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Abstract

An irredundant set of vertices V ′ ⊆V in a graph G = (V; E) has the property that for ev-
ery vertex u∈V ′; N [V ′ − {u}] is a proper subset of N [V ′]. We investigate the parameterized
complexity of determining whether a graph has an irredundant set of size k, where k is the
parameter. The interest of this problem is that while most “k-element vertex set” problems are
NP-complete, several are known to be �xed-parameter tractable, and others are hard for various
levels of the parameterized complexity hierarchy. Complexity classi�cation of vertex set prob-
lems in this framework has proved to be both more interesting and more di�cult. We prove that
the k-element irredundant set problem is complete for W [1], and thus has the same parameter-
ized complexity as the problem of determining whether a graph has a k-clique. We also show
that the “parametric dual” problem of determining whether a graph has an irredundant set of
size n− k is �xed-parameter tractable. ? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

For many computational problems the input consists of several parts, and it is use-
ful to study how the di�erent parts contribute to overall problem complexity. For
example, many well-known decision problems concerning graphs including CLIQUE,
DOMINATING SET, GRAPH GENUS, MIN CUT LINEAR ARRANGEMENT, BANDWIDTH, VERTEX
COVER, FEEDBACK VERTEX SET, PERFECT CODE and the IRREDUNDANT SET problem that we
consider here, take as input a graph G and a positive integer k.
The parameter k appears to contribute to the complexity of these problems in two

qualitatively distinct ways. GRAPH GENUS, MIN CUT LINEAR ARRANGEMENT, VERTEX COVER
and FEEDBACK VERTEX SET FOR UNDIRECTED GRAPHS can all be solved in time O(f(k)nc)
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where c is a constant independent of k and f is some (arbitrary) function. This “good
behavior” is termed �xed-parameter tractability (FPT) in the theory introduced by
Downey and Fellows in [12]. As is the case with the polynomial-time complexity, the
exponent c is typically small.
Contrasting complexity behavior is exhibited by the problems CLIQUE, DOMINATING

SET and BANDWIDTH, for which the best-known algorithms have running times O(nck).
These problems have been shown to be complete or hard for various levels of the W
hierarchy of parameterized complexity

W [1]⊆W [2]⊆ · · · W [P]

and this can be taken as evidence that they are unlikely to be �xed-parameter tractable.
For the de�nition of the W hierarchy and for more details about the theory of �xed
parameter (in)tractability, see [12,13].
As in the theory of NP-completeness, there are roughly two kinds of evidence. The

�rst is that given a su�cient amount of unsuccessful e�ort to demonstrate tractability
for various problems in a class, the knowledge that a problem is hard for the class
o�ers a cautionary sociological message, of the sort depicted in the famous cartoon in
the opening pages of [18]. Secondly, one may have some sort of direct intuition about
why a problem complete or hard for a certain computational resource class should not
be a lot easier.
For parameterized complexity, both kinds of evidence are available. Although the

amount of unsuccessful e�ort that has been expended in attempts to show �xed-parameter
tractability for W [1]-hard problems is much less than the total e�ort expended to date
in attempting to develop polynomial-time algorithms for NP-complete problems, it is
still considerable and accumulating.
Direct intuition about W [1] is also available. It is shown in [5,15] that the k-STEP

HALTING PROBLEM FOR NONDETERMINISTIC TURING MACHINES is W [1]-complete. This is a
problem so generic and opaque that it is hard to imagine that there is any algorithm for
it that radically improves on simply exploring the n-branching depth k tree of allowed
transitions exhaustively.
The complexity of simple graph problems has in many cases proved to be much

more di�cult to settle in the parameterized framework than in the classical (P versus
NP) framework. For example, there is presently no information about the k-element
FEEDBACK VERTEX SET problem for directed graphs. The k-element PERFECT CODE prob-
lem is known to be in W [2] and hard for W [1] — does it represent a parameterized
complexity degree intermediate between W [1] and W [2]?
The precise parameterized complexity classi�cation of graph “k-vertex set problems”

seems to be of fundamental interest because the techniques and methods of reduction,
and the results themselves frequently have a basic relevance to the structure theory.
Examples of this relevance include:
(1) The k-CLIQUE problem plays a role in proofs of W [1]-hardness roughly analogous
to the role of 3-SAT in NP-completeness (as a basic starting point for reductions).
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(2) The combinatorial gadgetry by which the k-CLIQUE problem can be reduced to the
k-DOMINATING SET problem is used (twice, in fact) in the analog of Cook’s Theorem
characterizing W [2] [13].
(3) The reduction combinatorics for the THRESHOLD DOMINATING SET problem is key to
the extended characterization of W [2] proved in [16].
In this paper, we consider a k-vertex set problem that has been considered exten-

sively in the literature of graph theory (see for example [4,6–10,19]), and that has
for several years resisted attempts to show W [1] hardness. It would be very interest-
ing to identify (if there are any) natural k-vertex graph problems that may represent
parameterized complexity degrees intermediate between FPT and W [1]. Our main the-
orem here eliminates one problem that appeared to be a possible candidate [13]. The
IRREDUNDANT SET problem asks whether a given graph G = (V; E) on n vertices has a
k-element irredundant set. What we refer to here as the CO-IRREDUNDANT SET problem
asks if G has an irredundant set of size n− k. A set of vertices V ′ ⊆V is irredundant
if for every vertex u ∈ V ′, N [V ′−{u}] is a proper subset of N [V ′]. For both problems
we consider the parameter to be k. That both are NP-complete (note that classically
they are the same problem) was proved in [17,19]. We prove:

Theorem 1. IRREDUNDANT SET is W [1]-complete.

Theorem 2. CO-IRREDUNDANT SET is �xed-parameter tractable.

For general background on parameterized complexity see [12,14]. We will assume
that the reader has already this basic background concerning the formal foundations of
the theory. Parameterized complexity analyses of various graph problems can be found
in [3,12–14].
We use the following notation. If G = (V; E) is a graph and u ∈ V is a vertex of

G, then the open neighborhood N (u) of u is de�ned to be N (u) = {v: (u; v) ∈ E}.
The closed neighborhood N [u] of u is N [u] = N (u) ∪ {u}. For sets of vertices U ⊆V
we de�ne N (U ) to be the union of the sets N (u) for u ∈ U , and similarly for N [U ].
Furthermore, all our graphs are simple graphs where there are no multiple edges or
self loops.

2. W [1]-Completeness

In this section we prove that the IRREDUNDANT SET problem parameterized by the
number of vertices in the set is complete for W [1]. Our theorem settles a question
raised in [13] where it was asked if IRREDUNDANT SET might represent a parameterized
degree intermediate between FPT and W [1].
The following is an equivalent de�nition of irredundance that we will use in our

argument.



158 R.G. Downey et al. / Discrete Applied Mathematics 100 (2000) 155–167

De�nition. A set of vertices J ⊆V in a graph G=(V; E) is irredundant if each vertex
u ∈ J has a private neighbor �(u) in V satisfying the conditions:
(1) u is adjacent to �(u) or u= �(u), and
(2) no other vertex of J is adjacent to �(u).
If �(u) = u then we will say that u is self-private.

We next state a simple property about private neighbors that will be used frequently
in our arguments.

Lemma 1. If J is an irredundant set in a graph G = (V; E) and if u; v are distinct
vertices of J with N (u) = N (v); then: (1) u and v are nonadjacent; and (2) both u
and v are self private.

Theorem 1. IRREDUNDANT SET is complete for W [1].

Proof. Membership in W [1] is proved in [11]. In order to show hardness for W [1], we
reduce from CLIQUE, shown to be complete for W [1] in [13]. Suppose that we are given
a simple graph G = (V; E) and an integer k. We describe an FPT transformation that
produces a graph G′ = (V ′; E′) and a positive integer k ′ so that G′ has an irredundant
set of size k ′ if and only if G has a k-clique. If we let n denote the number of vertices
in G, then in fact our transformation can be computed in time polynomial in n and k.
The integer k ′ is described:

k ′ = k(k − 1)(3k2) + k(k − 1) + 3k2
(
k
2

)
:

Assume for convenience that the vertex set V of G is linearly ordered, and that E
consists of the ordered pairs of adjacent vertices (u; v) with u¡v. (Thus, each edge
is uniquely represented in E.) We will use the following set of index pairs in describ-
ing G′.

� = {(�; �): 16�¡�6k}:
The vertex set V ′ of G′ is next described.

V ′ =A ∪B ∪ C;

where

A=
k⋃
i=1

A(i);

A(i) = {a[i; j; u; r]: j ∈ {1; : : : ; k}; j 6= i; u ∈ V; 16 r6 3k2};

B=
k⋃
i=1

⋃
j∈{1;:::; i−1; i+1;:::;k}

B(i; j);

B(i; j) = {b[i; j; (v; w)]: (v; w) ∈ E};
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C =
⋃

(�;�)∈�
C(�; �);

C(�; �) = {c[�; �; (x; y); r]: (x; y) ∈ E; 16 r6 3k2:

For convenience, we also de�ne the following sets:

A(i; u) = {a[i; j; u; r]: j ∈ {1; : : : ; k}; j 6= i; 16 r6 3k2};
A(i; j) = {a[i; j; u; r]: u ∈ V; 16 r6 3k2};
A(i; j; u) =A(i; u) ∩A(i; j);

B(i) =
⋃

j∈{1 ; : : : ; i−1; i+1; : : : ; k}
B(i; j);

C(�; �; (x; y)) = {c[�; �; (x; y); r]: 16r63k2}:
Sometimes for convenience we will use e (or such) to denote the edge index (or

coordinate) of some vertex or set, e ∈ E, and write for example, C(�; �; e) or b[i; j; e].
The edge set E′ of G′ is described as follows, where in building the sets, the indices

implicitly range over all possibilities allowed by the de�nition of V ′.

E′ = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5;

where

E1 = {(a[i; j; u; r]; a[i′; j′; u′; r′]): i = i′ ∧ u 6= u′};
E2 = {(b[i; j; (v; w)]; b[i′; j′; (v′; w′)]): i = i′ ∧ j = j′};
E3 = {(c[�; �; (x; y); r]; c[�′; �′; (x′; y′); r′]): �= �′ ∧ � = �′ ∧ (x 6= x′ ∨ y 6= y′)};
E4 = {(a[i; j; u; r]; b[i′; j′; (v; w)]: i = i′ ∧ j = j′ ∧ ((j¡ i ∧ w 6= u)

∨(i¡ j ∧ v 6= u))};
E5 = {(b[i; j; (v; w)]; c[�; �; (x; y); r]: (j¡ i ∧ j = � ∧ i = � ∧ (v; w) 6= (x; y))

∨(i¡ j ∧ i = � ∧ j = � ∧ (v; w) 6= (x; y))}:
The overall construction may be intuitively described. The vertex sets Ai, for i =

1; : : : ; k form the “vertex gadgets” for representing a k-clique in G. Associated with the
vertex gadget of index i is a family of “edge selection gadgets”, one for each index
j 6= i. The way that the k-clique is to be represented can be thought of as follows.
First, the k vertices v1; : : : ; vk of G are to be selected by the vertex gadgets. Now,
consider a pair of selected vertices, e.g. (v2; v5). In an edge selection gadget associated
to the vertex selection gadget with index 2, an edge will be selected as “going to v5”.
Similarly, in an edge selection gadget associated to the vertex selection gadget with
index 5, an edge will be selected as “going to v2”.
In order for the selection mechanisms to represent a clique in G, various consistencies

must be enforced by the construction of G′. In particular: (1) the selected vertices must
be distinct, (2) the edge selected as, e.g., “going from v2 to v5” must be incident on v2,
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and similarly, the edge selected in the corresponding but distinct edge selection gadget
as “going to v5 from v2” must be incident on v5, and (3) the edge selected as “going
from v2 to v5” must be the same as the edge selected as “going to v5 from v2”.
It may seem to the reader that this general plan for the reduction is overly compli-

cated. Why not just select k vertices, and for each pair, check that they are adjacent?
Note that this involves vertex–vertex consistency (i.e., adjacency-checking) gadgets.

The overall plan here is to select k vertices, and to select
(
k
2

)
edges, with each edge

selected twice, once in each direction, and then employ vertex-edge consistency (i.e.,
incidence-checking) and edge–edge consistency (i.e., equality-checking) gadgets. We
remark that this more complicated architecture is not uncommon in W [1] hardness
proofs (e.g. [2]) and is in fact one of the main tricks of the trade. The seemingly
simpler vertex–vertex (adjacency-checking) gadgets seem to be simply unavailable for
some problems.
Let J denote an irredundant set in G′. We will say that J is properly distributed if

it satis�es the following conditions:
(1) For all i; 16i6k, there is a unique u ∈ V such that J ∩A(i)=A(i; u). It follows
that |J ∩A|= k(k − 1)(3k2).
(2) For all i; 16 i6 k, and for all j 6= i, there is a unique (v; w) ∈ E such that
J ∩B(i; j) = {b[i; j; (v; w)]}. It follows that |J ∩B|= k(k − 1).
(3) For all (�; �) ∈ � there is a unique edge index (x; y) such that J ∩ C(�; �) =

C(�; �; (x; y)). It follows that |J ∩ C|= 3k2
(
k
2

)
.

Note that k ′ is “explained” by the notion of a properly distributed irredundant set
in G′.
The proof of correctness for the transformation is based on the following three main

claims.

Claim A. If G has a k-clique then G′ has an irredundant set of size k ′.

Proof. Let v1; : : : ; vk be distinct vertices in G forming a k-clique, with v1¡v2¡ · · ·¡vk
in the linear ordering of V . The reader can verify from the de�nition of G′ that the
following set J of k ′ vertices is irredundant in G′.

J = J1 ∪ J2 ∪ J3;
where

J1 =
k⋃
i=1

A(i; vi);

J2 =
⋃

(�;�)∈�
{b[�; �; (v�; v�)]; b[�; �; (v�; v�)];

J3 =
⋃

(�;�)∈�
C(�; �; (v�; v�)):

Each vertex of J is self-private.
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Claim B. If G′ admits a properly distributed irredundant set of cardinality k ′ then
G has a k-clique.

Proof. Let J denote the irredundant set. We �rst argue that if J∩C(�; �)=C(�; �; (x; y))
and J ∩B(�; �) = {b[�; �; (u; v)]}, then (u; v) = (x; y). If not, then consider the vertex
c[�; �; (x; y); 1] ∈ J . By the de�nition of E5, this vertex is adjacent to b[�; �; (u; v)] ∈ J
and thus cannot be self-private. Since it has the same open neighborhood as
c[�; �; (x; y); 2] ∈ J , Lemma 1 yields a contradiction. Thus, for each (�; �) ∈ �, the
edge-selection and edge-check gadgets indicate (via J ) consistent information.
We next argue that the edges indicated by J in any vertex gadget are all incident

on the vertex indicated by J in the gadget. Let i ∈ {1; : : : ; k} and consider two cases:
(1) j¿ i, (2) j¡ i, where 16j6k. Since the argument is essentially the same, we
will treat only (1).
Suppose J ∩B(i; j)= {b[i; j; (u; v)]}, and for convenience let z= b[i; j; (u; v)]. �(z) 6∈

C(i; j) because, by the argument immediately above, c[i; j; (u; v); 1] ∈ J and this vertex
is adjacent to everything in C(i; j) that is adjacent to z. Thus, �(z) 6∈ C. Also, we cannot
have �(z) = z′ ∈ B(i; j) with z′ 6= z, since c[i; j; (u; v); 1] is adjacent to all such z′.
Since J is properly distributed, we have J ∩A(i) =A(i; x) for some x ∈ V . What

we must argue is that u= x, and that u is adjacent to v in G.
If u 6= x then z is adjacent to the vertices of J in A(i; x), and therefore cannot be

self-private, and furthermore �(z) 6∈ A(i; x). This implies that �(z) must be in A(i; x′)
for some x′ 6= x. This is impossible, since the vertices of J in A(i; x) dominate A(i).
It follows that u=x and that z is self-private. The latter implies the edge index (u; v)

represents an edge present in G, by the de�nition of E4. The vertices indicated by J
in the vertex selection gadgets of G′ therefore form a k-clique in G.

Claim C. Any irredundant set in G′ of size k ′ must be properly distributed.

Together, Claims A, B and C yield the theorem. It remains to establish Claim C
Our argument is based on a series of lesser claims.

Claim C.1. If J is an irredundant set in G′; then for all (�; �) ∈ �; there can be at
most two distinct edge indices e1 = (x; y) and e2 = (x′; y′) such that J has nontrivial
intersection with C(�; �; ei).

Proof. Suppose there were three distinct edge indices ei yielding nontrivial intersections
with J , and let zi (i=1; 2; 3) denote three representative vertices in these intersections.
Since these vertices are adjacent in C(�; �) they cannot be self-private. Two of them
must therefore have private neighbors in either B(�; �) or B(�; �). Without loss of
generality, suppose the two are z1 and z2 and that �(zi) ∈ B(�; �) for i= 1; 2. It must
be the case that �(z1) = b[�; �; e2], since otherwise z2 would be adjacent to �(z1), by
the de�nition of E5. But considering z3, the same reasoning implies �(z1) = b[�; �; e3],
a contradiction.
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Claim C.2. Suppose J is an irredundant set in G′ and that J ′ = J ∩ B(i; j) with
i¡ j (j¡ i). Then at most two vertices in J ′ have private neighbors in C(i; j) (C(j; i)).

Proof. The argument is essentially the same as for Claim C:1. Consider i¡ j (without
loss of generality) and suppose the three vertices are z1; z2; z3 having the distinct edge
indices e1; e2; e3. Suppose z1 has a private neighbor in C(i; j). Then by the de�nition of
E5; �(z1) ∈ C(i; j; e2) and for the same reason also, �(z1) ∈ C(i; j; e3), a contradiction.

Claim C.3. Suppose J is an irredundant set in G′ and that J ′ = J ∩ B(i; j). Then
|J ′|64.

Proof. Suppose i¡ j and that there are �ve vertices in J ′; zs for s = 1; : : : ; 5. By
Claim C:2, there are three of these that must have private neighbors in A(i). Suppose
that these three are z1; z2; z3. Suppose that the edge coordinate of zs is (xs; ys) for
s=1; 2; 3. Suppose x1=x2. But then z1 and z2 would have the same neighbors in A(i),
a contradiction. We can conclude that the xs are distinct for s=1; 2; 3. But then by the
de�nition of E4, we must have �(z1) adjacent to at least one of z2; z3.

Claim C.4. Suppose J is an irredundant set in G′ and that J ′ = J ∩C(�; �) contains
two vertices z1 and z2 having edge coordinates e1 and e2; with e1 6= e2. Then for
every e ∈ E; |J ∩ C(�; �; e)|61; and |J ′|62.

Proof. Suppose there are two vertices, z and z′ belonging to J ∩ C(�; �; e) for some
e ∈ E. Since z1 and z2 dominate C(�; �); z and z′ cannot be self-private. Lemma 1
yields a contradiction.

Claim C.5. If J is an irredundant set in G′; then for any (�; �) ∈ �; |J∩C(�; �)|63k2.

Proof. If the size of the intersection is more than 3k2 then the hypotheses of Claim C:4
are satis�ed, and consequently we reach a contradiction of Claim C:1.

Claim C.6. If J is an irredundant set in G′; i ∈ {1; : : : ; k}; and J ′ = J ∩A(i); then
|J ′|63k2(k − 1).

Proof. If |J ′|¿ 3k2(k − 1) then there are at least two distinct vertex indices x and x′
such that J ∩A(i; x) and J ∩A(i; x′) are nonempty. From this it follows that all of the
private neighbors of J ′ must be in B(i), since they cannot be self-private. Any two
vertices in A(i; j; u) have the same set of neighbors, and so it must be the case, by
Lemma 1, that |J ∩A(i; j; u)|61, and therefore there must be more than 3k2 distinct
vertex indices u such that J ∩ A(i; u) is nonempty. This implies, by the Pigeonhole
Principle, that there is some index j ∈ {1; : : : ; k}, j 6= i, such that |J∩A(i; j)|¿ 3k. Let
z1; z2; z3 denote three vertices of G′ in J ∩A(i; j) having distinct indices u1; u2; u3 ∈
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V . The private neighbors of the zi; i = 1; 2; 3, must belong to B(i; j). We reach a
contradiction, since by the de�nition of E4, at least one of z1; z2 must be adjacent to
�(z3).

Claim C.7. If J is an irredundant set in G′ of size k ′; then for all i; 16 i6 k; |J ∩
A(i)|¿ 3k2.

Proof. We assume k ¿ 1. Suppose that the claim is contradicted for A(i). Then the
k ′ vertices of J must be distributed as follows:
(1) There are at most 3k2

(
k
2

)
in C by Claim C:5.

(2) There are at most 4k(k − 1) in B by Claim C:3.
(3) There are at most 3k2(k − 1)2 + 3k2 in A by Claim C:6.
This is a contradiction, since the sum is less than k ′.

An almost identical argument proves the following.

Claim C.8. If J is an irredundant set in G′ of size k ′; then for all (�; �) ∈ �; |J ∩
C(�; �)|¿3k.

Claim C.9. If J is an irredundant set in G′ of size k ′; then for all i ∈ {1; : : : ; k} and
for all j ∈ {1; : : : ; i − 1; i + 1; : : : ; k}; |J ∩B(i; j)|62.

Proof. Suppose |J ∩ B(i; j)|¿ 3, and let z1; z2; z3 be three distinct vertices of G′ in
this intersection. They cannot be self-private, and so by Lemma 1, they must have
distinct coordinates e1; e2; e3 ∈ E. Let ei = (xi; yi) for i = 1; 2; 3. Assume, without loss
of generality, that i¡ j. Either two of the three must have private neighbors in A(i),
or two have private neighbors in C(i; j). Suppose that z1 and z2 have private neighbors
in A(i). If x1 = x2 then we have a contradiction, since in this case z1 and z2 would
have the same set of neighbors in A(i). Thus, x1 6= x2. But then �(z1) ∈ A(i; x2),
or else z2 is adjacent to �(z1). Similarly, �(z2) ∈ A(i; x1). By Claim C:7, there is a
vertex z3 ∈ J ∩ A(i). Since x1 6= x2, z3 must be adjacent to either �(z1) or �(z2), a
contradiction.
From the above we may conclude that two of the zi have private neighbors in

C(i; j). Suppose, without loss of generality that these are z1 and z2. Necessarily, they
have distinct coordinates e1 and e2 in E, by Lemma 1. In fact, �(z1) ∈ C(i; j; e2), since
otherwise z2 would be adjacent to �(z1), and similarly �(z2) ∈ C(i; j; e1). By Claim
C:8, there is a vertex z3 ∈ J ∩ C(i; j). Necessarily, z3 is adjacent to at least one of
�(z1); �(z2), a contradiction.

Claim C.10. If J is an irredundant set in G′ of size k ′; then for all (�; �) ∈ �; there
is a unique e ∈ E such that J ∩ C(�; �; e) is nonempty.
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Proof. From C.1 there can be at most two ei’s such that J ∩ C(�; �; ei) is nonempty.
If there are actually two ei’s, then by Claim C:4, |J ′|62 which contradicts Claim C:8.

Claim C.11. If J is an irredundant set in G′ of size k ′; then for all i ∈ {1; : : : ; k};
there is a unique u ∈ V such that J ∩A(i; u) is nonempty.

Proof. Suppose there are two such indices, u and u′ that yield nonempty intersections
with J . Then the private neighbors of the vertices in J ∩ A(i) cannot be in A(i).
From this it follows that for any u ∈ V , A(i; u) can contain at most k − 1 vertices
of J , since otherwise we would reach a contradiction by Lemma 1. By Claim C:7,
there is therefore a set of more than 3k vertices of J in A(i), each having a di�erent
vertex coordinate u ∈ V . Consequently, there must be an index j, and three vertices
z1; z2; z3 of J with zs ∈ A(i; j; us) for s= 1; 2; 3, and with the vertex coordinates us all
distinct. But then we reach a contradiction, since all three must have private neighbors
in B(i; j) and this is impossible by the de�nition of E4.

Claim C.12. If J is an irredundant set in G′ of size k ′; then for all i ∈ {1; : : : ; k}
and for all j ∈ {1; : : : ; i − 1; i + 1; : : : ; k}; |J ∩B(i; j)|61.

Proof. Our argument is based on Claims C:5, C:6 and C:9 that put upper bounds on
the distribution of J . In particular, we already know that a set of vertices B(i; j) can
contain at most two elements of J by Claim C:9, and the bounds given by Claims
C:5 and C:6 are as tight as possible. Say that B(i; j) is exceptional if it contains two
elements of J . We argue that each exceptional B(i; j) implies tighter bounds on the
number of vertices of J in the associated sets A(i) and C(i; j). Let z1 and z2 be two
vertices of J in an exceptional B(i; j) (and assume, without loss of generality, that
i¡ j). Suppose zs= b[i; j; (xs; ys)] for s=1; 2. If x1 = x2 then z1 and z2 have the same
set of neighbors in A(i) and therefore they must both have private neighbors in C(i; j).
By Claim C:8 and the arguments of the proof of Claim C:9, this is impossible. Thus,
x1 6= x2, and furthermore, one must have a private neighbor in A(i) (suppose z1), and
the other must have a private neighbor in C(i; j) (suppose z2). By Claim C:11 there
is a unique vertex coordinate u ∈ V such that J ∩ A(i; u) is nonempty. Let z3 be a
vertex of J in this intersection. It must be the case that �(z1) ∈ A(i; u), else z3 would
be adjacent to �(z1). Consequently A(i) can contain at most 3k2(k−1)−1 vertices of
J . A similar “displacement” can be proved for C(i; j) using Claim C:10. That is, since
the private neighbor of z2 is in C(i; j) the total number of vertices of J that can belong
to C(i; j) is decreased by one. Since the bounds described by C.5 and C.6 are tight,
exceptions are impossible, since if there are m exceptional B(i; j) in the distribution
of J , then the upper bounds of Claims C:5 and C:6 together with the displacements
caused by the exceptions, imply that |J |6k ′ − m, a contradiction.

Claims C:5; C:6; C:10; C:11 and C:12 together establish Claim C, which completes
the proof of the theorem.
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3. The dual problem

For a property P of vertex sets it is natural to de�ne the parameterized dual of the
k-vertex set problem for P to be the problem that asks whether there is a set V ′ ⊆V
of size k such that V − V ′ has property P. For example, the parameterized dual of
INDEPENDENT SET is VERTEX COVER, and while INDEPENDENT SET is W [1]-complete [13],
VERTEX COVER is �xed-parameter tractable [1,14,20]. In this section we show that the
dual of IRREDUNDANT SET is �xed-parameter tractable.
The following observation is trivial but useful.

Lemma 2. If a graph G=(V; E) on n vertices has an irredundant set J of size n− k;
then at most k vertices in J can be non-self-private.

Lemma 3. If a graph G=(V; E) on n vertices has an irredundant set J of size n− k;
and x is a vertex in G of degree more than k; then x can neither be in J nor be a
private neighbor of a vertex in J .

Proof. Suppose x is in J and let a be the number of neighbors of x in V −J . Then the
remaining more than k−a neighbors of x in J are necessarily non-self-private and have
private neighbors in V − J . These private neighbors cannot be any of the a neighbors
of x in V − J . Since no two vertices of J can have the same private neighbor, and at
most k − a private neighbors in V − J are available, we have a contradiction.
Suppose x is a private neighbor of a vertex in J . Then since x has degree more than

k, it is adjacent to at least two vertices in J contradicting the fact that x is a private
neighbor.

We show that the following dual problem to irredundant set is �xed-parameter
tractable.
Co-IRREDUNDANT SET
INSTANCE: A pair (G; k) where G=(V; E) is a graph on n vertices, and k is a positive

integer.
PARAMETER: k
QUESTION: Is there a set of vertices V ′ ⊆V such that V − V ′ is an irredundant set

in G?
Now, we show the following theorem.

Theorem 2. Co-IRREDUNDANT SET is �xed-parameter tractable.

Proof. We show this by the reduction to kernel technique [14]. First, remove all ver-
tices (and incident edges) of degree more than k. If the number of such vertices is
more than k, then answer ‘no’ since by Lemma 3, all these vertices must be outside
the irredundant set. Thus, every remaining vertex has degree at most k. Also if there
is an irredundant set J of size n − k, then by Lemma 2, at least |J | − k vertices of
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J are isolated vertices in the graph induced by J . So number of edges inside J can
be at most k(k − 1)=2. Also the number of edges incident on vertices in V − J can
be at most k2. So if the number of edges in the resulting graph is at least 3k2=2
then answer ‘no’. We can also remove isolated vertices as they can be placed either in
or out of an irredundant set. Thus, the number of vertices in the resulting graph is less
than 3k2. Now by exhaustively trying all k subsets of the vertex set, we can conclude
whether or not there is a irredundant set of size n− k. To test whether a given subset
of size n − k is irredundant, �rst check whether all but k vertices of the subset are
isolated in the graph induced by the subset. If not the answer is ‘no’. If yes, then we
try all possible (at most k) private neighbors (from outside the set) for the at most k
non-isolated vertices within the subset.
Thus, the entire algorithm takes O((3k2)k+1 + nk) time to test whether the given

graph on n vertices has an irredundant set of size n− k.

4. Conclusions

Vertex set problems (“Are there k vertices in G having a speci�ed property P?”)
have played an important role in the development of the theory of parameterized com-
plexity both as a source of natural problems, and in the development of proof tech-
niques. For examples of the latter, the combinatorics of the parameterized reduction
from INDEPENDENT SET to DOMINATING SET in [11] plays an important part in the main
theorem characterizing the W [t] classes in [12]. The VERTEX COVER problem has pro-
vided a nice example of a tractable problem for which the parameter function can
be improved by various techniques [1,14,20]. In this paper we have shown that the
IRREDUNDANT SET is W [1]-complete contrary to the speculation that it might be a natural
representative of an intractable degree between FPT and W [1].
The parameterized complexity of a number of well-known vertex set problems re-

mains unresolved, and the entire subject remains fruitful for further exploration. We
mention a few of these open problems:
(1) What is the parameterized complexity of the DIRECTED FEEDBACK VERTEX SET prob-
lem? (In this problem, the input is a directed graph G = (V; A) and the question is
whether there is a set of k vertices that covers all the directed cycles in the graph. It
can be shown that this problem is FPT-equivalent to the DIRECTED FEEDBACK ARC SET
problem.)
(2) Does the problem PERFECT CODE represent a degree between W [1] and W [2]? (In
this problem, the input is a graph G = (V; E) and the question is whether there is a
set of k vertices V ′ ⊆V having the property that V is partitioned into the sets N [u],
u ∈ V ′. What is known is that the problem is hard for W [1] and is a member of W [2].
It is also known that this problem is FPT-equivalent to k-WEIGHTED ONE-PER-CLAUSE
CNF-SAT.)
(3) Are there any natural vertex set problems that might be candidates for a parame-
terized complexity degree intermediate between FPT and W [1]?
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