
The Parameterized Complexity of Geometric
Graph Isomorphism

Gaurav Rattan

The Institute of Mathematical Sciences, Chennai, India

Workshop on New Developments in Exact Algorithms and
Lower Bounds, IIT Delhi, Dec. 2014

Outline

Geometric Graph Isomorphism
Graph Isomorphism
Problem Definition

Algorithms for Geom-GI
Improvements using lattices
Faster isomorphism testing algorithm

Table of Contents

Geometric Graph Isomorphism
Graph Isomorphism
Problem Definition

Algorithms for Geom-GI
Improvements using lattices
Faster isomorphism testing algorithm

Graph Isomorphism

GI
Input: Graphs G and H
Question: Is G isomorphic to H? I.e., is there an adjacency-
preserving bijection between the vertex sets of G and H?

a b

c d

e f 1 2

3 4

5 6

Complexity of GI

Best known algorithm for GI runs in time 2O(
√
n log n) [Babai, Luks

1983]. Polynomial time algorithms known for restricted graph
classes

I bounded genus graphs Miller 1980

I bounded degree graphs Luks 1982

I bounded eigenvalue multiplicity graphs Babai et al. 1982

I bounded treewidth graphs Bodlaender 1990

I graphs with excluded topological minors Grohe, Marx 2012

GI ∈ FPT, parameterized by

I eigenvalue multiplicity Evdikomov et al. 1997

I treewidth Lokshtanov et al. 2014

Approaches: Graph-theoretic, group-theoretic, combinatorial,
geometrical . . .

Table of Contents

Geometric Graph Isomorphism
Graph Isomorphism
Problem Definition

Algorithms for Geom-GI
Improvements using lattices
Faster isomorphism testing algorithm

Geometric Graph Isomorphism

Geom-GI
Input: Point sets A,B ⊆ Qk of size n
Parameter: k , dimension of the host vector space
Question: Is there is a distance preserving bijection from A to
B?

Geometric Graph Isomorphism

x

y

z

a
b

c

d1
2

3

4

T

Geometric Graph Isomorphism

(Equivalent Formulation:) Does there exist a transformation T of
the host space (T : Rk → Rk) such that TA = B?

I T preserves lengths: ‖Tx‖ = ‖x‖ and ‖Tx − Ty‖ = ‖x − y‖
I T preserves dot product: (Tx)t(Ty) = x ty for all x , y ∈ Rk

Formally, we call such a T to be an orthogonal transformation.
We call A and B to be geomterically-isomorphic via T .

Fixed Parameter Tractability of Geom-GI

Dimension of the host space is an important parameter.

Lemma
Geom-GI can be solved in polynomial time for bounded
dimension k.

Lemma
GI ≤p Geom-GIn.

The reduction maps graphs on n vertices to point-sets in n
dimensional host space.

Fixed Parameter Tractability of Geom-GI

Parameterized Algorithms?

I O∗(2O(k
4)) time complexity, uses cellular algebras [Evdikomov,

Ponomarenko]

Theorem (Arvind, R.)

Given point-sets A,B ∈ Qk , there is a deterministic O∗(kO(k))
time algorithm which decides whether A is isomorphic to B.

P time algorithm for bounded dimension

For a k dimensional space, the transformation T can be uniquely
described by its action on k independent vectors.

Exhaustive Search Algorithm: On input sets A and B in Qk , size n,

1. Fix k linearly independent vectors {a1, . . . , ak} in A.

2. Branch on the possible images {b1, . . . , bk} inside B.

3. Let T be the unique transformation which sends {ai} to {bi}.
4. Check if T sends A to B in a distance preserving manner.

The algorithm runs in O(nk) time.

P time algorithm for bounded dimension

For a k dimensional space, the transformation T can be uniquely
described by its action on k independent vectors.

Exhaustive Search Algorithm: On input sets A and B in Qk , size n,

1. Fix k linearly independent vectors {a1, . . . , ak} in A.

2. Branch on the possible images {b1, . . . , bk} inside B.

3. Let T be the unique transformation which sends {ai} to {bi}.
4. Check if T sends A to B in a distance preserving manner.

The algorithm runs in O(nk) time.

Table of Contents

Geometric Graph Isomorphism
Graph Isomorphism
Problem Definition

Algorithms for Geom-GI
Improvements using lattices
Faster isomorphism testing algorithm

Improving over exhaustive search

Build sets SA and SB with the following properties

I |SA| = |SB | = f (k) (small-sized).

I If A and B are isomorphic via an orthogonal T , then SA and
SB are also isomorphic via T (isomorphism-invariant).

Improvement: Would imply a (f (k))k branching, instead of nk

branching.

Lattices

b1

b2

b1 + b2

2b1 + b2

Figure: Integer lattice generated by vectors b1 and b2.

Lattices

Definition
The lattice generated by a set A ∈ Rk , denoted by LA, is the set
of all integer linear combinations of the set A.

LA = {α1a1 + · · ·+ αnan |αi ∈ Z}

Claim
Let SA be the set of shortest vectors in LA. Then, SA is
isomorphism-invariant.

Proof.
Suppose A and B are isomorphic via T , i.e. TA = B. Then,
T (LA) = LB . Since T preserves lengths, T (SA) = SB .

Lattices

Definition
The lattice generated by a set A ∈ Rk , denoted by LA, is the set
of all integer linear combinations of the set A.

LA = {α1a1 + · · ·+ αnan |αi ∈ Z}

Claim
Let SA be the set of shortest vectors in LA. Then, SA is
isomorphism-invariant.

Proof.
Suppose A and B are isomorphic via T , i.e. TA = B. Then,
T (LA) = LB . Since T preserves lengths, T (SA) = SB .

Shortest vectors in lattices

x

y

z

x

y
r

r

> r

x , y ∈ L ⇒ x − y ∈ L

r
2

r
2

3r
2

f (k) ≤
O
(
(32 r)k

)
O
(
(r
2)k

) = 3k

Shortest vectors in lattices

x

y

z

x

y
r

r

> r

x , y ∈ L ⇒ x − y ∈ L
r
2

r
2

3r
2

f (k) ≤
O
(
(32 r)k

)
O
(
(r
2)k

) = 3k

Improved Algorithm for Geom-GI

Given point sets A,B ⊂ Qk as input,

1. Compute sets SA,SB of shortest vectors in LA, LB using the
SVP algorithm of [MV10].

2. If dim(Span(SA)) = k , follow the enumerative strategy
I Fix basis in SA, branch in SB , . . .

3. If dim(Span(SA)) = k1 < k , recursively construct the
isomorphism

I Construct all T1 : Span(SA)→ Span(SB) enumeratively.
I Project sets A and B out of Span(A) and Span(B).
I Construct all T2 : Span(SA)⊥ → Span(SB)⊥ recursively.
I Check if T = T1 ⊕ T2 sends A to B.

Branching: B(k) = (3k1)k1 · B(k − k1), which yields a O∗(2O(k
2))

branching.

Improved Algorithm for Geom-GI

Given point sets A,B ⊂ Qk as input,

1. Compute sets SA,SB of shortest vectors in LA, LB using the
SVP algorithm of [MV10].

2. If dim(Span(SA)) = k , follow the enumerative strategy
I Fix basis in SA, branch in SB , . . .

3. If dim(Span(SA)) = k1 < k , recursively construct the
isomorphism

I Construct all T1 : Span(SA)→ Span(SB) enumeratively.
I Project sets A and B out of Span(A) and Span(B).
I Construct all T2 : Span(SA)⊥ → Span(SB)⊥ recursively.
I Check if T = T1 ⊕ T2 sends A to B.

Branching: B(k) = (3k1)k1 · B(k − k1), which yields a O∗(2O(k
2))

branching.

Improved Algorithm for Geom-GI

Given point sets A,B ⊂ Qk as input,

1. Compute sets SA,SB of shortest vectors in LA, LB using the
SVP algorithm of [MV10].

2. If dim(Span(SA)) = k , follow the enumerative strategy
I Fix basis in SA, branch in SB , . . .

3. If dim(Span(SA)) = k1 < k , recursively construct the
isomorphism

I Construct all T1 : Span(SA)→ Span(SB) enumeratively.
I Project sets A and B out of Span(A) and Span(B).
I Construct all T2 : Span(SA)⊥ → Span(SB)⊥ recursively.
I Check if T = T1 ⊕ T2 sends A to B.

Branching: B(k) = (3k1)k1 · B(k − k1), which yields a O∗(2O(k
2))

branching.

Improved Algorithm for Geom-GI

Given point sets A,B ⊂ Qk as input,

1. Compute sets SA,SB of shortest vectors in LA, LB using the
SVP algorithm of [MV10].

2. If dim(Span(SA)) = k , follow the enumerative strategy
I Fix basis in SA, branch in SB , . . .

3. If dim(Span(SA)) = k1 < k , recursively construct the
isomorphism

I Construct all T1 : Span(SA)→ Span(SB) enumeratively.
I Project sets A and B out of Span(A) and Span(B).
I Construct all T2 : Span(SA)⊥ → Span(SB)⊥ recursively.
I Check if T = T1 ⊕ T2 sends A to B.

Branching: B(k) = (3k1)k1 · B(k − k1), which yields a O∗(2O(k
2))

branching.

Table of Contents

Geometric Graph Isomorphism
Graph Isomorphism
Problem Definition

Algorithms for Geom-GI
Improvements using lattices
Faster isomorphism testing algorithm

Exploiting the structure of the basis

We are searching for an isomorphism T which maps A to B

I length-preserving, i.e. ‖Tx‖ = ‖x‖
I preserves dot product, i.e. (Tx)t(Ty) = x ty

Improvement: An isomorphism preserves the geometry of the basis
set. (e.g. consider orthogonal bases . . .)

Exploiting the structure of the basis

x

y

z

a

b

c

d e S

v

v td < v te < v tb

Exploiting the structure of the basis

x

y

z

a

b

c

d e S

v

v td < v te < v tb

Exploiting the structure of the basis

x

y

z

a

b

c

d e S

v

v td < v te < v tb

Exploiting the structure of the basis

x

y

z

a

b

c

d e S

v

v td < v te < v tb

Exploiting the structure of the basis

Let S be a set of vectors.

Definition (Haviv Regev)

A vector v defines a chain of length k in S if for some lin. ind.
vectors a1, . . . , ak ∈ S

I a1 uniquely minimizes x tv over all x ∈ S

I a2 uniquely minimizes x tv over all x ∈ S\Span(a1)

I and in general, ai uniquely minimizes x tv over all
x ∈ S\Span(a1, . . . , ai−1).

I.e. v ta1 < · · · < v tak

Remark: A random v defines a chain of
length 1 w.h.p. (Isolation Lemma [MVV]).

Exploiting the structure of the basis

Let S be a set of vectors.

Definition (Haviv Regev)

A vector v defines a chain of length k in S if for some lin. ind.
vectors a1, . . . , ak ∈ S

I a1 uniquely minimizes x tv over all x ∈ S

I a2 uniquely minimizes x tv over all x ∈ S\Span(a1)

I and in general, ai uniquely minimizes x tv over all
x ∈ S\Span(a1, . . . , ai−1).

I.e. v ta1 < · · · < v tak Remark: A random v defines a chain of
length 1 w.h.p. (Isolation Lemma [MVV]).

Chain isolation in lattices

Given a lattice L, call a vector dual if

I it has integral dot product with every vector in L.

The set of all dual vectors forms a lattice, the dual lattice L∗A.

There are short dual vectors in L∗A which define chains inside the
set SA of shortest vectors.

Chain isolation in lattices

Given a lattice L, call a vector dual if

I it has integral dot product with every vector in L.

The set of all dual vectors forms a lattice, the dual lattice L∗A.

There are short dual vectors in L∗A which define chains inside the
set SA of shortest vectors.

Chain isolation in lattices

Theorem (Haviv, Regev 14)

There exists a dual vector v ∈ L∗A such that

I (defines chain) v defines a chain of length k in SA and

I (small length) ‖v‖ ≤ kO(1) · λ(L∗)

Moreover, the set of all such isolating vectors has size at most
O∗(kO(k)), and can be computed in time O∗(kO(k)).

A faster O∗(kO(k)) isomorphism algorithm

x

y

z

a

b

c

d e

SA

v∗

dual v∗ → chain d-e-b in SA

A faster O∗(kO(k)) isomorphism algorithm

x

y

z

Ta

Tb

Tc

Td
Te

Tv∗

SB

Suppose A ≡ B via T

Tv∗ → chain Td-Te-Tb in TSA

Outline of O∗(kO(k)) isomorphism algorithm

Algorithm: On input sets A,B ∈ Qk ,

1. Compute the set of shortest vectors SA,SB in LA, LB .

2. Compute the set ΓA, ΓB of O∗(kO(k)) dual vectors which
induce chains.

3. Pick a dual vector u ∈ ΓA. Let {a1, . . . , ak} be the chain-basis
defined by u inside SA.

4. For every dual vector v ∈ ΓB ,
I Let {b1, . . . , bk} be the chain-basis defined by v inside SB .
I Check if T : {ai} → {bi} is an orthogonal map which sends A

to B.

5. In case SA is not k-dimensional, recurse . . .

Outline of O∗(kO(k)) isomorphism algorithm

Algorithm: On input sets A,B ∈ Qk ,

1. Compute the set of shortest vectors SA,SB in LA, LB .

2. Compute the set ΓA, ΓB of O∗(kO(k)) dual vectors which
induce chains.

3. Pick a dual vector u ∈ ΓA. Let {a1, . . . , ak} be the chain-basis
defined by u inside SA.

4. For every dual vector v ∈ ΓB ,
I Let {b1, . . . , bk} be the chain-basis defined by v inside SB .
I Check if T : {ai} → {bi} is an orthogonal map which sends A

to B.

5. In case SA is not k-dimensional, recurse . . .

Outline of O∗(kO(k)) isomorphism algorithm

Algorithm: On input sets A,B ∈ Qk ,

1. Compute the set of shortest vectors SA,SB in LA, LB .

2. Compute the set ΓA, ΓB of O∗(kO(k)) dual vectors which
induce chains.

3. Pick a dual vector u ∈ ΓA. Let {a1, . . . , ak} be the chain-basis
defined by u inside SA.

4. For every dual vector v ∈ ΓB ,
I Let {b1, . . . , bk} be the chain-basis defined by v inside SB .
I Check if T : {ai} → {bi} is an orthogonal map which sends A

to B.

5. In case SA is not k-dimensional, recurse . . .

Outline of O∗(kO(k)) canonization algorithm

Given a point set A ⊂ Qk , f : Qk → Qk is a canonizing function if
it has the following properties

I f (A) is isomorphic to A

I if A is isomorphic to B, then f (A) = f (B).

Computing such a f is least as hard as the isomorphism problem.

Outline of O∗(kO(k)) canonization algorithm

Algorithm: On input set A ⊂ Qk ,

I Compute the set of shortest vectors SA in LA.

I Compute a set ΓA of O∗(kO(k)) special bases inside SA.
I For each basis J = {u1, . . . , uk} ∈ ΓA,

I compute the Gram matrix Gi,j = ut
i uj .

I compute the coordinates C (ai) of every point ai ∈ A in the
basis J.

I Output the lexicographically least description σ = (G ,K)
obtained above.

If A ≡B T , then TJ generates same description for B as J
generates for A.

I Compute a canonical A∗ using σ as follows.
I Find unique lower triangular matrix L such that LLT = G .
I Use row vectors of L to get a basis J∗ = {v1, . . . , vk}.
I Compute the point set A∗ s.t. a∗i is K (ai)-linear combination

of J∗.

Outline of O∗(kO(k)) canonization algorithm

Algorithm: On input set A ⊂ Qk ,

I Compute the set of shortest vectors SA in LA.

I Compute a set ΓA of O∗(kO(k)) special bases inside SA.
I For each basis J = {u1, . . . , uk} ∈ ΓA,

I compute the Gram matrix Gi,j = ut
i uj .

I compute the coordinates C (ai) of every point ai ∈ A in the
basis J.

I Output the lexicographically least description σ = (G ,K)
obtained above.

If A ≡B T , then TJ generates same description for B as J
generates for A.

I Compute a canonical A∗ using σ as follows.
I Find unique lower triangular matrix L such that LLT = G .
I Use row vectors of L to get a basis J∗ = {v1, . . . , vk}.
I Compute the point set A∗ s.t. a∗i is K (ai)-linear combination

of J∗.

Future Directions

I A O∗(2O(k)) algorithm for geometric graph isomorphism and
canonization in Euclidean metric?

I Faster canonization would give a 2O(n) algorithm for
hypergraph canonization

I Geom-GI in other lp metrics?
I Linear algebra breaks down for non-Euclidean metrices;

combinatorial algorithms work.
I Two-dimensional case is polynomial time.
I Reductions between Geom-GI for various metrics, similar to

embeddings.

Thank you!

	Geometric Graph Isomorphism
	Graph Isomorphism
	Problem Definition

	Algorithms for Geom-GI
	Improvements using lattices
	Faster isomorphism testing algorithm

