Kernelization Lower Bounds: A Brief History

G Philip

Max Planck Institute for Informatics, Saarbrücken, Germany

New Developments in Exact Algorithms and Lower Bounds. Pre-FSTTCS 2014 Workshop, IIT Delhi December 14, 2014

Parameterized Complexity

A brief review

▶ One way of coping with NP-hard problems

Parameterized Complexity

A brief review

Example (Vertex Cover, standard parameterization)

- ► Input:
 - ▶ A graph G = (V, E)
 - ► A positive integer *k*
- ▶ Question: Is there a set $S \subseteq V$ of at most k vertices (a *vertex cover* of G) such that every edge in G has at least one vertex of S as an end-point?
- ▶ "Standard" parameter: The number *k*

Fixed-parameter tractability

Definition (Fixed-parameter tractability)

A parameterized problem is *fixed-parameter tractable* (FPT) if there is an algorithm which solves instances (x, k) of the problem in time $f(k) \cdot |x|^c$ where

- \blacktriangleright f() is a computable function of k alone;
- \triangleright *c* is a constant, independent of *k* and |x|.

Example (VERTEX COVER is FPT)

▶ A simple branching algorithm which runs in $\mathcal{O}(2^k \cdot |G|)$ time.

Fixed-parameter tractability

Problem	f(k)
VERTEX COVER	1.2738^k
FEEDBACK VERTEX SET	3.619^k
d-HITTING SET	$(d-1+\varepsilon)^k$
k-Path	4^k
CONNECTED VERTEX COVER	2^k
STEINER TREE	2^k
DIRECTED FEEDBACK VERTEX SET	$4^k \cdot k!$
:	:

► From the Table of FPT Races at http://fpt.wikidot.com/fpt-races.

Fixed-parameter tractability

- ▶ The corresponding notion of *intractability*: W-hardness.
- If a parameterized problem is W-complete, then it is unlikely to be FPT
 - Because they "must all hang together, or they shall all hang separately"
 - Just like NP-completeness
 - Lots of examples of W-hard problems
 - Standard parameterizations of INDEPENDENT SET (so also CLIQUE), DOMINATING SET, . . .

Kernelization

Definition (Kernelization, Kernel, Kernel size)

A *kernelization algorithm* for a parameterized problem is an algorithm which, given an input (x, k) of the problem,

- ▶ Runs in time *polynomial* in |x| + k;
- ▶ Outputs an instance (x', k') of the problem where:
 - (x', k') is a **Yes** instance iff (x, k) is a **Yes** instance, and,
 - ▶ $|x'|, k' \le g(k)$ for some computable function g()
- \triangleright (x',k') is called a *kernel*
- ightharpoonup g(k) is the *size* of the kernel

Kernelization

Example (The "Buss" kernel for VERTEX COVER)

- ▶ Observation: If a vertex is not in a vertex cover, then *all* its neighbours *must* be in that vertex cover.
- ► Implication: Every vertex of degree more than *k* must be in *any* vertex cover of size at most *k*.
- ► Algorithm:
 - ▶ Pick all vertices of degree more than *k*
 - ▶ If these are already more than *k*, then return **No**
 - Now: if there are more than k^2 edges left, then return **No**
 - ▶ Return the remaining graph: a kernel with $O(k^2)$ vertices and edges

Kernelization

Problem	f(k)	Size of the small- est known kernel
VERTEX COVER	1.2738^{k}	$\mathcal{O}(k^2)$
FEEDBACK VERTEX SET	3.619^k	$\mathcal{O}(k^2)$
d-HITTING SET	$(d-1+\varepsilon)^k$	$\mathcal{O}(k^d)$
k-Path	4^k	4 ^k
CONNECTED VERTEX COVER	2^k	2^k
STEINER TREE	2^k	2^k
DIRECTED FEEDBACK VERTEX SET	$4^k \cdot k!$	$4^k \cdot k!$

The "first theorem" of Parameterized Complexity

Theorem

A parameterized problem is fixed-parameter tractable if and only if it has a kernel.

Remark

The proof of the more interesting direction shows that if a problem can be solved in $f(k) \cdot n^c$ time then it has a kernel of size f(k).

Kernelization lower bounds I

- ▶ What is a corresponding notion of *intractability*?
- ▶ The theorem rules out kernels of *any size* for W-hard problems*
- What about problems which are FPT?
 - ▶ The (proof of the) theorem gives kernels of size f(k)
 - f(k) is exponential in k for NP-hard problems[†]
 - ▶ We have polynomial-size kernels for many FPT problems
 - Which FPT problems do not have polynomial kernels?
 - How do we go about proving such lower bounds?

^{*}Under widely believed assumptions.

 $^{^\}dagger$ For sensible parameters k, and if solving NP-hard problems takes exponential time.

Kernelization lower bounds II

- ▶ What about problems which *do* have polynomial-size kernels?
- Kernel sizes tend to decrease with passing years
- ► Example: FEEDBACK VERTEX SET
 - ▶ First polynomial-size kernel: $\mathcal{O}(k^{11})$ (Burrage et al., 2006)
 - ▶ Improved to: $\mathcal{O}(k^3)$ (Bodlaender, 2007)
 - ► Current best: $\mathcal{O}(k^2)$ (Thomassé, 2009)
- ▶ How far can this go on?
- When do we know to stop?
- How do we prove lower bounds on the polynomial degrees of kernel sizes?

A (somewhat) different look at kernelization

- ▶ Given an instance of a (classical) decision problem:
 - How small can we make it in polynomial time, without losing the Yes/No answer?
- ▶ If the problem is in P, then we can reduce it all the way to 1 bit
- ▶ If the problem is NP-hard, then we cannot^a reduce its size
 - ▶ Even by one bit, without losing the Yes/No answer.
 - (Otherwise, we could repeat the procedure and solve the problem in PTIME.)

 $^{^{}a}$ Unless P=NP.

A (somewhat) different look at kernelization

- ► What is a "correct" question to ask about the polynomial-time "compressibility" of NP-hard problems?
- ► The PC view: ask how small we can make an instance *in terms of the parameter*, in polynomial time
- ▶ When we ask for kernels and kernel-size lower bounds, we are asking the question "What can we (not) do in polynomial time?"
- ► For a more refined notion of "do" which is relevant for NP-hard problems

Compressing CLIQUE

A non-standard parameterization

Definition (CLIQUE parameterized by number of vertices)

- ► Input:
 - ▶ A graph G = (V, E) on n vertices
 - ► A positive integer *k*
- ▶ Question: Is there a set $S \subseteq V$ of at least k vertices (a clique) in G such that there is an edge in G between every pair of vertices in S?
- ▶ Parameter: The number *n*
- ▶ What is the smallest kernel for this parameterization of CLIQUE?

Compressing CLIQUE

A non-standard parameterization

- How much can we compress CLIQUE in polynomial time w/o losing the Yes/No answer?
 - Recall: the size of the kernel is measured in terms of the parameter, here n.
- ▶ A kernel of size $\mathcal{O}(n^2)$ is easy:
 - ▶ Encode *G* as its adjacency matrix: $\mathcal{O}(n^2)$ bits
 - ▶ Encode k in binary: $\mathcal{O}(\log n)$ bits
- Is this trivial encoding for CLIQUE the best we can do in polynomial time?
 - ▶ The size of the encoding is measured in terms of *n*
 - ▶ *n* is *not* the size of the input instance here!
 - ► An encoding into, say, $n^{\frac{3}{2}}$ bits does not directly imply that P=NP
- ▶ A question about kernel lower bounds!

Summarizing ...

- Kernelization is polynomial-time reduction in instance size
- Sizes are measured in terms of a parameter
- ▶ A parameterized problem has a kernel (of some size) iff it is FPT
- ► Interesting questions:
 - How do we separate FPT problems which have polynomial-size kernels, from those which don't?
 - How do we prove lower-bounds on the polynomial degree of problem kernels?
- ➤ The latter question is interesting from a purely classical pov as well (e.g: CLIQUE.)

This Talk

- ► Introduction
- Ruling out polynomial-size kernels
 - ▶ For problems which *do* have exponential-size kernels
 - AKA problems which have FPT algorithms
 - Based on Fortnow and Santhanam (STOC 2008), Bodlaender et al (ICALP 2008).
- ▶ Lower-bounding the degrees of polynomial-size kernels
 - ▶ Can we have smaller-than- $\mathcal{O}(k^2)$ kernels for Vertex Cover or Feedback Vertex Set . . .
 - ▶ Or compress CLIQUE to less than n^2 bits in polynomial time?
 - ▶ Based on Dell and van Melkebeek (STOC 2010).

Ruling Out Polynomial Kernels

Based on ...

- ▶ On problems without polynomial kernels
 - ▶ Bodlaender, Downey, Fellows and Hermelin,
 - ▶ ICALP 2008, JCSS 2009
- ▶ Infeasibility of instance compression and succinct PCPs for NP
 - Fortnow and Santhanam
 - STOC 2008, JCSS 2011

Composition algorithms

- ▶ Simple criterion for ruling out polynomial kernels
 - Simple to understand
 - Not always easy to apply!

OR-Composition Algorithms

For parameterized problems

Definition

An OR-composition algorithm for a parameterized problem \boldsymbol{L} is an algorithm that:

- ► Takes as input a list of instances $((x_1, k), (x_2, k), \dots, (x_t, k))$ for any integer t;
- ▶ Runs in time polynomial in $\sum_i (|x_i| + k)$;
- ▶ And outputs an instance (y, k') such that
 - 1. $(y, k') \in L$ if and only if at least one $(x_i, k) \in L$
 - 2. k' is polynomial in k.

OR-Composition Algorithms

For parameterized problems

Definition

An OR-composition algorithm for a parameterized problem \boldsymbol{L} is an algorithm that:

- ► Takes as input a list of instances $((x_1, k), (x_2, k), \dots, (x_t, k))$ for any integer t;
- ▶ Runs in time polynomial in $\sum_i (|x_i| + k)$;
- ▶ And outputs an instance (y, k') such that
 - 1. $(y, k') \in L$ if and only if at least one $(x_i, k) \in L$
 - 2. k' is polynomial in k.

Example (OR-composition)

 \blacktriangleright *k*-PATH: Does graph *G* have a simple path of length at least *k*?

Polynomial kernel lower bounds

Theorem (Bodlaender et al., Fortnow and Santhanam)

Let L be a parameterized problem whose underlying classical problem is NP-complete. Then **at most one** of the following is true:

- L has an OR-composition;
- L has a polynomial-size kernel,

unless $coNP \subseteq NP/poly$.

Remark

The condition $coNP \subseteq NP/poly$ is considered unlikely, because it implies a collapse in the Polynomial Hierarchy.

Polynomial kernel lower bounds

Theorem (Bodlaender et al., Fortnow and Santhanam)

Let L be a parameterized problem whose underlying classical problem is NP-complete. Then **at most one** of the following is true:

- L has an OR-composition;
- L has a polynomial-size kernel,

unless $coNP \subseteq NP/poly$.

Remark

The condition $coNP \subseteq NP/poly$ is considered unlikely, because it implies a collapse in the Polynomial Hierarchy.

Corollary

k-Path does not have a polynomial-size kernel, unless $coNP \subseteq NP/poly$.

Some consequences of the Theorem

Problems with no polynomial kernels unless $coNP \subseteq NP/poly$

- Essentially every NP-complete problem which asks for a "subgraph of some kind": K-PATH, K-CYCLE, K-EXACT CYCLE, K-MINOR ORDER TEST, K-PLANAR SUBGRAPH TEST, K-BOUNDED TREEWIDTH SUBGRAPH TEST, ...
- Many NP-complete problems parameterized by the treewidth of the input graph: w-Vertex Cover, w-Independent Set, w-Clique, w-Dominating Set
- ► Many more problems, using clever composition techniques and reductions. E.g: K-DISJOINT CYCLES, K-DISJOINT PATHS (Bodlaender, Thomassé, Yeo, ESA 2009), CONNECTED VERTEX COVER, STEINER TREE (Dom, Lokshtanov, Saurabh, ICALP 2009)
- ▶ Lots of problems by now!

Revisiting the table ...

Problem	f(k)	Kernel size
VERTEX COVER	1.2738^k	$\mathcal{O}(k^2)$
FEEDBACK VERTEX SET	3.619^k	$\mathcal{O}(k^2)$
d-HITTING SET	$(d-1+\varepsilon)^k$	$\mathcal{O}(k^d)$
k-Path	4 ^k	No $k^{\mathcal{O}(1)}$
CONNECTED VERTEX COVER	2^k	No $k^{\mathcal{O}(1)}$
STEINER TREE	2^k	No $k^{\mathcal{O}(1)}$
DIRECTED FEEDBACK VERTEX SET	$4^k \cdot k!$	$4^k \cdot k!$

AND-Composition

Replace "at least one instance" with "all instances"

Theorem (Bodlaender et al., ICALP 2008)

k-Treewidth (and many other problems) does not have polynomial-size kernels unless NP-complete problems can have AND-distillation algorithms.

- ▶ Bodlaender et al. thought it unlikely that NP-complete problems have AND-distillation algorithms
- ► They could not connect this to any complexity-theoretic assumption.

AND-Composition

Replace "at least one instance" with "all instances"

Theorem (Bodlaender et al., ICALP 2008)

k-Treewidth (and many other problems) does not have polynomial-size kernels unless NP-complete problems can have AND-distillation algorithms.

- Bodlaender et al. thought it unlikely that NP-complete problems have AND-distillation algorithms
- ► They could not connect this to any complexity-theoretic assumption.

Theorem (Drucker, FOCS 2012)

If NP-complete problems have AND-distillation algorithms, then $coNP \subseteq NP/poly$.

Lower-Bounding the Degrees of Polynomial Kernels

Based on ...

- Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses
 - Dell and van Melkebeek
 - STOC 2010, JACM 2014

- ► Two players, Alice and Bob
 - Alice is polynomially bounded, Bob has unbounded computational power
- ► Together, they want to decide if a string *x* belongs to a specified language *L*
 - ▶ In the beginning, Alice holds the string *x*
 - ▶ In the end, Alice should know if $x \in L$
 - ▶ They can communicate with each other to achieve this
 - ► The *cost* of this protocol is the number of bits sent *from* Alice *to* Bob
 - ► The bits sent from Bob to Alice do not count in the cost

- ► Two players, Alice and Bob
 - Alice is polynomially bounded, Bob has unbounded computational power
- ► Together, they want to decide if a string *x* belongs to a specified language *L*
 - ▶ In the beginning, Alice holds the string *x*
 - ▶ In the end, Alice should know if $x \in L$
 - They can communicate with each other to achieve this
 - ▶ The *cost* of this protocol is the number of bits sent *from* Alice to Bob
 - The bits sent from Bob to Alice do not count in the cost
- Again: "What can we (not) do in polynomial time?"
- For yet another notion of "do"

- ► Two players, Alice and Bob
 - Alice is polynomially bounded, Bob has unbounded computational power
- ► Together, they want to decide if a string *x* belongs to a specified language *L*
 - ▶ In the beginning, Alice holds the string *x*
 - ▶ In the end, Alice should know if $x \in L$
 - ▶ They can communicate with each other to achieve this
 - ► The *cost* of this protocol is the number of bits sent *from* Alice *to* Bob
 - The bits sent from Bob to Alice do not count in the cost
- A generalization of kernelization
- ▶ E.g: Vertex Cover has a protocol of cost $\mathcal{O}(k^2)$
 - 1. Alice computes a kernel of size $\mathcal{O}(k^2)$
 - 2. She sends the kernel to Bob
 - 3. Bob solves the instance and sends **Yes** or **No** back to Alice
 - 4. Total cost: $\mathcal{O}(k^2)$

- ► Two players, Alice and Bob
 - Alice is polynomially bounded, Bob has unbounded computational power
- ► Together, they want to decide if a string *x* belongs to a specified language *L*
 - ▶ In the beginning, Alice holds the string *x*
 - ▶ In the end, Alice should know if $x \in L$
 - They can communicate with each other to achieve this
 - ► The *cost* of this protocol is the number of bits sent *from* Alice *to* Bob
 - The bits sent from Bob to Alice do not count in the cost

Theorem(Dell and van Melkebeek)

VERTEX COVER admits no protocol of cost $\mathcal{O}(k^{2-\varepsilon})$ where k is the standard parameter, unless coNP \subseteq NP/poly.

Some More Lower Bounds

All these carry over directly to the standard parameterizations

Theorem

VERTEX COVER admits no protocol of cost $\mathcal{O}(n^{2-\varepsilon})$ where n is the number of vertices, unless coNP \subseteq NP/poly. So also for CLIQUE.

Theorem

More generally: for any $d \ge 2$, d-Hitting Set over a universe of size n admits no protocol of cost $\mathcal{O}(n^{d-\varepsilon})$, unless coNP \subseteq NP/poly.

Theorem

Let Π be a nontrivial graph property that is inherited by subgraphs. There is no protocol of cost $\mathcal{O}(k^{2-\varepsilon})$ for deciding if a graph satisfying Π can be obtained from a given graph by deleting at most k vertices, unless coNP \subseteq NP/poly.

Corollary

FEEDBACK VERTEX SET has no kernel of size $\mathcal{O}(k^{2-\varepsilon})$ unless ...

The table, one final time

Problem	f (k)	Kernel size
VERTEX COVER	1.2738^{k}	$\mathcal{O}(k^2)$; No $\mathcal{O}(k^{2-\varepsilon})$
FEEDBACK VERTEX SET	3.619^k	$\mathcal{O}(k^2)$; No $\mathcal{O}(k^{2-\varepsilon})$
d-HITTING SET	$(d-1+\varepsilon)^k$	$\mathcal{O}(k^d)$; No $\mathcal{O}(k^{d-\varepsilon})$
k-Path	4^k	No $k^{\mathcal{O}(1)}$
CONNECTED VERTEX COVER	2^k	No $k^{\mathcal{O}(1)}$
STEINER TREE	2^k	No $k^{\mathcal{O}(1)}$
DIRECTED FEEDBACK VERTEX SET	$4^k \cdot k!$	$4^k \cdot k!$

- ▶ VERTEX COVER: Kernels with $\mathcal{O}(k^2)$ edges, no kernel with $\mathcal{O}(k^{2-\varepsilon})$ edges
- ▶ What about the number of *vertices* in a kernel?
 - ▶ The relaxed VERTEX COVER LP has the half-integrality property
 - ▶ Can find an optimal $\{0, \frac{1}{2}, 1\}$ -solution in PTIME
 - ► Theorem (Nemhauser and Trotter, 1975): There is a smallest vertex cover which contains all the 1s and none of the 0s
 - ▶ All the $\frac{1}{2}$ s together induce a kernel with $\leq 2k$ vertices

- ▶ VERTEX COVER: Kernels with $\mathcal{O}(k^2)$ edges, no kernel with $\mathcal{O}(k^{2-\varepsilon})$ edges
- ▶ What about the number of *vertices* in a kernel?
 - ▶ The relaxed Vertex Cover LP has the half-integrality property
 - ► Can find an optimal $\{0, \frac{1}{2}, 1\}$ -solution in PTIME
 - ► Theorem (Nemhauser and Trotter, 1975): There is a smallest vertex cover which contains all the 1s and none of the 0s
 - ▶ All the $\frac{1}{2}$ s together induce a kernel with $\leq 2k$ vertices
- ▶ Upper bound on #vertices in a kernel: O(k)

- ▶ VERTEX COVER: Kernels with $\mathcal{O}(k^2)$ edges, no kernel with $\mathcal{O}(k^{2-\varepsilon})$ edges
- ▶ What about the number of *vertices* in a kernel?
 - ► The relaxed VERTEX COVER LP has the half-integrality property
 - ► Can find an optimal $\{0, \frac{1}{2}, 1\}$ -solution in PTIME
 - ► Theorem (Nemhauser and Trotter, 1975): There is a smallest vertex cover which contains all the 1s and none of the 0s
 - ▶ All the $\frac{1}{2}$ s together induce a kernel with $\leq 2k$ vertices
- ▶ Upper bound on #vertices in a kernel: $\mathcal{O}(k)$
- ▶ *Lower* bound on #vertices in a kernel: $\Omega(k)$
 - ▶ Follows directly from the size lower bound
 - *n*-vertex graphs can be encoded with $\mathcal{O}(n^2)$ bits
 - ► E.g: An $\mathcal{O}(k^{\frac{3}{4}})$ -vertex kernel would have total size $\mathcal{O}(k^{\frac{3}{2}}) = \mathcal{O}(k^{2-\frac{1}{2}})$ bits, contradiction.

- VERTEX COVER:
 - ▶ Kernels with $\mathcal{O}(k^2)$ edges, no kernel with $\mathcal{O}(k^{2-\varepsilon})$ edges
 - ► Kernels with $\mathcal{O}(k)$ vertices, no kernel with $\mathcal{O}(k^{1-\varepsilon})$ edges
- ► FEEDBACK VERTEX SET:
 - Kernels with $\mathcal{O}(k^2)$ edges, no kernel with $\mathcal{O}(k^{2-\varepsilon})$ edges
 - Current upper bound on #vertices: $\mathcal{O}(k^2)$
 - ▶ Dell and van Melkebeek only rule out kernels with $\mathcal{O}(k^{1-\varepsilon})$ vertices
 - ► Gap!

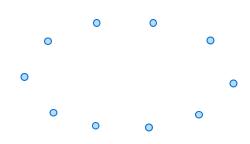
- ► VERTEX COVER:
 - ► Kernels with $\mathcal{O}(k^2)$ edges, no kernel with $\mathcal{O}(k^{2-\varepsilon})$ edges
 - ▶ Kernels with $\mathcal{O}(k)$ vertices, no kernel with $\mathcal{O}(k^{1-\varepsilon})$ edges
- ► FEEDBACK VERTEX SET:
 - ▶ Kernels with $\mathcal{O}(k^2)$ edges, no kernel with $\mathcal{O}(k^{2-\varepsilon})$ edges
 - Current upper bound on #vertices: $\mathcal{O}(k^2)$
 - ▶ Dell and van Melkebeek only rule out kernels with $\mathcal{O}(k^{1-\varepsilon})$ vertices
 - ► Gap!
- ▶ *d*-Hitting Set:
 - ▶ Best known kernels have $\mathcal{O}(k^d)$ sets over a universe of size $\mathcal{O}(k^{d-1})$
 - ▶ Dell and van Melkebeek rule out kernels with $\mathcal{O}(k^{d-\varepsilon})$ sets or a universe of size $\mathcal{O}(k^{1-\varepsilon})$
 - ▶ Gap!

A tight non-trivial "structural" kernel lower bound

- ► For a variant of Hitting Set
- ▶ The first result of this kind
- ▶ An application of the full power of the protocol
- ▶ Point Line Cover: The Easy Kernel is Essentially Tight
 - Stefan Kratsch, G. Philip, and Saurabh Ray, SODA 2014

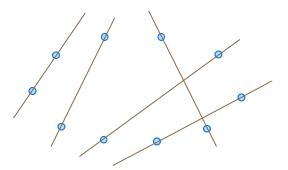
The Point-Line Cover problem

- ► Input:
 - ▶ A set $\mathcal{P} = \{p_1, p_2, \dots, p_n\}$ of *n* points in the plane
 - **Each** point is a pair of rational coordinates: $p_i = (x_i, y_i)$
 - A positive integer k
- ▶ Question: Is there a set \mathcal{L} of at most k lines in the plane which together *cover* all points in \mathcal{P} ?
 - **Each** point in the set \mathcal{P} must lie on at least one of the lines in \mathcal{L} .



The Point-Line Cover problem

- ► Input:
 - ▶ A set $\mathcal{P} = \{p_1, p_2, \dots, p_n\}$ of *n* points in the plane
 - Each point is a pair of rational coordinates: $p_i = (x_i, y_i)$
 - A positive integer k
- ▶ Question: Is there a set \mathcal{L} of at most k lines in the plane which together *cover* all points in \mathcal{P} ?
 - **Each** point in the set \mathcal{P} must lie on at least one of the lines in \mathcal{L} .



The Point-Line Cover problem

- ▶ NP-hard (Megiddo and Tamir, 1982)
- ▶ Standard parameter: *k*
- ▶ Kernel with $\leq k^2$ points
 - Langerman and Morin, 2005
 - ▶ Uses the "Buss" idea, like for VERTEX COVER
- ▶ Open: Is there a kernel with $o(k^2)$ points?

Our Result

 $\varepsilon > 0$ is any positive constant

Theorem

The Point-Line Cover problem does not have a kernel with $\mathcal{O}(k^{2-\varepsilon})$ points unless coNP \subseteq NP/poly.

Our Result

 $\varepsilon > 0$ is any positive constant

Theorem

The Point-Line Cover problem does not have a kernel with $\mathcal{O}(k^{2-\varepsilon})$ points unless coNP \subseteq NP/poly.

- ► This does *not* rule out kernels with, say, $\mathcal{O}(\frac{k^2}{\log k}) = o(k^2)$ points
- ▶ We use $\Omega(k^2)$ to denote a bound like in the theorem.

Tight bound for #points in Point-Line Cover kernels A first attempt

▶ We have: $\mathcal{O}(k^2)$ upper bound on #points

• We want: $\Omega(k^2)$ lower bound on #points

► How?

Tight bound for #points in Point-Line Cover kernels

A first attempt

- ▶ We have: $\mathcal{O}(k^2)$ upper bound on #points
- We want: $\Omega(k^2)$ lower bound on #points
- ► How?
- We derive: $\Omega(k^2)$ lower bound on *total size*
 - ▶ The $\Omega(k^2)$ lower bound on VERTEX COVER kernel size
 - ► Reduction from VERTEX COVER to Point-Line Cover
 - $k \rightarrow 2k$

Tight bound for #points in Point-Line Cover kernels A first attempt

- We have: $\Omega(k^2)$ lower bound on *total size*
- ▶ We want: An $\mathcal{O}(n \cdot polylog(n))$ -bit polynomial-time encoding of Point-Line Cover instances with n points

Tight bound for #points in Point-Line Cover kernels

A first attempt

- We have: $\Omega(k^2)$ lower bound on *total size*
- ▶ We want: An $\mathcal{O}(n \cdot polylog(n))$ -bit polynomial-time encoding of Point-Line Cover instances with n points
- ▶ The best known such encoding has $\mathcal{O}(n^2)$ bits
- ▶ This gives: $\Omega(k)$ lower bound on #points in a kernel
 - ▶ E.g. An $\mathcal{O}(k^{3/4})$ -point kernel implies a kernel of total size $\mathcal{O}(k^{3/2})$
 - Contradicting the $\Omega(k^2)$ lower bound on kernel size
 - ▶ Doesn't rule out kernels with, say, $\mathcal{O}(k^{\frac{3}{2}})$ points
 - ▶ Such a kernel has total size $\mathcal{O}(k^3)$ bits, contradicting nothing

Tight bound for #points in Point-Line Cover kernels

A first attempt

- ▶ The best-known encoding gives : $\Omega(k)$ lower bound on #points
- ▶ One way to improve this to $\Omega(k^2)$: Find an $\mathcal{O}(n \log n)$ -bit polynomial-time encoding for n-point instances
 - ▶ Open since the very first SOCG (1985)
 - ▶ It is *known* that there exists such an encoding
 - ▶ The hard (and unknown) part is to find it in polynomial time
- ▶ We achieve this without finding a better encoding
- Using the Oracle Communication Protocol

An Outline of the Proof

- ▶ Recall: A Point-Line Cover instance is (\mathcal{P}, k) ; \mathcal{P} is a set of n points.
- ▶ The proof has two main ingredients:
 - 1. A lower bound of $\Omega(k^2)$ on the cost of a protocol for Point-Line Cover
 - 2. An *upper* bound of $O(n \log n)$ on the cost of a protocol for Point-Line Cover
- ▶ Together, these give us a lower bound of $\Omega(k^2)$ on the *number of points* in a kernel

An Outline of the Proof

- ▶ Recall: A Point-Line Cover instance is (\mathcal{P}, k) ; \mathcal{P} is a set of n points.
- ▶ The proof has two main ingredients:
 - 1. A lower bound of $\Omega(k^2)$ on the cost of a protocol for Point-Line Cover
 - 2. An *upper* bound of $\mathcal{O}(n \log n)$ on the cost of a protocol for Point-Line Cover
- ▶ Together, these give us a lower bound of $\Omega(k^2)$ on the *number of points* in a kernel
- ▶ Suppose there was a kernel for Point-Line Cover with $k^{2-\varepsilon}$ points
 - ▶ Alice is given an instance (P, k); |P| = n of Point-Line Cover
 - ▶ She computes kernel (\mathcal{P}', k') with $n' = |\mathcal{P}'| = k^{2-\varepsilon}$ points
 - ▶ Alice and Bob use the second ingredient to decide (P', k')
 - ► Cost: $\mathcal{O}(n' \log n') = \mathcal{O}(k^{2-\varepsilon} \log(k^{2-\varepsilon})) = \mathcal{O}(k^{2-\varepsilon} \log k) = \mathcal{O}(k^{2-\varepsilon'})$
 - ▶ This contradicts the cost lower bound

The Lower Bound

A brief look

Theorem

The Point-Line Cover problem does not admit an oracle communication protocol of cost $\mathcal{O}(k^{2-\varepsilon})$ unless coNP \subseteq NP/poly.

- Outline of the proof:
 - Polynomial-time, parameter-preserving reduction from VERTEX GOVER to Point-Line Cover
 - (G, k) goes to $(\mathcal{P}, 2k)$
 - ▶ The theorem now follows from the $\Omega(k^{2-\varepsilon})$ lower bound on the cost of Vertex Cover protocols

A closer look

Theorem

There is an oracle communication protocol which can solve Point-Line Cover instances with n points at a cost of $\mathcal{O}(n \log n)$.

- ▶ Given an instance (P, k); |P| = n of Point-Line Cover
 - ▶ Alice computes an encoding *X* of \mathcal{P} , where *X* has $\mathcal{O}(n \log n)$ bits
 - ▶ She then sends *X* over to Bob
 - ▶ Cost: $\mathcal{O}(n \log n)$
 - ▶ Using X, Bob computes the size s of a smallest point-line cover of \mathcal{P}
 - ▶ He then sends *s* over to Alice
 - Cost: Zero
 - ▶ Alice outputs $s \stackrel{?}{\leq} k$
 - ▶ Total cost: $\mathcal{O}(n \log n)$

- ▶ Given an instance (P, k); |P| = n of Point-Line Cover
 - ► Alice computes an encoding *X* of \mathcal{P} , where *X* has $\mathcal{O}(n \log n)$ bits
 - ▶ She then sends *X* over to Bob
 - ▶ Cost: $\mathcal{O}(n \log n)$
 - ▶ Using X, Bob computes the size s of a smallest point-line cover of \mathcal{P}
 - ▶ He then sends *s* over to Alice
 - Cost: Zero
 - Alice outputs $s \stackrel{?}{<} k$
 - ▶ Total cost: $\mathcal{O}(n \log n)$
- ▶ What's missing here?
 - ▶ No known Alice-time encoding of \mathcal{P} into $\mathcal{O}(n \log n)$ bits

- ▶ Given an instance (P, k); |P| = n of Point-Line Cover
 - ▶ Alice computes an encoding *X* of \mathcal{P} , where *X* has $\mathcal{O}(n \log n)$ bits
 - ▶ She then sends *X* over to Bob
 - ▶ Cost: $\mathcal{O}(n \log n)$
 - ▶ Using *X*, Bob computes the size *s* of a smallest point-line cover of \mathcal{P}
 - ▶ He then sends *s* over to Alice
 - Cost: Zero
 - Alice outputs $s \stackrel{?}{<} k$
 - ▶ Total cost: $\mathcal{O}(n \log n)$
- Our way out:
 - ▶ An Alice-time encoding of \mathcal{P} which *effectively* has $\mathcal{O}(n \log n)$ bits
 - ▶ This encoding **actually** has many more bits, namely n^3

- ▶ Given an instance (P, k); |P| = n of Point-Line Cover
 - ▶ Alice computes an encoding *X* of \mathcal{P} , where *X* has $\mathcal{O}(n \log n)$ bits
 - ▶ She then sends *X* over to Bob
 - ▶ Cost: $\mathcal{O}(n \log n)$
 - ▶ Using X, Bob computes the size s of a smallest point-line cover of \mathcal{P}
 - ▶ He then sends s over to Alice
 - Cost: Zero
 - ▶ Alice outputs $s \stackrel{?}{\leq} k$
 - ▶ Total cost: $\mathcal{O}(n \log n)$
- Our way out:
 - ▶ An Alice-time encoding of \mathcal{P} which *effectively* has $\mathcal{O}(n \log n)$ bits
 - ▶ This encoding **actually** has many more bits, namely n^3
- ▶ Any *n*-point instance of Point-Line Cover encodes to one of a set of $2^{O(n \log n)}$ strings, each of length n^3
- ▶ We replace a *small* encoding with a *sparse* one

The sparse encoding

Theorem (Alon, 1986)

There is an encoding of sets of points on a plane into bit strings such that:

- 1. The encoding can be computed in polynomial time
- 2. It maps every n-point set to a bit string of length n^3
- 3. For each n, all these n^3 -bit strings belong to a set B_n ; $|B_n| = n^{\mathcal{O}(n)}$
- 4. If point sets \mathcal{P} and \mathcal{Q} map to the same string in B_n , then they are equivalent with respect to Point-Line Cover
- ▶ The encoding is called an Abstract Order Type Representation

A protocol of cost $\mathcal{O}(n \log n)$ for Point-Line Cover

► The input instance (P, k); |P| = n is with Alice

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - ► She cannot send all of X over to Bob, it's too costly

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - ► She cannot send all of X over to Bob, it's too costly
- ▶ Alice sends the number *n* over to Bob
 - ▶ Cost: $\mathcal{O}(\log n)$

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - ► She cannot send all of X over to Bob, it's too costly
- ▶ Alice sends the number *n* over to Bob
 - ▶ Cost: O(log n)
- ▶ Using n, Bob computes a sorted list B_n of all possible encodings of n-point sets; $|B_n| = n^{\mathcal{O}(n)}$

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - She cannot send all of X over to Bob, it's too costly
- ▶ Alice sends the number *n* over to Bob
 - ▶ Cost: O(log n)
- ▶ Using n, Bob computes a sorted list B_n of all possible encodings of n-point sets; $|B_n| = n^{\mathcal{O}(n)}$
- ► He then sends the *median* element *M* of this back to Alice
 - Cost: Zero

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - She cannot send all of X over to Bob, it's too costly
- ▶ Alice sends the number *n* over to Bob
 - ▶ Cost: $\mathcal{O}(\log n)$
- ▶ Using n, Bob computes a sorted list B_n of all possible encodings of n-point sets; $|B_n| = n^{\mathcal{O}(n)}$
- ► He then sends the *median* element *M* of this back to Alice
 - Cost: Zero
- ▶ Alice compares *M* with *X* and tells Bob whether *M* is before, after, or equal to *X* in lexicographic order
 - Cost: A bit and a half

A protocol of cost $\mathcal{O}(n \log n)$ for Point-Line Cover

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - She cannot send all of X over to Bob, it's too costly
- ▶ Alice sends the number *n* over to Bob
 - ▶ Cost: $\mathcal{O}(\log n)$
- ▶ Using n, Bob computes a sorted list B_n of all possible encodings of n-point sets; $|B_n| = n^{\mathcal{O}(n)}$
- ► He then sends the *median* element *M* of this back to Alice
 - Cost: Zero
- ► Alice compares *M* with *X* and tells Bob whether *M* is before, after, or equal to *X* in lexicographic order
 - Cost: A bit and a half

▶ Bob throws out that half of the list *B_n* where *X* cannot be present

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - She cannot send all of X over to Bob, it's too costly
- ▶ Alice sends the number *n* over to Bob
 - ▶ Cost: $\mathcal{O}(\log n)$
- ▶ Using n, Bob computes a sorted list B_n of all possible encodings of n-point sets; $|B_n| = n^{\mathcal{O}(n)}$
- ► He then sends the *median* element *M* of this back to Alice
 - Cost: Zero
- ▶ Alice compares *M* with *X* and tells Bob whether *M* is before, after, or equal to *X* in lexicographic order
 - Cost: A bit and a half

- ▶ Bob throws out that half of the list *B_n* where *X* cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - She cannot send all of X over to Bob, it's too costly
- ▶ Alice sends the number *n* over to Bob
 - ▶ Cost: $\mathcal{O}(\log n)$
- ▶ Using n, Bob computes a sorted list B_n of all possible encodings of n-point sets; $|B_n| = n^{\mathcal{O}(n)}$
- ► He then sends the *median* element *M* of this back to Alice
 - Cost: Zero
- ► Alice compares *M* with *X* and tells Bob whether *M* is before, after, or equal to *X* in lexicographic order
 - Cost: A bit and a half

- ▶ Bob throws out that half of the list *B_n* where *X* cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure
- ▶ After going back and forth for $\mathcal{O}(\log(|B_n|)) = \mathcal{O}(n \log n)$ rounds, Bob *knows* what *X* is

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - She cannot send all of X over to Bob, it's too costly
- ▶ Alice sends the number *n* over to Bob
 - ▶ Cost: O(log n)
- ▶ Using n, Bob computes a sorted list B_n of all possible encodings of n-point sets; $|B_n| = n^{\mathcal{O}(n)}$
- ► He then sends the *median* element *M* of this back to Alice
 - Cost: Zero
- ▶ Alice compares *M* with *X* and tells Bob whether *M* is before, after, or equal to *X* in lexicographic order
 - Cost: A bit and a half

- ▶ Bob throws out that half of the list *B_n* where *X* cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure
- ▶ After going back and forth for $\mathcal{O}(\log(|B_n|)) = \mathcal{O}(n \log n)$ rounds, Bob *knows* what *X* is
- ▶ Using *X*, Bob computes the size *s* of a smallest point-line cover of *P*

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - She cannot send all of X over to Bob, it's too costly
- ▶ Alice sends the number *n* over to Bob
 - ▶ Cost: O(log n)
- ▶ Using n, Bob computes a sorted list B_n of all possible encodings of n-point sets; $|B_n| = n^{\mathcal{O}(n)}$
- He then sends the median element M of this back to Alice
 - Cost: Zero
- ► Alice compares *M* with *X* and tells Bob whether *M* is before, after, or equal to *X* in lexicographic order
 - Cost: A bit and a half

- ▶ Bob throws out that half of the list *B_n* where *X* cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure
- ▶ After going back and forth for $\mathcal{O}(\log(|B_n|)) = \mathcal{O}(n \log n)$ rounds, Bob *knows* what *X* is
- ► Using *X*, Bob computes the size *s* of a smallest point-line cover of *P*
- ► He then sends *s* back to Alice
 - Cost: Zero

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - She cannot send all of X over to Bob, it's too costly
- ▶ Alice sends the number *n* over to Bob
 - ▶ Cost: O(log n)
- ▶ Using n, Bob computes a sorted list B_n of all possible encodings of n-point sets; $|B_n| = n^{\mathcal{O}(n)}$
- He then sends the median element M of this back to Alice
 - Cost: Zero
- ► Alice compares *M* with *X* and tells Bob whether *M* is before, after, or equal to *X* in lexicographic order
 - Cost: A bit and a half

- ▶ Bob throws out that half of the list *B_n* where *X* cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure
- ▶ After going back and forth for $\mathcal{O}(\log(|B_n|)) = \mathcal{O}(n \log n)$ rounds, Bob *knows* what *X* is
- ► Using *X*, Bob computes the size *s* of a smallest point-line cover of *P*
- ▶ He then sends *s* back to Alice
 - Cost: Zero
- ▶ Alice outputs $s \stackrel{?}{\leq} k$

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - She cannot send all of X over to Bob, it's too costly
- ▶ Alice sends the number *n* over to Bob
 - ▶ Cost: O(log n)
- ▶ Using n, Bob computes a sorted list B_n of all possible encodings of n-point sets; $|B_n| = n^{\mathcal{O}(n)}$
- ► He then sends the *median* element *M* of this back to Alice
 - Cost: Zero
- ▶ Alice compares *M* with *X* and tells Bob whether *M* is before, after, or equal to *X* in lexicographic order
 - Cost: A bit and a half

- ▶ Bob throws out that half of the list *B*_n where *X* cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure
- ▶ After going back and forth for $\mathcal{O}(\log(|B_n|)) = \mathcal{O}(n \log n)$ rounds, Bob *knows* what *X* is
- ► Using *X*, Bob computes the size *s* of a smallest point-line cover of *P*
- ▶ He then sends *s* back to Alice
 - Cost: Zero
- ▶ Alice outputs $s \stackrel{!}{\leq} k$
- ▶ Total cost: $O(n \log n)$

- ► The input instance (P, k); |P| = n is with Alice
- ▶ Alice computes Alon's encoding *X* of \mathcal{P} , where $|X| = n^3$
 - She cannot send all of X over to Bob, it's too costly
- ▶ Alice sends the number *n* over to Bob
 - ▶ Cost: O(log n)
- ▶ Using n, Bob computes a sorted list B_n of all possible encodings of n-point sets; $|B_n| = n^{\mathcal{O}(n)}$
- ► He then sends the *median* element *M* of this back to Alice
 - Cost: Zero
- ► Alice compares *M* with *X* and tells Bob whether *M* is before, after, or equal to *X* in lexicographic order
 - Cost: A bit and a half

- ▶ Bob throws out that half of the list *B_n* where *X* cannot be present
- He then computes the median of the remaining list, and they repeat the above procedure
- After going back and forth for O(log(|B_n|)) = O(n log n) rounds, Bob knows what X is
- ► Using *X*, Bob computes the size *s* of a smallest point-line cover of *P*
- ▶ He then sends *s* back to Alice
 - Cost: Zero
- ▶ Alice outputs $s \stackrel{!}{\leq} k$
- ▶ Total cost: $\mathcal{O}(n \log n)$
- ► This is our second main ingredient: a protocol of cost $O(n \log n)$

Open problems

- Close other such "structural" gaps in kernel bounds
- ► A first candidate: FEEDBACK VERTEX SET
 - We have: $\mathcal{O}(k^2)$ upper bound on #vertices and #edges
 - $\Omega(k^2)$ lower bound on #edges
 - ▶ But only: $\Omega(k)$ lower bound on #vertices
 - ► TODO: bridge this gap in the #vertices

Thank You!