
Advanced Data Structures Jan-Apr 2012

Lecture 4 — January 27, 2012

Lecturer: Venkatesh Raman Scribe: Shion Samadder Chaudhury

1 Overview

In the last lecture we saw Splay trees and the different bounds proved on them like the working set
bound, the static finger bound, the sequential access bound and the dynamic finger bound. These
bounds show that Splay trees execute certain classes of access sequences in o(mlgn) time, but they
all provide O(mlgn) upper bounds on access sequences that sometimes take Θ(m) time to execute
on Splay trees. Splay trees are conjectured to be O(1)-competitive for all access sequences.

In this lecture we discuss Tango tree, an online BST data structure that is O(lglgn)-competitive
against the optimal offline BST data structure on every access sequence. This reduces the com-
petitive gap from the previously known O(lgn) to O(lglgn). Tango Tree originates in a paper by
Demaine, Harmon, Lacono and Patrascu [1]. We also discuss a variation of the lower bound of
Wilber [2], called the interleave bound (IB) on which today’s results are based.

THEOREM (Wilber ’89): COSTOPT (σ) = Ω(IB(σ))

Today we will prove the following theorems:-

THEOREM 1. IB(σ)/2− n is a lower bound on COSTOPT (σ), the cost of the optimal offline
BST that serves access sequence σ.

Using theorem 1 we shall prove the following main result on Tango trees:

THEOREM 2 The running time of the Tango BST on a sequence σ of m accesses over the
universe {1,2,...,n} is O((COSTOPT (σ) + n)(1 + lglgn)).

(In view of Wilber’s theorem and theorem 1 it will be enough to show that: The running time of
the Tango BST on a sequence is O((IB(σ) + n)(1 + lglgn)).)

We shall prove theorem 1 later.

2 Interleave Bound

In this lecture, we assume for simplicity that the request sequence consists only of FIND’s.(Although
it is easy to extend the result when we allow INSERT and DELETE). We also assume that the set
of keys is {1,2,...,n}. We maintain a perfect binary tree P on the set {1,2,...,n}. This tree has a
fixed structure over time. For each node y of P, assume that y is contained in the left subtree of y
in P. Let {x1, x2, ...} be a sequence of FIND operations.

For each node y in (P) the preferred child of y, either left or right, is the one whose subtree contains
the most recently accessed descendent of y. If the most recently accessed element is y, the preferred
child is left.

1

For each node y in P, we label each access xi in the access sequence σ by whether xi is in the left
or right subtree of y, discarding all accesses outside y’s subtree in P.

The amount of interleaving through y, IC(y) is the number of child preferences that would change
in this sequence.If no preferences change, we incur a cost of 1.

Definition :- The interleave bound IB(σ) is the sum of these interleaving amounts over all nodes
y of P.

IB(σ) =
∑
yεP

IC (y)

Figure 1: Access Element 14

Figure 2: Access Element 5

Figure 3: Access Element 10

2

Let us consider the above tree and the access sequence (....8, 14, 5, 10) (Figures 1, 2 and 3.) (the
bold black lines denote the preferences prior to access 8. Note the change from old preferences to
new preferences[black to yellow].)

3 Tango Tree

Figure 4: Tango Tree Structure

3.1 Tango Tree Structure

Now we specify the structure of Tango Trees. Let Ti be the state of the Tango tree after executing
the first i accesses x1 , x2 , ..., xi .We define Ti using the tree P, preferred children as defined before
and Preferred Paths, which we will describe shortly. The following steps are taken:

1. Augment P to maintain for each internal node y of P, a preferred child. If no node whithin y’s
subtree has been accessed (or if y is a leaf), y has no preferred child.

2. Let Pi be the state of the augmented tree P after i accesses.(Pi is uniquely determined by
x1 , x2 , ..., xi in dependent if the Tango tree.) Start at the root of P and repeatedly proceed to
the preferred child of the current node until reching a node whithout a preferred child. The nodes
traversed by this process, including a root form a Preferred Path.

3. Compress this preferred path in to an auxiliary tree (defined in the next section) R.

4. By removing the path from P, it has been split into several pieces. Recurse on each piece and
”hang” the resulting BST’s as child subtrees of the auxiliary tree R.

3.2 Auxiliary Tree

Definition:- The auxiliary tree data structure is an augmented BST that stores a subpath of a
root-to-leaf path in P (in this case, a preferred path) ordered by key value, with each node it stores
the fixed depth in P and supports each of the following operations in time O(lgk) (k is the total
number of nodes involved in the operation) :-

3

Figure 5: On the left, reference tree P with its preferred paths. On the right, Tango Tree represen-
tation of P.

Figure 6: Step by step construction of a Tango Tree

4

1. Searching for an element by key.

2. Cutting it into two auxiliary trees, one storing the path of all nodes at most at a given depth d
and the other storing the path of all nodes greater than d.

3. Joining two auxiliary trees that store two disjoint paths where the bottom of one path is the
parent of the top of the other path.

We call the shallowest node the top and the deepest node the bottom of the path.

An auxiliary tree is implemented as an augmented red-black tree. In addition to storing the key
value and the depth (Dep), each node stores the maximum depth (MaxDep) which is the maximum
value of Dep among its children and similarly the minimum depth (MinDep).Maintaining these
auxiliary values do not effect the complexity of red-black tree operations (see [3], chapter 14]). We
also know that in red-black trees, we can do the following SPLIT and MERGE operations in O(lg
k) time where k is the number of nodes (see [3],Problem 13-2]).

Definition:- �SPLIT(T, x):- splits the red-black tree T at the node x into two red-black trees where
one tree includes all the nodes that has key < x and the other tree includes all the nodes that has
key > x .

Definition:- MERGE(T1 ,T2 , x):- merges the two red-black trees T1 and T2 where T1 has all
its nodes with key < x and T2 has all its nodes with key > x , into a single red-black tree which
contains all nodes in T1 and T2 and a node with key = x .

We observe that each prefered path involves a contiguous interval of depths (actually, it involves
depths in the interval [t, lgn] where t is the minimum depth).Using the SPLIT and MERGE
operations, we claim that given a depthd, we can cut the nodes whose Dep > d in a red-black tree
. Also, we can join two red-black trees where one only contains nodes with Dep > d , and we have
performed a cut to the other tree so that its Dep > d nodes are all lost.

The key observation here is in red-black tree of any path, the keys of nodes that have Dep > d
form an interval [t, r]. We can find the nodes with keys l and r following informations in MinDep
and MaxDep.(we find l by starting at the root and repeatedly walking to the leftmost child whose
subtree has MaxDep > d and symmetrically we find r.) Then we find the predecessor l ′ of l and
the successor r ′ of r. All of these operations take O(lgk) time in red-black trees.

To do cut, we do a SPLIT at l ′ and then SPLIT at r ′. Then we have a tree whose nodes have
l ′ < key < r ′ and therefore all the nodes with Dep > d . We mark this tree has ”hanged” and then
do MERGE at r ′ and l ′ respectively to finish cut operation. (The whole procedure is shown in
Figure)

Join is similar to cut. Suppose A is the tree with nodes Dep > d , B is the tree that do not have
nodes with Dep > d . Observe that the key values in A must fall in between two adjacent keys l ′

and r ′ in B, we can do SPLIT at this two points, and then do two MERGEs to join A and B.

3.3 Tango Algorithm for FIND(σ)

We construct the new state Ti from the given previous state Ti−1 and the next access xi . In Ti−1
we walk toward xi . Accessing xi changes the preferred children to make a preferred path from the
root to xi and sets the preferred child of xi to the left. Except for the last change to xis preferred

5

Figure 7: Implementing cut.

child, the points of change in preferred children correspond exactly to where the BST walk in Ti−1
crosses from one augmented tree to the next. Thus, when the walk visits a marked node x, we cut
the auxiliary tree containing the parent of x, cutting at a depth one less than the MinDep of nodes
in the auxiliary tree at x; then we join the resulting top path with the augmented tree rooted at
x. Finally, when we reach xi , we cut its auxiliary tree at the depth of xi and join the resulting top
path with the auxiliary tree rooted at the preceding marked node of xi .

3.4 Analysis and proof of Theorem 2

Lemma 3.1. The running time of an access xi is O((k+1)(1+lglgn)), where k is the number of
nodes whose preferred child changes during access xi .

Proof. The search visits a root-to-xi path in Ti−1 , which we partition into subpaths according to
the auxiliary trees visited. Clearly the search path in Ti−1 partitions into at most k+1 subpaths in
k+1 auxiliary trees. Hence the cost of the search within a single auxiliary tree is O(lglg n) because
each auxiliary tree stores O(lg n) elements, corresponding to a subpath of a root-to-leaf path in P.
Therefore the total search cost for xi is O((k+1)(1+lglgn)). The update cost is the same as the
search cost up to constant factors. For each of the at most k + 1 auxiliary trees visited by the
search, we perform one cut and one join, each costing O(lglg n). We also pay O(lglg n) to find the
preceding marked node of xi . The total cost is thus O((k+1)(1+lglgn)).

Definition:- Define the interleave bound of access xi to be

IBi(σ) = IB(x1 , x2 , ..., xi)− IB(x1 , x2 , ..., xi−1)

.

Observation:- The number of nodes whose preferred child changes from left to rightor from right
to left during an access xi equals IBi(σ).This is because the preferred child of a node y in P changes

6

from left to right when the previous access within ys subtree in P was in the left region of y and the
next access xi is in the right region of y and symmetrically for right to left. Both of these events
correspond exactly to interleaves.

THEOREM 2: The running time of the Tango BST on a sequence σ of m accesses over the
universe {1,2,...,n} is O((COSTOPT (σ) + n)(1 + lglgn)).

Proof. There can be at most n first preferred child settings (i.e., changes from no preferred child
to a left or right preference). Therefore the total number of preferred child changes is at most
IB(σ)+n. Combining this bound with Lemma 3.1, the previous observation and theorem 1.1 we
get the result.

4 Proof of Interleave Bound (Theorem 1)

4.1 Idea of the proof and steps taken

1. Let Ti denote the state of a fixed arbitrary BST after the execution of accesses x1 , x2 ,..., xi .

2. Definition:- For a node y in P the transition point for y at time i is defined to be to be the
minimum-depth node z in the BST Ti such that the path from z to the root of Ti includes a node
from the left subtree of y and a node from the right subtree of y. (We ignore nodes not from ys
subtree in P.)

Figure 8: Transition.

3. Intuitively, any BST access algorithm applied both to an element in the left subtree of y and to
an element in the right subtree of y must touch the transition point for y at least once.

4. Transition point is well-defined.

Lemma 4.1.: For any node y in Pand any time i, there is a unique transition point for y at time
i.

5. Transition point is stable.

7

Lemma 4.2.: If the BST access algorithm does not touch a node z in Ti for all i in the time
interval [j, k], and z is the transition point for a node y at time j, then z remains the transition
point for node y for the entire time interval [j, k].

6. Transition points are different over all nodes in P.

Lemma 4.3.: At any time i, no node in Ti is the transition point for multiple nodes in P.

Using the above steps we will prove theorem 1.

Proof of Lemma 4.1.:Let l be the lowest common ancestor of all nodes in Ti that are in the left
subtree of y. lis in the left region of y. (since we are considering BST here) Thus l is the unique
node of minimum depth in Ti among all nodes in the left subtree of y. Symmetrically for r, the
lowest common ancestor in right subtree Also, since the lowest common ancestor in Ti of all nodes
in the subtree of y must be a unique node of minimum depth, it must be either l or r (one with
smaller depth).

Let it be l(symmetrically). Then l is an ancestor of r. The path in Ti from the root to r visits
at least one node (l) from the left subtree of y in P, and visits only one node (r) from the right
subtree of y in P because it has minimum depth among such nodes. Also, any path in Ti from the
root must visit l before any other node in the left or right subtree of y, because l is an ancestor of
all such nodes, and similarly it must visit r before any other node in the right subtree of y. Hence
r is the unique transition point for y in Ti .

Proof of Lemma 4.2.: Let l and r be as in the proof of the previous lemma. Let l be an ancestor
of r in Tj . Then r is the transition point for y at time j. The BST access algorithm does not
touch r. Hence it does not touch any node in the right subtree of y, and thus r remains the lowest
common ancestor of these nodes.

The algorithm may touch nodes in the left subtree of y, and in particular the lowest common
ancestor l = li of these nodes may change with time (i). But still, li remains an ancestor of r. Since
nodes in the left subtree of y cannot newly enter rs subtree in Ti , and y is initially outside this
subtree, some node li ’ in the left subtree of y must remain outside this subtree in Ti .Hence, the
lowest common ancestor ai of li ’ and r cannot be r itself, so it must be in the left region of y. Thus
li must be an ancestor of ai , which is an ancestor of r, in Ti .

Proof of Lemma 4.3.: Consider any two nodes y1 and y2 in P, and define lj and rj in terms of
yj as in the proof of Lemma 4.1. We have two cases:-

1. y1 and y2 are not ancestrally related in P: then their left and right subtrees are disjoint from
each other and thus, l1 and r1 are distinct from l2 and r2 , and hence the transition points for y1
and y2 are distinct.

2. (Symmetrically) y1 is an ancestor of y2 in P: If the transition point for y1 is not in y2 s subtree
in P then it differs from l2 and r2 and thus the transition point for y2 . Otherwise, the transition
point for y1 is the lowest common ancestor of all nodes in y2 s subtree in P, and thus it is either
l2 or r2 , whichever is less deep. On the other hand, the transition point for y2 is either l2 or r2 ,
which ever is deeper.

Therefore the two transition points differ in all cases.

We will now prove theorem 1.

8

Proof of Theorem 1.: We count the number of transition points the (optimal offline) BST
touches. We count the number of times the BST touches the transition point for y, separately
for each y, and then sum these counts(by lemma 4.3). Let l and r be as in the proof of Lemma
4.1.(transition point for y is always either l or r, whichever is deeper). Let xi1 , xi2 , ..., xip be a
maximal ordered subsequence of accesses to nodes that alternate between being in the left and right
subtrees of y. So p is the amount of interleaving through y. Let (symmetrically)the odd accesses
xi2j−1 be nodes in the left subtree of y, and the even accesses xi2j be nodes in the right subtree of
y. Consider each j with 1≤j≤bp/2c. Any access to a node in the left subtree of y must touch l,
and any access to a node in the right subtree of y must touch r. Thus, for both accesses xi2j−1

and xi2j to avoid touching the transition point for y, the transition point must change from r to l
in between, which requires touching the transition point for y(lemma 4.2). Thus the BST access
algorithm must touch the transition point for y at least once during the time interval [i2j−1 , i2j−1].
Summing over all j, the BST access algorithm must touch the transition point for y at least bp/2c
times. Summing over all y, the amount p of interleaving through y adds up to the interleave bound
IB(σ); thus the number of transition points touched adds up to at least IB(σ)/2 - n.

5 References

[1] E. Demaine, D. Harmon, J. Iacono, and M. Patrascu. Dynamic optimality almost. SICOMP,
37(1):240251, 2007. Also in Proc. FOCS 2004.

[2] R. Wilber. Lower bounds for accessing binary search trees with rotations. SICOMP, 18(1):5667,
1989.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Introduction to
Algorithms. MIT Press, second edition, 2001.

[4] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. ACM, 32(3):652686, 1985.

9

