
Kernelization Lower Bounds: A Brief History

G Philip

Max Planck Institute for Informatics, Saarbrücken, Germany

New Developments in Exact Algorithms and Lower Bounds.
Pre-FSTTCS 2014 Workshop, IIT Delhi

December 14, 2014

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 1/43

Parameterized Complexity
A brief review

I One way of coping with NP-hard problems

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 2/43

Parameterized Complexity
A brief review

Example (VERTEX COVER, standard parameterization)
I Input:

I A graph G = (V, E)
I A positive integer k

I Question: Is there a set S ⊆ V of at most k vertices (a vertex cover
of G) such that every edge in G has at least one vertex of S as an
end-point?

I “Standard” parameter: The number k

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 2/43

Notions of Tractability
Fixed-parameter tractability

Definition (Fixed-parameter tractability)
A parameterized problem is fixed-parameter tractable (FPT) if there is
an algorithm which solves instances (x, k) of the problem in time
f(k) · |x|c where

I f() is a computable function of k alone;
I c is a constant, independent of k and |x|.

Example (VERTEX COVER is FPT)

I A simple branching algorithm which runs in O(2k · |G|) time.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 3/43

Notions of Tractability
Fixed-parameter tractability

Problem f(k)

VERTEX COVER 1.2738k

FEEDBACK VERTEX SET 3.619k

d-HITTING SET (d− 1 + ε)k

k-PATH 4k

CONNECTED VERTEX COVER 2k

STEINER TREE 2k

DIRECTED FEEDBACK VERTEX SET 4k · k!
...

...

I From the Table of FPT Races at
http://fpt.wikidot.com/fpt-races.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 4/43

http://fpt.wikidot.com/fpt-races

Notions of Tractability
Fixed-parameter tractability

I The corresponding notion of intractability: W-hardness.
I If a parameterized problem is W-complete, then it is unlikely to

be FPT
I Because they “must all hang together, or they shall all hang

separately”
I Just like NP-completeness
I Lots of examples of W-hard problems
I Standard parameterizations of INDEPENDENT SET (so also CLIQUE),

DOMINATING SET, . . .

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 5/43

Notions of Tractability
Kernelization

Definition (Kernelization, Kernel, Kernel size)
A kernelization algorithm for a parameterized problem is an algorithm
which, given an input (x, k) of the problem,

I Runs in time polynomial in |x|+ k;
I Outputs an instance (x′, k′) of the problem where:

I (x′, k′) is a Yes instance iff (x, k) is a Yes instance, and,
I |x′|, k′ ≤ g(k) for some computable function g()

I (x′, k′) is called a kernel
I g(k) is the size of the kernel

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 6/43

Notions of Tractability
Kernelization

Example (The “Buss” kernel for VERTEX COVER)

I Observation: If a vertex is not in a vertex cover, then all its
neighbours must be in that vertex cover.

I Implication: Every vertex of degree more than k must be in any
vertex cover of size at most k.

I Algorithm:
I Pick all vertices of degree more than k
I If these are already more than k, then return No
I Now: if there are more than k2 edges left, then return No
I Return the remaining graph: a kernel with O(k2) vertices and edges

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 7/43

Notions of Tractability
Kernelization

Problem f(k) Size of the small-
est known kernel

VERTEX COVER 1.2738k O(k2)

FEEDBACK VERTEX SET 3.619k O(k2)

d-HITTING SET (d− 1 + ε)k O(kd)

k-PATH 4k 4k

CONNECTED VERTEX COVER 2k 2k

STEINER TREE 2k 2k

DIRECTED FEEDBACK VERTEX SET 4k · k! 4k · k!

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 8/43

Notions of Tractability
The “first theorem” of Parameterized Complexity

Theorem
A parameterized problem is fixed-parameter tractable if and only if it has
a kernel.

Remark
The proof of the more interesting direction shows that if a problem
can be solved in f(k) · nc time then it has a kernel of size f(k).

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 9/43

Notions of Tractability
Kernelization lower bounds I

I What is a corresponding notion of intractability?
I The theorem rules out kernels of any size for W-hard problems*

I What about problems which are FPT?
I The (proof of the) theorem gives kernels of size f(k)
I f(k) is exponential in k for NP-hard problems†

I We have polynomial-size kernels for many FPT problems
I Which FPT problems do not have polynomial kernels?
I How do we go about proving such lower bounds?

*Under widely believed assumptions.
†For sensible parameters k, and if solving NP-hard problems takes exponential time.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 10/43

Notions of Tractability
Kernelization lower bounds II

I What about problems which do have polynomial-size kernels?
I Kernel sizes tend to decrease with passing years
I Example: FEEDBACK VERTEX SET

I First polynomial-size kernel: O(k11) (Burrage et al., 2006)
I Improved to: O(k3) (Bodlaender, 2007)
I Current best: O(k2) (Thomassé, 2009)

I How far can this go on?
I When do we know to stop?
I How do we prove lower bounds on the polynomial degrees of

kernel sizes?

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 11/43

A (somewhat) different look at kernelization

I Given an instance of a (classical) decision problem:
I How small can we make it in polynomial time, without losing the

Yes/No answer?

I If the problem is in P, then we can reduce it all the way to 1 bit
I If the problem is NP-hard, then we cannota reduce its size

I Even by one bit, without losing the Yes/No answer.
I (Otherwise, we could repeat the procedure and solve the problem

in PTIME.)

aUnless P=NP.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 12/43

A (somewhat) different look at kernelization

I What is a "correct" question to ask about the polynomial-time
“compressibility” of NP-hard problems?

I The PC view: ask how small we can make an instance in terms of
the parameter, in polynomial time

I When we ask for kernels and kernel-size lower bounds, we are
asking the question "What can we (not) do in polynomial time?"

I For a more refined notion of "do" which is relevant for NP-hard
problems

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 12/43

Compressing CLIQUE
A non-standard parameterization

Definition (CLIQUE parameterized by number of vertices)
I Input:

I A graph G = (V, E) on n vertices
I A positive integer k

I Question: Is there a set S ⊆ V of at least k vertices (a clique) in G
such that there is an edge in G between every pair of vertices in S?

I Parameter: The number n

I What is the smallest kernel for this parameterization of CLIQUE?

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 13/43

Compressing CLIQUE
A non-standard parameterization

I How much can we compress CLIQUE in polynomial time w/o
losing the Yes/No answer?

I Recall: the size of the kernel is measured in terms of the parameter,
here n.

I A kernel of size O(n2) is easy:
I Encode G as its adjacency matrix: O(n2) bits
I Encode k in binary: O(log n) bits

I Is this trivial encoding for CLIQUE the best we can do in
polynomial time?

I The size of the encoding is measured in terms of n
I n is not the size of the input instance here!

I An encoding into, say, n
3
2 bits does not directly imply that P=NP

I A question about kernel lower bounds!

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 13/43

Summarizing . . .

I Kernelization is polynomial-time reduction in instance size
I Sizes are measured in terms of a parameter
I A parameterized problem has a kernel (of some size) iff it is FPT
I Interesting questions:

I How do we separate FPT problems which have polynomial-size
kernels, from those which don’t?

I How do we prove lower-bounds on the polynomial degree of
problem kernels?

I The latter question is interesting from a purely classical pov as
well (e.g: CLIQUE.)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 14/43

This Talk
Outline

I Introduction
I Ruling out polynomial-size kernels

I For problems which do have exponential-size kernels
I AKA problems which have FPT algorithms

I Based on Fortnow and Santhanam (STOC 2008), Bodlaender et al
(ICALP 2008).

I Lower-bounding the degrees of polynomial-size kernels
I Can we have smaller-than-O(k2) kernels for VERTEX COVER or

FEEDBACK VERTEX SET . . .
I Or compress CLIQUE to less than n2 bits in polynomial time?
I Based on Dell and van Melkebeek (STOC 2010).

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 15/43

Ruling Out Polynomial Kernels

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 16/43

Based on . . .

I On problems without polynomial kernels
I Bodlaender, Downey, Fellows and Hermelin,
I ICALP 2008, JCSS 2009

I Infeasibility of instance compression and succinct PCPs for NP
I Fortnow and Santhanam
I STOC 2008, JCSS 2011

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 17/43

Composition algorithms

I Simple criterion for ruling out polynomial kernels
I Simple to understand
I Not always easy to apply!

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 18/43

OR-Composition Algorithms
For parameterized problems

Definition
An OR-composition algorithm for a parameterized problem L is an
algorithm that:

I Takes as input a list of instances ((x1, k), (x2, k), . . . , (xt, k)) for
any integer t;

I Runs in time polynomial in
∑

i(|xi|+ k);
I And outputs an instance (y, k′) such that

1. (y, k′) ∈ L if and only if at least one (xi, k) ∈ L
2. k′ is polynomial in k.

Example (OR-composition)

I k-PATH: Does graph G have a simple path of length at least k?

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 19/43

OR-Composition Algorithms
For parameterized problems

Definition
An OR-composition algorithm for a parameterized problem L is an
algorithm that:

I Takes as input a list of instances ((x1, k), (x2, k), . . . , (xt, k)) for
any integer t;

I Runs in time polynomial in
∑

i(|xi|+ k);
I And outputs an instance (y, k′) such that

1. (y, k′) ∈ L if and only if at least one (xi, k) ∈ L
2. k′ is polynomial in k.

Example (OR-composition)

I k-PATH: Does graph G have a simple path of length at least k?

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 19/43

Polynomial kernel lower bounds

Theorem (Bodlaender et al., Fortnow and Santhanam)
Let L be a parameterized problem whose underlying classical problem is
NP-complete. Then at most one of the following is true:

I L has an OR-composition;
I L has a polynomial-size kernel,

unless coNP ⊆ NP/poly.

Remark
The condition coNP ⊆ NP/poly is considered unlikely, because it
implies a collapse in the Polynomial Hierarchy.

Corollary
k-Path does not have a polynomial-size kernel, unless coNP ⊆ NP/poly.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 20/43

Polynomial kernel lower bounds

Theorem (Bodlaender et al., Fortnow and Santhanam)
Let L be a parameterized problem whose underlying classical problem is
NP-complete. Then at most one of the following is true:

I L has an OR-composition;
I L has a polynomial-size kernel,

unless coNP ⊆ NP/poly.

Remark
The condition coNP ⊆ NP/poly is considered unlikely, because it
implies a collapse in the Polynomial Hierarchy.

Corollary
k-Path does not have a polynomial-size kernel, unless coNP ⊆ NP/poly.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 20/43

Some consequences of the Theorem
Problems with no polynomial kernels unless coNP ⊆ NP/poly

I Essentially every NP-complete problem which asks for a
“subgraph of some kind”: K-PATH, K-CYCLE, K-EXACT CYCLE,
K-MINOR ORDER TEST, K-PLANAR SUBGRAPH TEST, K-BOUNDED

TREEWIDTH SUBGRAPH TEST, . . .
I Many NP-complete problems parameterized by the treewidth of

the input graph: W-VERTEX COVER, W-INDEPENDENT SET,
W-CLIQUE, W-DOMINATING SET

I Many more problems, using clever composition techniques and
reductions. E.g: K-DISJOINT CYCLES, K-DISJOINT PATHS

(Bodlaender, Thomassé, Yeo, ESA 2009), CONNECTED VERTEX

COVER, STEINER TREE (Dom, Lokshtanov, Saurabh, ICALP 2009)
I Lots of problems by now!

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 21/43

Revisiting the table . . .

Problem f(k) Kernel size
VERTEX COVER 1.2738k O(k2)

FEEDBACK VERTEX SET 3.619k O(k2)

d-HITTING SET (d− 1 + ε)k O(kd)

k-PATH 4k No kO(1)

CONNECTED VERTEX COVER 2k No kO(1)

STEINER TREE 2k No kO(1)

DIRECTED FEEDBACK VERTEX SET 4k · k! 4k · k!

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 22/43

AND-Composition
Replace “at least one instance” with “all instances”

Theorem (Bodlaender et al., ICALP 2008)
k-TREEWIDTH (and many other problems) does not have polynomial-size
kernels unless NP-complete problems can have AND-distillation
algorithms.

I Bodlaender et al. thought it unlikely that NP-complete problems
have AND-distillation algorithms

I They could not connect this to any complexity-theoretic
assumption.

Theorem (Drucker, FOCS 2012)
If NP-complete problems have AND-distillation algorithms, then
coNP ⊆ NP/poly.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 23/43

AND-Composition
Replace “at least one instance” with “all instances”

Theorem (Bodlaender et al., ICALP 2008)
k-TREEWIDTH (and many other problems) does not have polynomial-size
kernels unless NP-complete problems can have AND-distillation
algorithms.

I Bodlaender et al. thought it unlikely that NP-complete problems
have AND-distillation algorithms

I They could not connect this to any complexity-theoretic
assumption.

Theorem (Drucker, FOCS 2012)
If NP-complete problems have AND-distillation algorithms, then
coNP ⊆ NP/poly.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 23/43

Lower-Bounding the Degrees of
Polynomial Kernels

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 24/43

Based on . . .

I Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses

I Dell and van Melkebeek
I STOC 2010, JACM 2014

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 25/43

An Oracle Communication Protocol

I Two players, Alice and Bob
I Alice is polynomially bounded, Bob has unbounded computational

power
I Together, they want to decide if a string x belongs to a specified

language L
I In the beginning, Alice holds the string x
I In the end, Alice should know if x ∈ L
I They can communicate with each other to achieve this
I The cost of this protocol is the number of bits sent from Alice to Bob

I The bits sent from Bob to Alice do not count in the cost

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 26/43

An Oracle Communication Protocol

I Two players, Alice and Bob
I Alice is polynomially bounded, Bob has unbounded computational

power
I Together, they want to decide if a string x belongs to a specified

language L
I In the beginning, Alice holds the string x
I In the end, Alice should know if x ∈ L
I They can communicate with each other to achieve this
I The cost of this protocol is the number of bits sent from Alice to Bob

I The bits sent from Bob to Alice do not count in the cost

I Again: “What can we (not) do in polynomial time?”
I For yet another notion of “do”

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 26/43

An Oracle Communication Protocol

I Two players, Alice and Bob
I Alice is polynomially bounded, Bob has unbounded computational

power
I Together, they want to decide if a string x belongs to a specified

language L
I In the beginning, Alice holds the string x
I In the end, Alice should know if x ∈ L
I They can communicate with each other to achieve this
I The cost of this protocol is the number of bits sent from Alice to Bob

I The bits sent from Bob to Alice do not count in the cost

I A generalization of kernelization
I E.g: VERTEX COVER has a protocol of cost O(k2)

1. Alice computes a kernel of size O(k2)
2. She sends the kernel to Bob
3. Bob solves the instance and sends Yes or No back to Alice
4. Total cost: O(k2)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 26/43

An Oracle Communication Protocol

I Two players, Alice and Bob
I Alice is polynomially bounded, Bob has unbounded computational

power
I Together, they want to decide if a string x belongs to a specified

language L
I In the beginning, Alice holds the string x
I In the end, Alice should know if x ∈ L
I They can communicate with each other to achieve this
I The cost of this protocol is the number of bits sent from Alice to Bob

I The bits sent from Bob to Alice do not count in the cost

Theorem(Dell and van Melkebeek)
VERTEX COVER admits no protocol of cost O(k2−ε) where k is the
standard parameter, unless coNP ⊆ NP/poly.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 26/43

Some More Lower Bounds
All these carry over directly to the standard parameterizations

Theorem
VERTEX COVER admits no protocol of cost O(n2−ε) where n is the
number of vertices, unless coNP ⊆ NP/poly. So also for CLIQUE.

Theorem
More generally: for any d ≥ 2, d-Hitting Set over a universe of size n
admits no protocol of cost O(nd−ε), unless coNP ⊆ NP/poly.

Theorem
Let Π be a nontrivial graph property that is inherited by subgraphs.
There is no protocol of cost O(k2−ε) for deciding if a graph satisfying
Π can be obtained from a given graph by deleting at most k vertices,
unless coNP ⊆ NP/poly.

Corollary
FEEDBACK VERTEX SET has no kernel of size O(k2−ε) unless . . .

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 27/43

The table, one final time

Problem f(k) Kernel size
VERTEX COVER 1.2738k O(k2); No O(k2−ε)

FEEDBACK VERTEX SET 3.619k O(k2); No O(k2−ε)

d-HITTING SET (d− 1 + ε)k O(kd); No O(kd−ε)

k-PATH 4k No kO(1)

CONNECTED VERTEX COVER 2k No kO(1)

STEINER TREE 2k No kO(1)

DIRECTED FEEDBACK VERTEX SET 4k · k! 4k · k!

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 28/43

A closer look at the lower bounds

I VERTEX COVER: Kernels with O(k2) edges, no kernel with
O(k2−ε) edges

I What about the number of vertices in a kernel?
I The relaxed VERTEX COVER LP has the half-integrality property

I Can find an optimal {0, 1
2 , 1}-solution in PTIME

I Theorem (Nemhauser and Trotter, 1975): There is a smallest vertex
cover which contains all the 1s and none of the 0s

I All the 1
2 s together induce a kernel with ≤ 2k vertices

I Upper bound on #vertices in a kernel: O(k)

I Lower bound on #vertices in a kernel: Ω(k)
I Follows directly from the size lower bound
I n-vertex graphs can be encoded with O(n2) bits
I E.g: An O(k

3
4)-vertex kernel would have total size

O(k
3
2) = O(k2− 1

2) bits, contradiction.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 29/43

A closer look at the lower bounds

I VERTEX COVER: Kernels with O(k2) edges, no kernel with
O(k2−ε) edges

I What about the number of vertices in a kernel?
I The relaxed VERTEX COVER LP has the half-integrality property

I Can find an optimal {0, 1
2 , 1}-solution in PTIME

I Theorem (Nemhauser and Trotter, 1975): There is a smallest vertex
cover which contains all the 1s and none of the 0s

I All the 1
2 s together induce a kernel with ≤ 2k vertices

I Upper bound on #vertices in a kernel: O(k)

I Lower bound on #vertices in a kernel: Ω(k)
I Follows directly from the size lower bound
I n-vertex graphs can be encoded with O(n2) bits
I E.g: An O(k

3
4)-vertex kernel would have total size

O(k
3
2) = O(k2− 1

2) bits, contradiction.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 29/43

A closer look at the lower bounds

I VERTEX COVER: Kernels with O(k2) edges, no kernel with
O(k2−ε) edges

I What about the number of vertices in a kernel?
I The relaxed VERTEX COVER LP has the half-integrality property

I Can find an optimal {0, 1
2 , 1}-solution in PTIME

I Theorem (Nemhauser and Trotter, 1975): There is a smallest vertex
cover which contains all the 1s and none of the 0s

I All the 1
2 s together induce a kernel with ≤ 2k vertices

I Upper bound on #vertices in a kernel: O(k)

I Lower bound on #vertices in a kernel: Ω(k)
I Follows directly from the size lower bound
I n-vertex graphs can be encoded with O(n2) bits
I E.g: An O(k

3
4)-vertex kernel would have total size

O(k
3
2) = O(k2− 1

2) bits, contradiction.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 29/43

A closer look at the lower bounds

I VERTEX COVER:
I Kernels with O(k2) edges, no kernel with O(k2−ε) edges
I Kernels with O(k) vertices, no kernel with O(k1−ε) edges

I FEEDBACK VERTEX SET:
I Kernels with O(k2) edges, no kernel with O(k2−ε) edges
I Current upper bound on #vertices: O(k2)
I Dell and van Melkebeek only rule out kernels with O(k1−ε) vertices
I Gap!

I d-Hitting Set:
I Best known kernels have O(kd) sets over a universe of size O(kd−1)
I Dell and van Melkebeek rule out kernels with O(kd−ε) sets or a

universe of size O(k1−ε)
I Gap!

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 30/43

A closer look at the lower bounds

I VERTEX COVER:
I Kernels with O(k2) edges, no kernel with O(k2−ε) edges
I Kernels with O(k) vertices, no kernel with O(k1−ε) edges

I FEEDBACK VERTEX SET:
I Kernels with O(k2) edges, no kernel with O(k2−ε) edges
I Current upper bound on #vertices: O(k2)
I Dell and van Melkebeek only rule out kernels with O(k1−ε) vertices
I Gap!

I d-Hitting Set:
I Best known kernels have O(kd) sets over a universe of size O(kd−1)
I Dell and van Melkebeek rule out kernels with O(kd−ε) sets or a

universe of size O(k1−ε)
I Gap!

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 30/43

A tight non-trivial “structural” kernel lower bound

I For a variant of Hitting Set
I The first result of this kind
I An application of the full power of the protocol
I Point Line Cover: The Easy Kernel is Essentially Tight

I Stefan Kratsch, G. Philip, and Saurabh Ray, SODA 2014

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 31/43

The Point-Line Cover problem

I Input:
I A set P = {p1, p2, . . . , pn} of n points in the plane

I Each point is a pair of rational coordinates: pi = (xi, yi)

I A positive integer k
I Question: Is there a set L of at most k lines in the plane which

together cover all points in P?
I Each point in the set P must lie on at least one of the lines in L.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 32/43

The Point-Line Cover problem

I Input:
I A set P = {p1, p2, . . . , pn} of n points in the plane

I Each point is a pair of rational coordinates: pi = (xi, yi)

I A positive integer k
I Question: Is there a set L of at most k lines in the plane which

together cover all points in P?
I Each point in the set P must lie on at least one of the lines in L.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 32/43

The Point-Line Cover problem

I NP-hard (Megiddo and Tamir, 1982)
I Standard parameter: k
I Kernel with ≤ k2 points

I Langerman and Morin, 2005
I Uses the “Buss” idea, like for VERTEX COVER

I Open: Is there a kernel with o(k2) points?

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 33/43

Our Result
ε > 0 is any positive constant

Theorem
The Point-Line Cover problem does not have a kernel with O(k2−ε)
points unless coNP ⊆ NP/poly.

I This does not rule out kernels with, say, O(k2

log k) = o(k2) points

I We use Ω(k2) to denote a bound like in the theorem.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 34/43

Our Result
ε > 0 is any positive constant

Theorem
The Point-Line Cover problem does not have a kernel with O(k2−ε)
points unless coNP ⊆ NP/poly.

I This does not rule out kernels with, say, O(k2

log k) = o(k2) points

I We use Ω(k2) to denote a bound like in the theorem.

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 34/43

Tight bound for #points in Point-Line Cover kernels
A first attempt

I We have: O(k2) upper bound on #points
I We want: Ω(k2) lower bound on #points
I How?

I We derive: Ω(k2) lower bound on total size
I The Ω(k2) lower bound on VERTEX COVER kernel size
I Reduction from VERTEX COVER to Point-Line Cover

I k→ 2k

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 35/43

Tight bound for #points in Point-Line Cover kernels
A first attempt

I We have: O(k2) upper bound on #points
I We want: Ω(k2) lower bound on #points
I How?
I We derive: Ω(k2) lower bound on total size

I The Ω(k2) lower bound on VERTEX COVER kernel size
I Reduction from VERTEX COVER to Point-Line Cover

I k→ 2k

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 35/43

Tight bound for #points in Point-Line Cover kernels
A first attempt

I We have: Ω(k2) lower bound on total size
I We want: An O(n · polylog(n))-bit polynomial-time encoding of

Point-Line Cover instances with n points

I The best known such encoding has O(n2) bits
I This gives: Ω(k) lower bound on #points in a kernel

I E.g: An O(k3/4)-point kernel implies a kernel of total size O(k3/2)
I Contradicting the Ω(k2) lower bound on kernel size
I Doesn’t rule out kernels with, say, O(k

3
2) points

I Such a kernel has total size O(k3) bits, contradicting nothing

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 35/43

Tight bound for #points in Point-Line Cover kernels
A first attempt

I We have: Ω(k2) lower bound on total size
I We want: An O(n · polylog(n))-bit polynomial-time encoding of

Point-Line Cover instances with n points
I The best known such encoding has O(n2) bits
I This gives: Ω(k) lower bound on #points in a kernel

I E.g: An O(k3/4)-point kernel implies a kernel of total size O(k3/2)
I Contradicting the Ω(k2) lower bound on kernel size
I Doesn’t rule out kernels with, say, O(k

3
2) points

I Such a kernel has total size O(k3) bits, contradicting nothing

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 35/43

Tight bound for #points in Point-Line Cover kernels
A first attempt

I The best-known encoding gives : Ω(k) lower bound on #points
I One way to improve this to Ω(k2) : Find an O(n log n)-bit

polynomial-time encoding for n-point instances
I Open since the very first SOCG (1985)
I It is known that there exists such an encoding
I The hard (and unknown) part is to find it in polynomial time

I We achieve this without finding a better encoding
I Using the Oracle Communication Protocol

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 35/43

An Outline of the Proof

I Recall: A Point-Line Cover instance is (P, k); P is a set of n points.

I The proof has two main ingredients:
1. A lower bound of Ω(k2) on the cost of a protocol for Point-Line

Cover
2. An upper bound of O(n log n) on the cost of a protocol for

Point-Line Cover
I Together, these give us a lower bound of Ω(k2) on the number of

points in a kernel

I Suppose there was a kernel for Point-Line Cover with k2−ε points
I Alice is given an instance (P, k) ; |P| = n of Point-Line Cover
I She computes kernel (P ′, k′) with n′ = |P ′| = k2−ε points
I Alice and Bob use the second ingredient to decide (P ′, k′)
I Cost: O(n′ log n′) = O(k2−ε log(k2−ε)) = O(k2−ε log k) = O(k2−ε′)
I This contradicts the cost lower bound

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 36/43

An Outline of the Proof

I Recall: A Point-Line Cover instance is (P, k); P is a set of n points.

I The proof has two main ingredients:
1. A lower bound of Ω(k2) on the cost of a protocol for Point-Line

Cover
2. An upper bound of O(n log n) on the cost of a protocol for

Point-Line Cover
I Together, these give us a lower bound of Ω(k2) on the number of

points in a kernel

I Suppose there was a kernel for Point-Line Cover with k2−ε points
I Alice is given an instance (P, k) ; |P| = n of Point-Line Cover
I She computes kernel (P ′, k′) with n′ = |P ′| = k2−ε points
I Alice and Bob use the second ingredient to decide (P ′, k′)
I Cost: O(n′ log n′) = O(k2−ε log(k2−ε)) = O(k2−ε log k) = O(k2−ε′)
I This contradicts the cost lower bound

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 36/43

The Lower Bound
A brief look

Theorem
The Point-Line Cover problem does not admit an oracle
communication protocol of cost O(k2−ε) unless coNP ⊆ NP/poly.

I Outline of the proof:
I Polynomial-time, parameter-preserving reduction from VERTEX

COVER to Point-Line Cover
I (G, k) goes to (P, 2k)

I The theorem now follows from the Ω(k2−ε) lower bound on the cost
of VERTEX COVER protocols

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 37/43

The Upper Bound
A closer look

Theorem
There is an oracle communication protocol which can solve Point-Line
Cover instances with n points at a cost of O(n log n).

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 38/43

The Upper Bound
A first attempt at such a protocol

I Given an instance (P, k) ; |P| = n of Point-Line Cover
I Alice computes an encoding X of P, where X has O(n log n) bits
I She then sends X over to Bob

I Cost: O(n log n)
I Using X, Bob computes the size s of a smallest point-line cover of P
I He then sends s over to Alice

I Cost: Zero

I Alice outputs s
?

≤ k
I Total cost: O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 39/43

The Upper Bound
A first attempt at such a protocol

I Given an instance (P, k) ; |P| = n of Point-Line Cover
I Alice computes an encoding X of P, where X has O(n log n) bits
I She then sends X over to Bob

I Cost: O(n log n)
I Using X, Bob computes the size s of a smallest point-line cover of P
I He then sends s over to Alice

I Cost: Zero

I Alice outputs s
?

≤ k
I Total cost: O(n log n)

I What’s missing here?
I No known Alice-time encoding of P into O(n log n) bits

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 39/43

The Upper Bound
A first attempt at such a protocol

I Given an instance (P, k) ; |P| = n of Point-Line Cover
I Alice computes an encoding X of P, where X has O(n log n) bits
I She then sends X over to Bob

I Cost: O(n log n)
I Using X, Bob computes the size s of a smallest point-line cover of P
I He then sends s over to Alice

I Cost: Zero

I Alice outputs s
?

≤ k
I Total cost: O(n log n)

I Our way out:
I An Alice-time encoding of P which effectively has O(n log n) bits
I This encoding actually has many more bits, namely n3

I Any n-point instance of Point-Line Cover encodes to one of a set of
2O(n log n) strings, each of length n3

I We replace a small encoding with a sparse one

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 39/43

The Upper Bound
A first attempt at such a protocol

I Given an instance (P, k) ; |P| = n of Point-Line Cover
I Alice computes an encoding X of P, where X has O(n log n) bits
I She then sends X over to Bob

I Cost: O(n log n)
I Using X, Bob computes the size s of a smallest point-line cover of P
I He then sends s over to Alice

I Cost: Zero

I Alice outputs s
?

≤ k
I Total cost: O(n log n)

I Our way out:
I An Alice-time encoding of P which effectively has O(n log n) bits
I This encoding actually has many more bits, namely n3

I Any n-point instance of Point-Line Cover encodes to one of a set of
2O(n log n) strings, each of length n3

I We replace a small encoding with a sparse one

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 39/43

The Upper Bound
The sparse encoding

Theorem (Alon, 1986)
There is an encoding of sets of points on a plane into bit strings such
that:

1. The encoding can be computed in polynomial time

2. It maps every n-point set to a bit string of length n3

3. For each n, all these n3-bit strings belong to a set Bn ; |Bn| = nO(n)

4. If point sets P and Q map to the same string in Bn, then they are
equivalent with respect to Point-Line Cover

I The encoding is called an Abstract Order Type Representation

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 40/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero

I Alice compares M with X and tells Bob
whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)

I This is our second main ingredient: a
protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

The Upper Bound
A protocol of cost O(n log n) for Point-Line Cover

I The input instance (P, k) ; |P| = n is
with Alice

I Alice computes Alon’s encoding X of P,
where |X| = n3

I She cannot send all of X over to Bob, it’s
too costly

I Alice sends the number n over to Bob
I Cost: O(log n)

I Using n, Bob computes a sorted list Bn of
all possible encodings of n-point sets;
|Bn| = nO(n)

I He then sends the median element M of
this back to Alice

I Cost: Zero
I Alice compares M with X and tells Bob

whether M is before, after, or equal to X
in lexicographic order

I Cost: A bit and a half

I Bob throws out that half of the list Bn
where X cannot be present

I He then computes the median of the
remaining list, and they repeat the above
procedure

I After going back and forth for
O(log(|Bn|)) = O(n log n) rounds, Bob
knows what X is

I Using X, Bob computes the size s of a
smallest point-line cover of P

I He then sends s back to Alice
I Cost: Zero

I Alice outputs s
?
≤ k

I Total cost: O(n log n)
I This is our second main ingredient: a

protocol of cost O(n log n)

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 41/43

Open problems

I Close other such “structural” gaps in kernel bounds
I A first candidate: FEEDBACK VERTEX SET

I We have: O(k2) upper bound on #vertices and #edges
I Ω(k2) lower bound on #edges
I But only: Ω(k) lower bound on #vertices
I TODO: bridge this gap in the #vertices

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 42/43

Thank You!

Pre-FSTTCS 2014 Workshop Kernelization Lower Bounds: A Brief History G. Philip 43/43

	Ruling Out Polynomial Kernels
	Lower-Bounding the Degrees of Polynomial Kernels

