
Backdoors to Satisfiability

M. S. Ramanujan

University of Bergen, Norway

New Developments in

Exact Algorithms and Lower Bounds

IIT Delhi, 2014

Outline

• Motivation 

• 2 perspectives on backdoors 

• Parameterized algorithms for SAT via backdoors

Satisfiability

Satisfiability

• SATISFIABILITY: Is a given propositional
formula satisfiable? 

Satisfiability

• SATISFIABILITY: Is a given propositional
formula satisfiable? 

• One of the earliest problems shown to be NP-
Complete.  

Satisfiability

• SATISFIABILITY: Is a given propositional
formula satisfiable? 

• One of the earliest problems shown to be NP-
Complete.  

• Best known algorithm for 3-SAT — 1.308n
(Hertli, FOCS 2011)

Satisfiability

Satisfiability

• Several applications— problems like software
model checking, chip verification etc. reduced to
SAT and solved using SAT solvers.

Satisfiability

• Several applications— problems like software
model checking, chip verification etc. reduced to
SAT and solved using SAT solvers.

• Resulting instances often have up to a million
variables and several million clauses.

Satisfiability

• Several applications— problems like software
model checking, chip verification etc. reduced to
SAT and solved using SAT solvers.

• Resulting instances often have up to a million
variables and several million clauses.

• Even for 300 variables, worst case bounds
exceed age of the universe.

That’s all well and good in practice,
but how does it work in theory?

That’s all well and good in practice,
but how does it work in theory?

The instances arising in practice must
have some structure!

Modern SAT solvers

Modern SAT solvers

• ‘Complete’ SAT solvers are variants of  
the DPLL algorithm.

Modern SAT solvers

• ‘Complete’ SAT solvers are variants of  
the DPLL algorithm.

Modern SAT solvers

DPLL= Davis-Putnam-Logemann-Loveland

The DPLL algorithm

The DPLL algorithm

• Perform Unit Propagation.

The DPLL algorithm

• Perform Unit Propagation.

• If there is a unit clause then the literal is set accordingly and
the formula reduced.

The DPLL algorithm

• Perform Unit Propagation.

• If there is a unit clause then the literal is set accordingly and
the formula reduced.

(x1)⋀(¬x1 ⋁x3)⋀(x2 ⋁¬x3)

The DPLL algorithm

• Perform Unit Propagation.

• If there is a unit clause then the literal is set accordingly and
the formula reduced.

(x1)⋀(¬x1 ⋁x3)⋀(x2 ⋁¬x3)

(x3)⋀(x2 ⋁¬x3)

The DPLL algorithm

• Perform Unit Propagation.

• If there is a unit clause then the literal is set accordingly and
the formula reduced.

(x1)⋀(¬x1 ⋁x3)⋀(x2 ⋁¬x3)

(x3)⋀(x2 ⋁¬x3)

The DPLL algorithm

• Perform Unit Propagation.

• If there is a unit clause then the literal is set accordingly and
the formula reduced.

(x1)⋀(¬x1 ⋁x3)⋀(x2 ⋁¬x3)

(x3)⋀(x2 ⋁¬x3) (x2)

The DPLL algorithm

• Perform Unit Propagation.

• If there is a unit clause then the literal is set accordingly and
the formula reduced.

Horn formulas : formulas with at most one positive literal in
every clause, solved just by unit propagation.

(x1)⋀(¬x1 ⋁x3)⋀(x2 ⋁¬x3)

(x3)⋀(x2 ⋁¬x3) (x2)

The DPLL algorithm

The DPLL algorithm

• Perform Pure Literal Elimination.

The DPLL algorithm

• Perform Pure Literal Elimination.

• If a variable occurs with a single polarity, then assign
it and reduce formula.

The DPLL algorithm

• Perform Pure Literal Elimination.

• If a variable occurs with a single polarity, then assign
it and reduce formula.

(x1)⋀(¬x1 ⋁x3)⋀(x2 ⋁¬x3)

The DPLL algorithm

• Perform Pure Literal Elimination.

• If a variable occurs with a single polarity, then assign
it and reduce formula.

(x1)⋀(¬x1 ⋁x3)⋀(x2 ⋁¬x3)

(x1)⋀(¬x1 ⋁x3)

The DPLL algorithm

• Perform Pure Literal Elimination.

• If a variable occurs with a single polarity, then assign
it and reduce formula.

(x1)⋀(¬x1 ⋁x3)⋀(x2 ⋁¬x3)

(x1)⋀(¬x1 ⋁x3)

The DPLL algorithm

• Perform Pure Literal Elimination.

• If a variable occurs with a single polarity, then assign
it and reduce formula.

(x1)⋀(¬x1 ⋁x3)⋀(x2 ⋁¬x3)

(x1)⋀(¬x1 ⋁x3) (x1)

The DPLL algorithm

• Select a variable (based on some heuristic) and explore both
assignments.

F[x=1] F[x=0]

Modern Sat solvers

Modern Sat solvers

• Build on DPLL by better variable selection heuristics. 

Modern Sat solvers

• Build on DPLL by better variable selection heuristics. 

• Better backtracking strategies. 

Modern Sat solvers

• Build on DPLL by better variable selection heuristics. 

• Better backtracking strategies. 

• ‘Learning’ clauses. 

Modern Sat solvers

• Build on DPLL by better variable selection heuristics. 

• Better backtracking strategies. 

• ‘Learning’ clauses. 

• ‘watching’ literals for fast unit propagations.

Variable-Variable Graph

Red nodes: Unit Propagation Mini-SAT

Variable-Variable Graph

Red nodes: Unit Propagation Mini-SAT

Variable dependencies

Variable dependencies

• Most of the variables seem ‘dependent’ on a few
variables.

Variable dependencies

• Most of the variables seem ‘dependent’ on a few
variables.

• Fixing an assignment to this set propagates to the
rest of the variables.

Variable dependencies

• Most of the variables seem ‘dependent’ on a few
variables.

• Fixing an assignment to this set propagates to the
rest of the variables.

• Lots of real world instances seem to have a small set
on which the remaining variables are dependent.

Variable dependencies

• Most of the variables seem ‘dependent’ on a few
variables.

• Fixing an assignment to this set propagates to the
rest of the variables.

• Lots of real world instances seem to have a small set
on which the remaining variables are dependent.

• Can we capture the structure of an instance through
this small set of variables ?

Backdoor sets

Informally, a set of variables whose instantiation results
in a significantly simplified formula.

Introduced by
Williams, Gomes, Selman (IJCAI 2003)

and
Crama, Ekin, Hammer (D. A. M. 1997)

Subsolvers

A sub-solver is an algorithm with some nice properties.

Subsolvers

• (Trichotomy) input is either rejected or correctly solved
(sat or unsat).

A sub-solver is an algorithm with some nice properties.

Subsolvers

• (Trichotomy) input is either rejected or correctly solved
(sat or unsat).

• (Efficiency) runs in polynomial time.

A sub-solver is an algorithm with some nice properties.

Subsolvers

• (Trichotomy) input is either rejected or correctly solved
(sat or unsat).

• (Efficiency) runs in polynomial time.

• (Self-reducibility) solves reduced instances.

A sub-solver is an algorithm with some nice properties.

Subsolvers

• (Trichotomy) input is
either rejected or
correctly solved (sat or
unsat).

• (Efficiency) runs in
polynomial time.

• (Self-reducibility)
solves reduced
instances.

Subsolvers

• (Trichotomy) input is
either rejected or
correctly solved (sat or
unsat).

• (Efficiency) runs in
polynomial time.

• (Self-reducibility)
solves reduced
instances.

• Subsolver1: Solve all
2cnf formulas and
reject the rest.

Subsolvers

• (Trichotomy) input is
either rejected or
correctly solved (sat or
unsat).

• (Efficiency) runs in
polynomial time.

• (Self-reducibility)
solves reduced
instances.

• Subsolver1: Solve all
2cnf formulas and
reject the rest.

• Subsolver2: Solve all
Horn formulas and
reject the rest.

Subsolvers

• (Trichotomy) input is
either rejected or
correctly solved (sat or
unsat).

• (Efficiency) runs in
polynomial time.

• (Self-reducibility)
solves reduced
instances.

• Subsolver1: Solve all
2cnf formulas and
reject the rest.

• Subsolver2: Solve all
Horn formulas and
reject the rest.

Subsolvers

• Subsolver1: Solve all
2cnf formulas and
reject the rest.

• Subsolver2: Solve all
Horn formulas and
reject the rest.

Subsolvers

The instances NOT rejected by
a sub-solver can be treated

as a tractable base
class for SAT.

• Subsolver1: Solve all
2cnf formulas and
reject the rest.

• Subsolver2: Solve all
Horn formulas and
reject the rest.

Subsolvers

The instances NOT rejected by
a sub-solver can be treated

as a tractable base
class for SAT.

For every tractable base class
for SAT, we have

a sub-solver that solves
instances in this class and

rejects the rest.

• Subsolver1: Solve all
2cnf formulas and
reject the rest.

• Subsolver2: Solve all
Horn formulas and
reject the rest.

Subsolvers

Subsolvers

Base class = sub-solver

Backdoors to SAT

Backdoors to SAT

• Weak Backdoor to C

Backdoors to SAT

• Weak Backdoor to C

Some assignment leads to
a satisfiable instance in the

base class C

X

F1 F2 F3 F4 F2|X|

Backdoors to SAT

• Weak Backdoor to C • Strong Backdoor to C

Some assignment leads to
a satisfiable instance in the

base class C

X

F1 F2 F3 F4 F2|X|

Backdoors to SAT

• Weak Backdoor to C • Strong Backdoor to C

Some assignment leads to
a satisfiable instance in the

base class C

All assignments lead to an
 instance in the base class C.

X X

F1 F2 F3 F4 F2|X| F1 F2 F3 F4 F2|X|

Strong vs weak Backdoors

X

F1 F2 F3 F4 F2|X|

Strong vs weak Backdoors

X

F1 F2 F3 F4 F2|X|

If the instance is satisfiable
then every strong backdoor

is also a weak backdoor!

Strong vs weak Backdoors

X

F1 F2 F3 F4 F2|X|

If the instance is satisfiable
then every strong backdoor

is also a weak backdoor!

wbd ≤ sbd  

Strong vs weak Backdoors

2 Perspectives on backdoor sets

2 Perspectives on backdoor sets

• (a) (Williams, Gomes, Selman) the presence of small
backdoor sets provides a good explanation for the
performance of SAT solvers, the success of
random restarts etc.

2 Perspectives on backdoor sets

• (a) (Williams, Gomes, Selman) the presence of small
backdoor sets provides a good explanation for the
performance of SAT solvers, the success of
random restarts etc.

• (b) (Crama, Ekin, Hammer) backdoor sets provide an
excellent framework to extend tractability results
for SAT.

2 Perspectives on backdoor sets

• (a) (Williams, Gomes, Selman) the presence of small
backdoor sets provides a good explanation for the
performance of SAT solvers, the success of
random restarts etc.

• (b) (Crama, Ekin, Hammer) backdoor sets provide an
excellent framework to extend tractability results
for SAT.

eg. SAT is in P for 2-cnf formulas—> SAT is in P for
formulas with a strong backdoor of size 10 to 2-cnf.

Islands of Tractability

Islands of Tractability

• Think of the base classes as `Islands of
tractability’.  

Islands of Tractability

• Think of the base classes as `Islands of
tractability’.  

• An instance with a `small’ backdoor to one of these
base classes is `close’ to an island of tractability.  

Islands of Tractability

• Think of the base classes as `Islands of
tractability’.  

• An instance with a `small’ backdoor to one of these
base classes is `close’ to an island of tractability.  

• Objective: If an instance is close to an island of
tractability, then we can solve it efficiently.

Research Agenda

Instances with a backdoor
of size c to an island

Instances with a backdoor
of size log n to an island

Instances with a backdoor
of size log2 n to an island

How to extend tractability results?

How to extend tractability results?

• One approach: Find a weak/strong backdoor to a base
class, explore all assignments to the backdoor variables. 

How to extend tractability results?

• One approach: Find a weak/strong backdoor to a base
class, explore all assignments to the backdoor variables. 

• For each reduced formula, run the sub-solver for this
base class.  

How to extend tractability results?

• One approach: Find a weak/strong backdoor to a base
class, explore all assignments to the backdoor variables. 

• For each reduced formula, run the sub-solver for this
base class.  

• Running time is T(D)+2|X|.T(A) ; X is the backdoor set, D is
the detection algorithm and A is the sub-solver.

How to extend tractability results?

• One approach: Find a weak/strong backdoor to a base
class, explore all assignments to the backdoor variables. 

• For each reduced formula, run the sub-solver for this
base class.  

• Running time is T(D)+2|X|.T(A) ; X is the backdoor set, D is
the detection algorithm and A is the sub-solver.

Finding Backdoor sets

Finding Backdoor sets

• How do we detect that an instance is `close’ to an
island of tractability?  
 

Finding Backdoor sets

• How do we detect that an instance is `close’ to an
island of tractability?  
 

• For which islands can we do this detection
efficiently (in polynomial time)?

Finding Backdoor sets

Finding Backdoor sets

• For any reasonable island of tractability, detecting
if an instance is `close’ to this island is NP-complete.  
 

Finding Backdoor sets

• For any reasonable island of tractability, detecting
if an instance is `close’ to this island is NP-complete.  
 

• For which islands can we do this detection
efficiently (for a relaxed notion of efficient)?

Finding Backdoors

Finding Backdoors

• How to develop and analyze `efficient’ algorithms to
detect small backdoors?

Finding Backdoors

• How to develop and analyze `efficient’ algorithms to
detect small backdoors?

Fixed-Parameter Algorithms!

FPT algorithms

FPT algorithms

• Parameterized problems - (x,k); k is the parameter. 

FPT algorithms

• Parameterized problems - (x,k); k is the parameter. 

• 2-dimensional analysis of algorithms.  

FPT algorithms

• Parameterized problems - (x,k); k is the parameter. 

• 2-dimensional analysis of algorithms.  

• Aim for running times of the form f(k) |x|c

FPT algorithms

• Parameterized problems - (x,k); k is the parameter. 

• 2-dimensional analysis of algorithms.  

• Aim for running times of the form f(k) |x|c

FPT

FPT algorithms

FPT algorithms

• Running time f(k) |x|c implies that for k bounded
by f-1(poly(n)), we have a poly time algorithm. 

FPT algorithms

• Running time f(k) |x|c implies that for k bounded
by f-1(poly(n)), we have a poly time algorithm. 

• Corresponding hardness theory.  

FPT algorithms

• Running time f(k) |x|c implies that for k bounded
by f-1(poly(n)), we have a poly time algorithm. 

• Corresponding hardness theory.  

• W-hierarchy: FPT ⊆ W[1] ⊆ W[2] ⊆ … ⊆ XP

Rest of this talk

Rest of this talk

• Recent advances in FPT algorithms for
computing backdoors to some base classes  
(q-Horn, tw-SAT, composite classes) 

Rest of this talk

• Recent advances in FPT algorithms for
computing backdoors to some base classes  
(q-Horn, tw-SAT, composite classes) 

• Discuss some interesting connections between
the 2 perspectives.

Classical sub-solvers

Classical sub-solvers

Schaefer Classes

Classical sub-solvers

• Horn (at most one positive lit in each clause)

Schaefer Classes

Classical sub-solvers

• Horn (at most one positive lit in each clause)

• Dual-Horn (at most one negative lit in each clause)

Schaefer Classes

Classical sub-solvers

• Horn (at most one positive lit in each clause)

• Dual-Horn (at most one negative lit in each clause)

• 2-cnf (at most 2 literals in each clause)

Schaefer Classes

Classical sub-solvers

• Horn (at most one positive lit in each clause)

• Dual-Horn (at most one negative lit in each clause)

• 2-cnf (at most 2 literals in each clause)

• 0/1-valid (satisfied by the all-0/all-1 assignment)

Schaefer Classes

Classical sub-solvers

• Horn (at most one positive lit in each clause)

• Dual-Horn (at most one negative lit in each clause)

• 2-cnf (at most 2 literals in each clause)

• 0/1-valid (satisfied by the all-0/all-1 assignment)

Schaefer Classes

Nishimura, Ragde, Szeider SAT 2004

Classical sub-solvers

Class
Backdoor

Schaefer
[Nishimura, Ragde,

Szeider 2004]

Unit Prop + Pure Lit.
Elim

[Szeider 2005]

Weak
W[2]-hard

(FPT for 3-cnf)
W[2]-hard

(FPT for 3-cnf)

Strong FPT W[2]-hard

Why is weak backdoor detection hard?

Why is weak backdoor detection hard?

• Existence of a small weak backdoor —-> the
formula is satisfiable! 

Why is weak backdoor detection hard?

• Existence of a small weak backdoor —-> the
formula is satisfiable! 

• Allows fairly straightforward encodings from
Hitting Set/Set Cover, both W[2]-hard
parameterized by the size of the solution (the
hitting set or the set cover).

Why is weak backdoor detection hard?

• Existence of a small weak backdoor —-> the
formula is satisfiable! 

• Allows fairly straightforward encodings from
Hitting Set/Set Cover, both W[2]-hard
parameterized by the size of the solution (the
hitting set or the set cover).

• Can change if restricted to 3-cnf formulas.

Backdoors to q-Horn

Backdoors to q-Horn

Backdoors to q-Horn

• quadratic-Horn (q-Horn) (Boros, Crama, Hammer 1990) 

Backdoors to q-Horn

• quadratic-Horn (q-Horn) (Boros, Crama, Hammer 1990) 

• F is q-Horn if there is a weight function  
 w: lit(F)->{0,1/2,1} s.t  
 
 
w(x)+w(¬x)=1 and for every clause C, w(C)≤ 1.  

Backdoors to q-Horn

• quadratic-Horn (q-Horn) (Boros, Crama, Hammer 1990) 

• F is q-Horn if there is a weight function  
 w: lit(F)->{0,1/2,1} s.t  
 
 
w(x)+w(¬x)=1 and for every clause C, w(C)≤ 1.  

• q-Horn generalizes Horn and 2-cnf.

Backdoors to q-Horn

• quadratic-Horn (q-Horn) (Boros, Crama, Hammer 1990) 

• F is q-Horn if there is a weight function  
 w: lit(F)->{0,1/2,1} s.t  
 
 
w(x)+w(¬x)=1 and for every clause C, w(C)≤ 1.  

• q-Horn generalizes Horn and 2-cnf.

w(x)=1 and w(¬x)=0 for all x w(x)=w(¬x)=1/2 for all x

Backdoors to q-Horn

• quadratic-Horn (q-Horn) (Boros, Crama, Hammer 1990) 

• F is q-Horn if there is a weight function  
 w: lit(F)->{0,1/2,1} s.t  
 
 
w(x)+w(¬x)=1 and for every clause C, w(C)≤ 1.  

• q-Horn generalizes Horn and 2-cnf.
SAT is in P for
q-Horn forulas!

q-Horn

Horn 2-cnf

Backdoors to q-Horn

q-Horn

Horn 2-cnf

Weak: W[2]-hard
Strong: FPT

Backdoors to q-Horn

Weak: W[2]-hard
Strong: W[2]-hard

[Gaspers, Ordyniak, R., Saurabh,
Szeider STACS 2013]

q-Horn

Horn 2-cnf

Weak: W[2]-hard
Strong: FPT

Backdoors to q-Horn

Backdoors to q-Horn

• How can we extend tractability results if strong
backdoor detection is also W-hard? 

Backdoors to q-Horn

• How can we extend tractability results if strong
backdoor detection is also W-hard? 

• What other notions of `distance’ can we have? 

Backdoors to q-Horn

• How can we extend tractability results if strong
backdoor detection is also W-hard? 

• What other notions of `distance’ can we have? 

• What about distance through deletion instead of
instantiation?

Backdoors to q-Horn

Deletion Backdoors

Deletion Backdoors

• A deletion backdoor set of F to the base class C is a
set of variables S such that F-S is in C.

Deletion Backdoors

• A deletion backdoor set of F to the base class C is a
set of variables S such that F-S is in C.

(x1 ⋁x2)⋀(¬x1 ⋁x3 ⋁ x5)⋀(x2 ⋁¬x3 ⋁ x4)

Deletion Backdoors

• A deletion backdoor set of F to the base class C is a
set of variables S such that F-S is in C.

(x1 ⋁x2)⋀(¬x1 ⋁x3 ⋁ x5)⋀(x2 ⋁¬x3 ⋁ x4)

(x1)⋀(¬x1 ⋁x3 ⋁ x5)⋀(¬x3 ⋁ x4)

Deleting x2

Deletion Backdoors

• A deletion backdoor set of F to the base class C is a
set of variables S such that F-S is in C.

(x1 ⋁x2)⋀(¬x1 ⋁x3 ⋁ x5)⋀(x2 ⋁¬x3 ⋁ x4)

(x1)⋀(¬x1 ⋁x3 ⋁ x5)⋀(¬x3 ⋁ x4) (x1 ⋁x2)⋀(¬x1 ⋁ x5)⋀(x2 ⋁ x4)

Deleting x2 Deleting x3

• A deletion backdoor set of F to the base class C is a
set of variables S such that F-S is in C.  

(x1 ⋁x2)⋀(¬x1 ⋁x3 ⋁ x5)⋀(x2 ⋁¬x3 ⋁ x4)

Deletion Backdoors

• A deletion backdoor set of F to the base class C is a
set of variables S such that F-S is in C.  

(x1 ⋁x2)⋀(¬x1 ⋁x3 ⋁ x5)⋀(x2 ⋁¬x3 ⋁ x4)

(x1 ⋁x2)⋀(¬x1 ⋁ x5)⋀(x2 ⋁ x4)

Deleting x3

x3 is a deletion backdoor into 2-cnf.

Deletion Backdoors

• A deletion backdoor set of F to the base class C is a
set of variables S such that F-S is in C.  

(x1 ⋁x2)⋀(¬x1 ⋁x3 ⋁ x5)⋀(x2 ⋁¬x3 ⋁ x4)

(x1 ⋁x2)⋀(¬x1 ⋁ x5)⋀(x2 ⋁ x4)

Deleting x3

x3 is a deletion backdoor into 2-cnf.

 x3 =0

Deletion Backdoors

• A deletion backdoor set of F to the base class C is a
set of variables S such that F-S is in C.  

(x1 ⋁x2)⋀(¬x1 ⋁x3 ⋁ x5)⋀(x2 ⋁¬x3 ⋁ x4)

(x1 ⋁x2)⋀(¬x1 ⋁ x5)⋀(x2 ⋁ x4)

Deleting x3

x3 is a deletion backdoor into 2-cnf.

 x3 =0 (x1 ⋁ x2)⋀(¬x1 ⋁ x5)

Deletion Backdoors

• A deletion backdoor set of F to the base class C is a
set of variables S such that F-S is in C.  

(x1 ⋁x2)⋀(¬x1 ⋁x3 ⋁ x5)⋀(x2 ⋁¬x3 ⋁ x4)

(x1 ⋁x2)⋀(¬x1 ⋁ x5)⋀(x2 ⋁ x4)

Deleting x3

x3 is a deletion backdoor into 2-cnf.

 x3 =0

 x3 =1

(x1 ⋁ x2)⋀(¬x1 ⋁ x5)

(x1 ⋁ x2)⋀(x2 ⋁ x4)

Deletion Backdoors

Deletion Backdoors

S

F-S

Deletion Backdoors

S

F-S

If the base class C is ‘clause induced’
then S is also a strong backdoor to C.

If F is in C, every subformula of F
induced by a subset of clauses is in C.

Deletion Backdoors

S

F-S

If the base class C is ‘clause induced’
then S is also a strong backdoor to C.

If F is in C, every subformula of F
induced by a subset of clauses is in C.

wbd ≤ sbd ≤del. bd

Deletion Backdoors

Deletion Backdoors

Deletion Backdoors

• The detection of strong backdoors being W-hard is
not a dead end.  
 

Deletion Backdoors

• The detection of strong backdoors being W-hard is
not a dead end.  
 

• If we can detect deletion backdoors then we can
still extend the tractable region for SAT.

Deletion Backdoors

Backdoors to q-Horn

Backdoors to q-Horn

Backdoors to q-Horn

• q-Horn is clause induced. Can we find a deletion
backdoor to q-Horn in FPT time?

Backdoors to q-Horn

• q-Horn is clause induced. Can we find a deletion
backdoor to q-Horn in FPT time?

• In FPT time, we can approximate it.  
[Gaspers, Ordyniak, R., Saurabh, Szeider STACS 2013]

Backdoors to q-Horn

• q-Horn is clause induced. Can we find a deletion
backdoor to q-Horn in FPT time?

• In FPT time, we can approximate it.  
[Gaspers, Ordyniak, R., Saurabh, Szeider STACS 2013]

• In O(6k mn) time, we can either conclude no del
backdoor of size k or compute a deletion backdoor of
size at most 2 k2.

Backdoors to q-Horn

• q-Horn is clause induced. Can we find a deletion
backdoor to q-Horn in FPT time?

• In FPT time, we can approximate it.  
[Gaspers, Ordyniak, R., Saurabh, Szeider STACS 2013]

• In O(6k mn) time, we can either conclude no del
backdoor of size k or compute a deletion backdoor of
size at most 2 k2.

SAT parameterized by size of deletion backdoor to q-Horn
can be solved in time 2O(k^2) mn .

Backdoors to q-Horn

SAT is in P for instances
with a del. backdoor of

size O(√log n) to q-Horn.

SAT is in P for q-Horn

Deletion backdoor set detection to q-Horn can be solved in
time O(12k m) .

[R. and Saurabh, SODA 2014]

Backdoors to q-Horn

Deletion backdoor set detection to q-Horn can be solved in
time O(12k m) .

[R. and Saurabh, SODA 2014]

Backdoors to q-Horn

SAT parameterized by size of deletion backdoor to q-Horn
can be solved in time 2O(k) m .

Backdoors to q-Horn

SAT is in P for instances
with a del. backdoor of
size O(log n) to q-Horn
[R. and Saurabh 2014].

SAT is in P for q-Horn

SAT is in P for instances
with a del. backdoor of
size O(√log n) to q-Horn

[Gaspers, Ordyniak,
R., Saurabh, Szeider 2014].

Backdoors to q-Horn

• A linear time algorithm for SAT instances
`close’ to being q-Horn.

Backdoors to q-Horn

• A linear time algorithm for SAT instances
`close’ to being q-Horn.

• Corollary: Deletion backdoor detection for
RHorn can be done in time O(4k m).

Backdoors to q-Horn

• A linear time algorithm for SAT instances
`close’ to being q-Horn.

• Corollary: Deletion backdoor detection for
RHorn can be done in time O(4k m).

• A further consequence of this algorithm: the
first linear time FPT algorithm for Odd Cycle
Transversal (open problem of Reed, Smith and
Vetta, 2003).

Backdoors to q-Horn

Backdoors to Bounded Treewidth SAT

Backdoors to acyclic SAT

Modeling CNF-formulas as graphs

Incidence Graph

: Clauses

: Variables

If the Incidence graph is a forest then SAT is in P
(Fischer, Makowsky, Ravve 2008).

Acyclic SAT

Backdoors to acyclic SAT

: Clauses

: Variables

What about formulas with small backdoors to Acyclic SAT?
Is SAT tractable on these formulas?

: Clauses

: VariablesAcyclic SAT

Backdoors to acyclic SAT

• weak backdoor detection to acyclic SAT is W[2]-hard.

• weak backdoor detection to acyclic 3-SAT is FPT.

• strong backdoor detection to acyclic SAT is  
 FPT-approximable.

Gaspers and Szeider (ICALP 2012) :

Backdoors to acyclic SAT

• weak backdoor detection to acyclic SAT is W[2]-hard.

• weak backdoor detection to acyclic 3-SAT is FPT.

• strong backdoor detection to acyclic SAT is  
 FPT-approximable.

Gaspers and Szeider (ICALP 2012) :

In FPT time, either conclude there is
no strong backdoor of size k

or compute a strong backdoor of size 2k

Backdoors to acyclic SAT

Backdoors to bounded tw SAT

If the Incidence graph is tree-like then SAT is in P
(Fischer, Makowsky, Ravve 2008).

Incidence Graph

tw-SAT

: Clauses

: Variables

Strong backdoor detection to tw SAT is FPT-approximable.

Gaspers and Szeider (FOCS 2013) :

Backdoors to bounded tw SAT

Strong backdoor detection to tw SAT is FPT-approximable.

SAT parameterized by size of sbd to tw SAT is FPT.

Running time : 22^k n3

Gaspers and Szeider (FOCS 2013) :

Backdoors to bounded tw SAT

Backdoors to bounded tw SAT

SAT is in P for instances
with sbd of size

O(log log n) to tw SAT.

tw SAT is in P.

Fomin, Lokshtanov, Misra, R., Saurabh (SODA 2015)

Backdoors to bounded tw SAT

Fomin, Lokshtanov, Misra, R., Saurabh (SODA 2015)

3-SAT parameterized by k=min{sbd,wbd} to tw 3-SAT can
be solved in time 2O(k) m.

This running time is optimal both w.r.t parameter and
input-size.

Backdoors to bounded tw SAT

Backdoors to bounded tw SAT

3-SAT is in P for instances
with a s/w backdoor of size

O(log n) to tw 3-SAT.

tw 3-SAT is in P.

This region cannot be extended.

Some new features in this algorithm!

Combining the perspectives

Combining the perspectives

• Williams et al. proposed that SAT solvers encounter
backdoor sets without actually searching for them. 
 

Combining the perspectives

• Williams et al. proposed that SAT solvers encounter
backdoor sets without actually searching for them. 
 

• This algorithm: revisit this perspective.

Backdoors to bounded tw SAT

DPLL

Backdoors to bounded tw SAT

• Apply UP and PLE

DPLL

Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

DPLL

Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

DPLL

Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

DPLL DPLL’

Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

• If formula has constant
tw, then solve in poly time.

DPLL DPLL’

Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

• If formula has constant
tw, then solve in poly time.

• Reduce all `protrusions’.

DPLL DPLL’

Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

• If formula has constant
tw, then solve in poly time.

• Reduce all `protrusions’.

• Select a variable x u.a.r

DPLL DPLL’

Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

• If formula has constant
tw, then solve in poly time.

• Reduce all `protrusions’.

• Select a variable x u.a.r

• Branch on x

DPLL DPLL’

Backdoors to bounded tw SAT

• Apply UP and PLE

• Select a variable x u.a.r

• Branch on x

• If formula has constant
tw, then solve in poly time.

• Reduce all `protrusions’.

• Select a variable x u.a.r

• Branch on x

DPLL DPLL’

DPLL’ is an FPT algorithm for 3-SAT par
by min{sbd,wbd} to tw 3-SAT.

Backdoors to bounded tw SAT

• Protrusion replacement takes the place of UP
and PLE.

Backdoors to bounded tw SAT

• Protrusion replacement takes the place of UP
and PLE.

• Since the base class is more complex, the
preprocessing is also involved.

Backdoors to bounded tw SAT

• Protrusion replacement takes the place of UP
and PLE.

• Since the base class is more complex, the
preprocessing is also involved.

• But intuition remains the same: Remove
‘irrelevant’ parts of the formula or at the very
least replace them with a `small’ equivalent
formula.

Backdoors to bounded tw SAT

Backdoors to bounded tw SAT

• First FPT algorithm for SAT which does not
depend on computing a backdoor set first. 

Backdoors to bounded tw SAT

• First FPT algorithm for SAT which does not
depend on computing a backdoor set first. 

• Optimal running time (parameter and i/p size)  

Backdoors to bounded tw SAT

• First FPT algorithm for SAT which does not
depend on computing a backdoor set first. 

• Optimal running time (parameter and i/p size)  

• Again, techniques developed here have other
applications: improving several kernelization and
FPT algorithms to linear time.

Backdoors to bounded tw SAT

Composite Base Classes

Heterogenous backdoors

Heterogenous backdoors

Consider the following formula.

Heterogenous backdoors

Consider the following formula.

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀
(¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)

Heterogenous backdoors

Consider the following formula.

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀
(¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)

What is the size of a smallest
strong backdoor set into Horn?

Heterogenous backdoors

Consider the following formula.

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀
(¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)

What is the size of a smallest
strong backdoor set into Horn?

at least n

Heterogenous backdoors

Consider the following formula.

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀
(¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)

What is the size of a smallest
strong backdoor set into Horn?

at least n

What is the size of a smallest
strong backdoor set into 2-cnf?

Heterogenous backdoors

Consider the following formula.

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀
(¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)

What is the size of a smallest
strong backdoor set into Horn?

at least n

What is the size of a smallest
strong backdoor set into 2-cnf?

at least n-1

Consider the following formula.

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀
(¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)

Heterogenous backdoors

Consider the following formula.

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀
(¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)

Consider F[x=0] (¬a1 ⋁¬a2…⋁¬an)

Heterogenous backdoors

Consider the following formula.

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀
(¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)

Consider F[x=0]

Consider F[x=1]

(¬a1 ⋁¬a2…⋁¬an)

(b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn)

Heterogenous backdoors

Consider the following formula.

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀
(¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)

Consider F[x=0]

Consider F[x=1]

(¬a1 ⋁¬a2…⋁¬an)

(b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn)

Horn

Heterogenous backdoors

Consider the following formula.

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀
(¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)

Consider F[x=0]

Consider F[x=1]

(¬a1 ⋁¬a2…⋁¬an)

(b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn)

Horn

2-cnf

Heterogenous backdoors

Heterogenous backdoors

F[x=0] F[x=1]

F

Run
sub-solver C1

Run
sub-solver C2

C1,C2: Horn, 2-cnf

Heterogenous backdoors

Let C1,.. ,Cr be islands of tractability.

X is a heterogenous backdoor into C1,.. ,Cr if for every
assignment of X, the reduced formula

is in some Ci.

Heterogenous backdoors

Heterogenous backdoors

• Heterogenous backdoors can be arbitrarily
smaller than normal strong backdoors.  
 

Heterogenous backdoors

• Heterogenous backdoors can be arbitrarily
smaller than normal strong backdoors.  
 

• Class of instances with small heterogenous
backdoors is a much larger class than instances
with small strong backdoor.

Islands of Tractability

Strong backdoor of size k to
some Island of Tractability

Heterogenous backdoor of
size k to some Islands

Heterogenous backdoors

Heterogenous backdoors

Gaspers, Ordyniak, Misra, Szeider, Zivny (AAAI 2014)

Heterogenous backdoors

1. If H =Horn/dual-Horn ∪ 2CNF then detecting
heterogenous backdoors to H is FPT

Gaspers, Ordyniak, Misra, Szeider, Zivny (AAAI 2014)

2. For every other combination of Schaefer classes,
 detecting heterogenous backdoors to H is W[2]-hard.

but FPT for 3-cnf formulas

Heterogenous backdoors

Archipelagos of tractability

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

Archipelagos of tractability

What is the size of a smallest
heterogenous backdoor set

into Horn ∪ 2-cnf?

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

Archipelagos of tractability

What is the size of a smallest
heterogenous backdoor set

into Horn ∪ 2-cnf?
at least 2n

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

Archipelagos of tractability

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

Consider F[x=0]

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

(¬a1 ⋁¬a2…⋁¬an) ⋀
 (q1 ⋁ r1)⋀(q2 ⋁ r2).. ⋀ (qn ⋁ rn)

Consider F[x=0]

Consider F[x=1]

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

(¬a1 ⋁¬a2…⋁¬an) ⋀
 (q1 ⋁ r1)⋀(q2 ⋁ r2).. ⋀ (qn ⋁ rn)

(¬p1 ⋁¬p2…⋁¬pn) ⋀
 (b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn)

Consider F[x=0]

Consider F[x=1]

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

(¬a1 ⋁¬a2…⋁¬an) ⋀
 (q1 ⋁ r1)⋀(q2 ⋁ r2).. ⋀ (qn ⋁ rn)

(¬p1 ⋁¬p2…⋁¬pn) ⋀
 (b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn)

Consider F[x=0]

Consider F[x=1]

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

(¬a1 ⋁¬a2…⋁¬an) ⋀
 (q1 ⋁ r1)⋀(q2 ⋁ r2).. ⋀ (qn ⋁ rn)

(¬p1 ⋁¬p2…⋁¬pn) ⋀
 (b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn)

Horn

Consider F[x=0]

Consider F[x=1]

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

(¬a1 ⋁¬a2…⋁¬an) ⋀
 (q1 ⋁ r1)⋀(q2 ⋁ r2).. ⋀ (qn ⋁ rn)

(¬p1 ⋁¬p2…⋁¬pn) ⋀
 (b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn)

Consider F[x=0]

Consider F[x=1]

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

(¬a1 ⋁¬a2…⋁¬an) ⋀
 (q1 ⋁ r1)⋀(q2 ⋁ r2).. ⋀ (qn ⋁ rn)

(¬p1 ⋁¬p2…⋁¬pn) ⋀
 (b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn)

2-cnf

Consider F[x=0]

Consider F[x=1]

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

(¬a1 ⋁¬a2…⋁¬an) ⋀
 (q1 ⋁ r1)⋀(q2 ⋁ r2).. ⋀ (qn ⋁ rn)

(¬p1 ⋁¬p2…⋁¬pn) ⋀
 (b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn)

Consider F[x=0]

Consider F[x=1]

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

(¬a1 ⋁¬a2…⋁¬an) ⋀
 (q1 ⋁ r1)⋀(q2 ⋁ r2).. ⋀ (qn ⋁ rn)

(¬p1 ⋁¬p2…⋁¬pn) ⋀
 (b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn)

Horn

Consider F[x=0]

Consider F[x=1]

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

(¬a1 ⋁¬a2…⋁¬an) ⋀
 (q1 ⋁ r1)⋀(q2 ⋁ r2).. ⋀ (qn ⋁ rn)

(¬p1 ⋁¬p2…⋁¬pn) ⋀
 (b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn)

Consider F[x=0]

Consider F[x=1]

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

(¬a1 ⋁¬a2…⋁¬an) ⋀
 (q1 ⋁ r1)⋀(q2 ⋁ r2).. ⋀ (qn ⋁ rn)

(¬p1 ⋁¬p2…⋁¬pn) ⋀
 (b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn) 2-cnf

Consider F[x=0]

Consider F[x=1]

Archipelagos of tractability

(x ⋁¬a1 ⋁¬a2…⋁¬an) ⋀ (¬x ⋁¬p1 ⋁¬p2…⋁¬pn)  
⋀ 

 (¬x ⋁b1 ⋁ c1)⋀(¬x ⋁b2 ⋁ c2)..⋀(¬x ⋁bn ⋁ cn)  
⋀

 (x ⋁q1 ⋁ r1)⋀(x ⋁q2 ⋁ r2)..⋀(x ⋁qn ⋁ rn)

(¬a1 ⋁¬a2…⋁¬an) ⋀
 (q1 ⋁ r1)⋀(q2 ⋁ r2).. ⋀ (qn ⋁ rn)

(¬p1 ⋁¬p2…⋁¬pn) ⋀
 (b1 ⋁ c1)⋀(b2 ⋁ c2)..⋀(bn ⋁ cn)

F[x=0] F[x=1]

F

Run appropriate
sub-solver Ci on each
part variable-disjoint

from the rest

C1,C2

Archipelagos of tractability

: Horn,2-cnf

Run appropriate
sub-solver Ci on each
part variable-disjoint

from the rest

Split backdoors

Let C1,.. ,Cr be islands of tractability.

X is a split backdoor into C1,.. ,Cr if for every assignment
of X, every connected component of the reduced formula

is in some Ci.

Split backdoors

Let C1,.. ,Cr be islands of tractability.

X is a split backdoor into C1,.. ,Cr if for every assignment
of X, every connected component of the reduced formula

is in some Ci.

A minimal set of clauses which is variable-disjoint
 from the remaining clauses.

Split backdoors

Split backdoors

• Split backdoors can be arbitrarily smaller than
heterogenous backdoors. 
 

Split backdoors

• Split backdoors can be arbitrarily smaller than
heterogenous backdoors. 
 

• Class of instances with small split backdoors is a
much larger class than class of instances with
small heterogenous backdoor.

Islands of Tractability

Split backdoor of size k
to some Islands

Split backdoors

Strong backdoor of size k to
some Island of Tractability

Heterogenous backdoor of
size k to some Islands

If H is a finite set of finite constraint languages, then
detecting split-backdoors of the given CSP to H is FPT.

Ganian, R., Szeider (2014):

Builds on a combination of traditional FPT tools and new graph
separation tools like important separators, sequences and CSP based

pattern replacements.

Split backdoors

Summing up

Summing up

• We have seen how backdoors and fixed parameter
tractability provide a framework to extend tractability
results for SAT based on the `distance’ of instances to
islands of tractability.

Summing up

• We have seen how backdoors and fixed parameter
tractability provide a framework to extend tractability
results for SAT based on the `distance’ of instances to
islands of tractability.

• Stronger definitions of sub-solvers and base classes allowing
us to prove tractability for larger classes of instances.

Summing up

• We have seen how backdoors and fixed parameter
tractability provide a framework to extend tractability
results for SAT based on the `distance’ of instances to
islands of tractability.

• Stronger definitions of sub-solvers and base classes allowing
us to prove tractability for larger classes of instances.

• Several other variants of backdoors have been proposed, eg.
backdoor trees (Samer and Szeider AAAI 2008), learning
sensitive backdoors (Dilkina, Gomes, Sabharwal SAT 2009).

Future research

Future research

• So far backdoor sets
and variants have
provided the best and
theoretically most
robust explanation for
the performances of
SAT solvers.

Future research

• So far backdoor sets
and variants have
provided the best and
theoretically most
robust explanation for
the performances of
SAT solvers.

• What other structural
properties of instances
are correlated to the
computation time and
can be effectively
formalized in theory?

Future research

Future research

• So far, `small’
backdoors treated
as certificates for
closeness.

• Better measures
than size?

• i.e. backdoors of
potentially
unbounded size but
with some structure.

Future research

Future research

• Analysis of
existing SAT
algorithms in
terms of
FPT 
parameteriz
ed by
backdoors.

Thank you for your attention!

Thank you for your attention!

Thank you for your attention!

Thank you for your attention!

Thank you for your attention!

Thank you for your attention!

Thank you for your attention!

Thank you for your attention!

Thank you for your attention!

