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Graph Isomorphism

GI
Input: Graphs G and H
Question: Is G isomorphic to H? I.e., is there an adjacency-
preserving bijection between the vertex sets of G and H?
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Complexity of GI

Best known algorithm for GI runs in time 2O(
√
n log n) [Babai, Luks

1983]. Polynomial time algorithms known for restricted graph
classes

I bounded genus graphs Miller 1980

I bounded degree graphs Luks 1982

I bounded eigenvalue multiplicity graphs Babai et al. 1982

I bounded treewidth graphs Bodlaender 1990

I graphs with excluded topological minors Grohe, Marx 2012

GI ∈ FPT, parameterized by

I eigenvalue multiplicity Evdikomov et al. 1997

I treewidth Lokshtanov et al. 2014

Approaches: Graph-theoretic, group-theoretic, combinatorial,
geometrical . . .
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Geometric Graph Isomorphism

Geom-GI
Input: Point sets A,B ⊆ Qk of size n
Parameter: k , dimension of the host vector space
Question: Is there is a distance preserving bijection from A to
B?



Geometric Graph Isomorphism
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Geometric Graph Isomorphism

(Equivalent Formulation:) Does there exist a transformation T of
the host space (T : Rk → Rk) such that TA = B?

I T preserves lengths: ‖Tx‖ = ‖x‖ and ‖Tx − Ty‖ = ‖x − y‖
I T preserves dot product: (Tx)t(Ty) = x ty for all x , y ∈ Rk

Formally, we call such a T to be an orthogonal transformation.
We call A and B to be geomterically-isomorphic via T .



Fixed Parameter Tractability of Geom-GI

Dimension of the host space is an important parameter.

Lemma
Geom-GI can be solved in polynomial time for bounded
dimension k.

Lemma
GI ≤p Geom-GIn.

The reduction maps graphs on n vertices to point-sets in n
dimensional host space.



Fixed Parameter Tractability of Geom-GI

Parameterized Algorithms?

I O∗(2O(k
4)) time complexity, uses cellular algebras [Evdikomov,

Ponomarenko]

Theorem (Arvind, R.)

Given point-sets A,B ∈ Qk , there is a deterministic O∗(kO(k))
time algorithm which decides whether A is isomorphic to B.



P time algorithm for bounded dimension

For a k dimensional space, the transformation T can be uniquely
described by its action on k independent vectors.

Exhaustive Search Algorithm: On input sets A and B in Qk , size n,

1. Fix k linearly independent vectors {a1, . . . , ak} in A.

2. Branch on the possible images {b1, . . . , bk} inside B.

3. Let T be the unique transformation which sends {ai} to {bi}.
4. Check if T sends A to B in a distance preserving manner.

The algorithm runs in O(nk) time.



P time algorithm for bounded dimension

For a k dimensional space, the transformation T can be uniquely
described by its action on k independent vectors.

Exhaustive Search Algorithm: On input sets A and B in Qk , size n,

1. Fix k linearly independent vectors {a1, . . . , ak} in A.

2. Branch on the possible images {b1, . . . , bk} inside B.

3. Let T be the unique transformation which sends {ai} to {bi}.
4. Check if T sends A to B in a distance preserving manner.

The algorithm runs in O(nk) time.



Table of Contents

Geometric Graph Isomorphism
Graph Isomorphism
Problem Definition

Algorithms for Geom-GI
Improvements using lattices
Faster isomorphism testing algorithm



Improving over exhaustive search

Build sets SA and SB with the following properties

I |SA| = |SB | = f (k) (small-sized).

I If A and B are isomorphic via an orthogonal T , then SA and
SB are also isomorphic via T (isomorphism-invariant).

Improvement: Would imply a (f (k))k branching, instead of nk

branching.



Lattices

b1

b2

b1 + b2

2b1 + b2

Figure: Integer lattice generated by vectors b1 and b2.



Lattices

Definition
The lattice generated by a set A ∈ Rk , denoted by LA, is the set
of all integer linear combinations of the set A.

LA = {α1a1 + · · ·+ αnan |αi ∈ Z}

Claim
Let SA be the set of shortest vectors in LA. Then, SA is
isomorphism-invariant.

Proof.
Suppose A and B are isomorphic via T , i.e. TA = B. Then,
T (LA) = LB . Since T preserves lengths, T (SA) = SB .
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Shortest vectors in lattices

x

y

z

x

y
r

r

> r

x , y ∈ L ⇒ x − y ∈ L

r
2

r
2

3r
2

f (k) ≤
O
(
(32 r)k

)
O
(
( r
2)k

) = 3k



Shortest vectors in lattices

x

y

z

x

y
r

r

> r

x , y ∈ L ⇒ x − y ∈ L
r
2

r
2

3r
2

f (k) ≤
O
(
(32 r)k

)
O
(
( r
2)k

) = 3k



Improved Algorithm for Geom-GI

Given point sets A,B ⊂ Qk as input,

1. Compute sets SA,SB of shortest vectors in LA, LB using the
SVP algorithm of [MV10].

2. If dim(Span(SA)) = k , follow the enumerative strategy
I Fix basis in SA, branch in SB , . . .

3. If dim(Span(SA)) = k1 < k , recursively construct the
isomorphism

I Construct all T1 : Span(SA)→ Span(SB) enumeratively.
I Project sets A and B out of Span(A) and Span(B).
I Construct all T2 : Span(SA)⊥ → Span(SB)⊥ recursively.
I Check if T = T1 ⊕ T2 sends A to B.

Branching: B(k) = (3k1)k1 · B(k − k1), which yields a O∗(2O(k
2))

branching.
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Exploiting the structure of the basis

We are searching for an isomorphism T which maps A to B

I length-preserving, i.e. ‖Tx‖ = ‖x‖
I preserves dot product, i.e. (Tx)t(Ty) = x ty

Improvement: An isomorphism preserves the geometry of the basis
set. (e.g. consider orthogonal bases . . . )
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Exploiting the structure of the basis

Let S be a set of vectors.

Definition (Haviv Regev)

A vector v defines a chain of length k in S if for some lin. ind.
vectors a1, . . . , ak ∈ S

I a1 uniquely minimizes x tv over all x ∈ S

I a2 uniquely minimizes x tv over all x ∈ S\Span(a1)

I and in general, ai uniquely minimizes x tv over all
x ∈ S\Span(a1, . . . , ai−1).

I.e. v ta1 < · · · < v tak

Remark: A random v defines a chain of
length 1 w.h.p. (Isolation Lemma [MVV]).
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Chain isolation in lattices

Given a lattice L, call a vector dual if

I it has integral dot product with every vector in L.

The set of all dual vectors forms a lattice, the dual lattice L∗A.

There are short dual vectors in L∗A which define chains inside the
set SA of shortest vectors.



Chain isolation in lattices

Given a lattice L, call a vector dual if

I it has integral dot product with every vector in L.

The set of all dual vectors forms a lattice, the dual lattice L∗A.

There are short dual vectors in L∗A which define chains inside the
set SA of shortest vectors.



Chain isolation in lattices

Theorem (Haviv, Regev 14)

There exists a dual vector v ∈ L∗A such that

I (defines chain) v defines a chain of length k in SA and

I (small length) ‖v‖ ≤ kO(1) · λ(L∗)

Moreover, the set of all such isolating vectors has size at most
O∗(kO(k)), and can be computed in time O∗(kO(k)).



A faster O∗(kO(k)) isomorphism algorithm
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A faster O∗(kO(k)) isomorphism algorithm
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Suppose A ≡ B via T

Tv∗ → chain Td-Te-Tb in TSA



Outline of O∗(kO(k)) isomorphism algorithm

Algorithm: On input sets A,B ∈ Qk ,

1. Compute the set of shortest vectors SA,SB in LA, LB .

2. Compute the set ΓA, ΓB of O∗(kO(k)) dual vectors which
induce chains.

3. Pick a dual vector u ∈ ΓA. Let {a1, . . . , ak} be the chain-basis
defined by u inside SA.

4. For every dual vector v ∈ ΓB ,
I Let {b1, . . . , bk} be the chain-basis defined by v inside SB .
I Check if T : {ai} → {bi} is an orthogonal map which sends A

to B.

5. In case SA is not k-dimensional, recurse . . .
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Outline of O∗(kO(k)) canonization algorithm

Given a point set A ⊂ Qk , f : Qk → Qk is a canonizing function if
it has the following properties

I f (A) is isomorphic to A

I if A is isomorphic to B, then f (A) = f (B).

Computing such a f is least as hard as the isomorphism problem.



Outline of O∗(kO(k)) canonization algorithm

Algorithm: On input set A ⊂ Qk ,

I Compute the set of shortest vectors SA in LA.

I Compute a set ΓA of O∗(kO(k)) special bases inside SA.
I For each basis J = {u1, . . . , uk} ∈ ΓA,

I compute the Gram matrix Gi,j = ut
i uj .

I compute the coordinates C (ai ) of every point ai ∈ A in the
basis J.

I Output the lexicographically least description σ = (G ,K )
obtained above.

If A ≡B T , then TJ generates same description for B as J
generates for A.

I Compute a canonical A∗ using σ as follows.
I Find unique lower triangular matrix L such that LLT = G .
I Use row vectors of L to get a basis J∗ = {v1, . . . , vk}.
I Compute the point set A∗ s.t. a∗i is K (ai )-linear combination

of J∗.
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Future Directions

I A O∗(2O(k)) algorithm for geometric graph isomorphism and
canonization in Euclidean metric?

I Faster canonization would give a 2O(n) algorithm for
hypergraph canonization

I Geom-GI in other lp metrics?
I Linear algebra breaks down for non-Euclidean metrices;

combinatorial algorithms work.
I Two-dimensional case is polynomial time.
I Reductions between Geom-GI for various metrics, similar to

embeddings.



Thank you!
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