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Abstract. A graph is König-Egerváry if the size of a minimum vertex cover equals that of a
maximum matching in the graph. These graphs have been studied extensively from a graph-theoretic
point of view. In this paper, we introduce and study the algorithmic complexity of finding König-
Egerváry subgraphs of a given graph. In particular, given a graph G and a nonnegative integer k,
we are interested in the following questions:
1. does there exist a set of k vertices (edges) whose deletion makes the graph König-Egerváry?
2. does there exist a set of k vertices (edges) that induce a König-Egerváry subgraph?

We show that these problems are NP-complete and study their complexity from the points of view
of approximation and parameterized complexity. Towards this end, we first study the algorithmic
complexity of Above Guarantee Vertex Cover, where one is interested in minimizing the
additional number of vertices needed beyond the maximum matching size for the vertex cover.
Further, while studying the parameterized complexity of the problem of deleting k vertices to
obtain a König-Egerváry graph, we show a number of interesting structural results on matchings
and vertex covers which could be useful in other contexts.

1 Introduction

The classical notions of matchings and vertex covers have been at the center of serious study for
several decades in the area of Combinatorial Optimization [21]. In 1931, König and Egerváry
independently proved a result of fundamental importance: in a bipartite graph the size of a
maximum matching equals that of a minimum vertex cover [21]. This led to a polynomial-time
algorithm for finding a minimum vertex cover in bipartite graphs. In fact, a maximum matching
can be used to obtain a 2-approximation algorithm for the Minimum Vertex Cover problem
in general graphs, which is still the best-known constant-factor approximation algorithm for this
problem [17]. Interestingly, this min-max relationship holds for a larger class of graphs known
as König-Egerváry graphs and it includes bipartite graphs as a proper subclass. König-Egerváry
graphs will henceforth be called König graphs.

König graphs have been studied for a fairly long time from a structural point of view [2, 6, 19,
20, 32]. Both Deming [6] and Sterboul [32] gave independent characterizations of König graphs
and showed that König graphs can be recognized in polynomial time. Lovász [20] used the theory

⋆ Preliminary versions of this paper appeared in the proceedings of the 18th and 19th International Symposium
on Algorithms and Computation (ISAAC 2007 and ISAAC 2008).



of matching-covered graphs to give an excluded-subgraph characterization of König graphs that
contain a perfect matching. Korach et al. [19] generalized this and gave an excluded-subgraph
characterization for the class of all König graphs.

A natural optimization problem associated with a graph class G is the following: given a
graph G, what is the minimum number of vertices to be deleted from G to obtain a graph in G?
For example, when G is the class of empty graphs, forests or bipartite graphs, the correspond-
ing problems are Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal,
respectively. We call the vertex-deletion problem corresponding to the class of König graphs
the König Vertex Deletion problem. A set of vertices whose deletion makes a given graph
König is called a König vertex deletion set. In the parameterized setting, the parameter for
vertex-deletion problems is the solution size, that is, the number of vertices to be deleted so that
the resulting graph belongs to the given graph class.

In this paper, we define various problems related to finding König-Egerváry subgraphs and
study their algorithmic complexity from the points of view of parameterized complexity and
approximation algorithms. More precisely the problems that we study in this paper are:

1. König Vertex (Edge) Deletion. Given a graph G and a nonnegative integer k, do there
exist at most k vertices (respectively, edges) whose deletion results in a König subgraph?

2. Vertex (Edge) Induced König Subgraph. Given a graph G and a nonnegative integer k,
do there exist at least k vertices (respectively, edges) which induce4 a König subgraph?

The König Vertex Deletion and Vertex Induced König Subgraph problems (and sim-
ilarly, König Edge Deletion and Edge Induced König Subgraph) are equivalent from
the point of view of NP-completeness but differ in their approximability and parameterized
complexity.

The main technical contribution of this paper is in showing that the König Vertex Dele-
tion problem is fixed-parameter tractable. To do this, we first establish interesting structural
connections between minimum vertex covers, maximum matchings and minimum König vertex
deletion sets. Using these, we show that König Vertex Deletion is fixed-parameter tractable
when parameterized by the solution size. Note that König graphs are not hereditary, that is,
not closed under taking induced subgraphs. For instance, a 3-cycle is not König but attaching
an edge to one of the vertices of the 3-cycle results in a König graph. In fact, König Vertex
Deletion is one of the few vertex-deletion problems associated with a non-hereditary graph
class whose parameterized complexity has been studied. Another such example can be found
in [25].

One motivation for studying König subgraph problems is that the versions of König subgraph
problems when the resulting graph we look for is bipartite (i.e. replace König in the above
problem definitions by bipartite) are well studied in the area of approximation algorithms and
parameterized complexity [14, 30, 31]. König subgraph problems are natural generalizations of
bipartite subgraph problems but have not been studied algorithmically. We believe that this can
trigger explorations of other questions in König graphs.

Another motivation for studying König subgraph problems is that König Vertex Dele-
tion is closely related to a problem known as Above Guarantee Vertex Cover. The
latter is a variant of the classical Vertex Cover problem and is defined as follows: given a

4 If E′ ⊆ E is a set of edges, then the graph G[E′] induced by E′ is one whose vertex-set is the set of endpoints
of E′ and whose edge-set is the set E′.
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graph G = (V,E) and a nonnegative integer k, decide whether G has a vertex cover of size at
most µ(G) + k, where µ(G) is the size of a maximum matching of G. This problem was first
introduced by Subramanian in [33]. Note that the parameter k is the size of the solution beyond
the matching size. This parameterization is more meaningful than the standard parameterized
version of Vertex Cover where the parameter is the size of the entire solution, since in graphs
with a perfect matching the solution is at least half the number of vertices in the graph. A brute-
force algorithm for Vertex Cover that checks all vertex-subsets is a fixed-parameter algorithm
in this case. The parameterized complexity of Above Guarantee Vertex Cover was open
for quite some time and is now known to be fixed-parameter tractable due to the results in [29]
and in this paper.

This paper is organized as follows. In Section 2 we give a brief outline of parameterized
complexity, describe our notation and state some known results about König graphs. In Section 3
we show that Above Guarantee Vertex Cover is fixed-parameter tractable by reducing it
to a (fixed-parameter tractable) problem called Min 2-Cnf Sat Del (Theorem 1). We show
how to use an O(log n log log n)-approximation algorithm for Min 2-Cnf Sat Del to obtain an
approximation algorithm for Above Guarantee Vertex Cover with the same asymptotic
performance ratio (Theorem 2). In addition, we show that neither of these problems admit
constant-factor approximation algorithms unless the Unique Games Conjecture (UGC) [16]
is false (Theorem 3, Corollary 1).

Section 4 is the main technical section of the paper. Here we study the parameterized com-
plexity and approximability of König Vertex Deletion. We show that for graphs with a
perfect matching, König Vertex Deletion is fixed-parameter equivalent to Above Guar-
antee Vertex Cover. This immediately establishes the fixed-parameter tractability of König
Vertex Deletion on graphs with a perfect matching. For general graphs, we first establish
some structural connections between minimum vertex covers, maximum matchings and minimum
König vertex deletion sets. Using these, we exhibit a reduction from König Vertex Deletion
to Above Guarantee Vertex Cover, which then establishes the fixed-parameter tractability
of the former (Theorem 4). The approximability of König Vertex Deletion is similar to that
of Above Guarantee Vertex Cover. It does not admit a constant-factor approximation
algorithm unless UGC is false and can be approximated to within a factor of O(log n log log n)
(Theorem 5, Corollary 10).

In Section 5 we study vertex and edge versions of the Induced König Subgraph problem.
We show that Vertex Induced König Subgraph is unlikely to be fixed-parameter tractable
(that it is W [1]-hard) and that it is inapproximable to within a factor of O(n1−ǫ), for any ǫ >
0 (Theorem 6, Corollary 12). We also show that König Edge Induced Subgraph is NP-
complete (Theorem 7), has a constant-factor approximation algorithm (Theorem 8) and is fixed-
parameter tractable (Theorem 9). Similar to its vertex counterpart, König Edge Deletion
does not admit constant-factor approximation algorithms unless UGC is false (Corollary 13). We
conclude in Section 6 with some open problems among which is the parameterized complexity
of König Edge Deletion.

2 Preliminaries

In this section we summarize the necessary concepts concerning parameterized complexity, fix
our notation and describe some well-known properties of König graphs.
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2.1 Parameterized Complexity

A parameterized problem is a subset of Σ∗ × Z≥0, where Σ is a finite alphabet and Z≥0 is the
set of nonnegative numbers. An instance of a parameterized problem is therefore a pair (I, k),
where k is the parameter. In the framework of parameterized complexity, the running time of
an algorithm is viewed as a function of two quantities: the size of the problem instance and
the parameter. A parameterized problem is said to be fixed-parameter tractable (FPT) if there
exists a deterministic algorithm that takes as input (I, k) and decides whether it is a yes or
no-instance in time O(f(k) · |I|O(1)), where f is a function depending only on k. The class FPT
consists of all fixed-parameter tractable problems.

A parameterized problem π1 is fixed-parameter reducible to a parameterized problem π2 if
there exist functions f, g : Z≥0 → Z≥0, Φ : Σ∗ × Z≥0 → Σ∗ and a polynomial p(·) such that for
any instance (I, k) of π1, (Φ(I, k), g(k)) is an instance of π2 computable in time f(k) · p(|I|) and
(I, k) ∈ π1 if and only if (Φ(I, k), g(k)) ∈ π2. Two parameterized problems are fixed-parameter
equivalent if they are fixed-parameter reducible to each other. The basic complexity class for
fixed-parameter intractability is W [1] as there is strong evidence that W [1]-hard problems are
not fixed-parameter tractable. To show that a problem is W [1]-hard, one can exhibit a fixed-
parameter reduction from a known W [1]-hard problem to the problem at hand. For more on
parameterized complexity see [8, 9, 27].

2.2 Notation

Given a graph G, we use µ(G), β(G) and κ(G) to denote, respectively, the size of a maximum
matching, a minimum vertex cover and a minimum König vertex deletion set of G. We sometimes
use τ(G) to denote the difference β(G) − µ(G). When the graph being referred to is clear
from the context, we simply use µ, β, κ and τ . Given a graph G = (V,E) and two disjoint
vertex subsets V1, V2 of V , we let (V1, V2) denote the bipartite graph with vertex set V1 ∪ V2

and edge set {{u, v} : {u, v} ∈ E and u ∈ V1, v ∈ V2}. If B is a bipartite graph with vertex
partition L ⊎ R then we let µ(L,R) denote the size of the maximum matching of B. If M is a
matching and {u, v} ∈ M then we say that u is the partner of v in M . If the matching being
referred to is clear from the context we simply say u is a partner of v. The vertices of G that
are the endpoints of edges in the matching M are said to be saturated by M ; all other vertices
are unsaturated by M .

2.3 Properties of König Graphs

A graph G = (V,E) is said to be König if β(G) = µ(G). The following lemma follows directly
from the definition of König graphs.

Lemma 1. [6, 32] A graph G = (V,E) is König if and only if for every bipartition of V
into V1⊎V2, with V1 a minimum vertex cover of G, there exists a matching across the cut (V1, V2)
saturating every vertex of V1.

In order to show that a graph is König it is actually sufficient to demonstrate the existence
of just one bipartition of V into V1 ⊎ V2, with V1 a vertex cover of G such that there exists a
matching across the cut (V1, V2) saturating every vertex of V1.
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Lemma 2. A graph G = (V,E) is König if and only if there exists a bipartition of V into V1⊎V2,
with V1 a vertex cover of G such that there exists a matching across the cut (V1, V2) saturating
every vertex of V1.

Proof. If G is König then, by Lemma 1, there exists a bipartition V1 ⊎ V2, with V1 a minimum
vertex cover of G, such that there exists a matching across the cut (V1, V2) saturating every
vertex of V1. Conversely suppose that the vertex set of G can be partitioned as V1 ⊎ V2 such
that V1 is a vertex cover and there exists a matching M across the cut (V1, V2) saturating every
vertex of V1. We claim that in fact V1 is a minimum vertex cover and that M is a maximum
matching of G. Suppose that M ′ is a maximum matching of G and |M ′| > |M |. Since V1 is a
vertex cover, it picks up at least one endpoint from each edge of M ′. Therefore |V1| = |M | ≥ |M ′|,
a contradiction. Therefore M is indeed a maximum matching of G and since any vertex cover
of G has size at least |M |, it follows that V1 is a minimum vertex cover of G. ⊓⊔

One can test whether the graph is König using the following lemma.

Lemma 3. [12] Given a graph G on n vertices and m edges and a maximum matching of G,
one can test whether G is König in time O(n + m). If G is indeed König then one can find a
minimum vertex cover of G in this time.

Since a maximum matching can be obtained in time O(m
√

n) [34], we have

Lemma 4. Let G be a graph on n vertices and m edges. One can check in time O(m
√

n) whether
G is König and, if König, find a bipartition of V (G) into V1 ⊎ V2 with V1 a minimum vertex
cover of G such that there exists a matching across the cut (V1, V2) saturating every vertex of V1.

3 The Above Guarantee Vertex Cover Problem

In this section we show that Above Guarantee Vertex Cover is fixed-parameter tractable
and discuss its approximability. This problem plays a central role in this paper and the results
established here are used in studying the parameterized complexity and approximability of other
König subgraph problems.

Given a graph G it is clear that β(G) ≥ µ(G). Recall the definition of Above Guarantee
Vertex Cover: given a graph G and a nonnegative integer parameter k decide whether β(G) ≤
µ(G) + k. We first show that for the parameterized complexity of the Above Guarantee
Vertex Cover problem we may, without loss of generality, assume that the input graph has
a perfect matching.

Let G = (V,E) be an undirected graph and let M be a maximum matching of G. Con-
struct G′ = (V ′, E′) as follows. Define

I = V \ V [M ]

V ′ = V ∪ {u′ : u ∈ I}
E′ = E ∪ {{u′, v} : {u, v} ∈ E} ∪ {{u, u′} : u ∈ I}.

Then M ′ = M ∪ {{u, u′} : u ∈ I} is a perfect matching for G′. Note that |V (G′)| ≤ 2|V (G)|
and |E(G′)| ≤ 2|E(G)| + |V (G)|.
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Lemma 5. Let G be a graph without a perfect matching and let G′ be the graph obtained by the
above construction. Then G has a vertex cover of size µ(G) + k if and only if G′ has a vertex
cover of size µ(G′) + k.

Proof. Let M denote a maximum matching of G, I denote the set V (G) \ V [M ] and I ′ denote
the new set of vertices that are added in constructing G′. Clearly, µ(G′) = µ(G) + |I|.

(⇒) Let C be a vertex cover of G of size µ(G) + k. Define C ′ = C ∪ I ′. It is easy to see
that C ′ covers all the edges of G′. Also, |C ′| = µ(G) + k + |I ′| = µ(G′) + k.

(⇐) Let C ′ be a vertex cover of G′ of size µ(G′) + k. Define M ′ to be the set of edges of
the form {{u, u′} : u ∈ I and u′ ∈ I ′} such that both endpoints are in C ′. One can show that
C = (C ′ ∩ V [M ]) ∪ {u ∈ I : {u, u′} ∈ M ′} is a vertex cover of G of size µ(G) + k. ⊓⊔

3.1 Parameterized Complexity

We show that Above Guarantee Vertex Cover is fixed-parameter tractable by exhibiting
a fixed-parameter reduction from Above Guarantee Vertex Cover to a problem know
as Min 2-Cnf Sat Del [22]. This problem is defined as follows: given a 2-Cnf formula and
a nonnegative integer k, do there exist at most k clauses whose deletion makes the resulting
formula satisfiable? This problem is NP-complete and its parameterized complexity was open for
quite some time. Recently Razgon and O’Sullivan have shown this problem to be fixed-parameter
tractable [29].

Lemma 6. [29] Given a 2-Cnf Sat formula F on n variables and m clauses and a nonnegative
integer k, one can decide whether F has at most k clauses whose deletion makes it satisfiable
in time O(15k · k · m3). That is, the Min 2-Cnf Sat Del problem is fixed-parameter tractable
with respect to parameter k.

We now describe the reduction from Above Guarantee Vertex Cover to Min 2-Cnf
Sat Del (see [4]). Let G = (V,E) be a graph with a perfect matching P . For every vertex u ∈ V ,
define xu to be a Boolean variable. Let F(G,P ) denote the Boolean formula

F(G,P ) =
∧

(u,v)∈P

(x̄u ∨ x̄v)
∧

(u,v)∈E

(xu ∨ xv).

Note that F(G,P ) is a formula on |V | variables and at most 2|E| clauses.
The proof of the next lemma follows from that of Theorem 5.1 in [4].

Lemma 7. Let G = (V,E) be an n-vertex graph with a perfect matching P . Then G has a
vertex cover of size at most n/2 + k if and only if there exists an assignment that satisfies all
but at most k clauses of F(G,P ).

From the proof of Theorem 5.1 in [4], it also follows that given an assignment that satisfies all
but at most k clauses of F(G,P ) one can find (in polynomial time) an assignment that satisfies
all but at most k clauses of the form (x̄u∨ x̄v), where (u, v) ∈ P , that is, clauses that correspond
to the perfect matching.

Since Min 2-Cnf Sat Del can be solved in time O(15k · k ·m3), where m is the number of
clauses in the input formula, we have

Theorem 1. Given a graph G = (V,E) and a nonnegative integer parameter k, one can decide
whether β(G) ≤ µ(G)+k in time O(15k ·k·|E|3). Moreover if G has a vertex cover of size µ(G)+k
then one can find a vertex cover of this size within this time.
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Algo-Above-Guar-Vertex-Cover
Input: A graph G = (V, E).
Output: A vertex cover of G of size at most µ + O(log |V | log log |V |)(β − µ).

1. If G does not have a perfect matching, construct G′ as in Theorem 5 and set H ← G′; else set H ← G.
2. Find a perfect matching P of H and construct F(H, P ). If G did not have a perfect matching then P is the

perfect matching obtained from some maximum matching M of G as described in the construction before
Theorem 5.

3. Use the approximation algorithm for Min 2-Cnf Sat Del to obtain an O(log n log log n)-approximate solu-
tion S for F(H,P ), where n = |V (H)|.

4. Obtain a minimum vertex cover C of the König graph H \ V (S), where V (S) is the set of vertices of H
corresponding to S , that is, V (S) is the set of the endpoints of those edges in P which correspond to clauses
in S .

5. If H = G then return C ∪ V (S); else return (V (S) ∩ V (G)) ∪ (V (M) ∩ C).

Fig. 1. Approximation algorithm for Above Guarantee Vertex Cover.

3.2 Approximation Algorithm

The parameterized version of Above Guarantee Vertex Cover asks whether τ(G) ≤ k.
The optimization version of Above Guarantee Vertex Cover is the problem of finding
the minimum value of τ(G). Therefore an approximation algorithm for Above Guarantee
Vertex Cover approximates the “above-guarantee parameter” rather than the entire vertex
cover.

Klein et al. [18] have shown that Min 2-Cnf Sat Del admits a factor-O(log n log log n)
approximation algorithm, where n is the number of variables in the 2-Sat formula.

Lemma 8. [1, 18] Let F be an instance of Min 2-Cnf Sat Del with n variables. One can in
polynomial time obtain a solution that is O(log n log log n) times an optimal solution size. If we
are willing to allow randomness, we can obtain a solution that is O(

√
log n) times an optimal

solution size.

We use this algorithm and the reduction from Above Guarantee Vertex Cover to Min
2-Cnf Sat Del to obtain an O(log n log log n)-approximation algorithm for τ(G).

An outline of our approximation algorithm is as follows. Given a graph G = (V,E) we first
apply the construction described before Theorem 5, if necessary, to obtain a graph H with
a perfect matching P . Note that τ(G) = τ(H). Let F(H,P ) denote the 2-Cnf Sat formula
obtained from H and P by the construction outlined before Lemma 7. We noted that given an
assignment that satisfies all but at most k clauses of F(H,P ) one can construct an assignment in
polynomial time that satisfies all but at most k clauses of the form (x̄u∨x̄v), where (u, v) ∈ P . We
next use an O(log n log log n) approximation algorithm for Min 2-Cnf Sat which “corresponds”
to a set S of edges of the perfect matching P . The set V (S), consisting of the endpoints of those
edges in P which correspond to clauses in S, represents the vertex cover in excess of the matching
size and in the graph G \ V (S), the sizes of a minimum vertex cover and maximum matching
coincide. That is, G\V (S) is König and therefore by Lemma 4 one can obtain a minimum vertex
cover C of this graph in polynomial time. Using C and S, one can reconstruct a vertex cover
for G of the appropriate size. The algorithm is presented in Figure 1.

Theorem 2. Let G be a graph on n vertices with a maximum matching of size µ and a minimum
vertex cover of size β. Then Algo-Above-Guar-Vertex-Cover finds a vertex cover of G of
size µ(G) + O(log n log log n)(β(G) − µ(G)).
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Proof. The proof follows from the fact that the reduction from Above Guarantee Vertex
Cover to Min 2-Cnf Sat Del is cost-preserving and that there exists a factor-O(log n log log n)
approximation algorithm for the latter. ⊓⊔

Thus this algorithm approximates the deficit between the sizes of a minimum vertex cover
and a maximum matching. There exists a 2-approximation algorithm for the Vertex Cover
problem which simply includes all vertices of a maximum matching. It is a long standing open
problem to devise a polynomial time algorithm which has an approximation factor less than 2.

Our algorithm is better than any constant factor approximation algorithm for Vertex
Cover whenever

β − µ = o

(

n

log n log log n

)

and µ = Ω(n). To see this, note that a c-approximate algorithm, c > 1, outputs a solution of
size µc + (β − µ)c whereas our algorithm outputs a solution of size µ + O(α(β − µ)), where
α = log n log log n. Now if β − µ = o(n/α) and if µ = Ω(n), then our algorithm outputs a
solution of size µ + o(µ), which is better than

βc = µ + µ(c − 1) + (β − µ)c ≥ µ + Ω(µ).

One can obtain a randomized approximation algorithm for τ using the O(
√

log n)-randomized
approximation algorithm for Min 2-Cnf Sat Del, mentioned in Lemma 8, in Step 3 of the
algorithm.

3.3 Hardness of Approximation

We now show that Above Guarantee Vertex Cover and Min 2-Cnf Sat Del do not admit
constant-factor approximation algorithms if the Unique Games Conjecture (UGC) [16] is
true. In what follows, we use the abbreviation VC-PM for the Vertex Cover problem on
graphs with a perfect matching.

We make use of the following two results:

Lemma 9. [17] If UGC is true then Vertex Cover cannot be approximated to within a factor
of 2 − ǫ, for any constant ǫ > 0.

Lemma 10. [4, 35] If there exists a (2 − ǫ)-approximation algorithm for VC-PM then there
exists a (2 − ǫ/2)-approximation algorithm for Vertex Cover.

We can now prove the following.

Theorem 3. Assuming UGC to be true, the Above Guarantee Vertex Cover problem
in graphs with a perfect matching cannot be approximated to within a factor of c, for any con-
stant c > 1.

Proof. Suppose that there exists a c-approximate algorithm A for Above Guarantee Vertex
Cover on graphs with a perfect matching for some constant c > 1. By Lemmas 9 and 10, it is
sufficient to exhibit a (2− ǫ)-approximate algorithm, for some constant ǫ > 0, for VC-PM. This
would give us the desired contradiction. We show that A itself is such an algorithm and obtains
a (2 − ǫ)-approximate solution with ǫ = 2/(c + 1).
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Let G = (V,E) be a graph on 2n vertices with a perfect matching and minimum vertex cover
of size n + αn, where 1/n ≤ α ≤ 1. Use algorithm A on G to obtain a vertex cover of size at
most n+cαn. The quality of this solution is (n+cαn)/(n+αn) = (1+cα)/(1+α). We distinguish
two cases: (1) α < 1/c and (2) α ≥ 1/c. We claim that in either case the approximation factor
is 2−2/(c+1) = 2c/(c+1). To see this, first consider the case when α < 1/c. It is straightforward
to show that (1 + cα)/(1 + α) < 2c/(c + 1) if and only if α < 1/c. When α ≥ 1/c, note that A
can even return the entire vertex set of G as solution. The approximation factor in this case is
actually seen to be at most 2/(1 + α) which can be easily seen to be at most 2c/(1 + c). This
completes the proof of the theorem. ⊓⊔

Since there is an approximation-preserving reduction (Lemma 7) from Above Guarantee
Vertex Cover to Min 2-Cnf Sat Del, a constant-factor approximation algorithm for the
latter implies the existence of a constant-factor approximation algorithm for the former. Thus
we have,

Corollary 1. If UGC is true then Min 2-Cnf Sat Del does not admit a constant-factor
approximation algorithm.

To the best of our knowledge, the only other hardness result known for Min 2-Cnf Sat Del is
a 2.88-approximation hardness assuming P 6= NP due to Chlebik and Chlebikova [3].

Dinur and Safra [7] have shown that unless P = NP, Vertex Cover cannot be approxi-
mated to within 1.3606 even on graphs with a perfect matching. Using this, we obtain:

Corollary 2. Under the hypothesis P 6= NP, Above Guarantee Vertex Cover in graphs
with a perfect matching cannot be approximated to within 1.7212.

Proof. Let A be a d-approximation algorithm for computing τ(G) in graphs with a perfect
matching. Let G be an n-vertex graph with a perfect matching. Using A, one can obtain a vertex
cover of size at most n/2+dτ(G). An optimum vertex cover of G has size n/2+τ(G). By the NP-
hardness of approximating Vertex Cover [7], we must have (n+2dτ(G))/(n+2τ(G)) ≥ 1.3606.
Simplifying this yields n/τ(G) ≤ 2(d−1.3606)/0.3606. Note that n/τ(G) ≥ 2 and so d ≥ 1.7212.

⊓⊔

4 The König Vertex Deletion Problem

Recall that the König Vertex Deletion problem is, given a graph and a nonnegative integer
parameter k, to decide whether there exist at most k vertices whose deletion makes the resulting
graph König. We first investigate the parameterized complexity of this problem and then describe
an approximation algorithm for its optimization version.

4.1 Parameterized Complexity

We first consider the case when the input graph has a perfect matching.

Graphs with a Perfect Matching. For graphs with a perfect matching it turns out that
König Vertex Deletion and Above Guarantee Vertex Cover are fixed-parameter
equivalent.
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Lemma 11. Let G be an n-vertex graph with a perfect matching. Then G has a vertex cover of
size at most n/2 + k if and only if G has a König vertex deletion set of size at most 2k.

Proof. (⇒) Let P be a perfect matching of G and C a vertex cover of G of size at most n/2+ k.
Consider the subset M ⊆ P of matching edges both of whose endpoints are in C. Clearly V [M ]
is a König vertex deletion set of G of size at most 2k.

(⇐) Conversely let K be a König vertex deletion set of G of size r ≤ 2k. Then G \ K
is a König graph on n − r vertices and hence has a vertex cover C ′ of size at most (n − r)/2.
Clearly C = C ′∪K is a vertex cover of G of size |C ′|+ |K| ≤ (n−r)/2+r = (n+r)/2 ≤ n/2+k.

⊓⊔
The following corollary follows from Lemmas 5 and 11 and the fact that Vertex Cover is

NP-complete.

Corollary 3. The König Vertex Deletion problem is NP-complete.

By Theorem 1, Above Guarantee Vertex Cover is fixed-parameter tractable and there-
fore we have:

Corollary 4. The König Vertex Deletion problem, parameterized by the solution size, is
fixed-parameter tractable on graphs with a perfect matching.

The next result relates the size of a minimum vertex cover with that of a minimum König
vertex deletion set for graphs with a perfect matching.

Corollary 5. Let G be an n-vertex graph with a perfect matching P . Then β(G) = n/2 + k if
and only if κ(G) = 2k. Moreover if κ(G) = 2k, then there exists an edge subset M ⊆ P of size k
such that V [M ] is a minimum König vertex deletion set of G.

If we let τ(G) = β(G) − µ(G), then the above corollary states: κ(G) = 2τ(G).

Graphs Without a Perfect Matching. For graphs without a perfect matching we do not
know of a reduction from König Vertex Deletion to Above Guarantee Vertex Cover
and neither does the general case seem reducible to the case where the graph has a perfect
matching. However we show that the general problem is fixed-parameter tractable using some
new structural results between maximum matchings and vertex covers.

To begin with, we derive a weaker version of Lemma 11 which relates the size of a vertex
cover with that of a König vertex deletion set for graphs without a perfect matching.

Lemma 12. Let G be a graph without a perfect matching. If G has a vertex cover of size µ(G)+k
then G has a König vertex deletion set of size at most 2k. Moreover, τ(G) ≤ κ(G) ≤ 2τ(G),
where τ(G) = β(G) − µ(G).

Proof. Let M be a maximum matching of G and let C be a vertex cover of G of size µ(G) + k.
Define I = V \ V [M ], CI = C ∩ I and M ′ to be the subset of M both of whose endpoints are
in C. Clearly V [M ′] ∪ CI is a König vertex deletion set of G of size at most 2k. This shows
that κ(G) ≤ 2τ(G). To prove that τ(G) ≤ κ(G), suppose that there exists S ⊆ V , |S| < τ(G),
such that G \ S is König. Then the following easily verifiable inequalities:

µ(G \ S) ≤ µ(G)

β(G \ S) ≥ β(G) − |S| = µ(G) + τ(G) − |S|
imply that β(G \ S) > µ(G \ S), a contradiction. ⊓⊔
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Suppose Y is a vertex cover in a graph G = (V,E). Consider a maximum matching M
between Y and V \ Y . If M saturates every vertex of Y then the graph is König. If not,
then Y \ V (M), the set of vertices of Y unsaturated by M , is a König vertex deletion set by
Lemma 2. What we prove in this section is that if Y is a minimum vertex cover, then Y \V (M)
is a minimum König vertex deletion set. Our first observation is that any minimum König vertex
deletion set is contained in some minimum vertex cover.

Lemma 13. Let G be a graph with a minimum König vertex deletion set K. Let V (G\K) = V1⊎
V2 where V2 is independent and there is a matching M from V1 to V2 saturating V1. Then V1∪K
is a minimum vertex cover for G.

Proof. Suppose S is a vertex cover of G such that |S| < |V1|+ |K|. We will show that there exists
a König vertex deletion set of size smaller than |K|, contradicting our hypothesis. Define V ′

1 =
V1 ∩ S, V ′

2 = V2 ∩ S and K ′ = K ∩ S. Let A1 be the vertices of V ′
1 whose partner in M is

in V ′
2 and let A2 be the vertices of V ′

1 whose partner in M is not in V ′
2 . See Figure 2. We

V1 V2

K

K
′

V
′

1

V
′

2

A1

A2

M

Fig. 2. The sets that appear in the proof of Theorem 13. The matching M consists of the solid edges across V1

and V2.

claim that A1 ∪ K ′ is a König vertex deletion set of G and |A1 ∪ K ′| < |K|, which will produce
the required contradiction and prove the lemma. This claim is proved using the following three
claims:

Claim 1. |A1 ∪ K ′| < |K|.
Claim 2. A2 ∪ V ′

2 is a vertex cover in G \ (A1 ∪ K ′).

Claim 3. There exists a matching between A2 ∪V ′
2 and V \ (V ′

1 ∪K ′∪V ′
2) saturating every vertex

of A2 ∪ V ′
2.

Proof of Claim 1. Clearly |S| = |V ′
1 |+ |V ′

2 |+ |K ′|. Note that S intersects |A1| of the edges of M in
both end points and |M |−|A1| edges of M in one end point (in either V ′

1 or V ′
2). Furthermore V ′

2

has |V ′
2\V (M)| vertices of S that do not intersect any edge of M . Hence |M |+|A1|+|V ′

2\V (M)| =
|V ′

1 |+ |V ′
2 |. That is, |V ′

1 |+ |V ′
2 | = |V1|+ |A1|+ |V ′

2 \V (M)| (as |M | = |V1|). Hence |S| < |V1|+ |K|
implies that |A1| + |V ′

2 \ V (M)| + |K ′| < |K| which implies that |A1| + |K ′| < |K| proving the
claim.

Proof of Claim 2. Since S = A1 ∪ A2 ∪ V ′
2 ∪K ′ is a vertex cover of G, clearly A2 ∪ V ′

2 covers all
edges in G \ (A1 ∪ K ′).

11



Proof of Claim 3. Since the partner of a vertex in A2 in M is in V \ (V ′
1 ∪ K ′ ∪ V ′

2), we can use
the edges of M to saturate vertices in A2. To complete the proof, we show that in the bipartite
graph (V ′

2 , (V1 \ V ′
1) ∪ (K \ K ′)) there is a matching saturating V ′

2 . To see this, note that any
subset D ⊆ V ′

2 has at least |D| neighbors in (V1 \ V ′
1) ∪ (K \ K ′). For otherwise, let D′ be the

set of neighbors of D in (V1 \ V ′
1) ∪ (K \ K ′) where we assume |D| > |D′|. Then (S \ D) ∪ D′

is a vertex cover of G of size strictly less than |S|, contradicting the fact that S is a minimum
vertex cover. To see that (S \ D) ∪ D′ is indeed a vertex cover of G, note that S \ V ′

2 covers all
edges of G except those in the graph (V ′

2 , (V1 \ V ′
1) ∪ (K \ K ′)) and all these edges are covered

by (V ′
2 \D) ∪D′. Hence by Hall’s theorem, there exists a matching saturating all vertices of V ′

2

in the bipartite graph (V ′
2 , (V1 \ V ′

1) ∪ (K \ K ′)), proving the claim.
This completes the proof of the lemma. ⊓⊔

Lemma 13 has interesting consequences.

Corollary 6. For any two minimum König vertex deletion sets K1 and K2, µ(G\K1) = µ(G\
K2).

Proof. Since K1 and K2 are minimum König vertex deletion sets of G, β(G \ K1) = µ(G \ K1)
and β(G\K2) = µ(G\K2). By Theorem 13, β(G\K1)+|K1| = β(G) and β(G\K2)+|K2| = β(G).
Since |K1| = |K2|, it follows that β(G \K1) = β(G \K2) and hence µ(G \K1) = µ(G \K2). ⊓⊔

From Lemma 4 and 13, we get

Corollary 7. Given a graph G = (V,E) and a minimum König vertex deletion set for G, one
can construct a minimum vertex cover for G in polynomial time.

Our goal now is to prove the “converse” of Corollary 7. In particular, we would like to
construct a minimum König vertex deletion set from a minimum vertex cover. Our first step is
to show that if we know that a given minimum vertex cover contains a minimum König vertex
deletion set then we can find the König vertex deletion set in polynomial time. Recall that
given a graph G = (V,E) and A,B ⊆ V such that A ∩ B = ∅, we use µ(A,B) to denote a
maximum matching in the bipartite graph comprising of the vertices in A ∪ B and the edges
in {{u, v} ∈ E : u ∈ A, v ∈ B}. We denote this graph by (A,B).

Lemma 14. Let K be a minimum König vertex deletion set and Y a minimum vertex cover of
a graph G = (V,E) such that K ⊆ Y . Then µ(G\K) = µ(Y, V \Y ) and |K| = |Y |−µ(Y, V \Y ).

Proof. If G is König then the theorem clearly holds. Therefore assume that K 6= ∅. Note that Y \
K is a minimum vertex cover of the König graph G\K. Thus µ(G\K) = µ(Y \K,V \Y ). We claim
that µ(Y \ K,V \ Y ) = µ(Y, V \ Y ). For if not, we must have µ(Y \ K,V \ Y ) < µ(Y, V \ Y ).
Then let M be a maximum matching in the bipartite graph (Y, V \ Y ) and K ′ ⊆ Y be the
set of vertices unsaturated by M . Note that K ′ 6= ∅ is a König vertex deletion set for G.
Since µ(Y, V \ Y ) = |Y | − |K ′| and µ(Y \ K,V \ Y ) = |Y | − |K| we have |K ′| < |K|, a
contradiction, since by hypothesis K is a smallest König vertex deletion set for G. Therefore we
must have µ(G \ K) = µ(Y, V \ Y ) and |K| = |Y | − µ(Y, V \ Y ). ⊓⊔

The next lemma says that µ(Y, V \ Y ) is the same for all minimum vertex covers Y of a
graph G. Together with Lemma 14, this implies that if K is a minimum König vertex deletion
set and Y is a minimum vertex cover of a graph G = (V,E), then µ(G \ K) = µ(Y, V \ Y ).

12



Lemma 15. For any two minimum vertex covers Y1 and Y2 of G, µ(Y1, V \Y1) = µ(Y2, V \Y2).

Proof. Suppose without loss of generality that µ(Y1, V \ Y1) > µ(Y2, V \ Y2). Let M1 be a
maximum matching in the bipartite graph (Y1, V \ Y1). To arrive at a contradiction, we study
how Y2 intersects the sets Y1 and V \Y1 with respect to the matching M1. To this end, we define
the following sets (see Figure 3):

Y1 V \ Y1

B

P

A1

A2

M1

Fig. 3. The sets that appear in the proof of Lemma 15. The solid edges across Y1 and V \ Y1 constitute the
matching M1.

– A = Y2 ∩ Y1 ∩ V (M1).

– B = Y2 ∩ (V \ Y1) ∩ V (M1).

– A1 is the set of vertices in A whose partners in M1 are also in Y2.

– A2 is the set of vertices in A whose partners in M1 are not in Y2.

We first show that

Claim. In the bipartite graph (Y2, V \ Y2) there is a matching saturating each vertex in A2 ∪B.

It will follow from the claim that µ(Y2, V \ Y2) ≥ |A2| + |B|. However, note that Y2 intersects
every edge of M1 at least once (as Y2 is a vertex cover). More specifically, Y2 intersects |A1| edges
of M1 twice and |M1|− |A1| edges once (either in Y1 or in V \Y1). Hence, |A|+ |B| = |M1|+ |A1|
and so |A2| + |B| = |M1| and so µ(Y2, V \ Y2) ≥ |A2| + |B| = |M1| a contradiction to our
assumption at the beginning of the proof. Thus it suffices to prove the claim.

Proof of Claim. Let P denote the partners of the vertices of A2 in M1. Since P ⊆ V \ Y2, we
use the edges of M1 to saturate vertices of A2. Hence it is enough to show that the bipartite
graph B = (B, (V \ Y2) \ P ) contains a matching saturating the vertices in B. Suppose not.
By Hall’s Theorem there exists a set D ⊆ B such that |NB(D)| < |D|. We claim that the
set Y ′

2 := Y2 \ D + NB(D) is a vertex cover of G. To see this, note that the vertices in Y2 \ D
cover all the edges of G except those in the bipartite graph (D,Y1 ∩ (V \ Y2)) and these are
covered by NB(D). Therefore Y ′

2 is a vertex cover of size strictly smaller than Y2, a contradiction.
This proves that there exists a matching in (Y2, V \ Y2) saturating each vertex in A2 ∪ B.

This completes the proof of the lemma. ⊓⊔

The next two lemmas show how we can obtain a minimum König vertex deletion set from a
minimum vertex cover in polynomial time.
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Lemma 16. Given a graph G = (V,E), let Y be any minimum vertex cover of G and M a
maximum matching in the bipartite graph (Y, V \Y ). Then K := Y \V (M) is a minimum König
vertex deletion set of G.

Proof. Clearly K is a König vertex deletion set. Let K1 be a minimum König vertex deletion
set of G. By Lemma 13, there exists a minimum vertex cover Y1 such that K1 ⊆ Y1 and

|K1| = |Y1| − µ(Y1, V \ Y1) (By Lemma 14.)
= |Y | − µ(Y1, V \ Y1) (Since Y1 and Y are minimum vertex covers.)
= |Y | − µ(Y, V \ Y ) (By Lemma 15.)
= |K|

This proves that K is a minimum König vertex deletion set. ⊓⊔

Lemma 17. Given a graph G = (V,E) and a minimum vertex cover for G, one can construct
a minimum König vertex deletion set for G in polynomial time.

Note that although both these problems–Vertex Cover and König Vertex Deletion–
are NP-complete, we know of very few pairs of such parameters where we can obtain one from
the other in polynomial time on the same graph (e.g. edge dominating set and minimum maximal
matching, see [13]). In fact, there are parameter pairs such as dominating set and vertex cover
where such a polynomial-time transformation is not possible unless P = NP. This follows since
in bipartite graphs, for instance, a minimum vertex cover is computable in polynomial time
whereas computing a minimum dominating set is NP-complete.

We are now ready to prove that the König Vertex Deletion problem is fixed-parameter
tractable in general graphs.

Theorem 4. Given a graph G = (V,E) and an integer parameter k, the problem of whether G
has a subset of at most k vertices whose deletion makes the resulting graph König can be decided
in time O(15k · k2 · |E|3). Hence the König Vertex Deletion problem is fixed-parameter
tractable when parameterized by the solution size.

Proof. Use the FPT algorithm from Theorem 1 to test whether G has a vertex cover of size
at most µ(G) + k. If not, by Lemma 12, we know that the size of a minimum König vertex
deletion set is strictly more than k. Therefore return no. If yes, then find the size of a minimum
vertex cover by applying Theorem 1 with every integer value between 0 and k for the excess
above µ(G). Note that for yes-instances of the Above Guarantee Vertex Cover problem,
the FPT algorithm actually outputs a vertex cover of size µ(G) + k. We therefore obtain a
minimum vertex cover of G. Use Lemma 16 to get a minimum König vertex deletion set in
polynomial time and depending on its size answer the question. It is easy to see that all this can
be done in time O(15k · k2 · |E|3). ⊓⊔

Note that computing a maximum independent set (or equivalently a minimum vertex cover)
in an n-vertex graph can be done in time O∗(20.288n) [10]. By Lemma 17, one can compute a
minimum König vertex deletion set in the same exponential time.

Corollary 8. Given a graph G = (V,E) on n vertices one can find a minimum König vertex
deletion set in time O∗(20.288n) = O∗(1.221n).5

5 The O∗ notation suppresses polynomial terms.
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Suppose we wanted to compute a minimum König vertex deletion set on graphs of treewidth
at most w. A dynamic programming approach as for Dominating Set or Independent Set
is not obvious. However since one can obtain a minimum vertex cover on graphs with treewidth
at most w in time O∗(2w) [27], by Lemma 17, one can obtain a minimum König deletion set
within this time.

Corollary 9. If a tree-decomposition for G of width w is given, one can find a minimum König
vertex deletion set in time O∗(2w).

4.2 Approximability

In Lemma 12 we established that for any graph G (whether it has a perfect matching or not),
τ(G) ≤ κ(G) ≤ 2τ(G), where τ(G) = β(G) − µ(G) is the excess vertex cover beyond the size
of a maximum matching. Therefore a good approximation of the above guarantee parameter τ
yields a good approximation for κ and vice versa.

In the algorithm outlined in Figure 1, note that V (S) ∩ V (G) is actually a König vertex
deletion set of G. Since |V (S)| ≤ O(log n log log n) (β − µ), we have, by Theorem 2

Theorem 5. Given a graph G on n vertices, there exists an algorithm that approximates the
König vertex deletion set of G to within a factor of O(log n log log n).

On graphs with a perfect matching, the Above Guarantee Vertex Cover and König
Vertex Deletion problems are equivalent and hence Theorem 3 and Lemma 11 imply

Corollary 10. If UGC is true then König Vertex Deletion does not admit a constant-
factor approximation algorithm.

Since König Vertex Deletion and Above Guarantee Vertex Cover are equivalent
in terms of approximability in graphs with a perfect matching (Lemma 11), Corollary 2 implies

Corollary 11. Under the hypothesis P 6= NP, König Vertex Deletion in graphs with a
perfect matching cannot be approximated to within 1.7212.

5 The Induced König Subgraph Problem

In this section we deal with the parameterized complexity and approximability of the vertex
and edge versions of the Induced König Subgraph problem.

5.1 Vertex Induced König Subgraph

The NP-completeness of this problem follows from that of König Vertex Deletion but it
has a different parameterized complexity. We show that Vertex Induced König Subgraph
is W [1]-hard and is as hard to approximate as the Independent Set problem.

Theorem 6. Vertex Induced König Subgraph is W [1]-hard with respect to the number of
vertices in the induced subgraph as parameter.
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Proof. We give a parameter-preserving reduction from Independent Set to Vertex Induced
König Subgraph. Given an instance (G, k) of Independent Set, construct a graph H as
follows. The vertex set of H consists of two copies of V (G) namely, V1 = {u1 : u ∈ V (G)}
and V2 = {u2 : u ∈ V (G)}. For all u ∈ V (G), (u1, u2) ∈ E(H). If (u, v) ∈ E(G), add the edges
(u1, v1), (u2, v2), (u1, v2) and (v1, u2) in E(H). H has no more edges.

We claim that G has an independent set of size k if and only if H has a König subgraph
of size 2k. Let I be an independent set of size k in G. Let K = {u1, u2 ∈ V (H) : u ∈ I}.
Clearly H[K] is an induced matching on 2k vertices and is bipartite and hence König. Conversely,
let K be a König subgraph of H on 2k vertices. By Lemma 2, every König graph on n vertices
has an independent set of size at least n/2. Therefore let I ′ be an independent set of K of
size at least k. Define I = {u ∈ V (G) : either u1 or u2 ∈ I ′}. It is clear that the vertices of I ′

correspond to distinct vertices of G and hence |I| ≥ k. It is also easy to see that the vertices
in I actually form an independent set in G. ⊓⊔

Since the Independent Set problem can have no approximation algorithms with fac-
tor O(n1−ǫ), for any ǫ > 0, unless P = NP [15, 36], we have:

Corollary 12. There is no approximation algorithm for Vertex Induced König Subgraph
with factor O(n1−ǫ), for any ǫ > 0, unless P = NP.

In the reduction above, |V (H)| = 2|V (G)| and (G, k) is a yes-instance of Independent
Set if and only if (H, 2k) is a yes-instance of Vertex Induced König Subgraph. Thus this
reduction can also be viewed as a reduction from Vertex Cover to König Vertex Deletion
giving yet another proof of Corollary 3.

5.2 Edge Induced König Subgraph

We now show that Edge Induced König Subgraph is NP-complete and study its approx-
imability and parameterized complexity. We will see that, unlike the other König subgraph
problems, Edge Induced König Subgraph admits a good (constant-factor) approximation
algorithm.

NP-Completeness. Since both König Edge Deletion and Edge Induced König Sub-
graph have the same complexity from the classical point of view, it is sufficient to prove that
one of them is NP-complete. We actually show that:

Theorem 7. König Edge Deletion is NP-complete.

Proof. We give a reduction from Min 2-Cnf Sat Del. Let Φ be a 2-Cnf Sat formula with m
clauses composed of the literals {x1, x̄1, . . . , xn, x̄n}. Construct a graph GΦ = (V,E) as follows.
Let

V := {x1, x̄1, x11, x̄11, . . . , x1,m+2, x̄1,m+2, . . . , xn, x̄n, xn,1, x̄n,1, . . . , xn,m+2, x̄n,m+2};

that is, V consists of m+3 copies of xi, x̄i. Add exactly those edges so that for each 1 ≤ i ≤ n, the
vertex sets Li = {xi, xi,1, . . . , xi,m+2} and Ri = {x̄i, x̄i,1, . . . , x̄i,m+2} form a complete bipartite
graph with Li and Ri as the left and right partite sets, respectively. Finally for each clause (yi∨yj)
of Φ add an edge (yi, yj) (among the vertices {x1, x̄1, . . . , xn, x̄n}). Note that GΦ has a perfect
matching and that each clause of Φ corresponds to an edge of GΦ.
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Claim. There exists an assignment satisfying all but k clauses of Φ if and only if there exist at
most k edges whose deletion makes GΦ König.

(⇒) Let α be an assignment to the variables of Φ that satisfies all but k clauses. Each of
these k clauses corresponds to a distinct edge in GΦ. Delete these edges from GΦ. Then for each
edge in the remaining graph, at least one endpoint of the edge is assigned 1 by the assignment α.
To prove that the remaining graph is König, by Lemma 2, we must demonstrate a bipartition
of the vertex set into V1 ⊎ V2 (say) such that V2 is independent and there exists a matching
across the cut (V1, V2) saturating V1. If α(xi) = 1 then place the vertices xi, xi,1, . . . xi,m+2 in V1;
else place x̄i, x̄i,1, . . . x̄i,m+2 in V1. The remaining vertices are placed in V2. As Φ satisfies all
remaining clauses, V2 is independent. Note that if xi ∈ V1 then x̄i ∈ V2 and vice versa. Also
if xi,j ∈ V1 then x̄i,j ∈ V2 and vice versa. Hence there exists a matching across the cut (V1, V2)
that saturates V1.

(⇐) Conversely suppose that deleting a set S of k edges makes GΦ König. We will assume
that S is a minimal edge deletion set. Any minimal König edge deletion set has size at most m,
since deleting all the m “clause edges” from GΦ results in a König graph. Therefore we may
assume that k ≤ m. Call the resulting graph G′

Φ. Then the vertex set of G′
Φ can be partitioned

into V1 and V2 such that V2 is independent and there exists a matching across the cut (V1, V2)
that saturates V1.

Claim 1. For each 1 ≤ i ≤ n, it is not the case that xi, x̄i ∈ V2.

Suppose that for some 1 ≤ i ≤ n, xi, x̄i ∈ V2. Then it must be that C̄i = {x̄i,1, . . . , x̄i,m+2} *
V2 since otherwise m+2 edges between xi and the vertices of C̄i must have been deleted from GΦ

to obtain G′
Φ, a contradiction. If C̄i ⊆ V1 then Ci = {xi,1, . . . , xi,m+2} ⊆ V2 for there to be a

matching across the cut (V1, V2) saturating all of C̄i. But then m + 2 edges between x̄i and Ci

must have been deleted from GΦ to obtain G′
Φ, again a contradiction. This argument shows that

that there exist integers p, q ≥ 1 with p + q = m + 2, such that V1 contains p vertices of C̄i

and V2 contains the remaining q vertices of C̄i. In order for there to be a matching across (V1, V2)
saturating all p vertices of C̄i in V1 there must be at least p vertices of Ci in V2. Since the vertices
of Ci and C̄i form a complete bipartite graph we end up deleting at least pq + 1 ≥ m + 2 edges
of GΦ, a contradiction yet again. This proves Claim 1.

Claim 2. For each 1 ≤ i ≤ n, it is not the case that xi, x̄i ∈ V1.

Suppose that there exists i, 1 ≤ i ≤ n, such that xi, x̄i ∈ V1. Let M be a matching
across (V1, V2) that saturates the vertices of V1. We distinguish three cases.

Case 1. C̄i = {x̄i,1, . . . , x̄i,m+2} ⊆ V1.
This implies that Ci = {xi,1, . . . , xi,m+2} ⊆ V2 as otherwise no matching across (V1, V2)

would saturate all of C̄i. Let xa1
and xb1 be the partners of xi and x̄i, respectively, relative to

the matching M . By Claim 1, xa1
and xb1 represent different variables, that is, they are not the

negations of one another. This implies that x̄a1
and x̄b1 are in V1. Consider the pair xa1

, x̄a1
.

We will show that Ca1
= {xa1,1, . . . , xa1,m+2} ⊆ V2 and C̄a1

= {x̄a1,1, . . . , x̄a1,m+2} ⊆ V1. For if
not, suppose that 1 ≤ q ≤ m + 1 vertices of C̄a1

are in V2 while the remaining p ≥ 1 vertices
of C̄a1

are in V1. In order for the vertices of C̄a1
to have partners with respect to M at least p

vertices of Ca1
must be in V2. This implies that at least pq edges have been deleted from GΦ
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to obtain G′
Φ. Since p + q = m + 2, we have pq ≥ m + 1, a contradiction. The upshot is that

the partners of x̄a1
and x̄b1 relative to M are vertices from the set {x1, x̄1, . . . , xn, x̄n}. Let the

partners of x̄a1
and x̄b1 relative to M be xa2

and xb2 respectively. Again by Claim 1, xa2
and xb2

represent distinct variables and hence x̄a2
and x̄b2 are in V1. Repeating this argument we obtain

a sequence of vertices of the form:

xi xa1
x̄a1

xa2
x̄a2

. . .
...

...
...

...
...

x̄i xb1 x̄b1 xb2 x̄b2 . . .

V1 V2 V1 V2 V1

Since there are only 2n vertices such a chain must end at V2 with both endpoints being the
negation of one another. This contradicts Claim 1 and shows that this situation does not arise.

Case 2. C̄i = {x̄i,1, . . . , x̄i,m+2} ⊆ V2 and Ci = {xi,1, . . . , xi,m+2} ⊆ V1.
This is the symmetric version of Case 1 and can be handled similarly.

Case 3. For some integers p, q ≥ 1 and p+q = m+2, p vertices of C̄i lie in V1 and the remaining q
vertices lie in V2.

By symmetry, p vertices of Ci must lie in V2. This implies that at least pq ≥ m + 1 edges
have been deleted from GΦ to obtain G′

Φ, a contradiction. This proves Claim 2.
Since S was assumed to be a minimal König edge deletion set, for each vertex yi, all copies

yi,1, . . . , yi,m+2 of it must be placed in the same partition as yi itself and hence all edges of GΦ

that are part of the n copies of Km+3,m+3 lie across the cut (V1, V2). It is easy to see that
any other partitioning of the copies would result in more edges being deleted unnecessarily.
Therefore the edges that were deleted from GΦ were those that corresponded to the clauses
of Φ. If a vertex yi is in V1 assign the corresponding literal the value 1; else assign the literal the
value 0. Note that this assignment is consistent as all copies of a vertex are in the same partition
as the vertex itself and for no vertex do we have that xi, x̄i ∈ V1 or xi, x̄i ∈ V2. This assignment
satisfies all but the k clauses that correspond to the edges that were deleted. ⊓⊔

Since the above reduction is cost-preserving, approximation lower-bounds for Min 2-Cnf
Sat Del carry over to König Edge Deletion. Therefore by Corollary 1, we obtain

Corollary 13. If UGC is true then König Edge Deletion does not have a c-approximation
algorithm, for any constant c > 1.

Chlebik and Chlebikova [3] have shown that it is NP-hard to approximate Min 2-Cnf Sat
Del to within 8

√
5 − 15 ≈ 2.88. This gives us

Corollary 14. It is NP-hard to approximate König Edge Deletion to within 2.88.

Approximation Results. For Edge Induced König Subgraph, it is easy to obtain a 2-
approximation algorithm by simply finding a cut of size m/2 and then deleting all the other
edges. As the resulting graph will be bipartite it will be König. In this subsection, we give a 4/3-
approximation algorithm for graphs with a perfect matching and a 5/3-approximation algorithm
for general graphs based on the following combinatorial results.
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Lemma 18. Let G = (V,E) be a graph with a maximum matching M and let GM = (VM , EM )
be the graph induced on the vertices V (M) of M . Then G has an edge-induced König subgraph

of size at least 3|EM |
4 + |E−EM |

2 + |M |
4 .

Proof. Randomly partition the vertex set of G into V1 ⊎ V2 as follows. For each edge ei ∈ M ,
select an endpoint of ei with probability 1/2 and place it in V1. Define V2 = V − V1. Note
that the edges in M always lie across the cut (V1, V2). An edge of EM − M is in G[V2] with
probability 1/4; an edge in E − EM lies in G[V2] with probability 1/2. For each edge e ∈ E,
define Xe to be the indicator random variable that takes the value 1 if e ∈ G[V2] and 0 otherwise.
Also define X =

∑

e∈E Xe. Then

E[X] =
∑

e∈E

E[Xe] =
|EM − M |

4
+

|E − EM |
2

.

Deleting the edges in G[V2] results in a König graph with

3|EM |
4

+
|E − EM |

2
+

|M |
4

edges in expectation. This algorithm can be easily derandomized by the method of conditional
probabilities (see, for instance [26]). This completes the proof. ⊓⊔

If G = (V,E) has a perfect matching M then EM = E and |M | = |V |/2 and we have

Corollary 15. Let G = (V,E) be a graph on n vertices and m edges with a perfect matching.
Then G has a subgraph with at least 3m/4+n/8 edges that is König. This subgraph can be found
in time O(mn).

Lemma 19. Let G = (V,E) be an undirected graph on n vertices and m edges. Then G has an
edge-induced König subgraph of size at least 3m/5.

Proof. Let M be a maximum matching of G and let G[VM ] = (VM , EM ) be the subgraph
induced by the vertices V (M) of M . Let η(G) denote the size of the maximum edge induced
König subgraph of G. By Lemma 18,

η(G) ≥ |EM | + |M |
4

+
|E|
2

.

Observe that by deleting all the edges in G[VM ] we obtain a König subgraph of G. In fact,
this is a bipartite graph with bipartition VM and V − VM . Therefore if |E − EM | ≥ 3m/5,
the statement of the lemma clearly holds. Otherwise, |EM | ≥ 2m/5 and by Lemma 18, we
obtain η(G) ≥ |M |/4 + 3m/5. This completes the proof. ⊓⊔

The following theorem follows from Corollary 15 and Lemma 19 and the fact that the opti-
mum König subgraph has at most m edges.

Theorem 8. The optimization version of Edge Induced König Subgraph is approximable
to within a factor of 5/3 for general graphs. This factor can be improved to 4/3 when restricted
to graphs with a perfect matching.

19



Parameterized Complexity. Note that Lemma 19 actually shows that Edge Induced
König Subgraph is fixed-parameter tractable. To see this, suppose that (G, k) is an instance
of the problem; we are to decide whether G has an edge induced König subgraph with at least k
edges. Note that if the parameter k ≤ 3m/5 then we answer yes and use the approximation
algorithm described in the previous subsection to obtain an edge induced König subgraph with
at least k edges. If k > 3m/5 then we simply use a trivial O∗(2m) brute-force algorithm to decide
the question. This FPT algorithm has time complexity O∗(25k/3).

In this subsection, we give an O∗(2k) FPT algorithm for Edge Induced König Subgraph
on connected graphs by using an exact algorithm for the optimization version of the problem.
To this end, we describe an O∗(2n) algorithm for this problem using a simple structural result
characterizing minimal König edge deletion sets of a graph.

Lemma 20. Let G = (V,E) be a graph. If E′ is a minimal König edge deletion set of G then
there exists V ′ ⊆ V such that E(G[V ′]) = E′, that is, the edge set of the subgraph induced by V ′

is precisely E′.

Proof. Let E′ be a minimal König edge deletion set of G. Then G′ = (V,E −E′) is König. Then
the vertex set of G′ can be partitioned into V1 and V2 such that V2 is a maximal independent set
and there exists a matching saturating V1 that lies across the cut (V1, V2). Let V ′ = V2. Since
E′ is minimal, it is clear that E(G[V2]) = E′. This completes the proof. ⊓⊔

Our exact algorithm for the optimization version of Edge Induced König Subgraph
simply enumerates all possible subsets V ′ ⊆ V , deletes all edges E′ in G[V ′] and checks
whether G − E′ is König. The algorithm returns an edge set E′ = E(G[V ′]) of smallest size
such that G − E′ is König.

Lemma 21. Given an n-vertex graph G = (V,E), the optimization version of the König Edge
Deletion (and hence the optimization version of Edge Induced König Subgraph) can be
solved in time O∗(2n) and space polynomial in n.

Theorem 9. Edge Induced König Subgraph can be solved in O∗(2k) time in connected
undirected graphs.

Proof. Let (G, k) be an instance of Edge Induced König Subgraph where G is a graph
with m edges and n vertices. A connected graph has a spanning tree which, being bipartite, is
König. Since a tree has n − 1 edges, if k ≤ n − 1 we answer yes; else n ≤ k + 1 and we use
Lemma 21 to obtain an O∗(2k) time algorithm for Edge Induced König Subgraph. ⊓⊔

6 Conclusion and Open Problems

In this paper, we introduced and studied vertex and edge versions of the König Subgraph
problem from the points of view of parameterized complexity and approximation algorithms. Our
results are summarized in Figure 4. We showed that König Vertex Deletion is FPT whereas
Vertex Induced König Subgraph is W [1]-hard. The Edge Induced König Subgraph
problem is FPT and we conjecture that König Edge Deletion is W [1]-hard. Some obvious
open problems are:

1. What is the parameterized complexity of the König Edge Deletion problem?
2. Is there a better FPT algorithm for König Vertex Deletion perhaps without making

use of the algorithm for Above Guarantee Vertex Cover?
3. Are there better approximation algorithms for all these problems?
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Problem Parameterized Approximability

Complexity

König Vertex Deletion
/ Above Guarantee Ver-
tex Cover

FPT. O(log n log log n) approximation algorithm; NP-hard to approx-
imate to within 1.7212; no constant-factor approximation algo-
rithm assuming UGC.

König Edge Deletion Open. NP-hard to approximate to within 2.88; no constant-factor ap-
proximation algorithm assuming UGC.

Vertex Induced König
Subgraph

W [1]-hard. no factor-O(n1−ǫ) approximation algorithm.

Edge Induced König Sub-
graph

FPT. 5/3-approximation algorithm for general graphs; 4/3-
approximation algorithm for graphs with a perfect matching

Fig. 4. List of problems dealt with in this paper.
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