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Add edges to make the input graph a cluster graph.

Remove edges to make the input graph edgeless.

Remove edges to make the input graph acyclic.

Alon, Shapira 
& Sudakov 

[2009]

Given a propertyᴨ such thatᴨ holds for every
bipartite graph, the Minimumᴨ-Deletion problem is NP-hard.

Colbourn & 
El-Mallah 

[1988]

Making a graph Pk-free by deleting the minimum number of
edges is NP-hard for every k > 2.

(Triangle-­free)
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Planar Graphs 

Interval Graphs 

Cluster Graphs 

k-Connected Graphs 

Directed Acyclic Graphs 

Chordal Graphs 

Graph Drawing 

Physical Mapping of DNA 

Correlation Clustering 

Reliability of Networks 

Deadlock  Recovery, Operating Systems 

Gaussian Elimination over Sparse Matrices 

We would like to “achieve” these properties with minimum cost, which
naturally leads us to the graph modification framework.
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Forbidden Minor Characterization

A graph G belongs to ᴨ if, and only if, 
G does not contain any graph from Forb(ᴨ) 

as a minor.

A graph admits a forbidden minor characterization 
if, and only if, 

it is closed under taking minors.

Suppose the classᴨ+ (modifications) is
closed under taking minors…

Now: the graph modification problem has boiled down
to a membership testing problem, which can be

done in cubic time, given the finite forbidden set.

In fact, there is always a finite forbidden set! 
(Robertson-Seymour; Graph Minors Theorem)

+ (modifications)
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A graph admits a forbidden minor characterization 
if, and only if, 
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Can the node deletion question for hereditary properties 
always be answered with the “graph minors hammer”?
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Consider the property ᴨ of being wheel-free, that is, 
not having any wheel as an induced subgraph.

Wheel-Free Deletion and Wheel-Free Vertex Deletion 
are W[2]-hard.

Lokshtanov 
(2008)
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If ᴨ is a hereditary property that contains all independent sets and all cliques,  
or if ᴨ excludes some independent sets and some cliques, 

then the problem of finding an induced subgraph of size at least k, satisfying ᴨ,  
is FPT.

If ᴨ is a hereditary property contains all independent sets but not all cliques  
(or vice versa), 

then the problem of finding an induced subgraph of size at least k, satisfying ᴨ,  
is W[1]-hard.

Khot and Raman, (2002)

Ramsey Numbers!

Reduction from Independent Set
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Feedback Vertex Set

Can G be made acyclic by the removal of at most k vertices? 

Let’s stare at the structure of a YES-instance.
#whisper: Let us also restrict ourselves to graphs of constant maximum degree, say five.
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t “points of contact” between S and G\S… at least t edges going across the two sets.
Delete the points of contact in G\S to get at most 5t “pieces”.

Suppose each piece has constant size, say c.
The total number of edges in G\S is at most 5ct.

The number of good edges is at least t, and the number of bad edges is at most 5ct.
In this scenario, a randomly chosen edge will be good with constant probability! 
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Such pieces are called “protrusions”.
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For some problems,
the number of equivalence classes is finite,
allowing us to replace protrusions in graphs.

The space of t-boundaried graphs 
can be broken up into equivalence classes  

based on how they “behave” with 
the “other side” of the boundary.
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The Planar 𝓕-Deletion Problem

Ensure that protrusions are removed.

Pick an edge uniformly at random.

Include both endpoints. Pick an endpoint u.a.r.
(Approximation algorithm.) (Randomized algorithm.)

Repeat till G is 𝓕-free.
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The Planar 𝓕-Deletion Problem 
accounts for several specific problems…

𝓕 

K2 

K3 

((k+1)-by-(k+1)) Grids 

K2,3, K4 

K4 

K3,T2 

Vertex Cover 

Feedback Vertex Set 

Treewidth k 

Outerplanar 

Series-Parallel 

Pathwidth-One 
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Cygan, Pilipczuk,  

Pilipczuk & Wojtaszczyk  
[2010]

Vertex Cover has a O(k) vertex kernel.(Various)

Feedback Vertex Set has a O(k2) instance kernel.Thomasse 
[2009]

Fomin, Lokshtanov,  
M. & Saurabh 

[2013]
Planar 𝓕-Deletion admits a polynomial kernel.
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Very little is known beyond the graph minors result.

The most fundamental 𝓕-deletion problem that is not accounted for by 
Planar 𝓕-Deletion is Planarization.

The question of kernels is completely open.

Marx and Schlotter 
[2012]

Planarization admits an algorithm with running time
O(2g(k)n2) where g(k) = kO(k3)

Kawarabayashi 
[2009]

Planarization admits an algorithm with running time
O(f(k)n) where f(k) is not explicitly specified.

Jansen, Lokshtanov & 
Saurabh 
[2014]

Planarization admits an algorithm with running time
2O(k log k)n, achieving the best combined dependence on k and n.
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Problems
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Not true any more!
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Ct-free Contraction is W[2]-hard if t ⩾ 4 and FPT if t⩽ 3.
Pt-free Contraction is W[2]-hard if t ⩾ 5 and FPT if t ⩽ 4.

Lokshtanov, M. & 
Saurabh 
[2013]

Polynomial kernels are open.

Characeterizations are open.

Heggernes, van’t Hof, 
Lévêque, Lokshtanov  

& Paul 
[2011]

Contracting to paths is FPT and has a linear-vertex kernel; while
contracting to trees is FPT but is unlikely to admit a polynomial kernel.

Chordal Contraction is W[2]-hard while Clique contraction is FPT
but is unlikely to admit a polynomial kernel.

Cai and Guo 
[2013]
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Tarjan 
[1999]

Chordal Completion is fixed-parameter tractable (FPT) with
a running time of O(k616k + k2mn).

Bodlaender,  
Heggernes, & Villanger 

[2011]

Chordal Completion is fixed-parameter tractable (FPT) with
a running time of O(2.36k + k2mn).

Fomin & Villanger 
[2013]

Chordal Completion admits a sub exponential
parameterized algorithm with a running time of O(2√k log k + k2mn).
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Kaplan, Shamir &  
Tarjan 
[1999]

Chordal Completion, Strongly Chordal Completion, and
Proper Interval Completion are fixed-parameter tractable (FPT).

Interval Completion

Heggernes, Paul, 
Telle & Villanger 

[2007]

Interval Completion is fixed-parameter tractable (FPT),
with a running time of O(k2kn3m).

Cao 
[2007]

Interval Completion has a single-exponential parameterized algorithm,
with a running time of O(6k(n+m)).

Bliznets, Fomin, 
Pilipczuk  & Pilipczuk  

[2014]

Interval Completion admits a subexponential parameterized algorithm
with a running time of kO(√k)nO(1).



A Summary

Graph Modification 
Problems





Edge Deletions 

Kernels on Planar Graphs & the Meta-Kernel project 

Special Graph Classes, eg, Feedback Arc Set on Tournaments 

Connectivity Augmentation 

The descriptive complexity of graph modification 

Structural parameters and other objective functions 

Backdoor Sets!






