
Advanced Data Structures Jan-Apr 2012

Lecture 8 — 10 Feb, 2012

Lecturer: Venkatesh Raman Scribe: Esha Ghosh

1 Overview

In the last lecture we we discussed hashing as a solution to dictionary/membership problem. Results
on hashing were presented with emphasis on static perfect hashing via FKS.

In this lecture we discuss about dynamic Cuckoo hashing.

We follow the lecture notes of [2] in this lecture.

2 Cuckoo - Dynamic Hashing

Cuckoo hashing is named on the nesting habit of the Cuckoo bird, which is known to place its eggs
in the unattended nest of another bird. This hashing technique is due to [1].
In dictionary/membership problem, we want to keep a set S of n items from a universe U . For the
membership problem, the goal is to create a data structure that allows us to ask whether a given
item x is in S or not. The problems have two versions: static and dynamic. In the static version,
S is predetermined and never changes. In the dynamic version allows items to be inserted to and
removed from S.

First we list the dictionary operations as follows:

• membership(x) – determine x ∈ S or not, and return information associated with x.

• insert(x) – (dynamic only)

• delete(x) – (dynamic only)

Cuckoo hashing achieves O(1) expected amortized time for insertion and O(1) worst-case time for
membership and deletion queries using two hash functions h1 and h2, picked uniformly at random
(uar) from k-universal hash families, where k = O(log n).

The table T is of size m ≥ 2n. (We will use m = 4n.) We will analyse the running time of the
three dictionary opretations in details.

Membership(x):
Throughout the life of the data structure, it maintains the following invariant: an item x that has
already been inserted is either at T [h1(x)] or at T [h2(x)]. Thus, a membership query takes at most
two probes in the worst case. Hence the worst case running time for membership is O(1).

1

Delete(x):
Finding whether x exists in the hash table requires at most two probes (We have already observed
this invariant). If x is found in the table, we just delete it. Hence the worst case running time for
deletion is O(1).

Insert(x):
To insert an element x, we carry out the following process.

Cuckoo Hashing Algorithm

1. Compute h1(x)

2. IF T [h1(x)] is empty, insert x in T [h1(x)]. STOP.
ELSE SWAP(x, T [h1(x)]) .

• IF T [h2(x)] is empty, insert x in T [h2(x)]. STOP.

• ELSE SWAP(x, T [h2(x)])

3. Repeat until we find an empty spot, or until we have evicted 6 log n items. In the later
case, we pick a new pair of hash functions and rehash.

2.1 Analysis of the Algorithm

We analyse the time required to insert an elememt using Cuckoo hashing. Consider the process of
inserting an item x1. Let x1, x2, . . . , xt be the sequence of items, with the exception of x1, that are
ejected during the process, in the order they are ejected.

There are three possible situations that might arise during the process of insertion. We will analyze
the running time in all three cases. Visualizations of the three different behaviors are given in figure
1.

The key observation is that when inserting a new element, we never examine more than 6 log n
items. Since our functions are 6 log n-independent, we can treat them as truly random functions.

• Case (a): No Cycle. The process of ejection continues, without coming back to previously
visited cell, until it finds an empty cell. Let us calculate the probability that the insertion
process ejects t items. The process carries out the first eviction if and only if T [h1(x1)] is
occupied. By the union bound, this event has probability at most∑

x∈S,x6=x1

(Pr[h1(x) = h1(x1)] + Pr[h2(x) = h1(x1)]) ≤ 2
|S|
|T |

= 2
n

4n
=

1

2
.

Similarly, the process carries out the second if and only if it has carried out the first eviction,
and the cell for the first evicted element is occupied. Thus, by the same reasoning, it carries

2

x1

��
• x2 // • x3 // • x4 // • x5 // • x6 // • x7 // •

(a) no cycle

x1

��

•
x8

��

•x7oo

• x2 //

x1

��

• x3 //

x2

__ u_I • x4 //

x3

__ u_I • x5 //

x4

__ u_I •

x6

OO

• x9 // • x10 // • x11 // • x12 // •

(b) one cycle

x1

��

•
x8

��

•x7oo

• x2 //

x1

��

• x3 //

x2

__ u_I • x4 //

x3

__ u_I • x5 //

x4

__ u_I •

x6

OO

•
x15

��

•x14oo

• x9 // • x10 // • x11 // • x12 //

x11

__ •

x13

OO

(c) two cycles

Figure 1: Three different behaviors of the process of inserting element x1.

3

out the second eviction with probability at most 2−2. And we can argue that the process
carries out the tth eviction with probability at most 2−t. Therefore, the expected running
time of this case is

∑∞
t=1 t2

−t = O(1).

Also, Pr[Rehash] ≤ 2−6 logn = 1
n6 .

• Case (b): One Cycle. In this case, for some j, the other cell that xj can be in is occupied
by a previously ejected item xi. Then xi will be ejected a second time, and will go to the
other position it can be found in–namely, back to the location of xi−1. Thus, xi, xi−1, . . . , x1
will be ejected in that order, and x1 will be sent to T [h2(x)], and the sequence continues and
eventually finds an empty cell. We claim that in the sequence x1, x2, . . . , xt of ejected items,
there exists at least one path of length at least t/3 that starts with x1. The sequence can be
partitioned into 3 parts — the solid line part, the dashed line part, and the dotted line part
— and one of them must contain at least t/3 items. By the same reasoning as in the previous
case, we have that the probability that the insertion process ejects all these items is at most
2−t/3. So, the expected running time in this case is at most

∑∞
t=1 t2

−t/3 = O(1).

Also, Pr[Rehash] ≤ 2
−6 logn

3 = 1
n2

• Two Cycles:This is the case where even after a series of ejections xi, xi−1, . . . , x1, when x1
is sent to T [h2(x)], the sequence continues and runs into a previously visited cell. We shall
calculate the probability of a sequence of length t with two cycles.

– The first item in the sequence is x1.

– There are at most t− 1 items in the sequence, each of which is drawn from a set of size
n. Thus, the number of sequences starting at x1 is at most nt−1.

– There are at most t choices for the first loop occurs, at most t choices for where this
loop returns on the path so far, and at most t choices for when the second loop occurs
and t choices for where this second loop returns on the path.

– Additionally, this pattern can occur anywhere in our table (data structure) of hash
values. While the first hash value is h1(x1), the remaining t−1 values are unconstrained.
Our table is of size m = 4n, so there are (4n)t−1 possibilities here.

Thus, there are at most t4nt−1(4n)t−12t configurations. Now let us consider the total number
of configurations possible. The hash functions have a range of size m = 4n, so the number of
configurations possible is (4n)t · (4n)t. Thus, the probability that a two-cycle configuration
occurs is
Pr[Two-cycle configuration of sequence length t happens] ≤ t4nt−1(4n)t−12t

(4n)2t
= t4

4n22t
.

Therefore, the probability that a two-cycle occurs at all is at most

∞∑
t=2

t4

4n22t
=

1

4n2

∞∑
t=2

t4

2t
=

1

4n2
·O(1) = O

(
1

n2

)
.

Now we calculate tha amortized expected cost of one insertion using a simple recurrence re-
lation. First, note that an insertion can cause O(1

n2) rehashing. Therefore, for n insertions,
Pr[Rehash] ≤ O(1

n). So with probabilty 1 − O(1
n) , n insertions succeeds. Hence we get the

recurrence relation,

4

E(n insertions) = [1−O(1
n)]O(n) + 1

n E(n insertions)

Solving this, we get, (n−1)
n E(n insertions) = O(n), i.e, E(n insertions) = O(n).

Therefore expected amortized cost of one insertion is O(1).

References

[1] R. Pagh, F. Rodler, Cuckoo Hashing, Journal of Algorithms, 51(2004), p. 122-144.

[2] Erik Demaine, David Wilson 6.851: Advanced Data Structures, Lecture 14, Spring 2010.

5

