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• SATISFIABILITY: Is a given propositional 
formula satisfiable? 

• One of the earliest problems shown to be NP-
Complete.  

• Best known algorithm for 3-SAT — 1.308n 
(Hertli, FOCS 2011)
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Satisfiability

• Several applications— problems like software 
model checking, chip verification etc. reduced to 
SAT and solved using SAT solvers.

• Resulting instances often have up to a million 
variables and several million clauses.

• Even for 300 variables, worst case bounds 
exceed age of the universe.
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That’s all well and good in practice, 
but how does it work in theory? 

The instances arising in practice must  
have some structure!
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• ‘Complete’ SAT solvers are variants of  
the DPLL algorithm.

Modern SAT solvers

DPLL= Davis-Putnam-Logemann-Loveland
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The DPLL algorithm

• Perform Unit Propagation.

• If there is a unit clause then the literal is set accordingly and 
the formula reduced.

Horn formulas : formulas with at most one positive literal in 
every clause, solved just by unit propagation.

(x1 )⋀(¬x1 ⋁x3 )⋀(x2 ⋁¬x3 ) 

( x3 )⋀(x2 ⋁¬x3 ) ( x2) 
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The DPLL algorithm

• Perform Pure Literal Elimination.

• If a variable occurs with a single polarity, then assign 
it and reduce formula.

(x1 )⋀(¬x1 ⋁x3 )⋀(x2 ⋁¬x3 ) 

(x1 )⋀(¬x1 ⋁x3 ) (x1 ) 



The DPLL algorithm

• Select a variable (based on some heuristic) and explore both 
assignments.

F[x=1] F[x=0]
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Modern Sat solvers

• Build on DPLL by better variable selection heuristics. 

• Better backtracking strategies. 

• ‘Learning’ clauses. 

• ‘watching’ literals for fast unit propagations.
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Variable-Variable Graph

Red nodes: Unit Propagation Mini-SAT
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Variable dependencies

• Most of the variables seem ‘dependent’ on a few 
variables.

• Fixing an assignment to this set propagates to the 
rest of the variables.

• Lots of real world instances seem to have a small set 
on which the remaining variables are dependent.

• Can we capture the structure of an instance through 
this small set of variables ?



Backdoor sets

Informally, a set of variables whose instantiation results  
in a significantly simplified formula. 

Introduced by  
Williams, Gomes, Selman (IJCAI 2003)  

and  
Crama, Ekin, Hammer (D. A. M. 1997) 
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Subsolvers

The instances NOT rejected by  
a sub-solver can be treated  

as a  tractable base  
class for SAT.

For every tractable base class 
for SAT, we have  

a sub-solver that solves  
instances in this class and 

rejects the rest.

• Subsolver1: Solve all 
2cnf formulas and 
reject the rest. 

• Subsolver2: Solve all 
Horn formulas and 
reject the rest. 
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Subsolvers

Base class = sub-solver
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Backdoors to SAT

• Weak Backdoor to C • Strong Backdoor to C 

Some assignment leads to  
a satisfiable instance in the  

base class C

All assignments lead to an 
 instance in the base class C.

X X

F1 F2 F3 F4 F2|X| F1 F2 F3 F4 F2|X|



Strong vs weak Backdoors



X

F1 F2 F3 F4 F2|X|

Strong vs weak Backdoors



X

F1 F2 F3 F4 F2|X|

If the instance is satisfiable  
then every strong backdoor  

is also a weak backdoor!

Strong vs weak Backdoors



X

F1 F2 F3 F4 F2|X|

If the instance is satisfiable  
then every strong backdoor  

is also a weak backdoor!

wbd ≤ sbd  

Strong vs weak Backdoors
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2 Perspectives on backdoor sets

• (a) (Williams, Gomes, Selman) the presence of small 
backdoor sets provides a good explanation for the 
performance of SAT solvers,  the success of 
random restarts etc.

• (b) (Crama, Ekin, Hammer) backdoor sets provide an 
excellent framework to extend tractability results 
for SAT.

eg. SAT is in P for 2-cnf formulas—> SAT is in P for  
formulas with a strong backdoor of size 10 to 2-cnf.
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Islands of Tractability

• Think of the base classes as `Islands of 
tractability’.  

• An instance with a `small’ backdoor to one of these 
base classes is `close’ to an island of tractability.  

• Objective: If an instance is close to an island of 
tractability, then we can solve it efficiently.



Research Agenda

Instances with a backdoor 
of size c to an island

Instances with a backdoor 
of size log n to an island

Instances with a backdoor 
of size log2 n to an island
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Finding Backdoor sets

• For any reasonable island of tractability, detecting 
if an instance is `close’ to this island is NP-complete.  
 

• For which islands can we do this detection 
efficiently (for a relaxed notion of efficient)?
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Finding Backdoors

• How to develop and analyze `efficient’ algorithms to 
detect small backdoors?

Fixed-Parameter Algorithms!
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• Parameterized problems - (x,k); k is the parameter. 

• 2-dimensional analysis of algorithms.  

• Aim for running times of the form f(k) |x|c

FPT
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FPT algorithms 

• Running time f(k) |x|c implies that for k bounded 
by f-1(poly(n)), we have a poly time algorithm. 

• Corresponding hardness theory.  

• W-hierarchy: FPT ⊆ W[1] ⊆ W[2] ⊆ … ⊆ XP
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Rest of this talk

• Recent advances in FPT algorithms for 
computing backdoors to some base classes  
(q-Horn, tw-SAT, composite classes) 

• Discuss some interesting connections between 
the 2 perspectives.
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Classical sub-solvers 

Class 
Backdoor

Schaefer 
[Nishimura, Ragde, 

Szeider 2004]

Unit Prop + Pure Lit. 
Elim 

[Szeider 2005]

Weak
W[2]-hard 

(FPT for 3-cnf)
W[2]-hard 

(FPT for 3-cnf)

Strong FPT W[2]-hard
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Why is weak backdoor detection hard?

• Existence of a small weak backdoor —-> the 
formula is satisfiable! 

• Allows fairly straightforward encodings from 
Hitting Set/Set Cover, both W[2]-hard 
parameterized by the size of the solution (the 
hitting set or the set cover).

• Can change if restricted to 3-cnf formulas.
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Backdoors to q-Horn

• quadratic-Horn (q-Horn) (Boros, Crama, Hammer 1990) 

• F is q-Horn if there is a weight function  
      w: lit(F)->{0,1/2,1} s.t  
 
 
w(x)+w(¬x)=1 and for every clause C, w(C)≤ 1.  

• q-Horn generalizes Horn and 2-cnf.
SAT is in P for  
q-Horn forulas!
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• How can we extend tractability results if strong 
backdoor detection is also W-hard? 

• What other notions of `distance’ can we have? 

• What about distance through deletion instead of 
instantiation?

Backdoors to q-Horn
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• A deletion backdoor set of F to the base class C is a 
set of variables S such that F-S is in C.  

(x1 ⋁x2)⋀(¬x1 ⋁x3 ⋁ x5)⋀(x2 ⋁¬x3 ⋁ x4) 

(x1 ⋁x2)⋀(¬x1 ⋁ x5)⋀(x2 ⋁ x4) 

Deleting x3 

x3 is a deletion backdoor into 2-cnf. 

 x3 =0 

 x3 =1 

(x1 ⋁ x2)⋀(¬x1 ⋁ x5) 

(x1 ⋁ x2)⋀(x2 ⋁ x4) 
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S

F-S

If the base class C is ‘clause induced’ 
then S is also a strong backdoor to C.

If F is in C, every subformula of F  
induced by a subset of clauses is in C.

wbd ≤ sbd ≤del. bd

Deletion Backdoors
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• The detection of strong backdoors being W-hard is 
not a dead end.  
 

• If we can detect deletion backdoors then we can 
still extend the tractable region for SAT.

Deletion Backdoors
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Backdoors to q-Horn

• q-Horn is clause induced. Can we find a deletion 
backdoor to q-Horn in FPT time?

• In FPT time, we can approximate it.  
[Gaspers, Ordyniak, R., Saurabh, Szeider STACS 2013]

• In O(6k mn) time, we can either conclude no del 
backdoor of size k or compute a deletion backdoor of 
size at most 2 k2.

SAT parameterized by size of deletion backdoor to q-Horn 
can be solved in time 2O(k^2) mn .
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Backdoors to q-Horn

SAT is in P for instances  
with a del. backdoor of  
size O(log n) to q-Horn  
[R. and Saurabh 2014].

SAT is in P for q-Horn

SAT is in P for instances  
with a del. backdoor of  
size O(√log n) to q-Horn 

[Gaspers, Ordyniak,  
R., Saurabh, Szeider 2014].



Backdoors to q-Horn



• A linear time algorithm for SAT instances 
`close’ to being q-Horn.

Backdoors to q-Horn



• A linear time algorithm for SAT instances 
`close’ to being q-Horn.

• Corollary: Deletion backdoor detection for 
RHorn can be done in time O(4k m).

Backdoors to q-Horn



• A linear time algorithm for SAT instances 
`close’ to being q-Horn.

• Corollary: Deletion backdoor detection for 
RHorn can be done in time O(4k m).

• A further consequence of this algorithm: the 
first linear time FPT algorithm for Odd Cycle 
Transversal (open problem of Reed, Smith and 
Vetta, 2003).

Backdoors to q-Horn
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Backdoors to acyclic SAT

Modeling CNF-formulas as graphs

Incidence Graph

: Clauses

: Variables



If the Incidence graph is a forest then SAT is in P  
(Fischer, Makowsky, Ravve 2008).

Acyclic SAT

Backdoors to acyclic SAT

: Clauses

: Variables



What about formulas with small backdoors to Acyclic SAT? 
Is SAT tractable on these formulas?

: Clauses

: VariablesAcyclic SAT

Backdoors to acyclic SAT
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•  weak backdoor detection to acyclic 3-SAT is FPT. 

•  strong backdoor detection to acyclic SAT is  
                                                          FPT-approximable.

Gaspers and Szeider (ICALP 2012) :
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• weak backdoor detection to acyclic SAT is W[2]-hard. 

•  weak backdoor detection to acyclic 3-SAT is FPT. 

•  strong backdoor detection to acyclic SAT is  
                                                          FPT-approximable.

Gaspers and Szeider (ICALP 2012) :

In FPT time, either conclude there is  
no strong backdoor of size k 

or compute a strong backdoor of size 2k

Backdoors to acyclic SAT



Backdoors to bounded tw SAT

If the Incidence graph is tree-like then SAT is in P  
(Fischer, Makowsky, Ravve 2008).

Incidence Graph

tw-SAT

: Clauses

: Variables



Strong backdoor detection to tw SAT is FPT-approximable.

Gaspers and Szeider (FOCS 2013) :

Backdoors to bounded tw SAT



Strong backdoor detection to tw SAT is FPT-approximable.

SAT parameterized by size of sbd to tw SAT is FPT.

Running time : 22^k n3

Gaspers and Szeider (FOCS 2013) :

Backdoors to bounded tw SAT



Backdoors to bounded tw SAT

SAT is in P for instances  
with sbd of size  

O(log log n) to tw SAT.

tw SAT is in P.



Fomin, Lokshtanov, Misra, R., Saurabh (SODA 2015)
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Fomin, Lokshtanov, Misra, R., Saurabh (SODA 2015)

3-SAT parameterized by k=min{sbd,wbd} to tw 3-SAT can 
be solved in time 2O(k) m.

This running time is optimal both w.r.t parameter and  
input-size.

Backdoors to bounded tw SAT



Backdoors to bounded tw SAT

3-SAT is in P for instances  
with a s/w backdoor of size  

O(log n) to tw 3-SAT.

tw 3-SAT is in P.

This region cannot be extended.

Some new features in this algorithm!
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backdoor sets without actually searching for them. 
 

• This algorithm: revisit this perspective.



Backdoors to bounded tw SAT

DPLL



Backdoors to bounded tw SAT

• Apply UP and PLE

DPLL



Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

DPLL



Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

DPLL



Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

DPLL DPLL’



Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

• If formula has constant 
tw, then solve in poly time.

DPLL DPLL’



Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

• If formula has constant 
tw, then solve in poly time.

• Reduce all `protrusions’.

DPLL DPLL’



Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

• If formula has constant 
tw, then solve in poly time.

• Reduce all `protrusions’.

• Select a variable x u.a.r

DPLL DPLL’



Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

• If formula has constant 
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Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

• If formula has constant 
tw, then solve in poly time.

• Reduce all `protrusions’.

• Select a variable x u.a.r

• Branch on x

DPLL DPLL’

DPLL’ is an FPT algorithm for 3-SAT par  
by min{sbd,wbd} to tw 3-SAT.
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• Protrusion replacement takes the place of UP 
and PLE.

• Since the base class is more complex, the 
preprocessing is also involved.

• But intuition remains the same: Remove 
‘irrelevant’ parts of the formula or at the very 
least replace them with a `small’ equivalent 
formula.

Backdoors to bounded tw SAT
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depend on computing a backdoor set first. 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• First FPT algorithm for SAT which does not 
depend on computing a backdoor set first. 

• Optimal running time (parameter and i/p size)  

• Again, techniques developed here have other 
applications:  improving several kernelization and 
FPT algorithms to linear time.

Backdoors to bounded tw SAT
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Heterogenous backdoors

Consider the following formula.

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ 
(¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn) 

What is the size of a smallest  
strong backdoor set into Horn?

at least n

What is the size of a smallest  
strong backdoor set into 2-cnf?

at least n-1
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Consider the following formula.

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ 
(¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn) 

Consider F[x=0]

Consider F[x=1]

(¬a1 ⋁¬a2…⋁¬an) 

(b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn) 

Horn

2-cnf

Heterogenous backdoors



Heterogenous backdoors

F[x=0] F[x=1]

F

Run 
sub-solver C1

Run  
sub-solver C2

C1,C2:   Horn, 2-cnf



Heterogenous backdoors

Let C1,.. ,Cr be islands of tractability.

X is  a heterogenous backdoor into C1,.. ,Cr  if for every 
assignment of X, the reduced formula  

is in some Ci.
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Heterogenous backdoors

• Heterogenous backdoors can be arbitrarily 
smaller than normal strong backdoors.  
 

• Class of instances with small heterogenous 
backdoors is a much larger class than instances 
with small strong backdoor.



Islands of Tractability

Strong backdoor of size k to 
some Island of Tractability

Heterogenous backdoor of  
size k to some Islands

Heterogenous backdoors



Heterogenous backdoors



Gaspers, Ordyniak, Misra, Szeider, Zivny (AAAI 2014)

Heterogenous backdoors



1. If H =Horn/dual-Horn ∪ 2CNF then detecting 
heterogenous backdoors to H is FPT

Gaspers, Ordyniak, Misra, Szeider, Zivny (AAAI 2014)

2. For every other combination of Schaefer classes, 
 detecting heterogenous backdoors to H is W[2]-hard.

but FPT for 3-cnf formulas

Heterogenous backdoors
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Run appropriate 
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Split backdoors

Let C1,.. ,Cr be islands of tractability.

X is  a split backdoor into C1,.. ,Cr  if for every assignment 
of X,  every connected component of the reduced formula  

is in some Ci.

A minimal set of clauses which is variable-disjoint 
 from the remaining clauses.
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Split backdoors

• Split backdoors can be arbitrarily smaller than 
heterogenous backdoors. 
 

• Class of instances with small split backdoors is a 
much larger class than class of instances with 
small heterogenous backdoor.



Islands of Tractability

Split backdoor of size k  
to some Islands

Split backdoors

Strong backdoor of size k to 
some Island of Tractability

Heterogenous backdoor of  
size k to some Islands



If H is a finite set of finite constraint languages,  then 
detecting split-backdoors of the given CSP to H is FPT. 

Ganian, R., Szeider (2014):

Builds on a combination of traditional FPT tools and new graph 
separation tools like important separators, sequences and CSP based 

pattern replacements.

Split backdoors
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Summing up

• We have seen how backdoors and fixed parameter 
tractability provide a framework to extend tractability 
results for SAT based on the `distance’ of instances to 
islands of tractability.

• Stronger definitions of sub-solvers and base classes allowing 
us to prove tractability for larger classes of instances.

• Several other variants of backdoors have been proposed, eg. 
backdoor trees (Samer and Szeider AAAI 2008), learning 
sensitive backdoors (Dilkina, Gomes, Sabharwal SAT 2009).
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Future research

• So far backdoor sets 
and  variants have 
provided the best and 
theoretically most 
robust explanation for 
the performances of 
SAT solvers.  

• What other structural 
properties of instances 
are correlated to the 
computation time and 
can be effectively 
formalized in theory?



Future research



Future research

• So far, `small’ 
backdoors treated 
as certificates for 
closeness. 

• Better measures 
than size? 

• i.e. backdoors of 
potentially 
unbounded size but 
with some structure. 



Future research



Future research

• Analysis of 
existing SAT 
algorithms in 
terms of 
FPT 
parameteriz
ed by 
backdoors.
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