,20] and many others. See recent surveys by Fomin et
al. [7] and Woeginger [23] for an overview.

In [19,20] it is shown that if we have a fixed para-
meter algorithm for a problem whose runtime satisfies
certain properties, then this algorithm can be turned into
an exact algorithm for the optimization version, run-
ning in time better than the trivial brute force algorithm.
This showed a very clear connection between the para-
meterized and exact algorithms. Here we demonstrate
work in the other direction; we use exact algorithms
for optimization versions to develop fast parameterized
algorithms, using efficient kernelization a well-known
method for obtaining parameterized algorithms.

The main idea of kernelization is to replace a given
instance (I, k) by a simpler instance (I ′, k′) using some
data reduction rules in polynomial time such that (I, k)

is an yes instance if and only if (I ′, k′) is an yes in-
stance and |I ′| is bounded by a function of k alone. The
reduced instance, I ′, is called the kernel of the prob-
lem. In this paper we first give improved kernelization
for MAXCUT and MAXDAG problems. For both these

problems, a kernel of size 2k [14,18] was known for the
number of edges (m � 2k). Prieto [17] gave a kernel for
MAXCUT with k vertices and 2k edges.

In Section 2, we first give a kernel for MAXCUT
having αk vertices and βk edges where α and β are
at most 1 and 2, respectively. As the number of edges
increases in the graph, β becomes closer to 2 while α

gets closer to 0. Then we use known exact algorithms
for the optimization version of MAXCUT problem on
an “appropriate” sized kernel and obtain an improved
fixed parameter tractable algorithm for MAXCUT run-
ning in time O∗(1.2418k). This improves the previously
known bound of O∗(1.4143k) given in [17].

Section 3 deals with the parameterized and optimiza-
tion version of the MAXDAG problem. We first give
an algorithm for an optimization version of MAXDAG
problem. More precisely, given a directed graph G =
(V ,A) on n vertices, we give an exact algorithm with
running time O∗(2n), to find a maximum sized subset of
arcs D ⊆ A such that G′ = (V ,D) is a directed acyclic
graph. This is the first such algorithm to the best of our
knowledge. Then we give improved parameterized algo-
rithms for MAXDAG and its variants as applications of
the exact algorithm developed for its optimization ver-
sion. We first develop a kernel of size at most 4k/3 for
the number of vertices for MAXDAG. Then applying
the O∗(2n) time algorithm for the optimization version
on this kernel, we obtain an O∗(24k/3) algorithm im-
proving the previous O∗(4k) [18] algorithm. We further
improve this to O∗(2k) algorithm using better branch-
ing technique. Then we consider a variant of MAXDAG
known as “ABOVE GUARANTEE MAXDAG” problem.
Here, the problem is to determine whether an oriented
graph having m arcs has an acyclic subgraph with at
least m/2 + k arcs. We give an O∗(16k) parameter-
ized algorithm for this problem, improving the previous
known bound of O∗(2k2

) [18]. Finally, we show that the
DIRECTED FEEDBACK ARC SET (DFAS), where given
a directed graph G = (V ,A) the problem is to deter-
mine whether there exists k arcs whose deletion makes
the graph acyclic, is fixed parameter tractable when the
graph has minimum out-degree or in-degree at least
f (n) (some function of n). The parameterized complex-
ity of DFAS in general directed graphs is a well-known
open problem.

We conclude with some remarks and open problems
in Section 5. In the rest of the paper, we assume that n
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represents the number of vertices and m represents the
number of edges, in the given graph.

2. The parameterized MAXCUT problem

The parameterized version of the MAXCUT prob-
lem is defined as follows:

MAXCUT. Given a graph G = (V ,E) and a positive
integer parameter k determine whether there exists a
partition of the vertex set into S �= ∅ and V \S so that
the number of edges with one end point in S and the
other in V \S is at least k?

The parameterized MAXCUT problem is one of the
well studied problem and can be solved in time O∗(ck),
where c is a constant. After a long race of improvements
(e.g., [14,10,17]), the current best algorithm of Prieto
[17] takes O∗(1.4143k) time. Here, we give a simple
algorithm for parameterized MAXCUT running in time
O∗(1.2418k).

We need the following known results about exact al-
gorithms for the optimization version of MAXCUT and
the lower bound on the size of MAXCUT.

Proposition 1. (See [13].) Let G = (V ,E) be a graph
on n vertices and m edges. Then the optimization ver-
sion of MAXCUT problem on G can be solved exactly
in time O∗(2m/5.217) (with polynomial space) and in
time O∗(2m/5.769) (with exponential space).

Proposition 2. (See [22].) Let G = (V ,E) be a graph
on n vertices and m edges. Then the optimization ver-
sion of MAXCUT problem on G can be solved ex-
actly in time O∗(2ωn/3) (with exponential space). Here
ω < 2.376 is the exponent of the best matrix multiplica-
tion algorithm.

Proposition 3. (See [16].) Let G = (V ,E) be a con-
nected graph on n vertices and m edges then there exists
a cut M of G with size at least m

2 + �n−1
4 �, and such a

cut can be found in polynomial time.

Lemma 1. Let G = (V ,E) be a connected graph on n

vertices and m edges and let c = m
n

. Further assume
that G has a max-cut of size k. Then,

n � 4k + 1

2c + 1
and m � f (c, k) = (4k + 1)c

2c + 1
,

where f (c, k), when viewed as a function of c alone,
monotonically increases with c.

Proof. Since G has a maximum cut of size k, by Propo-
sition 3

k � m

2
+ n − 1

4
= cn

2
+ n − 1

4
⇒ n � 4k + 1

2c + 1

from which it follows that m � (4k + 1)c/(2c + 1). It
is easy to see that the function f (c, k) monotonically
increases with c. �

Lemma 1 gives us the following kernelization lemma.

Lemma 2. Let (G = (V ,E), k) be an instance for
MAXCUT where G is a connected graph on n vertices
and m edges. Then if (G, k) is an “yes” instance then
there exist α � 1 and β � 2 such that m � βk + 1 and
n � αk + 1.

Proof. By Proposition 3, we know that every connected
graph has a cut of size at least m

2 + �n−1
2 � and a cut of

this size can be found in polynomial time. So if k � m/2
then the answer to the instance of MAXCUT is always
yes. So, we assume that k � m/2. Prieto [17] has given a
kernel for MAXCUT with at most k vertices and at most
2k edges. Now by Lemma 1 we know that n � 4k+1

2c+1
where c = m

n
. These two together allow us to choose

α = min{1, 4
2c+1 }. By Lemma 1 we also know that m �

f (c, k) = (4k+1)c
2c+1 . Hence we can choose β = 4c

2c+1 . �
Given the problem instance (G = (V ,E), k) for pa-

rameterized MAXCUT we use Propositions 1 or 2 to
solve the problem. Using the bounds on m and n ob-
tained in Lemma 1 in terms of k and c = m

n
, we get the

following time complexity for the MAXCUT algorithm.

min
{
O∗(2

(4k+1)c
5.769(2c+1)

)
,O∗(2

ω(4k+1)
3(2c+1)

)}
.

For a fixed k the minimum is obtained by setting c =
4.6 and the bound is O∗(20.3124k) which is O∗(1.242k).
This gives us the following theorem.

Theorem 1. Given a graph G = (V ,E) and a posi-
tive integer k, we can determine whether there exists
MAXCUT of size at least k (and find one if exists) in
O∗(1.2418k) time.

3. Parameterized MAXDAG problem and its above
guarantee version

In this section we first develop an exact algorithm
for the optimization version of MAXDAG. DIRECTED

FEEDBACK ARC SET problem is the dual of the opti-
mization version of MAXDAG problem. More precisely
the problem statement is:
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DIRECTED FEEDBACK ARC SET (DFAS). Given a
directed graph G(V,A), find a set of arcs F ⊆ A of min-
imum size such that G − F is a directed acyclic graph.

Given an ordering π of vertices of G, if there is an
arc (i, j) such that π(i) < π(j) then we call it a for-
ward arc, else we call it a backward arc. Given a directed
graph G = (V ,A), DFAS can also be viewed as linear
ordering of vertices such that the number of backward
arcs is minimized. Or equivalently:

DIRECTED FEEDBACK ARC SET (DFAS). Given a
directed graph G(V,A), find a permutation π :V →
{1,2, . . . , |V |} such that

∑
(e=(u,v)∈A, π(u)>π(v)) 1 is

minimized.

Given a permutation π , let s(π) denote the number
of backward arcs with respect to the permutation π .
Our dynamic programming algorithm is based on the
fact that minimum feedback arc set possess an optimal
substructure. Given a graph G = (V ,E), for a subset
V ′ ⊆ V , by G[V ′] we mean the subgraph of G induced
on V ′. Let X(S) denote the number of backward arcs in
an optimal ordering minimizing backward arcs on the
graph G[S] where S ⊆ V . Then X(S) is recursively de-
fined as follows:

X(S) = min
u∈S

{
X(S − u) +

∑
((u,v)∈A & v∈(S−u))

1
}
. (1)

The correctness of the above recurrence is easy to ver-
ify. From now on by the phrase optimal permutation we
mean a permutation π such that the number of back-
ward arcs is minimized.

3.1. Optimization version

Now we give our algorithm FASD to find a minimum
sized directed feedback arc set. The detailed algorithm
is presented in Fig. 1.

We have a multi-dimensional array Y of size 2n × 2
which for every subset S ⊆ V stores the value of an op-
timum permutation and a set of vertices which are possi-
ble last vertices of optimal permutations for the induced
graph G[S]. More precisely, given a subset S ⊆ V , we
have:

– Y [S,1] = X(S),
– Y [S,2] = {v | v ∈ V such that X(S) is minimized

in Eq. (1)} or set of vertices which are possible last
vertices in optimal permutation for G[S].

Algorithm FASD(G)

Input: A directed graph G.
Output: Size of a minimum feedback arc set of G.

Step 1: Let Y be a 2n × 2 multi-dimensional array indexed from 0
to 2n − 1, initialized to Y [S,1] = ∞, Y [S,2] = 0 for all subsets
S ⊆ V and S �= ∅. Y [∅,1] = Y [∅,2] = 0.

Step 2: for S ⊆ V enumerated in increasing order of cardinality do
Step 3: For every vertex u ∈ V − S:

Let P = Y [S,1] + ∑
((u,v)∈A & v∈(S−u)) 1.

Step 4a: If P = Y [S ∪ {u},1] then
(i) Y [S ∪ {u},2] = Y [S ∪ {u},2] ∪ {u}.

Step 4b: If P < Y [S ∪ {u},1] then
(i) Y [S ∪ {u},1] = P .

(ii) Y [S ∪ {u},2] = u.
Step 5: return Y [V,1].

Fig. 1. Exact algorithm for finding a minimum size feedback arc set
in a directed graph.

The correctness of the algorithm follows from Eq. (1).
To see the time complexity of the algorithm observe that
for every subset S ⊆ V the algorithm takes O(n) time.
This gives the following theorem:

Theorem 2. Let G = (V ,E) be a directed graph with n

vertices and m arcs. Then the size of a minimum feed-
back arc set in G can be found in O∗(2n) time and
O∗(2n) space.

In fact we can also count all optimal permutations in
the same time as finding the size of an optimal permuta-
tion by keeping an extra entry Y [S,3] for every S ⊆ V

and making some simple modifications in algorithm
FASD. Y [S,3] stores the number of optimal permutation
for G[S]. Initialize Y [S,3] = 0 for all S ⊆ V and S �= ∅
and Y [∅,3] = 1. Whenever P = Y [S ∪{u},1] in Step 4a
of FASD then do Y [S ∪{u},3] = Y [S ∪{u},3]+Y [S,3]
and if P < Y [S ∪ {u},1] in Step 4b of FASD then do
Y [S ∪ {u},3] = Y [S,3]. The value in Y [V,3] gives us
the total number of optimal permutations for G.

Theorem 3. Let G = (V ,E) be a directed graph with n

vertices and m arcs. Then we can count the number of
minimum sized feedback arc sets in G in O∗(2n) time
and O∗(2n) space.

Observe that if we actually want an optimal permu-
tation then we can obtain this by following the values
stored at Y [S,2]. We start from Y [V,2], which stores a
set of vertices which are last vertices of optimal permu-
tations for G, and trace back following the list stored in
Y [S,2]. Suppose we want to enumerate all optimal per-
mutations. We can do this recursively by trying every
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vertex v in Y [V,2] as the last vertex of an optimal per-
mutation and then looking for an optimal permutations
of G[V − {v}]. Observe that after we have filled the ar-
ray in the algorithm FASD(G), we can enumerate all
optimal permutations of G in polynomial delay.

Theorem 4. Let G = (V ,E) be a directed graph with
n vertices and m arcs. Then all the permutations π of
V corresponding to minimum size feedback arc sets in
G can be enumerated in O∗(2n + Z) time where Z is
the total number of such permutations for G. After ini-
tial O∗(2n) time to find an optimal permutation, every
other optimal permutation is enumerated after polyno-
mial delay.

In Theorems 6 and 3, we used an array of size
O∗(2n) time to find an optimal permutation for G. We
can reduce the exponential space requirement to find a
minimum size feedback arc set or to count all minimum
size feedback arc sets to polynomial space at the ex-
pense of increased running time. The usual trick is to
apply divide and conquer paradigm to reduce the space
requirement. It has been used in [11,1] for other prob-
lems.

The idea is to guess the middle vertex v ∈ V of the
optimal permutation and recurse on all possible parti-
tions P1, P2 of V − {v} such that ‖P1| − |P2‖ � 1.
Observe that there are at most 2n such partitions and
given a partition P1, P2 either P1 or P2 could be left of
v. Hence we have at most 2n+1 possible legal partitions.
This gives us the following recurrence for the polyno-
mial space algorithm:

T (n) = 2n+1nO(1)T

(
n

2

)
.

This recurrence solves to O∗(4nnO(logn)) which gives
us the following theorem:

Theorem 5. Let G = (V ,E) be a directed graph with n

vertices and m arcs. Then the size of a minimum feed-
back arc set and total number of minimum size feedback
arc sets in G can be found in O∗(4n+o(n)) time and
polynomial space.

We remark that Theorems 6, 4 and 5 can be gen-
eralized for weighted case where every arc has been
assigned a positive real weight and the objective is to
find a maximum weight arc induced acyclic subgraph
or to count or enumerate all the maximum weight arc
induced acyclic graphs. We state the following theorem
without proof.

Theorem 6. Let G = (V ,E) be a directed graph with
n vertices and m arcs and let w be a weight function
w :A → R

+. Then

(i) a minimum weight feedback arc set can be found
in O∗(2n) time and O∗(2n) space;

(ii) total number of minimum weight feedback arc set
can be counted in O∗(2n) time and O∗(2n) space;

(iii) all the minimum weight feedback arc set can be
enumerated in O∗(2n + Z) time where Z is the
total number of minimum weight feedback arc set
of G. After initial O∗(2n) time to find a mini-
mum weight feedback arc set, every other minimum
weight feedback arc set is enumerated after poly-
nomial delay.

Now we give various applications of Theorem 6 in
obtaining improved parameterized algorithms for vari-
ants of MAXDAG.

3.2. Parameterized MAXDAG

The parameterized version of MAXDAG is defined
as follows:

MAXDAG. Given a directed graph G = (V ,A) and a
positive integer parameter k, determine whether there
exists a set of at least k arcs D ⊆ A such that G′ =
(V ,D) is a directed acyclic graph.

In this section, we first find a kernel for MAXDAG
as a function of n and then give several applications of
the algorithm for parameterized versions of MAXDAG.

3.2.1. Kernel for MAXDAG
Given a graph G = (V ,A), we preprocess it by doing

the following steps:

(R0) If k � |A|/2 then answer YES.
(R1) Remove vertices of indegree or outdegree 0.
(R2) Let v be a vertex of indegree = outdegree = 1

having u as the inneighbor and w as its outneigh-
bor. Then remove v and add the arc (u,w).

By Lemma 9 of [18], we know that every directed
graph has an acyclic subgraph of size at least �|A|/2�
and can be obtained in polynomial time. This ensures
the soundness of (R0). The soundness of (R1) and
(R2) follows from following lemma which is easy to
show.
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Lemma 3. Let G = (V ,A) be a directed graph and
G′ = (V ′,A′) be the directed graph obtained after ap-
plying one reduction step. Then

(1) if we apply (R1) on v then G has an acyclic sub-
graph of size k if and only if G′ has an acyclic
subgraph of size k − deg(v). Here the deg(v) is ei-
ther an indegree or an outdegree of v depending on
whether v is a vertex of outdegree 0 or indegree 0.

(2) if we apply (R2) on v then G has an acyclic sub-
graph of size k if and only if G′ has an acyclic
subgraph of size k − 1.

Lemma 3 gives us the following kernelization lemma.

Lemma 4. Let (G = (V ,A), k) be an “yes” instance of
MAXDAG and (G′ = (V ′,A′), k′) be the reduced in-
stance of (G = (V ,A), k) after applying the rules (R0)–
(R2) until no longer possible. Then |V ′| � 4k′/3.

Proof. Observe that when we can not apply reduction
rules (R1) and (R2) then every vertex in G′ has total de-
gree (indegree + outdegree) at least 3. This implies that
m � 3|V ′|/2 and (R0) implies that m � 2k′. Combining
these two inequalities we get |V ′| � 4k′/3. �
3.2.2. Parameterized algorithm for MAXDAG

The following corollary follows from Theorem 6 and
Lemma 4.

Corollary 1. Let G = (V ,A) be a directed graph and k

be a positive integer then we can determine whether G

has an acyclic subgraph of size k or not in O∗(24k/3) =
O∗(2.5198k).

Corollary 1 already improves the previous result of
O∗(4k) presented in [18]. We further improve this to
O∗(2k) by obtaining a kernel with at most k vertices
after a branching technique.

We give two more reduction rules.

(R3) Let v be a vertex of indegree 1 and outde-
gree r (> 1) having u as the inneighbor and
w1,w2, . . . ,wr as its outneighbors. Then remove
v and add arcs (u,wi), 1 � i � r .

(R4) Let v be a vertex of outdegree 1 and inde-
gree r (> 1) having w as the outneighbor and
u1, u2, . . . , ur as its inneighbors. Then remove v

and add arcs (ui,w), 1 � i � r .

Lemma 5. Let G = (V ,A) be a directed graph and v

be a vertex of indegree 1 (or outdegree 1). Let G′ be

Algorithm MADS(G, k,D)

Input: A directed graph G = (V ,A).
Output: A subset of arcs D ⊆ A of size at least k such that the induced
subgraph on D is acyclic if exists or NO otherwise.

Step 0: If k � |A|/2 then find the set of arcs of size |A|/2 forming an
acyclic subgraph in polynomial time and return it as D.

Step 1: Obtain a graph (G′, k′) by applying reduction rules (R1) and
(R2) recursively on (G, k). Now k ← k′ .

Step 2: If there exists a vertex v of indegree 1 with inneighbor u then
branch as in Steps 2a and 2b and return the solution of larger size.
Step 2a: D ← D ∪ {(u, v)}. Apply (R3) on G′ and call

MADS(G′, k − 1,D).
Step 2b: D ← D ∪ {(v,wi) | (v,wi) ∈ A}. Call MADS(G −

{v}, k − outdeg(v),D).
Step 3: If there exists a vertex v of indegree 1 with outneighbor w

then branch as in Steps 3a and 3b and return the solution of larger
size.
Step 3a: D ← D ∪ {(u, v)}. Apply (R4) on G′ and call

MADS(G′, k − 1,D).
Step 3b: D ← D ∪ {(wi , v) | (wi , v) ∈ A}. Call MADS(G −

{v}, k − indeg(v),D).
Step 4: If |V ′| > k then return NO else apply Theorem 6 on G and

obtain a D and return it.

Fig. 2. Improved parameterized algorithm for MAXDAG.

the graph obtained from G by applying reduction rule
(R3) [(R4)]. Then, G has an acyclic subgraph of size k

containing (u, v)[(v,w)] if and only if G′ has an acyclic
subgraph of k − 1.

Proof. Let D ⊆ A of size at least k containing (u, v)

such that G(V,D) is acyclic. Let B = {(u, v), (v,w1),

. . . , (v,wl)} be the set of arcs in D which contain
v as one of its endpoint. Then take D′ = D − B +
{(u,w1), . . . , (v,wl)} as an acyclic subgraph of size at
least k − 1 for G′ = G − {v}.

Let D′ be the subset of arcs of size at least k − 1 of
G′ = G − {v} such that it forms an acyclic subgraph
of G′. Consider the topological ordering of G′′(V −
{v},D′). Now place the vertex v on the right side of
u. Let X = {(u,wi) | (u,wi) ∈ D′, wi outneighbor of
v}. Now take D = D′ − X + {(v,wi) | (u,wi) ∈ X} +
(u, v) as an acyclic subgraph of size k containing (u, v)

in G. �
We conjure all that we have developed so far and

use it to give an improved algorithm for parameterized
MAXDAG. The algorithm is given in Fig. 2.

Now we argue about the correctness and time com-
plexity of the algorithm. Correctness of Steps 0 and 1
is clear. In Steps 2 and 3 we branch on the arc (u, v)

and (v,w), respectively. In each of these steps we fur-
ther branch on two cases that is either (u, v) ∈ D or
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(u, v) /∈ D and return the larger size solution. Correct-
ness of Steps 2a and 3a follows from Lemma 5. In
Steps 2b and 3b, we are looking for an acyclic sub-
graph without (u, v) or (v,w). This implies that (u, v)

or (v,w) is part of the directed feedback arc set and
hence can be deleted from G which makes v either a
vertex of indegree or outdegree 0. This implies that there
exists a solution D of size k containing all out arcs or in
arcs of v.

Observe that when we apply either Step 2 or Step 3
the total degree of every vertex v is at least 3. Hence,
after we branch in Steps 2a and 3a the parameter k re-
duces by 1 while in Steps 2b and 3b the parameter k at
least reduces by 2. This gives the following recurrence
on the parameter k:

T (k) � T (k − 1) + T (k − 2). (2)

When we reach Step 4 of the algorithm then every ver-
tex of G has indegree as well as outdegree at least 2 and
hence |A| � 2|V |. By Step 0 we know that k � |A|/2.
This gives us that

2|V | � |A| � 2k ⇒ |V | � k.

This implies that we have obtained a graph G with at
most k vertices and 2k arcs. Now we apply Theorem 6
on G and solve the maximum acyclic subgraph problem
in O∗(2k) time. The recurrence 2 solves to O∗(1.62k)

and hence the running time of the algorithm is bounded
by O∗(2k). This gives us the following theorem:

Theorem 7. Let G = (V ,A) be a directed graph and k

be a positive integer. We can determine whether G has
an acyclic subgraph of size k or not in O∗(2k) time.

3.3. Above guarantee MAXDAG

Now we apply Theorem 6 to obtain an improved pa-
rameterized algorithm for a special version of MAXDAG.

We call a directed graph oriented directed graph if
there is at most one directed arc between every pair of
vertices. The following proposition was shown in [18]
about the size of maximum acyclic subgraph in an ori-
ented directed graph.

Proposition 4. (See [18].) Any oriented directed graph
G = (V ,E) with m arcs and n vertices, with the un-
derlying undirected graph having c components, has an
acyclic subgraph with at least m

2 + 1/2�(n− c)/2� arcs
and such a subgraph can be found in O(n3) time.

This was used to give a fixed parameter algorithm of
time complexity O∗(2k2

) for the question ‘whether the

given oriented directed graph has a set of at least m
2 + k

arcs that forms an acyclic subgraph’. Call this problem
ABOVE GUARANTEE MAXDAG.

Here we give an algorithm of time complexity
O∗(16k) as an application of Theorem 6. First, find all
the c components of the underlying undirected graph
corresponding to G. If k � 1/2�(n − c)/2�, then G

has an acyclic subgraph with at least m
2 + k arcs, else

k > 1/2�(n − c)/2� � (n − c)/4 − 1 or n � 4k + 4 + c.
Thus ni , the number of vertices in the ith component is
at most n − (c − 1) � 4k + 5. So now apply the Theo-
rem 6 on every connected component containing at most
4k + 5 vertices. This gives us the following theorem:

Theorem 8. Let G be an oriented directed graph on n

vertices and m arcs. Then given an integer k, we can
determine whether or not G has at least m

2 + k arcs
which forms an acyclic subgraph in O∗(16k) time.

3.4. Directed graphs with minimum outdegree f (n)

In this section we show that if the minimum outde-
gree or indegree of a graph is at least f (n), for any
function of n, then the directed feedback arc set problem
is fixed parameter tractable in such graphs. Here f (n)

could be as slow growing function as log∗ n. Our al-
gorithm depends on the following combinatorial lemma
which relates the size of a minimum feedback arc set
and the minimum outdegree or indegree of the graph.

Lemma 6. Let G = (V ,A) be a directed graph with
minimum outdegree t (or minimum indegree t). Then
any feedback arc set of G must contain at least

(
t+1

2

)
arcs.

Proof. Without loss of generality, assume that the min-
imum outdegree of the graph is at least t . Let F be any
feedback arc set of G. Then by definition of F , G − F

is a directed acyclic graph and hence there exists a topo-
logical ordering of G − F . Let this ordering of vertices
be P = v1, v2, . . . , vn. We know that for every arc (u, v)

of G−F , u occurs before v in the ordering P . Let S be
the set of the last t vertices of P . Since vn has out de-
gree 0 in G − F , all arcs out of vn in G are part of F .
Similarly for vn−k , 0 � k � t − 1, at least t − k arcs
emanating from vn−k in G are part of F . Hence

|F | �
t−1∑
k=0

(t − k) =
(

t + 1

2

)
.

This shows that any minimum feedback arc set of G

must contain at least
(
t+1

2

)
arcs. �
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Lemma 6 directly gives a fixed parameter tractable
algorithm for the directed feedback arc set problem in
graphs with minimum outdegree or indegree f (n) by
kernelization technique. Given a graph G with mini-
mum outdegree or indegree f (n) and a positive inte-
ger k, we check whether k <

(
f (n)+1

2

)
. If k <

(
f (n)+1

2

)
then we return NO. Otherwise k �

(
f (n)+1

2

)
and hence

n � g(k) for some function g which is a function of k

alone. Now we apply Theorem 6 and solve the para-
meterized directed feedback arc set problem in the time
O∗(2g(k)). This gives the following theorem.

Theorem 9. Let G = (V ,A) be a directed graph such
that the minimum outdegree or indegree of the graph
is at least f (n), for some fixed function f . Then the
directed feedback arc set problem is fixed parameter
tractable in G.

4. Conclusion

We have given improved parameterized algorithms
for MAXCUT and MAXDAG through new kerneliza-
tion and efficient exact algorithms for their optimization
versions. For both these “edge” problems we obtain an
improved kernel by bounding n as a function of k which
is crucial for the improved algorithms. It will be inter-
esting to find some other “edge” problems where bound-
ing n, the number of vertices, as a function of k and then
using the exact algorithms for the optimization version
of these problems gives an improved parameterized al-
gorithm.
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