Exact Algorithms for Steiner Tree

Ondra Suchý

Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic. ondrej.suchy@fit.cvut.cz

New Developments in Exact Algorithms and Lower Bounds, IIT Delhi, 13th December 2014

Outline

- Problem introduction and classical results
- 2 Exact algorithms for the general undirected case
- Oirected variants and algorithms for them
- Algorithms for Steiner problems in sparse graphs

Steiner Tree

Given: Undirected graph G = (V, E) and a set $T \subseteq V$ **Find:** A minimum size tree H = (V', E') subgraph of G such that $T \subseteq V'$.

Steiner Tree

Given: Undirected graph G = (V, E) and a set $T \subseteq V$ **Find:** A minimum size tree H = (V', E') subgraph of G such that $T \subseteq V'$.

STEINER TREE

Given: Undirected graph G = (V, E) and a set $T \subseteq V$

Find: A minimum size tree H = (V', E') subgraph of G such that $T \subseteq V'$.

- The vertices in T are called *terminals*
- The vertices in $V \setminus T$ are called *Steiner points*
- Denote n := |V|, m := |E|, and t := |T|

STEINER TREE

Given: Undirected graph G = (V, E) and a set $T \subseteq V$ **Find:** A minimum size tree H = (V', E') subgraph of G such that $T \subseteq V'$.

- The vertices in T are called *terminals*
- The vertices in $V \setminus T$ are called *Steiner points*

• Denote
$$n := |V|$$
, $m := |E|$, and $t := |T|$

A minimum size:

- Vertex cardinality: |V'| or rather $|S| := |V' \setminus T|$ (default)
- Edge cardinality: |E'| = |V'| 1, this is equal to the above
- Node weighted: Given $w: V \to \mathbb{N}$ minimize w(S)
- Edge weighted: Given $w : E \to \mathbb{N}$ minimize w(E')

STEINER TREE (default decision variant)

Given: Undirected graph G = (V, E), a set $T \subseteq V$, and $k \in \mathbb{N}$ **Question:** Is there a tree H = (V', E'), subgraph of G, such that $T \subseteq V'$ and $|V' \setminus T| < k$.

Importance

- Fundamental problem of network design
- Motivated by applications in, e.g.,
 - VLSI routing
 - phylogenetic tree reconstruction
 - network routing
- Several books devoted to Steiner Trees
 - Dietmar Cieslik: Steiner minimal trees, Kluwer Academic, 1989
 - Frank K. Hwang, Dana S. Richards, Pawel Winter: The Steiner tree problem, North-Holland, 1992
 - Alexandr O. Ivanov, Alexei A. Tuzhilin: Minimal networks the Steiner problem and its generalizations, CRC Press, 1994
 - Hans J. Prömel, Angelika Steger: The Steiner Tree Problem A Tour through Graphs, Algorithms, and Complexity, Springer, 2002
- 11th DIMACS Implementation Challenge (ending two weeks ago) devoted to Steiner Tree problems

Hardness and Approximability Results

- NP-complete [Garey & Johnson 1979], even on planar graphs [Garey & Johnson, SIAM J. Appl. Math 1977]
- approximable to within O(log n) but not within (1 − ε)(log t) unless NP ⊆ DTIME[N^{polylogn}] [Klein & Ravi, Journal of Algorithms 1995];
- The edge weighted variant is APX-complete even on complete graphs with weights 1 and 2 [Bern, Plassmann, *Inf. Proc. Lett.* 1989]
- There are many approximation results on various variants of Steiner tree basically on every conference, e.g.,
 - Bateni, Hajiaghayi, Marx: Approximation schemes for Steiner Forest on planar graphs and graphs of bounded treewidth STOC 2010
 - Bateni, Checkuri, Ene, Hajiaghayi, Korula, Marx: Prize-collecting Steiner problems on planar graphs SODA 2011.
 - ► STOC 2014, FOCS 2013, and elsewhere
- An online compendium of approx. results: Hauptmann and Karpinski: *A Compendium on Steiner Tree Problems*, University of Bonn.

Exact Algorithms

In this talk:

- Parameterized algorithms exponential in some presumably small parameter:
 - number of Steiner points in the solution $k := |S| = |V' \setminus T|$
 - number of terminals t
 - total cardinality of the tree t + k
- Ø Kernelizations
- Sector exponential time algorithms exponential in the "input size"

Trivial Algorithms

Simple algorithm:

- Leaves of an optimal tree are terminals.
- An optimal tree contains at most t vertices of degree at least 3.
- Once the set T' of vertices of degree ≥ 3 is known, the optimal tree can be computed as minimum spanning tree of T ∪ T', where the lengths are distances in G.
- This gives $n^{O(t)}$ and $O(2^{\frac{2}{3}n}n^{O(1)}) = O(1.6181^n)$ algorithm for edge weighted variant of STEINER TREE.

Parameterization by the Solution Size

Theorem

STEINER TREE is W[2]-hard with respect to the number k of Steiner points in the solution.

• We show a parameterized reduction from

Set Cover

Given: A universe U, a family \mathcal{F} of its subsets, and $k \in \mathbb{N}$ **Question:** Is there a subfamily $\mathcal{F}' \subset \mathcal{F}$, $|\mathcal{F}'| \leq k$ such that $\bigcup_{F \in \mathcal{F}'} F = U$?

• SET COVER was shown W[2]-hard with respect to k in Downey & Fellows 1999

Hardness of Steiner Tree, continued

- For an instance (U, F, k) of SET COVER consider the following instance (G = (V, E), T, k) of STEINER TREE :
- $V = U \cup \mathcal{F} \cup \{t_0\}$
- $E = \{\{u, F\} \mid u \in F \in \mathcal{F}\}$ $\cup \{\{t_0, F\} \mid F \in \mathcal{F}\}$
- $T = U \cup \{t_0\}$
- Steiner points 1-1 correspond to the sets in *F*
- we claim that the instances are equivalent

Hardness of Steiner Tree, continued

- For an instance (U, F, k) of SET COVER consider the following instance (G = (V, E), T, k) of STEINER TREE :
- $V = U \cup \mathcal{F} \cup \{t_0\}$
- $E = \{\{u, F\} \mid u \in F \in \mathcal{F}\}$ $\cup \{\{t_0, F\} \mid F \in \mathcal{F}\}$
- $T = U \cup \{t_0\}$
- Steiner points 1-1 correspond to the sets in *F*
- we claim that the instances are equivalent

Hardness of Steiner Tree, continued

- For an instance (U, F, k) of SET COVER consider the following instance (G = (V, E), T, k) of STEINER TREE :
- $V = U \cup \mathcal{F} \cup \{t_0\}$
- $E = \{\{u, F\} \mid u \in F \in \mathcal{F}\}$ $\cup \{\{t_0, F\} \mid F \in \mathcal{F}\}$
- $T = U \cup \{t_0\}$
- Steiner points 1-1 correspond to the sets in *F*
- we claim that the instances are equivalent

Corollary

If for any $k \ge 3$ and $\varepsilon > 0$ STEINER TREE can be solved in time $O(n^{k-\varepsilon})$ then the Strong ETH fails.

- follows from the results of Patrascu and Williams [SODA 2010], since
- DOMINATING SET is a special case of SET COVER,

Ondra Suchý (FIT CTU Prague)

Exact Algorithms for Steiner Tree

Parameterization by Terminals

Theorem [Dreyfus & Wagner, Networks 1971] and [Levin 1971] Edge weighted STEINER TREE can be solved in time $O(3^t \cdot n + 2^t \cdot n^2 + n(n \log n + m)).$

Proof:

- The proof goes by dynamic programming.
- Pick any terminal t_0 and let $T' = T \setminus \{t_0\}$
- For every nonempty $X \subset T'$ and every $v \in V$ we compute:

ST(X, v) = minimum edge weight of a Steiner tree for $(X \cup \{v\})$

- Note that we allow $v \in X$
- The answer is stored in $ST(T', t_0)$
- The trivial case: If $X = \{x\}$ for some $x \in T'$ then for every $v \in V$ we set $ST(\{x\}, v) = dist_G(x, v)$.

Dreyfus-Wagner Algorithm continued

- Now suppose $|X| \ge 2$
- Look at the tree from v
- Starting from v go along the tree until you reach either a vertex in X or a vertex of degree at least 3. Let us call it u. Possibly u = v.

Exact Algorithms for Steiner Tree

Dreyfus-Wagner Algorithm continued

- Now suppose $|X| \ge 2$
- Look at the tree from v
- Starting from v go along the tree until you reach either a vertex in X or a vertex of degree at least 3. Let us call it u. Possibly u = v.
- If $u \in X$ then we let $X' = \{u\}$.
- Otherwise we let X' be the vertices in X in one connected component of the tree with {u} removed.

D-W Algorithm Recurrence

- We have $\emptyset \neq X' \subsetneq X$ and the tree can be split into three pieces
 - the path from v to u (possibly trivial)
 - ▶ a tree for u and X' (possibly trivial)
 - a tree for u and $X \setminus X'$

v v v

• The table can be computed using the following recurrence:

 $\operatorname{ST}(X,v) = \min_{v \in V} (\operatorname{dist}_G(v,u) + \min_{\emptyset \neq X' \subsetneq X} (\operatorname{ST}(X',u) + \operatorname{ST}(X \setminus X',u)))$

• Both X' and $X \setminus X'$ are strictly smaller and nonempty

D-W Algorithm Recurrence

- We have $\emptyset \neq X' \subsetneq X$ and the tree can be split into three pieces
 - the path from v to u (possibly trivial)
 - ▶ a tree for u and X' (possibly trivial)
 - a tree for u and $X \setminus X'$

v

• The table can be computed using the following recurrence:

$$\operatorname{ST}(X, v) = \min_{v \in V} (\operatorname{dist}_G(v, u) + \min_{\emptyset \neq X' \subsetneq X} (\operatorname{ST}(X', u) + \operatorname{ST}(X \setminus X', u)))$$

• Both X' and $X \setminus X'$ are strictly smaller and nonempty

Running time:

- Each vertex of \mathcal{T}' can be either in X', in $X \setminus X'$, or in $\mathcal{T}' \setminus X$
- There are $3^{t-1}n^2$ evaluations of the recurrence.
- One can save by precomputing the second minimum.
- The running time follows

Ondra Suchý (FIT CTU Prague)

Improvements of the D-W Algorithm

- The 1971 D-W algorithm achieves time $O(3^t \cdot n + 2^t \cdot n^2 + n(n \log n + m))$
- This can be improved to O(3^t · n + 2^t(n log n + m)) by computing the distances more cleverly on demand [Erickson, Monma, Veinott Mathematics of Operations Research 1987]
- In 2007 Fuchs, Kern, and Wang [Math. Meth. Oper. Res.] improved this to O(2.684^tn^{O(1)}) and
- Mölle, Richter, and Rossmanith [STACS 2006] to $O((2 + \varepsilon)^t n^{f(e^{-1})})$
- later the above two groups together [*Theory Comput. Syst.* 2007] improved the exponent to $O((\frac{\varepsilon}{-\ln \varepsilon})^{-\delta})$ for any $1/2 < \delta$ which gives, e.g., $O(2.5^t n^{14.2})$ or $O(2.1^t n^{57.6})$
- By using subset convolution and Möbius inversion, one can get to a running time of $\tilde{O}(2^t n^2 + nm)$ for the node weighted case with bounded weights [Björklund, Husfeldt, Kaski, Koivisto *STOC* 2007]

Improvements of the D-W Algorithm

- The 1971 D-W algorithm achieves time $O(3^t \cdot n + 2^t \cdot n^2 + n(n \log n + m))$
- This can be improved to O(3^t · n + 2^t(n log n + m)) by computing the distances more cleverly on demand [Erickson, Monma, Veinott Mathematics of Operations Research 1987]
- In 2007 Fuchs, Kern, and Wang [Math. Meth. Oper. Res.] improved this to O(2.684^tn^{O(1)}) and
- Mölle, Richter, and Rossmanith [STACS 2006] to $O((2 + \varepsilon)^t n^{f(e^{-1})})$
- later the above two groups together [*Theory Comput. Syst.* 2007] improved the exponent to $O((\frac{\varepsilon}{-\ln \varepsilon})^{-\delta})$ for any $1/2 < \delta$ which gives, e.g., $O(2.5^t n^{14.2})$ or $O(2.1^t n^{57.6})$
- By using subset convolution and Möbius inversion, one can get to a running time of $\tilde{O}(2^t n^2 + nm)$ for the node weighted case with bounded weights [Björklund, Husfeldt, Kaski, Koivisto *STOC* 2007]
- All these algorithms take exponential space.

Polynomial Space Algorithms

- First polynomial space algorithm: $O(6^t n^{O(\log t)})$ for edge weighted variant [Fomin, Grandoni, Kratsch *ESA 2008*]
- Combining with, e.g., D&W for $t < \log n$ one obtains $O^*(2^{O(t \log t)})$ -time polynomial space algorithm for the edge weighted variant.
- Finally, Nederlof [*ICALP* 2009] gave a 2^t n^{O(1)}-time polynomial space algorithm for edge weighted variant with bounded weights
- It is pretty simple and based on the inclusion-exclusion principle

Further Improvements

- Can we hope for an algorithm running in $(2 \varepsilon)^t n^{O(1)}$ -time?
- This would imply an algorithm for SET COVER with running time $(2 \varepsilon)^{|U|} |\mathcal{F}|^{O(1)}$ (by the presented reduction)

Set Cover Conjecture (SeCoCo) [Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, Paturi, Saurabh, Wahlström *CCC* 2012] There is no $(2 - \varepsilon)^{|U|} |\mathcal{F}|^{O(1)}$ -time algorithm for SET COVER.

• OPEN: Is there any relation between SeCoCo and SETH?

Kernelization

Theorem [folklore / Dom, Lokshtanov, Saurabh ACM Transactions on Algorithms 2014 / ICALP 2009]

There is no polynomial kernel for STEINER TREE parameterized by t + k unless NP \subseteq coNP/poly, which would imply the collapse of the Polynomial Hierarchy to the third level.

Proof:

- By the framework of Bodlaender, Downey, Fellows, and Hermelin [J. Comput. Syst. Sci. 2009/ ICALP 2008] we have to show that STEINER TREE is compositional with this parameterization
- Consider instances $(G_1, T_1, k_1), \ldots, (G_s, T_s, k_s)$
- We may assume that $|T_1| = |T_2| = \ldots = |T_s| = t$ and $k_1 = k_2 = \ldots = k_s = k$
- We denote $T_1 = \{t_1^1, \ldots, t_t^1\}$, etc.

• We let $T = \{t_1, ..., t_t\}$ and $k' = t \cdot (k+2) + k$.

• We let $T = \{t_1, ..., t_t\}$ and $k' = t \cdot (k+2) + k$.

• We let $T = \{t_1, ..., t_t\}$ and $k' = t \cdot (k+2) + k$.

- We claim that (G, T, k') is a yes instance if and only if $\exists i \in \{1, ..., s\}$ such that (G_i, T_i, k) is a yes-instance.
- If G_i is a yes-instance, then use the solution and add the paths to it.
- A solution for G, must contain at least one path for each t_i
- Hence, exactly one path.
- If they ended in different G_i 's, then the graph would be disconnected.

Exponential Time Algorithms

- the fast exponential algorithms are obtained by combining branching for large values of t and FPT algorithms for small t
- the fastest for weighted case is based on the algorithm of Mölle et al. achieving $O(1.42^n)$ in exponential space
- The only paper devoted to such algorithms is by Fomin, Grandoni, Kratsch, Lokshtanov, Saurabh [*Algorithmica* 2009 / *ESA* 2008]
- It uses more involved branching, quasi FPT algorithm, and analyses the running time by Measure & Conquer.
- It is polynomial space and originally achieved running time $O(1.59^n)$ for the weighted case and $O(1.55^n)$ for the cardinality case.
- Plugging in the $O^*(2^t)$ algorithm of Nederlof, the running time can be improved to $O(1.36^n)$ for the cardinality case.

Steiner Problems in Directed Graphs

In directed graphs "to be connected" can mean several things:

- Connect one distinguished root by directed paths to all other terminals DIRECTED STEINER TREE (DST)
- Connect all terminals among each other STRONGLY CONNECTED STEINER SUBGRAPH (SCSS)

• DSN hard to approximate within $O(2^{\log^{1-\epsilon}n})$ unless $NP \subseteq TIME(2^{polylog(n)})$ [Dodis, Khanna STOC 1999]

Parameterization by Steiner Points-Directed

With respect to the number k of Steiner points in the solution:

- The hardness reduction is easy to modify to show that both DIRECTED STEINER TREE and STRONGLY CONNECTED STEINER SUBGRAPH are W[2]-hard.
- It is enough to orientate all the edges "towards the universe"

Parameterization by Steiner Points-Directed

With respect to the number k of Steiner points in the solution:

- The hardness reduction is easy to modify to show that both DIRECTED STEINER TREE and STRONGLY CONNECTED STEINER SUBGRAPH are W[2]-hard.
- It is enough to orientate all the edges "towards the universe"
- and add backward arcs.
- Hence Directed Steiner Network is also W[2]-hard.

Parameterization by Terminals—Directed

With respect to the number t of terminals:

- All the FPT algorithms for STEINER TREE can be adapted to solve DIRECTED STEINER TREE.
- Feldman, Ruhl [FOCS 1999/ SIAM J. Comput. 2006]:
 - SCSS can be solved in $O(mn^{2t-3} + n^{2t-2}\log n)$ time
 - ▶ DSN can be solved in $O(mn^{4t-2} + n^{4t-1} \log n)$ time,
- Guo, Niedermeier, S.[ISAAC 2009/SIAM J. Disc. Math. 2011]:
 - SCSS is FPT with respect to t for the augmentation case add arcs to existing graph to achieve the requested connectivity
 - SCSS is equivalent to TSP on the terminals if the graph is complete and the edge weights are 1 and 2.
 - SCSS is W[1]-hard for the cardinality case

Hardness of SCSS

Theorem [Guo, Niedemeier,S. 2009]

SCSS is W[1]-hard with respect to k + t for the cardinality case.

• We reduce

MULTICOLORED CLIQUE(MCC)

Given: A graph G = (V, E), $k \in \mathbb{N}$ and a coloring $c : V \to \{1, ..., k\}$. **Decide:** Is there a clique in *G* taking exactly one vertex of each color? **Parameter:** k

- MCC is W[1]-hard [Pietrzak, JCSS 2003]
- we use the edge representation strategy by Fellows, Hermelin, Rosamond and Vialette [*Theor. Comp. Sci.* 2009]

- For each color *i* introduce a vertex *t_i* and for each vertex *v* of color *i* we introduce an oriented triangle *t_i*, *v*, *v'*
- For each pair of colors $i \neq j$, introduce two vertices $t_{i,j}$ and $t_{j,i}$.
- For each edge uv with c(u) = i and c(v) = j, introduce two triangles $t_{i,j}, x_{uv}, x'_{uv}$ and $t_{j,i}, x_{vu}, x'_{vu}$
- add arcs (x'_{uv}, x_v) , (x'_u, x_{uv}) , (x'_{vu}, x_u) , (x'_v, x_{vu})
- let $T = \{t_1, ..., t_k\} \cup \{t_{i,j} \mid i \neq j\}$ and $k' = 2k + 2\binom{k}{2}$

SCSS Hardness Proof Continued 2 t1,2

• We claim that the instance (G, k, c) of MCC is equivalent to the constructed instance of SCSS

- Selecting a vertex or edge in *G* correspond to selecting the vertices of the corresponding triangle in the constructed digraph.
- If there is a mcc, then we can connect the terminals (easy to check).
- If the terminals are connected, then for each color there is one triangle selected, otherwise the terminal would be isolated.
- The same for pairs of colors.
- Exactly one triangle selected for each terminal.
- The selected edges must be between selected vertices.
- The selected vertices form a clique.

SCSS Running Time Lower Bound

Corollary

SCSS cannot be solved in $n^{o(t/\log t)}$ time unless ETH fails.

- the reduction can be done the same way with PARITIONED SUBGRAPH ISOMORPHISM
- the lower bound follows from Marx [FOCS 2007 / Theory of Computing 2010]

Sparse graphs

Sparse graph classes often studied:

- Graphs of bounded treewidth
- planar graphs
- K_h -minor free graphs that do not contain K_h as a minor
- K_h-topological minor free for topological minor, one can only contract edge if one of the endpoints has degree 2
- *d*-degenerate ⇔ every subgraph has vertex of degree at most *d* Sparse directed = sparse underlying undirected

Graphs of Bounded Treewidth

- Classical dynamic programming gives $2^{O(tw \log tw)} \cdot n$ -time algorithm for STEINER TREE
- This was slightly improved to $O(B_{tw+2}^2 \cdot tw \cdot n)$, where B_k is the Bell number, by Chimani, Mutzel, Zey [*IWOCA* 2011/ *J. of Disc. Algor.* 2012]
- There is a 3^{tw} · n^{O(1)} randomized algorithm, with no false positives and probability of false negative at most ¹/₂ [Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk FOCS 2011]
- It is based on a technique called "Cut & Count"

Cut and Count for Steiner Tree

• We want to know, whether there is a *connected* subgraph of given size containing *T*.

Cut and Count for Steiner Tree

- We want to know, whether there is a *connected* subgraph of given size containing *T*.
- We count the number of *all* subgraphs of given size containing *T*.
- We do it in a way that the connected ones are counted once, while the others are counted an even number of times.
- If there was an odd number of connected ones, then the total number will be also odd.

Cut and Count for Steiner Tree

- We want to know, whether there is a *connected* subgraph of given size containing *T*.
- We count the number of *all* subgraphs of given size containing *T*.
- We do it in a way that the connected ones are counted once, while the others are counted an even number of times.
- If there was an odd number of connected ones, then the total number will be also odd.
- We use random weights on vertices to ensure that, with high probability, there is a unique Steiner tree of minimum weight.

Achieving Unique Solution

Isolation Lemma [Mulmuley, Vazirani, Vazirani Combinatorica 1987]

Let $\emptyset \neq \mathcal{F} \subseteq 2^U$. For each $u \in U$, choose a weight $w(u) \in \{1, \ldots, N\}$ uniformly and independently at random. Then the probability that a set of minimum weight in \mathcal{F} is unique is at least $1 - \frac{|U|}{N}$.

- We use N = 2n.
- We guess the minimum weight, i.e., we compute the parity of the number of subgraphs for each possible weight.

Cut and Count — What We Count

- We pick an arbitrary terminal $t_1 \in T$.
- We actually count the parity of the number of pairs of
 - ▶ a subgraph (X, F) with $T \subseteq X$ of given size and particular weight and
 - a cut (X_1, X_2) such that
 - ★ $X_1 \cap X_2 = \emptyset$,
 - $\star X_1 \cup X_2 = X$
 - ★ $t_1 \in X_1$
 - ★ there is no edge with one endpoint in X₁ and one in X₂

- For connected subgraphs only the cut $X_1 = X$ is possible.
- For a disconnected subgraph, there are $2^{cc(X)-1}$ possible cuts.
- The number can only become odd if there is a Steiner tree of the given size.

Cut and Count-Running Time

- There are three possible states of a vertex: in X_1 , in X_2 , outside X
- Correctness of the cut can be checked in polynomial times
- Using principle of inclusion and exclusion, we get to $3^{tw} \cdot tw^{O(1)} \cdot n$ for given size and weight
- The weights are between 1 and $2n^2$, sizes between 1 and n
- Total running time $3^{tw} \cdot n^{O(1)}$

Cut and Count-Running Time

- There are three possible states of a vertex: in X_1 , in X_2 , outside X
- Correctness of the cut can be checked in polynomial times
- Using principle of inclusion and exclusion, we get to $3^{tw} \cdot tw^{O(1)} \cdot n$ for given size and weight
- The weights are between 1 and $2n^2$, sizes between 1 and n
- Total running time $3^{tw} \cdot n^{O(1)}$
- In the same paper: If there is a constant ε > 0 and an (3 − ε)^{pw} · n^{O(1)} algorithm for STEINER TREE, then the Strong ETH fails.

Cut and Count—Running Time

- There are three possible states of a vertex: in X_1 , in X_2 , outside X
- Correctness of the cut can be checked in polynomial times
- Using principle of inclusion and exclusion, we get to $3^{tw} \cdot tw^{O(1)} \cdot n$ for given size and weight
- The weights are between 1 and $2n^2$, sizes between 1 and n
- Total running time $3^{tw} \cdot n^{O(1)}$
- In the same paper: If there is a constant $\varepsilon > 0$ and an $(3 \varepsilon)^{pw} \cdot n^{O(1)}$ algorithm for STEINER TREE, then the Strong ETH fails.
- There are more recent approaches which are deterministic and apply to weighted or counting variants [Bodlaender, Cygan, Kratsch, Nederlof *ICALP* 2013] [Fomin, Lokshtanov, Saurabh *SODA* 2014]
- OPEN: On directed graphs nothing better than $O^*(2^{tw^2})$ is known

Steiner Tree in Planar Graphs

- Consider STEINER TREE in planar graphs parameterized by the solution size *k*
- We can contract any edge connecting two terminals
- Hence, every other vertex on any path is Steiner
- Thus, the graph has diameter $\leq 2k$
- The treewidth is bounded by O(k) and hence it is FPT wrt k.
- Recently Pilipczuk, Pilipczuk, Sankowski, van Leeuwen [*STACS* 2013] presented an algorithm running in time $O(2^{O(((k+t)\log(k+t))^{2/3})}n)$
- And even more recently this was improved to $O(2^{O(\sqrt{(k+t)\log(k+t)})}n)$ [Pilipczuk, Pilipczuk, Sankowski, van Leeuwen *FOCS* 2014]
- OPEN: Is there a subexponential algorithm parameterized only by t or only by k?

Directed Steiner Tree in Sparse Graphs

- DIRECTED STEINER TREE in sprase graphs studied by Jones, Lokshtanov, Ramanujan, Saurabh, S. [*ESA* 2013]
- In directed planar graphs we can only contract strongly connected components formed by terminals.
- Hence we cannot bound the treewidth of the graph.
- Moreover, after contracting the strongly connected the graph may no longer be sparse.
- In fact, DST is W[2]-hard with respect to k even on 2-degenerate graphs.

DST Hardness in Degenerate Graphs

Observation

DST is W[2]-hard with respect to k even on 2-degenerate graphs.

- Use the reduction from setcover, but replace each terminal by a cycle of vertices of degree three.
- Subdivide the edges in these cycles.
- All new vertices are terminals

Directed Steiner Tree in Sparse Graphs continued

D[T] arbitrary

- O*(3^{hk+o(hk)})-time on K_h-minor free digraphs (the algorithm is based on a novel branching rule in combination with the Nederlof's algorithm)
- O^{*}(f(h)^k)-time on K_h-topological minor free digraphs (using the decomposition theorem of Grohe and Marx [STOC 2012])

D[T] acyclic

- $O^*(3^{hk+o(hk)})$ -time on K_h -topological minor free digraphs
- $O^*(3^{dk+o(dk)})$ -time on *d*-degenerate graphs
 - ► DST is FPT wrt k on o(log n)-degenerate graph classes
 - ▶ FPT algorithm for undirected STEINER TREE on *d*-degenerate
- For any constant c > 0, no f(k)n^{o(k/log k)}-time algorithm on graphs of degeneracy c log n unless ETH fails.
 - ▶ no $O^*(2^{o(d)f(k)})$ -time algorithm unless ETH fails
- no $O^*(2^{f(d)o(k)})$ -time algorithm unless ETH fails

Kernelization in Sparse Graphs

- STEINER TREE does not have a polynomial kernel with respect to k + t even on 2-degenerate graphs, unless NP⊆coNP/poly
 [Cygan, Pilipczuk, Pilipczuk, Wojtaszczyk Disc. App. Math. 2012]
- STEINER TREE has an $O((k + t)^{142})$ -size kernel on planar graphs [Pilipczuk, Pilipczuk, Sankowski, van Leeuwen FOCS 2014]
- a polynomial kernel also exists on bounded genus graphs and for the edge weighted variant
- OPEN: Kernel on planar graphs with respect to only k or only t?
- OPEN: Does it have a kernel on *K_h*-minor free or *K_h*-topological-minor free graphs?
- OPEN: Improve the size of the kernel.

- SCSS in planar graphs was recently studied by Chitnis, Hajiaghayi, Marx [*SODA* 2014]
- They show a $2^{O(t \log t)} \cdot n^{O(\sqrt{t})}$ -time algorithm and also
- that an $f(k) \cdot n^{o(\sqrt{t})}$ algorithm would imply that ETH fails.
- OPEN: Can the algorithm for DIRECTED STEINER NETWORK be also somehow speed up on planar graphs?

The main open problems are (not repeating all already mentioned)

- Subexponential algorithm for STEINER TREE with respect to only t
- Improvement to the kernels for planar graphs
- generalizing the result to the higher connectivity settings (first results for SCSS obtained by Chitnis, Esfandiari, Hajiaghayi, Khandekar, Kortsarz, Seddighin [*IPEC* 2014])

Thank you for your attention!