
Graph Modification
Problems

A Modern Perspective

Setting the stage: Definitions and Preliminary Observations

Setting the stage: Definitions and Preliminary Observations

Brief excursions into specific examples

Setting the stage: Definitions and Preliminary Observations

Brief excursions into specific examples

Current Trends & Future Directions

Ingredients of a typical Graph Modification Problem

Input Graph, G

Input Graph, G Graph Class or “property”, ᴨ

Input Graph, G Graph Class or “property”, ᴨ

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Input Graph, G Graph Class or “property”, ᴨ

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Input Graph, G Graph Class or “property”, ᴨ

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Input Graph, G Graph Class or “property”, ᴨ

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.
vertex deletions

Input Graph, G Graph Class or “property”, ᴨ

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.
edge deletionsvertex deletions

Input Graph, G Graph Class or “property”, ᴨ

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.
edge deletions edge additionsvertex deletions

Input Graph, G Graph Class or “property”, ᴨ

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.
edge deletions edge additions edge contractionsvertex deletions

Input Graph, G Graph Class or “property”, ᴨ

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.
edge deletions edge additions edge contractions edge editingvertex deletions

Input Graph, G

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.
edge deletions edge additions edge contractions edge editingvertex deletions

Vertex Cover

Edgeless Graphs

Input Graph, G

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.
edge deletions edge additions edge contractions edge editingvertex deletions

Feedback Vertex Set

Acyclic Graphs

Input Graph, G

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.
edge deletions edge additions edge contractions edge editingvertex deletions

Minimum Fill-In

Chordal Graphs

Input Graph, G

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.
edge deletions edge additions edge contractions edge editingvertex deletions

Cluster Editing

Cluster Graphs

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Minimum ᴨ-Completion

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Minimum ᴨ-Completion Minimum ᴨ-Supergraph

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Minimum ᴨ-Completion

Minimum ᴨ-Deletion

Minimum ᴨ-Supergraph

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Minimum ᴨ-Completion

Minimum ᴨ-Deletion

Minimum ᴨ-Supergraph

Maximum ᴨ-Spanning Subgraph

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Minimum ᴨ-Completion

Minimum ᴨ-Deletion

Minimum ᴨ-Editing

Minimum ᴨ-Supergraph

Maximum ᴨ-Spanning Subgraph

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Minimum ᴨ-Completion

Minimum ᴨ-Deletion

Minimum ᴨ-Editing

Minimum ᴨ-Supergraph

Maximum ᴨ-Spanning Subgraph

Closest ᴨ-Graph

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Minimum ᴨ-Completion

Minimum ᴨ-Deletion

Minimum ᴨ-Editing

Minimum ᴨ-Supergraph

Maximum ᴨ-Spanning Subgraph

Closest ᴨ-Graph

Minimum ᴨ-Vertex Deletion

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Minimum ᴨ-Completion

Minimum ᴨ-Deletion

Minimum ᴨ-Editing

Minimum ᴨ-Supergraph

Maximum ᴨ-Spanning Subgraph

Closest ᴨ-Graph

Minimum ᴨ-Vertex Deletion Maximum ᴨ-Induced Subgraph

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Minimum ᴨ-Completion

Minimum ᴨ-Deletion

Minimum ᴨ-Editing

Minimum ᴨ-Supergraph

Maximum ᴨ-Spanning Subgraph

Closest ᴨ-Graph

Minimum ᴨ-Vertex Deletion Maximum ᴨ-Induced Subgraph

Completion to Minimum Max-Clique

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Minimum ᴨ-Completion

Minimum ᴨ-Deletion

Minimum ᴨ-Editing

Minimum ᴨ-Supergraph

Maximum ᴨ-Spanning Subgraph

Closest ᴨ-Graph

Minimum ᴨ-Vertex Deletion Maximum ᴨ-Induced Subgraph

Completion to Minimum Max-Clique

Modification with Restrictions, eg, the Sandwich problem

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Minimum ᴨ-Completion

Minimum ᴨ-Deletion

Minimum ᴨ-Editing

Minimum ᴨ-Supergraph

Maximum ᴨ-Spanning Subgraph

Closest ᴨ-Graph

Minimum ᴨ-Vertex Deletion Maximum ᴨ-Induced Subgraph

Completion to Minimum Max-Clique

Modification with Restrictions, eg, the Sandwich problem

Restricted Classes of Input

Goal: Transform G so that it belongs to ᴨ with “minimum damages”.

Graph Class or “property”, ᴨ

Graph Class or “property”, ᴨ

Non-Trivial ᴨ admits infinitely many graphs, and also excludes infinitely many graphs.

Graph Class or “property”, ᴨ

Monotone If G belongs toᴨ, then all subgraphs of G also belong toᴨ.

Non-Trivial ᴨ admits infinitely many graphs, and also excludes infinitely many graphs.

Graph Class or “property”, ᴨ

Monotone

Hereditary

If G belongs toᴨ, then all subgraphs of G also belong toᴨ.

If G belongs toᴨ, then all induced subgraphs of G also belong toᴨ.

Non-Trivial ᴨ admits infinitely many graphs, and also excludes infinitely many graphs.

Graph Class or “property”, ᴨ

Monotone

Hereditary

If G belongs toᴨ, then all subgraphs of G also belong toᴨ.

If G belongs toᴨ, then all induced subgraphs of G also belong toᴨ.

Non-Trivial ᴨ admits infinitely many graphs, and also excludes infinitely many graphs.

(Bipartite, Planar)

Graph Class or “property”, ᴨ

Monotone

Hereditary

If G belongs toᴨ, then all subgraphs of G also belong toᴨ.

If G belongs toᴨ, then all induced subgraphs of G also belong toᴨ.

Non-Trivial ᴨ admits infinitely many graphs, and also excludes infinitely many graphs.

(Bipartite, Planar)

(Complete graphs, Forests)

Graph Class or “property”, ᴨ

Monotone

Hereditary

If G belongs toᴨ, then all subgraphs of G also belong toᴨ.

If G belongs toᴨ, then all induced subgraphs of G also belong toᴨ.

Non-Trivial ᴨ admits infinitely many graphs, and also excludes infinitely many graphs.

(Bipartite, Planar)

(Complete graphs, Forests)

Connectivity, Biconnectivity, Trees, Stars, Eulerian, etc.

Lewis &
Yannakakis

[1980]

The vertex-deletion problem is NP-complete for non-trivial,
hereditary properties.

Lewis &
Yannakakis

[1980]

The vertex-deletion problem is NP-complete for non-trivial,
hereditary properties.

Yannakakis
[1979]

The connected vertex-deletion problem is NP-complete for
non-trivial properties that hold on connected induced

subgraphs.

Lewis &
Yannakakis

[1980]

The vertex-deletion problem is NP-complete for non-trivial,
hereditary properties.

Yannakakis
[1979]

The connected vertex-deletion problem is NP-complete for
non-trivial properties that hold on connected induced

subgraphs.

(Edgeless, Acyclic, etc.)

Lewis &
Yannakakis

[1980]

The vertex-deletion problem is NP-complete for non-trivial,
hereditary properties.

Yannakakis
[1979]

The connected vertex-deletion problem is NP-complete for
non-trivial properties that hold on connected induced

subgraphs.
(Trees, Stars, etc.)

(Edgeless, Acyclic, etc.)

Edge-Deletion or Completion problems are sometimes easier than their
vertex-deletion counterparts.

Edge-Deletion or Completion problems are sometimes easier than their
vertex-deletion counterparts.

Add edges to make the input graph a cluster graph.

Edge-Deletion or Completion problems are sometimes easier than their
vertex-deletion counterparts.

Add edges to make the input graph a cluster graph.

Remove edges to make the input graph edgeless.

Edge-Deletion or Completion problems are sometimes easier than their
vertex-deletion counterparts.

Add edges to make the input graph a cluster graph.

Remove edges to make the input graph edgeless.

Remove edges to make the input graph acyclic.

Edge-Deletion or Completion problems are sometimes easier than their
vertex-deletion counterparts.

Add edges to make the input graph a cluster graph.

Remove edges to make the input graph edgeless.

Remove edges to make the input graph acyclic.

Remove edges to make the input graph bipartite.

Edge-Deletion or Completion problems are sometimes easier than their
vertex-deletion counterparts.

Add edges to make the input graph a cluster graph.

Remove edges to make the input graph edgeless.

Remove edges to make the input graph acyclic.

Edge-Deletion or Completion problems are sometimes easier than their
vertex-deletion counterparts.

Add edges to make the input graph a cluster graph.

Remove edges to make the input graph edgeless.

Remove edges to make the input graph acyclic.

Alon, Shapira
& Sudakov

[2009]

Given a propertyᴨ such thatᴨ holds for every
bipartite graph, the Minimumᴨ-Deletion problem is NP-hard.

Edge-Deletion or Completion problems are sometimes easier than their
vertex-deletion counterparts.

Add edges to make the input graph a cluster graph.

Remove edges to make the input graph edgeless.

Remove edges to make the input graph acyclic.

Alon, Shapira
& Sudakov

[2009]

Given a propertyᴨ such thatᴨ holds for every
bipartite graph, the Minimumᴨ-Deletion problem is NP-hard.

(Triangle-­free)

Edge-Deletion or Completion problems are sometimes easier than their
vertex-deletion counterparts.

Add edges to make the input graph a cluster graph.

Remove edges to make the input graph edgeless.

Remove edges to make the input graph acyclic.

Alon, Shapira
& Sudakov

[2009]

Given a propertyᴨ such thatᴨ holds for every
bipartite graph, the Minimumᴨ-Deletion problem is NP-hard.

Colbourn &
El-Mallah

[1988]

Making a graph Pk-free by deleting the minimum number of
edges is NP-hard for every k > 2.

(Triangle-­free)

Graph Class or “property”, ᴨ

edge deletions
edge additions

edge contractions
edge editing

vertex deletions

Graph Class or “property”, ᴨ

edge deletions
edge additions

edge contractions
edge editing

vertex deletions

Perfect
Trivially Perfect

Cographs
Permutation Graphs

Bipartite
Trees

Weakly Chordal
Chordal

Strongly Chordal
Split

Interval
Proper Interval

Unit Interval
Forests

Caterpillars
Chain

Chordal Bipartite
Distance Hereditary

Comparability
Trapezoid
CoChordal

Circle
Planar

k-Connected

Graph Modification
Problems

A Modern Perspective

Graph Modification
Problems
Why bother?

Special Graph Classes — correspond to some desirable property in real-world data.

Special Graph Classes — correspond to some desirable property in real-world data.

Planar Graphs

Interval Graphs

Cluster Graphs

k-Connected Graphs

Directed Acyclic Graphs

Chordal Graphs

Special Graph Classes — correspond to some desirable property in real-world data.

Planar Graphs

Interval Graphs

Cluster Graphs

k-Connected Graphs

Directed Acyclic Graphs

Chordal Graphs

Graph Drawing

Physical Mapping of DNA

Correlation Clustering

Reliability of Networks

Deadlock Recovery, Operating Systems

Gaussian Elimination over Sparse Matrices

Special Graph Classes — correspond to some desirable property in real-world data.

Planar Graphs

Interval Graphs

Cluster Graphs

k-Connected Graphs

Directed Acyclic Graphs

Chordal Graphs

Graph Drawing

Physical Mapping of DNA

Correlation Clustering

Reliability of Networks

Deadlock Recovery, Operating Systems

Gaussian Elimination over Sparse Matrices

We would like to “achieve” these properties with minimum cost, which
naturally leads us to the graph modification framework.

Algorithms

Graph Modification
Problems

Graph Class or “property”, ᴨ

Graph Class or “property”, ᴨ

Forbidden Subgraph Characterization

A graph G belongs to ᴨ if, and only if,
G does not contain any graph from Forb(ᴨ)

as an induced subgraph.

Graph Class or “property”, ᴨ

Forbidden Subgraph Characterization

A graph G belongs to ᴨ if, and only if,
G does not contain any graph from Forb(ᴨ)

as an induced subgraph.

Forbidden Minor Characterization

A graph G belongs to ᴨ if, and only if,
G does not contain any graph from Forb(ᴨ)

as a minor.

Graph Class or “property”, ᴨ

Forbidden Subgraph Characterization

Forbidden Minor Characterization

A graph G belongs to ᴨ if, and only if,
G does not contain any graph from Forb(ᴨ)

as a minor.

A graph admits a forbidden subgraph characterization
if, and only if,

it is closed under taking induced subgraphs (hereditary),
that is, the property is preserved under vertex deletions.

Graph Class or “property”, ᴨ

Forbidden Subgraph Characterization

Forbidden Minor Characterization

A graph admits a forbidden subgraph characterization
if, and only if,

it is closed under taking induced subgraphs (hereditary),
that is, the property is preserved under vertex deletions.

A graph admits a forbidden minor characterization
if, and only if,

it is closed under taking minors,
that is, the property is preserved under vertex deletions,

edge deletions and edge contractions.

Graph Class or “property”, ᴨ

Forbidden Subgraph Characterization

Forbidden Minor Characterization

A graph admits a forbidden subgraph characterization
if, and only if,

it is closed under taking induced subgraphs (hereditary),
that is, the property is preserved under vertex deletions.

A graph admits a forbidden minor characterization
if, and only if,

it is closed under taking minors,
that is, the property is preserved under vertex deletions,

edge deletions and edge contractions.

Graph Class or “property”, ᴨ

Forbidden Subgraph Characterization

Forbidden Minor Characterization

A graph admits a forbidden subgraph characterization
if, and only if,

it is closed under taking induced subgraphs (hereditary),
that is, the property is preserved under vertex deletions.

A graph admits a forbidden minor characterization
if, and only if,

it is closed under taking minors,
that is, the property is preserved under vertex deletions,

edge deletions and edge contractions.

If there are finitely many forbidden graphs,
then the corresponding graph modification problem is FPT.

Graph Class or “property”, ᴨ

Forbidden Subgraph Characterization

Forbidden Minor Characterization

A graph admits a forbidden subgraph characterization
if, and only if,

it is closed under taking induced subgraphs (hereditary),
that is, the property is preserved under vertex deletions.

A graph admits a forbidden minor characterization
if, and only if,

it is closed under taking minors,
that is, the property is preserved under vertex deletions,

edge deletions and edge contractions.

If there are finitely many forbidden graphs,
then the corresponding graph modification problem is FPT.

If there are finitely many forbidden minors…?

Graph Class or “property”, ᴨ

Forbidden Minor Characterization

A graph G belongs to ᴨ if, and only if,
G does not contain any graph from Forb(ᴨ)

as a minor.

A graph admits a forbidden minor characterization
if, and only if,

it is closed under taking minors.

Graph Class or “property”, ᴨ

Forbidden Minor Characterization

A graph G belongs to ᴨ if, and only if,
G does not contain any graph from Forb(ᴨ)

as a minor.

A graph admits a forbidden minor characterization
if, and only if,

it is closed under taking minors.

In fact, there is always a finite forbidden set!
(Robertson-Seymour; Graph Minors Theorem)

Graph Class or “property”, ᴨ

Forbidden Minor Characterization

A graph G belongs to ᴨ if, and only if,
G does not contain any graph from Forb(ᴨ)

as a minor.

A graph admits a forbidden minor characterization
if, and only if,

it is closed under taking minors.

Suppose the classᴨ+ (modifications) is
closed under taking minors…

In fact, there is always a finite forbidden set!
(Robertson-Seymour; Graph Minors Theorem)

Graph Class or “property”, ᴨ

Forbidden Minor Characterization

A graph G belongs to ᴨ if, and only if,
G does not contain any graph from Forb(ᴨ)

as a minor.

A graph admits a forbidden minor characterization
if, and only if,

it is closed under taking minors.

Suppose the classᴨ+ (modifications) is
closed under taking minors…

In fact, there is always a finite forbidden set!
(Robertson-Seymour; Graph Minors Theorem)

+ (modifications)

Graph Class or “property”, ᴨ

Forbidden Minor Characterization

A graph G belongs to ᴨ if, and only if,
G does not contain any graph from Forb(ᴨ)

as a minor.

A graph admits a forbidden minor characterization
if, and only if,

it is closed under taking minors.

Suppose the classᴨ+ (modifications) is
closed under taking minors…

Now: the graph modification problem has boiled down
to a membership testing problem, which can be

done in cubic time, given the finite forbidden set.

In fact, there is always a finite forbidden set!
(Robertson-Seymour; Graph Minors Theorem)

+ (modifications)

Forbidden Subgraph Characterization

Forbidden Minor Characterization

A graph admits a forbidden subgraph characterization
if, and only if,

it is closed under taking induced subgraphs (hereditary),
that is, the property is preserved under vertex deletions.

A graph admits a forbidden minor characterization
if, and only if,

it is closed under taking minors,
that is, the property is preserved under vertex deletions,

edge deletions and edge contractions.

Forbidden Subgraph Characterization

Forbidden Minor Characterization

A graph admits a forbidden subgraph characterization
if, and only if,

it is closed under taking induced subgraphs (hereditary),
that is, the property is preserved under vertex deletions.

A graph admits a forbidden minor characterization
if, and only if,

it is closed under taking minors,
that is, the property is preserved under vertex deletions,

edge deletions and edge contractions.

Can the node deletion question for hereditary properties
always be answered with the “graph minors hammer”?

Consider the property ᴨ of being wheel-free, that is,
not having any wheel as an induced subgraph.

The property is hereditary, but not minor-closed.

Consider the property ᴨ of being wheel-free, that is,
not having any wheel as an induced subgraph.

Consider the property ᴨ of being wheel-free, that is,
not having any wheel as an induced subgraph.

Wheel-Free Deletion and Wheel-Free Vertex Deletion
are W[2]-hard.

Lokshtanov
(2008)

Finding large induced subgraphs with property ᴨ.
Khot and Raman, (2002)

Finding large induced subgraphs with property ᴨ.

If ᴨ is a hereditary property that contains all independent sets and all cliques,
or if ᴨ excludes some independent sets and some cliques,

then the problem of finding an induced subgraph of size at least k, satisfying ᴨ,
is FPT.

Khot and Raman, (2002)

Finding large induced subgraphs with property ᴨ.

If ᴨ is a hereditary property that contains all independent sets and all cliques,
or if ᴨ excludes some independent sets and some cliques,

then the problem of finding an induced subgraph of size at least k, satisfying ᴨ,
is FPT.

If ᴨ is a hereditary property contains all independent sets but not all cliques
(or vice versa),

then the problem of finding an induced subgraph of size at least k, satisfying ᴨ,
is W[1]-hard.

Khot and Raman, (2002)

Finding large induced subgraphs with property ᴨ.

If ᴨ is a hereditary property that contains all independent sets and all cliques,
or if ᴨ excludes some independent sets and some cliques,

then the problem of finding an induced subgraph of size at least k, satisfying ᴨ,
is FPT.

If ᴨ is a hereditary property contains all independent sets but not all cliques
(or vice versa),

then the problem of finding an induced subgraph of size at least k, satisfying ᴨ,
is W[1]-hard.

Khot and Raman, (2002)

Ramsey Numbers!

Reduction from Independent Set

Vertex Cover

Can G be made edgeless by the removal of at most k vertices?

A simple randomized algorithm with an error probability of 2-k.

Vertex Cover

Can G be made edgeless by the removal of at most k vertices?

A simple randomized algorithm with an error probability of 2-k.

Vertex Cover

Can G be made edgeless by the removal of at most k vertices?

A simple randomized algorithm with an error probability of 2-k.

Feedback Vertex Set

Can G be made acyclic by the removal of at most k vertices?

Feedback Vertex Set

Can G be made acyclic by the removal of at most k vertices?

Feedback Vertex Set

Can G be made acyclic by the removal of at most k vertices?

Feedback Vertex Set

Can G be made acyclic by the removal of at most k vertices?

Feedback Vertex Set

Can G be made acyclic by the removal of at most k vertices?

Feedback Vertex Set

Can G be made acyclic by the removal of at most k vertices?

Let’s stare at the structure of a YES-instance.
#whisper: Let us also restrict ourselves to graphs of constant maximum degree, say five.

the k vertices corresponding to the FVS

(n-k) vertices and at most (n-k-1) edges “outside”.

the k vertices corresponding to the FVS

(n-k) vertices and at most (n-k-1) edges “outside”.

t “points of contact” between S and G\S…

t “points of contact” between S and G\S… at least t edges going across the two sets.

t “points of contact” between S and G\S… at least t edges going across the two sets.
Delete the points of contact in G\S to get at most 5t “pieces”.

t “points of contact” between S and G\S… at least t edges going across the two sets.
Delete the points of contact in G\S to get at most 5t “pieces”.

Suppose each piece has constant size, say c.

t “points of contact” between S and G\S… at least t edges going across the two sets.
Delete the points of contact in G\S to get at most 5t “pieces”.

Suppose each piece has constant size, say c.
The total number of edges in G\S is at most 5ct.

t “points of contact” between S and G\S… at least t edges going across the two sets.
Delete the points of contact in G\S to get at most 5t “pieces”.

Suppose each piece has constant size, say c.
The total number of edges in G\S is at most 5ct.

The number of good edges is at least t, and the number of bad edges is at most 5ct.

t “points of contact” between S and G\S… at least t edges going across the two sets.
Delete the points of contact in G\S to get at most 5t “pieces”.

Suppose each piece has constant size, say c.
The total number of edges in G\S is at most 5ct.

The number of good edges is at least t, and the number of bad edges is at most 5ct.
In this scenario, a randomly chosen edge will be good with constant probability!

Bad scenario: one of the pieces is large.

These pieces have simple structure and bounded interaction with the outer world.

These pieces have simple structure and bounded interaction with the outer world.

Such pieces are called “protrusions”.

Constant Treewidth

A Boundary of Constant Size

Constant Treewidth

A Boundary of Constant Size

Constant Treewidth

A Boundary of Constant Size

The space of t-boundaried graphs
can be broken up into equivalence classes

based on how they “behave” with
the “other side” of the boundary.

The value of the
optimal solution

is the same
up to a constant.

The space of t-boundaried graphs
can be broken up into equivalence classes

based on how they “behave” with
the “other side” of the boundary.

For some problems,
the number of equivalence classes is finite,
allowing us to replace protrusions in graphs.

The space of t-boundaried graphs
can be broken up into equivalence classes

based on how they “behave” with
the “other side” of the boundary.

Finding protrusions? What do we replace them with?

The 𝓕-Deletion Problem

The 𝓕-Deletion Problem

Can G be made H-minor free, for all H in 𝓕,
by the removal of at most k vertices?

The 𝓕-Deletion Problem

Can G be made H-minor free, for all H in 𝓕,
by the removal of at most k vertices?

Suppose G is a YES-instance, and further, suppose 𝓕 contains at least one planar graph.

The 𝓕-Deletion Problem

Can G be made H-minor free, for all H in 𝓕,
by the removal of at most k vertices?

Suppose G is a YES-instance, and further, suppose 𝓕 contains at least one planar graph.

Then G\S cannot have large grids.

The 𝓕-Deletion Problem

Can G be made H-minor free, for all H in 𝓕,
by the removal of at most k vertices?

Suppose G is a YES-instance, and further, suppose 𝓕 contains at least one planar graph.

Then G\S cannot have large grids.

Thus the treewidth of G\S is bounded by a constant that depends only on 𝓕.

The 𝓕-Deletion Problem

Can G be made H-minor free, for all H in 𝓕,
by the removal of at most k vertices?

Suppose G is a YES-instance, and further, suppose 𝓕 contains at least one planar graph.

Then G\S cannot have large grids.

Thus the treewidth of G\S is bounded by a constant that depends only on 𝓕.

The Planar 𝓕-Deletion Problem

The Planar 𝓕-Deletion Problem

The Planar 𝓕-Deletion Problem

Ensure that protrusions are removed.

The Planar 𝓕-Deletion Problem

Ensure that protrusions are removed.

Pick an edge uniformly at random.

The Planar 𝓕-Deletion Problem

Ensure that protrusions are removed.

Pick an edge uniformly at random.

Include both endpoints.

The Planar 𝓕-Deletion Problem

Ensure that protrusions are removed.

Pick an edge uniformly at random.

Include both endpoints. Pick an endpoint u.a.r.

The Planar 𝓕-Deletion Problem

Ensure that protrusions are removed.

Pick an edge uniformly at random.

Include both endpoints. Pick an endpoint u.a.r.

Repeat till G is 𝓕-free.

The Planar 𝓕-Deletion Problem

Ensure that protrusions are removed.

Pick an edge uniformly at random.

Include both endpoints. Pick an endpoint u.a.r.
(Approximation algorithm.)

Repeat till G is 𝓕-free.

The Planar 𝓕-Deletion Problem

Ensure that protrusions are removed.

Pick an edge uniformly at random.

Include both endpoints. Pick an endpoint u.a.r.
(Approximation algorithm.) (Randomized algorithm.)

Repeat till G is 𝓕-free.

The Planar 𝓕-Deletion Problem
accounts for several specific problems…

The Planar 𝓕-Deletion Problem
accounts for several specific problems…

𝓕

K2

K3

((k+1)-by-(k+1)) Grids

K2,3, K4

K4

K3,T2

Vertex Cover

Feedback Vertex Set

Treewidth k

Outerplanar

Series-Parallel

Pathwidth-One

Thanks to Graph Minors, we have a f(k)n2 algorithm for the 𝓕-Deletion problem.

Thanks to Graph Minors, we have a f(k)n2 algorithm for the 𝓕-Deletion problem.

For Planar 𝓕-Deletion, the starting point was a double-exponential algorithm.
[Bodlaender, 1997]

Thanks to Graph Minors, we have a f(k)n2 algorithm for the 𝓕-Deletion problem.

For Planar 𝓕-Deletion, the starting point was a double-exponential algorithm.
[Bodlaender, 1997]

Many single-exponential algorithms are known for special cases of 𝓕.

Thanks to Graph Minors, we have a f(k)n2 algorithm for the 𝓕-Deletion problem.

For Planar 𝓕-Deletion, the starting point was a double-exponential algorithm.
[Bodlaender, 1997]

Many single-exponential algorithms are known for special cases of 𝓕.

Feedback Vertex Set has a O*(3.83k) algorithm.Cao, Chen & Liu 
[2010]

Thanks to Graph Minors, we have a f(k)n2 algorithm for the 𝓕-Deletion problem.

For Planar 𝓕-Deletion, the starting point was a double-exponential algorithm.
[Bodlaender, 1997]

Many single-exponential algorithms are known for special cases of 𝓕.

{K4}-Deletion has a O*(2O(k)) algorithm.Kim, Paul & Philip
[2012]

Feedback Vertex Set has a O*(3.83k) algorithm.Cao, Chen & Liu 
[2010]

Thanks to Graph Minors, we have a f(k)n2 algorithm for the 𝓕-Deletion problem.

For Planar 𝓕-Deletion, the starting point was a double-exponential algorithm.
[Bodlaender, 1997]

Many single-exponential algorithms are known for special cases of 𝓕.

Pathwidth-1-Deletion has a O*(4.65k) algorithm.
Cygan, Pilipczuk,

Pilipczuk & Wojtaszczyk  
[2010]

{K4}-Deletion has a O*(2O(k)) algorithm.Kim, Paul & Philip
[2012]

Feedback Vertex Set has a O*(3.83k) algorithm.Cao, Chen & Liu 
[2010]

Fomin, Lokshtanov,
M. & Saurabh

[2013]

Planar 𝓕-Deletion admits a randomized (2O(k)n) algorithm
when every graph in 𝓕 is connected.

Fomin, Lokshtanov,
M. & Saurabh

[2013]

Planar 𝓕-Deletion admits a randomized (2O(k)n) algorithm
when every graph in 𝓕 is connected.

Best possible under ETH.

Fomin, Lokshtanov,
M. & Saurabh

[2013]

Planar 𝓕-Deletion admits a randomized (2O(k)n) algorithm
when every graph in 𝓕 is connected.

Planar 𝓕-Deletion admits a deterministic (2O(k)n log2n) algorithm
when every graph in 𝓕 is connected.

Best possible under ETH.

Fomin, Lokshtanov,
M. & Saurabh

[2013]

Planar 𝓕-Deletion admits a randomized (2O(k)n) algorithm
when every graph in 𝓕 is connected.

Planar 𝓕-Deletion admits a deterministic (2O(k)n log2n) algorithm
when every graph in 𝓕 is connected.

Planar 𝓕-Deletion admits an O(nm) randomized algorithm
that leads us to a constant-factor approximation.

Can we get a deterministic
constant-­factor approximation algorithm?

Best possible under ETH.

Fomin, Lokshtanov,
M. & Saurabh

[2013]

Planar 𝓕-Deletion admits a randomized (2O(k)n) algorithm
when every graph in 𝓕 is connected.

Planar 𝓕-Deletion admits a deterministic (2O(k)n log2n) algorithm
when every graph in 𝓕 is connected.

Planar 𝓕-Deletion admits an O(nm) randomized algorithm
that leads us to a constant-factor approximation.

Planar 𝓕-Deletion admits an deterministic algorithm
that leads us to a O(log3/2(OPT)) approximation.

Can we get a deterministic
constant-­factor approximation algorithm?

Best possible under ETH.

Fomin, Lokshtanov,
M., Philip & Saurabh

[2013]

Fomin, Lokshtanov,
M. & Saurabh

[2013]

Planar 𝓕-Deletion admits a randomized (2O(k)n) algorithm
when every graph in 𝓕 is connected.

Planar 𝓕-Deletion admits a deterministic (2O(k)n log2n) algorithm
when every graph in 𝓕 is connected.

Planar 𝓕-Deletion admits an O(nm) randomized algorithm
that leads us to a constant-factor approximation.

Planar 𝓕-Deletion admits an deterministic algorithm
that leads us to a O(log3/2(OPT)) approximation.

Can we get a deterministic
constant-­factor approximation algorithm?

Best possible under ETH.

Fomin, Lokshtanov,
M., Philip & Saurabh

[2013]

Kim, Langer, Paul, Reidl,
Rossmanith, Sau, & Sikdar

[2013]

Planar 𝓕-Deletion admits a deterministic (2O(k)n2) algorithm.

Fomin, Lokshtanov,
M. & Saurabh

[2013]

Planar 𝓕-Deletion admits a randomized (2O(k)n) algorithm
when every graph in 𝓕 is connected.

Planar 𝓕-Deletion admits an O(nm) randomized algorithm
that leads us to a constant-factor approximation.

Planar 𝓕-Deletion admits an deterministic algorithm
that leads us to a O(log3/2(OPT)) approximation.

Can we get a deterministic
constant-­factor approximation algorithm?

Best possible under ETH.

Fomin, Lokshtanov,
M., Philip & Saurabh

[2013]

Kim, Langer, Paul, Reidl,
Rossmanith, Sau, & Sikdar

[2013]

Planar 𝓕-Deletion admits a deterministic (2O(k)n2) algorithm.

Planar 𝓕-Deletion admits a deterministic (2O(k)n) algorithm
when every graph in 𝓕 is connected.

Fomin, Lokshtanov,
M., Ramanujan& Saurabh

[2015]

Many polynomial kernels are also known for special cases of 𝓕.

Many polynomial kernels are also known for special cases of 𝓕.

Feedback Vertex Set has a O(k2) instance kernel.Thomasse 
[2009]

Many polynomial kernels are also known for special cases of 𝓕.

Vertex Cover has a O(k) vertex kernel.(Various)

Feedback Vertex Set has a O(k2) instance kernel.Thomasse 
[2009]

Many polynomial kernels are also known for special cases of 𝓕.

Pathwidth-1-Deletion has a polynomial kernel
Cygan, Pilipczuk,

Pilipczuk & Wojtaszczyk  
[2010]

Vertex Cover has a O(k) vertex kernel.(Various)

Feedback Vertex Set has a O(k2) instance kernel.Thomasse 
[2009]

Many polynomial kernels are also known for special cases of 𝓕.

Pathwidth-1-Deletion has a polynomial kernel
Cygan, Pilipczuk,

Pilipczuk & Wojtaszczyk  
[2010]

Vertex Cover has a O(k) vertex kernel.(Various)

Feedback Vertex Set has a O(k2) instance kernel.Thomasse 
[2009]

Fomin, Lokshtanov,
M. & Saurabh

[2013]
Planar 𝓕-Deletion admits a polynomial kernel.

Many polynomial kernels are also known for special cases of 𝓕.

Pathwidth-1-Deletion has a polynomial kernel
Cygan, Pilipczuk,

Pilipczuk & Wojtaszczyk  
[2010]

Vertex Cover has a O(k) vertex kernel.(Various)

Feedback Vertex Set has a O(k2) instance kernel.Thomasse 
[2009]

Fomin, Lokshtanov,
M. & Saurabh

[2013]
Planar 𝓕-Deletion admits a polynomial kernel.

Best possible under standard assumptions.

The 𝓕-Deletion Problem

The 𝓕-Deletion Problem

Very little is known beyond the graph minors result.

The 𝓕-Deletion Problem

Very little is known beyond the graph minors result.

The most fundamental 𝓕-deletion problem that is not accounted for by
Planar 𝓕-Deletion is Planarization.

The 𝓕-Deletion Problem

Very little is known beyond the graph minors result.

The most fundamental 𝓕-deletion problem that is not accounted for by
Planar 𝓕-Deletion is Planarization.

Marx and Schlotter
[2012]

Planarization admits an algorithm with running time
O(2g(k)n2) where g(k) = kO(k3)

The 𝓕-Deletion Problem

Very little is known beyond the graph minors result.

The most fundamental 𝓕-deletion problem that is not accounted for by
Planar 𝓕-Deletion is Planarization.

Marx and Schlotter
[2012]

Planarization admits an algorithm with running time
O(2g(k)n2) where g(k) = kO(k3)

Kawarabayashi
[2009]

Planarization admits an algorithm with running time
O(f(k)n) where f(k) is not explicitly specified.

The 𝓕-Deletion Problem

Very little is known beyond the graph minors result.

The most fundamental 𝓕-deletion problem that is not accounted for by
Planar 𝓕-Deletion is Planarization.

Marx and Schlotter
[2012]

Planarization admits an algorithm with running time
O(2g(k)n2) where g(k) = kO(k3)

Kawarabayashi
[2009]

Planarization admits an algorithm with running time
O(f(k)n) where f(k) is not explicitly specified.

Jansen, Lokshtanov &
Saurabh
[2014]

Planarization admits an algorithm with running time
2O(k log k)n, achieving the best combined dependence on k and n.

The 𝓕-Deletion Problem

Very little is known beyond the graph minors result.

The most fundamental 𝓕-deletion problem that is not accounted for by
Planar 𝓕-Deletion is Planarization.

The question of kernels is completely open.

Marx and Schlotter
[2012]

Planarization admits an algorithm with running time
O(2g(k)n2) where g(k) = kO(k3)

Kawarabayashi
[2009]

Planarization admits an algorithm with running time
O(f(k)n) where f(k) is not explicitly specified.

Jansen, Lokshtanov &
Saurabh
[2014]

Planarization admits an algorithm with running time
2O(k log k)n, achieving the best combined dependence on k and n.

Graph Modification
Problems

When the operation induces hardness

Contraction Problems

Contraction Problems

Graph Class or “property”, ᴨ

Forbidden Subgraph Characterization

A graph admits a forbidden subgraph characterization
if, and only if,

it is closed under taking induced subgraphs (hereditary),
that is, the property is preserved under vertex deletions.

If there are finitely many forbidden graphs,
then the corresponding graph modification problem is FPT.

Contraction Problems

Graph Class or “property”, ᴨ

Forbidden Subgraph Characterization

A graph admits a forbidden subgraph characterization
if, and only if,

it is closed under taking induced subgraphs (hereditary),
that is, the property is preserved under vertex deletions.

If there are finitely many forbidden graphs,
then the corresponding graph modification problem is FPT.

Not true any more!

Contraction To C4-free graphs

Can G be made C4-free by the contraction of at most k edges?

W[2]-hard by a simple reduction from Hitting Set.

Contraction To C4-free graphs

Can G be made C4-free by the contraction of at most k edges?

W[2]-hard by a simple reduction from Hitting Set.

Ct-free Contraction is W[2]-hard if t ⩾ 4 and FPT if t⩽ 3.
Pt-free Contraction is W[2]-hard if t ⩾ 5 and FPT if t ⩽ 4.

Lokshtanov, M. &
Saurabh
[2013]

Ct-free Contraction is W[2]-hard if t ⩾ 4 and FPT if t⩽ 3.
Pt-free Contraction is W[2]-hard if t ⩾ 5 and FPT if t ⩽ 4.

Lokshtanov, M. &
Saurabh
[2013]

Chordal Contraction is W[2]-hard while Clique contraction is FPT
but is unlikely to admit a polynomial kernel.

Cai and Guo
[2013]

Ct-free Contraction is W[2]-hard if t ⩾ 4 and FPT if t⩽ 3.
Pt-free Contraction is W[2]-hard if t ⩾ 5 and FPT if t ⩽ 4.

Lokshtanov, M. &
Saurabh
[2013]

Characeterizations are open.

Chordal Contraction is W[2]-hard while Clique contraction is FPT
but is unlikely to admit a polynomial kernel.

Cai and Guo
[2013]

Heggernes, van’t Hof,
Lokshtanov & Paul

[2011]

Contracting to Bipartite graphs is fixed-parameter tractable with
a double-exponential running time.

Ct-free Contraction is W[2]-hard if t ⩾ 4 and FPT if t⩽ 3.
Pt-free Contraction is W[2]-hard if t ⩾ 5 and FPT if t ⩽ 4.

Lokshtanov, M. &
Saurabh
[2013]

Characeterizations are open.

Chordal Contraction is W[2]-hard while Clique contraction is FPT
but is unlikely to admit a polynomial kernel.

Cai and Guo
[2013]

Heggernes, van’t Hof,
Lokshtanov & Paul

[2011]

Contracting to Bipartite graphs is fixed-parameter tractable with
a double-exponential running time.

Ct-free Contraction is W[2]-hard if t ⩾ 4 and FPT if t⩽ 3.
Pt-free Contraction is W[2]-hard if t ⩾ 5 and FPT if t ⩽ 4.

Lokshtanov, M. &
Saurabh
[2013]

Polynomial kernels are open.

Characeterizations are open.

Chordal Contraction is W[2]-hard while Clique contraction is FPT
but is unlikely to admit a polynomial kernel.

Cai and Guo
[2013]

Heggernes, van’t Hof,
Lokshtanov & Paul

[2011]

Contracting to Bipartite graphs is fixed-parameter tractable with
a double-exponential running time.

Ct-free Contraction is W[2]-hard if t ⩾ 4 and FPT if t⩽ 3.
Pt-free Contraction is W[2]-hard if t ⩾ 5 and FPT if t ⩽ 4.

Lokshtanov, M. &
Saurabh
[2013]

Polynomial kernels are open.

Characeterizations are open.

Heggernes, van’t Hof,
Lévêque, Lokshtanov

& Paul
[2011]

Contracting to paths is FPT and has a linear-vertex kernel; while
contracting to trees is FPT but is unlikely to admit a polynomial kernel.

Chordal Contraction is W[2]-hard while Clique contraction is FPT
but is unlikely to admit a polynomial kernel.

Cai and Guo
[2013]

Completion

Graph Modification
Problems

Chordal Completion

Yannakakis
[1981]

The minimum fill-in problem is NP-complete
(was left open in the first edition of Garey and Johnson).

Chordal Completion

Yannakakis
[1981]

The minimum fill-in problem is NP-complete
(was left open in the first edition of Garey and Johnson).

Chordal Completion

Kaplan, Shamir &
Tarjan
[1999]

Chordal Completion is fixed-parameter tractable (FPT) with
a running time of O(k616k + k2mn).

Yannakakis
[1981]

The minimum fill-in problem is NP-complete
(was left open in the first edition of Garey and Johnson).

Chordal Completion

Kaplan, Shamir &
Tarjan
[1999]

Chordal Completion is fixed-parameter tractable (FPT) with
a running time of O(k616k + k2mn).

Bodlaender,
Heggernes, & Villanger

[2011]

Chordal Completion is fixed-parameter tractable (FPT) with
a running time of O(2.36k + k2mn).

Yannakakis
[1981]

The minimum fill-in problem is NP-complete
(was left open in the first edition of Garey and Johnson).

Chordal Completion

Kaplan, Shamir &
Tarjan
[1999]

Chordal Completion is fixed-parameter tractable (FPT) with
a running time of O(k616k + k2mn).

Bodlaender,
Heggernes, & Villanger

[2011]

Chordal Completion is fixed-parameter tractable (FPT) with
a running time of O(2.36k + k2mn).

Fomin & Villanger
[2013]

Chordal Completion admits a sub exponential
parameterized algorithm with a running time of O(2√k log k + k2mn).

Interval Completion

Kaplan, Shamir &
Tarjan
[1999]

Chordal Completion, Strongly Chordal Completion, and
Proper Interval Completion are fixed-parameter tractable (FPT).

Interval Completion

Kaplan, Shamir &
Tarjan
[1999]

Chordal Completion, Strongly Chordal Completion, and
Proper Interval Completion are fixed-parameter tractable (FPT).

Interval Completion

Heggernes, Paul,
Telle & Villanger

[2007]

Interval Completion is fixed-parameter tractable (FPT),
with a running time of O(k2kn3m).

Kaplan, Shamir &
Tarjan
[1999]

Chordal Completion, Strongly Chordal Completion, and
Proper Interval Completion are fixed-parameter tractable (FPT).

Interval Completion

Heggernes, Paul,
Telle & Villanger

[2007]

Interval Completion is fixed-parameter tractable (FPT),
with a running time of O(k2kn3m).

Cao
[2007]

Interval Completion has a single-exponential parameterized algorithm,
with a running time of O(6k(n+m)).

Kaplan, Shamir &
Tarjan
[1999]

Chordal Completion, Strongly Chordal Completion, and
Proper Interval Completion are fixed-parameter tractable (FPT).

Interval Completion

Heggernes, Paul,
Telle & Villanger

[2007]

Interval Completion is fixed-parameter tractable (FPT),
with a running time of O(k2kn3m).

Cao
[2007]

Interval Completion has a single-exponential parameterized algorithm,
with a running time of O(6k(n+m)).

Bliznets, Fomin,
Pilipczuk & Pilipczuk

[2014]

Interval Completion admits a subexponential parameterized algorithm
with a running time of kO(√k)nO(1).

A Summary

Graph Modification
Problems

Edge Deletions

Kernels on Planar Graphs & the Meta-Kernel project

Special Graph Classes, eg, Feedback Arc Set on Tournaments

Connectivity Augmentation

The descriptive complexity of graph modification

Structural parameters and other objective functions

Backdoor Sets!

