
Advanced Data Structures Jan-Apr 2012

Lecture 20 April 19, 2012

Lecturer: Venkatesh Raman Scribe: Esha Ghosh

1 Overview

In the previous lectures, we have discussed about Suffix Trees (ST), Suffix Arrays (SA) and LCP
(Longest Common Prefix) Arrays. In this lecture we will discuss the linear time constructions of
these data structures. Recall that, in the Suffix Array, SA[i] = j means that suffix starting at j is
the ith in the lexicographic order of all suffixes, and in the LCP array, LCP [i] contains the length
of the longest prefix between SA[i] and SA[i+ 1].

2 Constructing Suffix Arrays (SA) and LCP Arrays from Suffix
Trees (ST)

2.1 Constructing ST [1]

Let us consider the suffixes are inserted in the tree in the order suf1, suf2, . . . sufn. In the ith step,
suf i is inserted into tree Ti−1 to form tree Ti by starting from the root and following the unique
path matching characters in suf i one by one until no more matches are possible. If the traversal
does not end at an internal node, create an internal node there and append the unmatched portion
of suf i as edge labels. Constructing Suffix Tree in the naive way will take O(n2) time.
For an O(n) running time, suffix links are used to construct Compact Suffix Trees. Suppose we are
inserting suf i in Ti−1 and let v be an internal node in Ti−1 on the path from root to leaf labelled
(i− 1).

suf i−1 = cα . . . where c ∈ Σ and α ∈ Σ∗. Since v is an internal node, there must be another suffix
suf j = cα . . .,where j < (i − 1). Because suf j+1 is previously inserted, there is a already a path
labelled α in Ti−1, i.e., suf j+1 = α . . . Therefore suf i = α To insert suf i faster, comparison of
characters in suf i can start beyond the prefix α. This is how suffix links are exploited to save on
time.

2.2 Contructing SA and LCP Arrays from ST

Now, SA can be constructed from ST simply by reading all the leaves of the ST in the left-right
order. This takes time linear in the number of suffixes, O(n).
In the ST, the string depth of the least common ancestor of two suffixes is the LCP length between
those two suffixes.

1

3 Constructing LCP Arrays from SA [2]

Let R be an array of size n such that R[i] = j ⇒ SA[j] = i. R can be constructed by a linear scan
of SA in O(n) time. Now we do the following:

For i = 1 to (n− 1) : Compute LCP(suf i, SA[R[i] + 1]).

The array R facilitates locating an arbitrary suffix suf i and its right neighbor in SA in constant
time. Initially, the length of the longest common prefix between suf i and right neighbor in SA is
computed manually and recorded. Now we need to argue that using the information LCP(suf i,
SA[R[i] + 1]), it would be possible to compute LCP(suf i+1, SA[R[i+ 1] + 1]) in amortized constant
time.

Computing LCP(suf i+1, SA[R[i+ 1] + 1]) from LCP(suf i, SA[R[i] + 1]):

Let suf j be the right neighbor of suf i in the SA and let LCP(suf i,suf j)= l, l ≥ 1. As suf j is
lexicographically greater than suf i and T [i] = T [j] , this implies suf j+1 is lexicographically greater
than suf i+1. The length of the longest common prefix between them is l− 1. Then it follows that,
the length of the longest common prefix between suf i+1 and its right neighbor in the suffix array is
≥ l−1. So, we can skip the first (l−1) characters and the comparison starts from the lth character.

Analysis:

We charge a comparison between rth the character of suf i and the corresponding character in its
right neighbor suffix in SA to i+ r− 1. There is only one failed comparison in each iteration of the
algorithm. So the total number of failed comparisons is O(n). As for successful comparisons, each
position in the string is charged only once for a successful comparison. Thus, the total number of
comparisons over all iterations is O(n).

4 Constructing SA in Linear time [3]

Let T be a string of length n over the alphabet set Σ. For convenience, assume n ≡ 0(mod 3). Now
use the following algorithms:

1. Sort all suf i where i is not a multiple of 3. Let R(i) denote the rank of suf i.

2. Use the result of Step 1 to sort the 1
3n suffixes suf i with i ≡ 0(mod 3).

3. Merge the two sorted lists from Step 1 and Step 2.

We assume |Σ| is constant, as we well be using Radix sort to sort the suffixes.

2

4.1 Analysis

Step 1:

• Perform a radix sort of the 2
3n triples (T [i], T [i+1], T [i+2]) for i ≡ 1 or 2(mod 3)and associate

with each distinct triple its rank R(i) ∈ {1, 2, . . . 23n} in sorted order.

• If all triples are distinct, the suffixes are already sorted.

• Otherwise, create a new string T ′ = suf1
′ � suf2

′. 1 Sorting T ′ recursively gives the sorted
order of suf i where i(mod 3) 6= 0.

Step 2:

Perform a radix sort on the tuples (T [i], R(i + 1)) for all i(mod 3) = 0. Note that R(i + 1) is
obtained from Step 1.

Step 3:

Here we essentially need to argue that we can compare two suffixes in constant time to merge the
two lists obtained from Step 1 and Step 2 of the algorithm. To compare suf i, (i mod 3 = 0) and
suf j , (j mod 3 = 1) compare T [i] and T [j]. If they are unequal, the answer is clear. Otherwise
the ranks of suf i+1 and suf j+1 in the sorted order obtained in Step 1 determines the answer. To
compare suf i, (i mod 3 = 2) with suf j , (j mod 3 = 0), compare the first two characters of the two
suffixes. If they are both identical, the ranks of suf i+2 and suf j+2 in the sorted order obtained in
Step 1 determines the answer.

Running time:
The run-time of this algorithm is given by the recurrence T (n) = T (2n3) + O(n), which results in
O(n) running time.

References

[1] R. Giegerich and S. Kurtz, From Ukkonen to McCreight and Weiner. A unifying view of
linear-time suffix tree construction. Algorithmica, 19:331-353, 1997.

[2] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common- prefix
computation in suffix arrays and its applications., 12th Annual Symposium, Combinatorial
Pattern Matching, pages 181-92, 2001.

[3] J. Kärkkänen and P. Sanders. Simpler linear work suffix array construction. In International
Colloquium on Automata, Languages and Programming, 2003.

[4] Srinivas Aluru, Suffix Trees and Suffix Arrays, In Handbook of Data Structures and Applica-
tions, Edited by Dinesh P. Mehta and Sartaj Sahni, Chapman & Hall/CRC Computer and
Information Science Series, Chapter 29 (21 pages), 2004.

1� denotes concatenation.

3

